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Newton's Law and Its Implications

F = ma (1)

= _p (2)

Zero Total Force !

Conservation of Linear Momentum

FT = 0 = _p (3)

p = constant (4)

Zero Total Torque �!

Conservation of Angular Momentum

L � r � p (5)

N � r � F

_L = r � _p = N

N = 0

L = constant



Work

W12 �

Z 2

1

F � dr (6)

F � dr = m
dv

dt
�
dr

dt
dt (7)

=
m

2

d

dt
(v � v) dt

= d
�m
2
v2
�

W12 =
m

2
v22 �

m

2
v21 (8)

= T2 � T1

� Now, assume a conservative force �eld :

I
F � dr = 0 (9)



� Closed path have zero work

� Work done between two states independent of path

� Counter example : friction

� Under such conditions, Stokes' Law says :

F = �rV (10)

� V scalar function called potential

W12 =

Z 2

1

F � dr (11)

= �

Z 2

1

rV � dr

= �

Z 2

1

X
i

@V

@xi
dxi

= �

Z 2

1

dV

= V1 � V2

= T2 � T1

T1 + V1 = T2 + V2

� Newton's Law with conservative force �elds conserve

total energy.



One dimensional harmonic oscillator

example

V =
1

2
kx2 (12)

F = �kx (13)

m�x = �kx (14)

�x = �
k

m
x (15)

!2
0 =

k

m
(16)

x(t) = A sin (!0t+ �) (17)

_x(t) = A!0 cos (!0t+ �) (18)

Two initial conditions completes equation

fx(0); _x(0)g �! fA; �g (19)

V =
1

2
kA2 sin2 (!0t+ �) (20)

T =
1

2
kA2 cos2 (!0t+ �) (21)

E = T + V =
1

2
kA2 (22)



Generalized Coordinates

� Given N Free (unconstrained) Particles

{ Spherical particles

{ Point particles

{ No internal degrees of freedom

{ 3N degrees of freedom

� Imagine m constraints

{ Fixed bond lengths

{ Fixed bond angles

{ 3n�m degrees of freedom

{ H2 = 3(2)� 1 = 5 degrees of freedom

{ 3 Center of Mass Translations

{ 2 Rotational Degrees of Freedom



Generalized Coordinate Example

� Motion on a circle of radius r0

R0

Y

X

1. Rectangular coordinates

� Need equations of motion for both x and y

� Need constantly changing constraint force such

that
p
x2 + y2 = r0.

2. Polar coordinates

� Using r and �

� r = r0 always

� Only need constraint-free equation for �



Generalized Coordinates

\Proper Set of Generalized Coordinates" - a set of

independent generalized coordinates that equal the

number of degrees of freedom.

� We can simplify a problem using the right set of

generalized coordinates.

� Newton's Law told us how rectangular coordinate

frame variables evolve.

� Now need a method to tell us how a generalized set

of coordinates evolve.



Hamilton's Principle

The classical path that a dynamical system follows

in moving from one point in phase space to another

is chosen such that the time integral of the di�erence

between the kinetic and potential energy is minimized

(extremum)

L = T � V (23)

S =

Z t1

t0

L(q; _q; t)dt (24)

t=t0

t=t1

q(t)

q’(t)

q(t) = minimum action path (25)

q0(t) = q(t) + �q(t) (26)

�q(t0) = �q(t1) = 0 (27)



Hamilton's Principle

�S =

Z t1

t0

L (q + �q; _q + � _q; t) dt (28)

�

Z t1

t0

L(q; _q; t)dt

=

Z t1

t0

�
@L

@q
�q +

@L

@ _q
� _q

�
dt (I:B:P:)

=
@L

@ _q
�qj

t1
t0
+

Z t1

t0

�
@L

@q
�

d

dt

�
@L

@ _q

��
�q dt

� Lagrange's Equation :

@L

@q
�

d

dt

�
@L

@ _q

�
= 0 (29)

� We now know the way a set of generalized coordi-

nates evolve.



