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l.GCMS: WHAT ARE THEY AND HOW ARE THEY USED?

Comprehensive mathematical representation of our current under-
standing of the physical processes responsible for the weather and
climate. A tool to simulate the general circulation of the atmos-
phere, its evolution from a know initial state.

- Numerical Weather Prediction Models: Atmospheric GCMs.
Weather: detailed description of the evolution of the atmosphere
over a few days. Initial condition problem. Models aimed at short
time and high spatial resolution simulations.

- Climate Models: Atmospheric GCMs
Climate: Require long term atmospheric statistics, measures
of the variability of meteorological parameters such as tempera-
ture and precipitation. Models aimed at long term and low spatial
resolution integrations. Boundary value problem.



- Coupled Climate model: Atmospheric GCM coupled to ocean GCM,
The focus is on prediction of the statistical properties of the
climate system. Example: ENSO (El Nino Southern Oscillation), a
seasonal forecast problem, where atmospheric variability associ-
ated with ocean variability is important.

- Climate System Models:
From the bottom of the ocean to the upper atmosphere.
Climate system: atmosphere, ocean, cryosphere (snow and ice)
lithosphere (land), biosphere (natural and anthropogenic),

=> Models including both physical and bio-geo-chemical processes
by means of coupling of a numbers of modules, Interactive models
are those that allow for feedback between each other parts.



Questions that can be addressed by Climate System Models:

How and why the climate changed in the past?

What is the impact of the anthropogenic perturbations of the at
mospheric composition on climate?

Climate System Models can be used for Climate projections:

Determination of the response of the atmospheric climate to changes
in the external forcing such as increases in greenhouses gases,
changes in aerosol distributions, variations in solar radiative
fluxes, impacts of volcanos, etc.



2. BASIC EQUATIONS

A simulation with a GCM requires to compute the numerical solutions
of a set of nonlinear partial differential equations based on the
general principles of conservation of momentum, energy and mass.

These equations describe the physical processes that relate the
temporal evolution of thermo-hydrodynamical quantities and are
specialized to the problem of a thin layer of fluid on a rotating
sphere => Primitive equations

External Forcing: Solar radiation.
(Orbit and inclination of rotation axis => Annual cycle)

Specified boundary and initial conditions.
(Distributions of lands and seas, land surface types: forest,
grass, deserts, ... affecting the heat, moisture and momentum ex-
changes between the surface and the atmosphere)



Primitive equations (Pexioto and Oort, 1992):

Equations of motion, conservation of mass for a continuous fluid,
first law of thermodynamics, balance equation for water vapor (and
cloud water and ice), and the equation of state.

Horizontal equations of motions in spherical coordinates:

du ( , tancp^ I dp
— = \f+U V T T ^

dt V a ) pa cos (pd A

dv (r , tanqA ldp ,
— = - f + u -\u—^r- +
dt V a ) p8(p

where :
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— = T ^ H TT^ + -TT h W-.dt dt acoscp8X a8cp dz



Hydrostatic equation:

Continuity equation:

dp = L_
dt acoscp

First law of thermodynamics (energy conservation)

Equation of state for air (perfect gas) :

P = pRdTr

Balance equation for water vapor:



Coordinates:
X, longitude/ (p, latitude/ and z, geometrical height

Variables:
u, zonal wind; v, meridional wind; w, vertical velocity;
p, density of air; p, pressure; T, temperature;
[Tv, virtual temperature, = T[l+(Rv/Rd -l)q]

Note:

- The continuity equations is re-written in terms of the surface
pressure (by vertical integration and by using the hydrostatic
equation) that therefore substitute the density as a prognostic
variable.

- A vertical coordinate that is function of pressure is generally
used, most popular an hybrid coordinate, terrain following at the
bottom and pure pressure above the tropopause.
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f = Coriolis parameter
a = radius of the Earth
Cp = atmospheric specific heat at constant pressure
Rd = gas constant for dry air
Rv = gas constant for water vapor

FORCING and DISSIPATIVE TERMS (=> Parameterizations) :

FA and F^: surface stress, wave stress, eddy and molecular
diffusion/

Q: heat ing/cool ing rates from radiative fluxes
(solar and terrestrial); latent and convective heat;
dissipation of kinetic energy

D: eddy and molecular diffusion,

e = evaporation; p = precipitation



Problems:

Equations:
- There are no analytical solutions => numerical inaccuracies
Discrete resolution in space and time and parameterization
of subgrid (unresolved) scale fluxes (turbulent motions, cloud
processes, radiative processes, convective processes).

=> Some physical processes and feedback (cloud physics, for
instance) involved are still poorly known;

Forcing, solar input:
- Radiative transfer schemes: computationally expensive,
- The distributions of short lived atmospheric constituents
are not known (tropospheric ozone, aerosols, sources and sinks?)
- Variability in the solar flux.

Boundary and initial conditions:
- usually not sufficiently defined (incomplete, not accurate)
=> Differences between observed and simulated climate.
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=> Simplification, specialization, selection of the natural
processes represented in the model.