Lagrange = Newton : Proof

� Rectangular coordinates and conservative system :

T = T ( _xi) (30)

V = V (xi)
@T

@xi
= 0

@V

@ _xi
= 0

@L

@xi
�

d

dt

@L

@ _xi
= 0 (31)

�
@V

@xi
�

d

dt

@T

@ _xi
= 0

Fi �
d

dt

@T

@ _xi
= 0



Lagrange = Newton : Proof

d

dt

@T

@ _xi
=

d

dt

@

@ _xi

�
1

2
m _x2i

�
(32)

= m�xi

F = m�x (33)

� Another proof for Newton �! Lagrange



One Dimensional Harmonic Oscillator

Example

L = T � V (34)

T =
m

2
_x2 (35)

F = �kx = �rV (36)

V =
1

2
kx2 (37)

@L

@x
= �kx (38)

@L

@ _x
= m _x (39)

d

dt

@L

@ _x
= m�x (40)

� kx+m�x = 0 (41)



Newton and Lagrange : Same Physics,

Di�erent Philosophy

� Newton

{ Outside forces acting on a body

{ Forces are vector quantities

{ Depend on coordinate system

� Lagrange

{ Energy of a body

{ Scalar quantities

{ Invariant to coordinate transformations

{ Can pick a coordinate system that simpli�es prob-

lem



Conservation of Energy

Conditions

� Only assume inertial reference frame

� Newton's Laws Valid

� Closed system or

� Interacting with uniform external force �eld

� No explicit dependence on time @L
@t

= 0



Conservation of Energy

dL

dt
=

X
j

@L

@qj
_qj +

X
j

@L

@ _qj
�qj +

@L

@t
(42)

=
X
j

_qj
d

dt

@L

@ _qj
+
X
j

@L

@ _qj
�qj

=
X
j

d

dt

�
_qj
@L

@ _qj

�

0 =
d

dt

0
@X

j

_qj
@L

@ _qj
� L

1
A

H �
X
j

_qj
@L

@ _qj
� L

= constant



Conservation of Energy

� Additional condition : @V
@ _q

= 0

H =
X
j

_qj
@L

@ _qj
� L (43)

=
X
j

_qj
@ (T � V )

@ _qj
� (T � V )

=
X
j

_qj
@T

@ _qj
� T + V

= 2T � T + V

= T + V conserved



Conservation of Linear Momentum

Conditions

� Inertial Frame

� Homogeneous Space

� Displace all particles by �r =
P

i �xiei

�L =
X
i

@L

@xi
�xi = 0 (44)

@L

@xi
= 0 (45)

d

dt

@L

@ _xi
= 0

@L

@ _xi
= constant

@ (T � V )

@ _xi
= m _xi

= constant



Hamilton's Equations

� De�ne a generalized momentum as

pi =
@L

@ _qi
(46)

_pi =
d

dt
pi

=
d

dt

@L

@ _qi

=
@L

@qj

H =
X
j

pj _qj � L (47)

� Using de�nition of momentum to express _q in terms

of q; p; t

� H = H (q; p; t) while L = L (q; _q; t)



Hamilton's Equations

dH =
X
k

�
@H

@qk
dqk +

@H

@pk
dpk

�
+
@H

@t
dt (48)

=
X
k

�
_qkdpk + pkd _qk �

@L

@qk
dqk �

@L

@ _qk
d _qk

�

�
@L

@t
dt

=
X
k

( _qkdpk � _pkdqk)�
@L

@t
dt

� Match terms to get Hamilton's Equations

@H

@qk
= � _pk (49)

@H

@pk
= _qk

@H

@t
= �

@L

@t



Hamilton's Equations

� Hamilton's equations 2N �rst order di�erential equa-

tions

� Lagrange equations N second order di�erential equa-

tions

� p and q now independent equations - equal footing

� Only time dependence comes from an explicit time

dependence of the Lagrangian



Phase Space

� Phase space is a 2N dimensional space with one di-

mension for each of the N coordinates and N mo-

menta.

� Any point in the space completely speci�es the me-

chanical state of a system.

� Given a point at time t0, fq
N(t0); p

N(t0)g, all points

at time t > t0 are completely determined.

� Time reversibility : a unique trajectory leads to

qN(t0); p
N(t0).

� fqN(t0 + �t); pN(t0 + �t)g is a continuous function

of fqN(t0); p
N(t0)g, i.e. trajectories are continuous.

� Trajectories cannot cross, merge or diverge.



Classical Ensemble

� Specify a small (� 2N) number of state variables

(N,V,T,P,E, etc ...)

� Ensemble : (in�nite) collection of systems prepared

to satisfy these state variables.

� Together, they de�ne an almost continuous cloud of

points in phase space

� De�ne f
�
qN ; pN ; t

�
such that f

�
qN ; pN ; t

�
dqN dpN

is the fraction of states with their phase point in a

volume of size dqN dpN around a point qN ; pN at

time t.

�
R
f
�
qN ; pN ; t

�
dqN dpN = 1

� Assume that the partial derivatives of f are contin-

uous.



Liouville's Theorem

pk

qk

(qk,pk) .

qk

pk

.



Liouville's Theorem

� Number of points moving across left face per unit

time :

f
dqk

dt
dpk = f _qkdpk (50)

� Number of points moving across bottom face per unit

time :

f
dpk

dt
dqk = f _pkdqk (51)

� Total moving across bottom and left per unit time:

f _qkdpk + f _pkdqk = f ( _qkdpk + _pkdqk) (52)

� Number of points moving across top and right face

per unit time :

�
f _qk +

@

@qk
(f _qk) dqk

�
dpk+

�
f _pk +

@

@pk
(f _pk) dpk

�
dqk

(53)



Liouville's Theorem

� Total increase per unit time :

@f

@t
dqkdpk = �

�
@

@qk
(f _qk) +

@

@pk
(f _pk)

�
dqkdpk

(54)

@f

@t
+

NX
k=1

�
@f

@qk
_qk + f

@ _qk

@qk
+

@f

@pk
_pk + f

@ _pk

@pk

�
= 0

@f

@t
+

NX
k=1

�
@f

@qk
_qk +

@f

@pk
_pk + f

�
@ _qk

@qk
+
@ _pk

@pk

��
= 0

@f

@t
+

NX
k=1

�
@f

@qk
_qk +

@f

@pk
_pk

�
+ f�(�) = 0

��(�) is the phase space compression factor.



Liouville's Theorem

� For Hamiltonian systems :

�(�) =

NX
k=1

�
@ _qk

@qk
+
@ _pk

@pk

�
(55)

=
@

@qk

�
@H

@pk

�
+

@

@pk

�
�
@H

@qk

�
= 0

@f

@t
+

NX
k=1

�
@f

@qk
_qk +

@f

@pk
_pk

�
+ f� (�) = 0(56)

@f

@t
+

NX
k=1

�
@f

@qk
_qk +

@f

@pk
_pk

�
= 0

� Liouville's Theorem

df

dt
= 0



Liouville's Theorem

f(q; p; t) = f(q0; p0; t0) (57)

pk

qk

T1

T2

A

A

B

B

C

C



Liouville's Theorem

V (0) =

Z
dqN(0)dpN(0) (58)

V (t) =

Z
dqN(t)dpN(t)

=

Z
dq1(0) : : : dpN(0)det [J(t)]

Jij(t) =
@qi(t)

@qj(0)
(59)

dJ(t)

dt
= �J(t)

@ _�

@�
(60)

_J = 0

J(t) = constant

J(0) = 1 = J(t)

� Volume preserved



Time Evolution of a Distribution

Function

@f

@t
= �

NX
k=1

�
@f

@qk
_qk +

@f

@pk
_pk

�
+ f�(�)

= �iLff (61)

f(�; t) = exp (�iLft)f(�; 0) (62)

exp (�iLft) =

1X
n=0

�tn

n!
(iLf)

n
(63)

f(t) =

1X
n=0

�tn

n!
(iLf)

n
f(0) (64)

� Taylor series expansion of the explicit time depen-

dence of f(�; t) about f(�; 0).