=> Variety of models.

What allowed (and is allowing) for the development of GCMs:

High speed computers, large data storage and handling facilities,
global scale monitoring systems (satellites, radiosonde networks,
surface observation networks).
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3. NUMERICAL APPROACH TO THE PROBLEM

Discretization of the primitive equations, requirement: enough
horizontal resolution to resolve synoptic eddies.

(i) Spectral transform method in the horizontal and finite
difference in the vertical dimension. Finite series of spherical
harmonic basis functions. Nonlinear terms and parametrized physics
on associated Gaussian Grid (grid point space) . FAST and ACCURATE
at relatively low horizontal resolutions

Major problems: Distribution of tracers, treatment of mountains
(ripples close to sharp changes in distribution).

(ii) Gridpoint models on a longitude latitude grid with polar fil-
ter (to overcome problems related to the convergence of the merid-
ians) : fully finite differences or finite volumes.

(Hi) Geodesic (icosahedral - hexagonal grid) grids
(renewed interest for high horizontal resolutions)

12



Parame t eri zati ons :

Shortwave and longwave radiative transfer:
Spectral range and resolution considered, so called line-by-line
models cannot be used in GCMs. Distributions of gases, aerosols,
clouds. Radiative properties of clouds, aerosols (microphysics)

Cumulus convection: vertical eddy transport of momentum, heat,
moisture, cloud water and ice, tracers. Condensation and
Evaporation.

Stratiform clouds and large scale condensation (prognostic),

Planetary boundary layer, turbulence transfer in the free atmos-
phere, kinetic energy dissipation.

Land-surface processes: surface - atmosphere exchanges,

Orographic gravity wave drag and momentum flux deposition due to
a gravity wave spectrum.
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Momentum deposition from upward propagating gravity waves:

(i) Reversal of the temperature gradient at the mesopause:

Mesospheric gravity wave breaking.

Downward control of the temperature distribution (Haynes et
al.1991; Mclntyre 1992; Garcia and Boville 1994); dynamical

driving of the Brewer - Dobson circulation; i.e., the large scale

circulation that transports chemical constituents and aerosols.

(ii) Middle Atmosphere tropical oscillations in zonal wind:

Semiannual oscillation at the stratopause and at the mesopause.

Quasi-biennial oscillation in the lower stratosphere.

Gravity waves forced by cumulus convection activity.

=> The middle atmosphere is mechanically driven (from below)

and radiative ly damped.
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3. CURRENT RESEARCH TOPICS IN MIDDLE ATMOSPHERE MODELLING

- Extratropical dynamics [winter and spring seasons]:

(i) Relative importance of planetary and gravity wave driving

for the residual mean meridional circulation.

(ii) Planetary - gravity wave interactions.

(Hi) Improvements in planetary wave forcing (troposphere) .

- Quasi-Biennial Oscillation:

(i) Vertical resolution and dissipation.

(ii) Role played by small scales of motion.

(Hi) Role played by convection as a forcing mechanism of

equatorial planetary waves and gravity waves.

- Parameterization of the momentum flux deposition due to a

continuous spectrum of gravity waves.
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- Climate research at GFDL (Princeton, NJ, USA):
http ://w w w. gfdl .noaa. go v/~kd/ClimateDynamic s/climate .html

- General circulation model development at GISS (New York, NY, USA):
http://www.giss.nasa.gov/research/modeling/gcms.htm

- Model developments at Max Planck Institute (Hamburg, Germany):
http ://w w w. mpimet. mpg. de/working_groups/wg2/index. html

- Hadley Centre for Climate Prediction and Research (Bracknell, UK):
http://www.meto.govt.uk/research/hadleycentre/

- Climate research at Laboratoire de Meteorologie Dynamics (Paris, France):
http://www.lmd.jussieu.fr/en/Climat/LMD_Climat_frame.html

- Atmospheric Model Intercomparison Project:
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2. CONTINUOUS GOVERNING EQUATIONS

The continuous equations are similar to those used by Bourke (1974) and

Hoskins and Simmons (1975) and adopt the cr-vertical coordinate proposed by

Phillips (1957).

a. Momentum Equations

The zonal and meridional components of the momentum equations may be

written in a coordinates as

£ 1 «' E)£ = „„ (» + E) fa,. *
at acos<f> aX a cos <j> o\ oa

a o<p a
FvH,

where the absolute vorticity r/, relative vorticity (, divergence 5, and kinetic energy

E are given by

»7 .= < + / , (2.a.3)

a cos <

E = i ( n 2 + t ; 2 ) . (2.O.6)

Here / is the Coriolis parameter (2ft sin ̂ 6), t is time, <j> latitude, A longitude, a

vertical coordinate (p/ps), ps surface pressure, & vertical velocity in a coordinates,

u zonal wind component, v meridional wind component, $ geopotential, a mean

radius of the earth, R gas constant for dry air, and Tv virtual temperature. The

virtual temperature is given by

[ ( ^ ) | r , (2.a.7)



where T is temperature, q specific humidity, and Rv gas constant for water va-

por. The vertical friction terms Fuy,Fvy, which include surface fluxes and vertical

diffusion, and the horizontal diffusion terms FUH,FVH will be described shortly.