Evolution of a Phase Variable B(�)

� Depends on �, implicitly on time

_B(�) = _� �
@

@�
B (65)

= iLB(�)B(�)

B(t) = exp (iLBt)B(0) (66)

� Ensemble Averages :

< B >=

Z
B(�)f(�)d� (67)

� Time Average :

< B >T=
1

T
lim
T!1

Z t+T

t

B(�(t0))dt0 (68)

� Ergodicity : atleast one trajectory comes arbitrar-

ily close to all points in phase space for which the

distribution function is non-zero.

< B >T=< B > (69)



Extended Phase Space

� Newton's Equations of Motion consistent with NVE

ensemble.

� Time Average over the solution to Newton's EOM

gives answers for microcanonical ensemble.

� Rare that experiments can control total energy.

� Most control temperature and/or pressure.

� Finite system sizes cause problems.

� Need EOM that generate time averages appropriate

for NVT or NTP ensemble before relating to experi-

ments.

� Andersen extended phase space beyond q; p.

� Nose and later Hoover developed a set of EOMs for

NVT.



First Attempts to Control Temperature

� Natural method of conduction of heat through

boundaries are di�cult because of layering e�ects of

the boundaries and strong system size dependence.

� Simple scaling of velocities will only �x �rst moment

of the kinetic energy. Will do nothing to establish a

Boltzmann distribution.

� Massive stochastic collisions- Right Ensemble, Funny

Dynamics

1. Perform NVE dynamics for �xed amount of time

2. Replace all particle velocities by velocities randomly

chosen from a Boltzmann's distribution

3. Go back to Step #1.



NH Example for NVT Dynamics

_qi = pi=m (70)

_pi = Fi � pi
p�

Q
(71)

_p� =

NX
i

p2i=m�NfkT (72)

_� =
p�

Q
(73)

� Nf number of degrees of freedom.

� If kinetic energy > NFkT , p� increases.

� p� acts as a friction coe�cient.

� These EOMs have the follow quantity conserved :

H 0 =

NX
i

p2i=2m+ V (q) + p2�=2Q+NkT� (74)



NH Example for NVT Dynamics

� How do we know what f these EOMs give us?

dJ(t)

dt
= �J(t)

@ _�

@�
(75)

= �J(t)

"
@ _�

@�
+
@ _p�

@p�
+
X
i

@ _p

@p
+
X
i

@ _q

@q

#

= �J(t)

�
�N

p�

Q

�
= J(t)N _�

J(t) = exp (N�) (76)

� [g(x)] =
�(x� x0)

dg=dx
(77)

H0 = KE0 + V0 + p2�;0=2Q+NkT�0 (78)

�(H 0 �H0) =
�(� � �0)

NkT
(79)



NH Example for NVT Dynamics

Q =

Z
dqNdpNdp�d� exp (N�)�(H 0 �H0)(80)

=

Z
dqNdpNdp�d� exp (N�)

�(� � �0)

NkT

=
1

NkT

Z
dqNdpNdp� exp (N�0)

H 0 = H0

NkT�0 = H0 �

 
NX
i

p2i=2m+ V (q) + p2�=2Q

!

�0 =
1

NkT
�"

H0 �

 
NX
i

p2i=2m+ V (q) + p2�=2Q

!#



NH Example for NVT Dynamics

Q =
1

NkT
exp (H0=kT )� (81)Z

dqNdpNdp�

exp

 
�

 
NX
i

p2i=2m+ V (q) + p2�=2Q

!
=kT

!