b. Vorticity and Divergence Equations

The momentum equations of the form (2.a.l) and (2.a.2) are not directly used

by the model but rather, following Bourke (1974), their vorticity and divergence

counterparts are obtained from (2.a.l) and (2.a.2) with the relations (2.a.3), (2,a.4),

and (2.a.5). In addition, the variable

f.i = sin<j) (2.6.1)

is used for the meridional independent variable rather than latitude </>, and

U = ucos<f> (2.6.2)

V = vcos<l> (2.6.3)

are used when velocity components are needed. These forms are more convenient

for the spectral representation. The equations for absolute vorticity and divergence

can be written

% 1 ^r (Nv + cos <t>FvV) - - A (Nu + cos<j>FuV) + F , H , (2.6.4)n 2,^r (Nv + cos <t>FvV)

r\r I f ) 1 /•)

(JV« + cos <f>FuV) + - — (NV + cos <f>FvV) + FSH
ad(Jb^7 = 7 : r , ^7 (JV« + cos <f>FuV) +

- V2(JEJ + $ + RTotnP3). (2.6.5)

The spherical horizontal Laplacian operator is denoted V2.

The virtual temperature has been divided into two parts, one of which To is a

function of cr only, in order to facilitate the incorporation of the semi-implicit

time-integration scheme,

rv(\,p,<r,t) = r,(A,/*,<r,i) -To(<r). (2.6.7)



The mean temperature To for the linearization associated with the semi—implicit

scheme is specified a priori, usually to be 300°K (Simmons et aln 1978). The

nonlinear dynamical terms are

^ p 3 , (2.6.8)
a uA ocr

a
Nv = -VU - RT'v^—^l^-tnp3 - b^-. (2.6.9)

The horizontal diffusion terms Fy)n and FSH a r e formulated directly using 77 and 8

rather than u and v. They are converted to the equivalent FUH and FVH forms for

use in the factional heating term in the thermodynamic equation.

c. Thermodynamic and Mixing-Ratio Equations

The thermodynamic equation is for the perturbation temperature T1 calcu-

lated about the same mean To as used earlier for the virtual temperature.

dT> 1

Qs + Qiv, + FTV + FTH - 77̂  HFuV + FuH) + v(FvV + FvH)},

'{A,n,<r,i) = T(\, fi,<r,/) - To{*), (2.c.2)

7P, (2.c.3)

where G'p is the specific heat of dry air at constant pressure and CPm is the specific

heat of water vapor at constant pressure. The vertical diffusion FTV, which includes

the sensible heat flux from the surface and the horizontal diffusion term FTHJ
 wiU be

defined shortly. The pressure vertical velocity u) and the sigma coordinate vertical

velocity & = ^j are given in the next section [(2.d.7) and (2.<Z.5)]. The solar

atmospheric heating rate Qs is given by (2.g.34) to (2.^.36) and the longwave

atmospheric heating rate Qcw by (2.gr.60).
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The moisture forecast equation for the specific humidity q is

1 k 4 ^ FqH. (2.c.4)

We shall discuss later the mathematical expressions for the soxirce/sink term S for

water vapor and the horizontal and vertical water-vapor diffusion terms FqH,Fqv*

d. Vertical Velocities and Surface Pressure

The continuity eqxxation in the ^-system is

where V is the horizontal velocity vector with components (u^v) and

a

The continuity equation (2.d.l) is not used directly but, when integrated in the

vertical, gives equations for the surface-pressure tendency and for cr. Integrating

(2.d.l) from cr = 0 to cr = 1, with the boundary conditions

a = 0 at (7 = 0 and 1, (2.d.3)

gives the prognostic equation for surface pressure,

d£np3 tl „ , x

—-— = — / (o + V • \tnp3)dcr. iZ.aA)
dt Jo

The diagnostic equation for the sigma vertical velocity a is derived by in-

tegrating the continuity equation (2.d.l) vertically from the top of the atmosphere

(cr = 0) to cr and substituting the surface-pressure-tendency equation (2.^.4),

a = a ( {8 + V • Vtnp$)da - I (8 + V • Vinps)da. (2.d.5)
Jo Jo

The pressure vertical velocity is obtained from (2.d.5) and (2.dA) using

w a dtnp, . .
- = - + —77—, (2.d.6)
pa at
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as

- = V • Vinp3 - - / {8 + V . V£nps)d<j. (2.d.7)
P <* Jo

e. Hydrostatic Equation and Equation of State

The hydrostatic equation is

din*

or in integral form,

where $ 5 is the geopotential at the earth's surface.

The equation of state is that for a moist atmosphere,

(2.e.2)

(2.e.3)

where p is the density and Tv was given earlier (2.a.7).