Q = C

Z
dqNdpN exp

 
�

 
NX
i

p2i=2m+ V (q)

!
=kT

!

� Canonical distribution in the coordinate and momen-

tum sub-space.

� Microcanonical distribution in extended phase space.



NPT Ensemble

_qi = pi=m+
p�

W
qi (82)

_pi = Fi � pi
p�

Q
�
p�

W
pi (83)

_p� =

NX
i

p2i=m+
p2�
W

� (Nf + 1)kT (84)

_� =
p�

Q
(85)

_p� = dV (Pint � Pext)� p�
p�

Q
(86)

_V =
dV p�

W
(87)

H 0 =

NX
i

p2i
2mi

+ V (q) + p2�=2Q+ (88)

(Nf + 1)kT� + p2�=2W



� = C

Z
dV exp (�PextV=kT )� (89)

Z
dqNdpN exp

 
�

 
NX
i

p2i=2m+ V (q)

!
=kT

!



Integrators

� Force (�rV ) generally analytic expressions.

� Di�erential equations generally quite complicated.

� May be solved numerical through a Taylor series ex-

pansion.

r(t+ �t) = r(t) + �tv(t) +
1

2
�t2a(t) + : : :

+ r(t� �t) = r(t)� �tv(t) +
1

2
�t2a(t) + : : :

#

r(t+ �t) = 2r(t)� r(t� �t) + �t2a(t) (90)

v(t) =
r(t+ �t)� r(t� �t)

2�t
(91)

� Verlet is symmetric with respect to time.

� Requires on 3Nf quantities stored in memory.

� O(�t4) in position, O(�t2) in velocity.



Velocity Verlet

� Don't have velocities at time t until you have posi-

tions at time t+ �t.

� Numerical problems :

r(t+ �t) = 2r(t)� r(t� �t)| {z }
O(�t0)

+ �t2a(t)| {z }
O(�t2)

(92)

r(t+ �t) = r(t) + �tv(t) +
1

2
�t2a(t) (93)

v(t+ �t) = v(t) +
1

2
�t [a(t) + a(t+ �t)] (94)

� Same storage.

� Mathematically equivalent.

� Numerically superior.

� All information at the same timestep.



Velocity Verlet Structure

Get initial positions, velocities and forces

r (t)! r (t+ �t)

v (t)! v
�
t+ 1

2
�t
�

F (t+ �t)

v
�
t+ 1

2
�t
�
! v (t+ �t)

Analysis

� Other methods, such as predictor-corrector, Runge-

Kutta, etc ... generally inferior

{ Require multiple force calculations.

{ Unstable at larger timestep.

{ Not reversible.



Reversible Integrators

iL = _� �
@

@�
(95)

=
X

vi
@

@xi
+
Fi

m

@

@vi
(96)

� (t) = eiLt|{z}
U(t)

� (0) (97)

U�1(t) = U(�t) unitary operator (98)

� Discrete Time Propagator - Assume iL = iL1 + iL2

and discretize time t into p sections where �t = t
p
:

ei(L1+L2)t =
h
e
i(L1+L2)

t
p

ip
(99)

=
h
eiL1

�t
2 eiL2�teiL1

�t
2

ip
+O

�
t3

p2

�



Reversible Integrators

� Trotter factorization of the Liouvillian. The error

term arises because the operators do not commute.

G(�t) = eiL1
�t
2 eiL2�teiL1

�t
2| {z }

all unitary

(100)

G�1(�t) = G(��t) (101)

Reversible Dynamics

� To derive speci�c integrators, assign :

iL1 =
Fi

m

@

@vi
(102)

iL2 = vi
@

@xi
(103)

� Using this result of operator mathematics :

ea
@
@bf(b) = f(b+ a) (104)



Reversible Integrators

G(�t)�(0) = U1

�
�t

2

�
U2 (�t)U1

�
�t

2

�
�(0) (105)

e
�t
2

Fi
m

@
@vi

�
x(0)

v(0)

�
=

�
x(0)

v(�t
2
) = v(0) + �t

2

Fi(x(0))

m

�

e
�tvi

@
@xi

�
x(0)

v(�t
2
)

�
=

�
x(�t) = x(0) + �tv(�t

2
)

v(�t
2
)

�

e
�t
2

Fi
m

@
@vi

�
x(�t)

v(�t
2
)

�
=

�
x(�t)

v(�t) = v(�t
2
) + �t

2

Fi(x(t))

m

�

Velocity Verlet from operators



Reversible Integrators

� Assignment of iLi was arbitrary. Could have made

the reverse assignments in ...

iL1 = vi
@

@xi
(106)

iL2 =
Fi

m

@

@vi
(107)

e
�t
2
vi

@
@xi

�
x(0)

v(0)

�
=

�
x(�t

2
) = x(0) + �t

2
v(0)

v(0)

�

e
�t

Fi
m

@
@vi

�
x(�t

2
)

v(0)

�
=

"
x(�t

2
)

v(�t) = v(0) + �t
F (x(�t

2
))

m

#

e
�t
2
vi

@
@xi

�
x(�t

2
)

v(�t)

�
=

�
x(�t) = x(�t

2
) + �t

2
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Slightly worse numerically than V.V.



Potentials of Interaction

V (rN) =
X
i

v1 (ri) +
X
i

X
j>i

v2 (ri; rj) (108)

+
X
i

X
j>i

X
k>j>i

v3 (ri; rj; rk) + : : :

� v1 represents single particle interactions with an ex-

ternal �eld.

{ Example : ions interaction with an electric �eld.

{ Computation O(N).

� v2 represents pair-wise interactions.

{ Depends on magnitude of separation

rij = jri � rjj.

{ Computation O(N2).



Potentials of Interaction

� v3 represents three body interactions.

{ Interaction between A and B a�ected by the pres-

ence of C.

{ Example : polarizable species.

{ In Rare Gas Solids, (M.L. Klein editor), Jay

Barker estimated that � 10% of lattice energy

of argon non-pairwise additive.

{ Computation O(N3).

� Higher order terms v4; v5; : : : generally quite small.

� Despite magnitude, generally do not include v3

{ O(N) worse computation to get remaining �

10%.

{ Modify v2 to include average e�ects of v3
{ v

eff
2 � v2+ < v3 >



Potential of Interaction
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Lennard−Jones Potential

4ε[(σ/r)12
 − (σ/r)

6
]

(Pseudo�)atom � (�A) � (K)

Argon 3:405 119:3

CH3 3:9057 88:064

� Power law repulsion term (r�12) not accurate for

close interactions. Williams potential uses exponential

repulsion in:

Vwilliams = Ae�Br + Cr�6 (109)



Bonded Interactions

� Bonds

{ Assume harmonic bonds

{
PNbonds

i
1
2
Kb
i

�
bi � b0i

�2
� Angles

{ Assume harmonic angle

{
PNangles

i
1
2
K�
i

�
�i � �0i

�2
� Torsions (\1-4" interactions)

{
PNdihedral

i K
�
i [1 + cosni�i � �i]

� Bonded Non-Bonded corrections



Potential of Interaction

� Example Code : given function pot(r) and force(r)

that calculates pairwise potential and force ...

V=0.0

F(i=1,N)=0.0

do i=1, N-1

do j=i+1,N

rij=r(j) - r(i)

rijsq=rij*rij

rij=sqrt(rijsq)

v=v+pot(rij)

f(i)=f(i) - force(rij)

f(j)=f(j) + force(rij)

end j loop

end i loop



Truncation of the Non-Bonded

Interactions

� If r is large, v(r) � 0.

� Example : SPC/E model of water, oxygen-oxygen

vLJ
�
10�A

�
� :001kT

� Assume V (r) = 0 for r > rc.

{ Simple truncation

{ Shift

{ Switch

� Turns computation from N(N�1)=2 to �
4�r3c
3
�N .

{ For 10; 000 SPC/E water molecules, LJ interac-

tions drop by a factor of 30 at � = 1g=cm.

{ Bene�t increases as rc � Lbox.

� Long range interactions need special treatment (see

Ewald slide)



Neighbor Lists



Cells

rc+δ



Boundary Conditions

� MD system sizes small compared to 1023

� Surface to volume ratio large

� Surface e�ects too large (i.e. layering, etc ...)

� Can still be used for isolated systems like clusters



Boundary Conditions
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Boundary Conditions
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Periodic boundary conditions
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PBC: System Size artifacts
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Minimum Image Convention

+5−5

12 2’rx=8
rx=2

rxij = rxij� Lx �NINT (rxij=Lx)

= �8� 10�NINT (�8=10)

= �8 + 10

= 2



Potentials Revisited : Long Ranged

Interactions

Long ranged interactions (e.g. potential decaying

slower than r�d, where d is the dimensionality) can not

be simply truncated without missing signi�cant contri-

butions. If we have charges on our atoms, we have

point charge interactions of the form :

Velectrostatic =
qiqj

4��rij
(110)

To solve this problem, we add an oppositely charged

Gaussian distributed counter-ion cloud around the

point charge. If qi is the charge on an atom located at

ri, this cloud has a charge density given by :

� (r0i) = �
(qi)�

3

�3=2
e��

2(r0

i)
2

(111)

where r0 = r � ri and � is a parameter that controls

the width of the counter-ion cloud.



Potentials Revisited : Long Ranged

Interactions

Now, the interactions between the atoms are screened

by the counter-ion clouds and hence they become

\short-ranged" in the form of :

Vscreened =
qiqj

4��rij
erfc (k�rijk) (112)

and hence can be safely truncated. To balance the

e�ect of adding the counter-ion clouds, we add neu-

tralizing Gaussian clouds of opposite sign. Since these

neutralizing charges are of a simple form (Gaussian)

and they are periodic in real space, their energy can be

easy handled in Fourier space.



Potentials Revisited : Long Ranged

Interactions

Ewald Summation

Position

C
h

ar
g

e

Thick solid line denotes point charges

Dotted line denotes counter-ion clouds

Dashed line denotes neutralizing clouds



Time Step

� Time step size selection a question of balance.

{ Want a small enough timestep to accurately in-

tegrate EOMs.

{ Want a big enough timestep to see interesting

behavior in a tractable amount of computer time.

{ Timesteps typically on the order of femtoseconds

for common molecular systems.

{ Many processes of interest happen on timescales

of nano/picoseconds.

� Time step determined by curvature of the potential.

{ r(t+ �t) = r(t) + �tv(t) + 1
2
�t2a(t)

{ Hoping that F remains fairly constant between

r(t) and r(t+ �t).

{ dF
dr

= d
dr

�
�
dV
dr

�
.

{ Essence of protein folding problem.

� Time Steps typical for 
exible high frequency bonds

(such as O-H in water) around 0:5 fs.



Constraints

� Some high frequency vibrations not of interest.

� If they couple weakly to the dynamics of interest,

they can safely be ignored.

� Imagine replacing the sti� N � N bond with a �xed

constraint of jr12j = d12.

m�r1 = fu;1 + fc;1 (113)

m�r2 = fu;2 + fc;2 (114)

fc;1 = �12r12 (115)

fc;2 = ��12r12 (116)

r1 = ru;1 +
�t2

2m
�12r12 (117)

r2 = ru;2 �
�t2

2m
�12r12 (118)

r12 = ru;12 +
�t2

m
�12r12 (119)



Constraints

d12 = jr12j (120)

d212 = r2u;12 (121)

+2

�
�t2

m

�
(�12) (r12) ru;12

+

�
�t4

m2

��
�212
�
r212

� Since quadratic term for �12 is O(�t4), make linear

approximation.

�12 =
d212 � r2u;12

2
�
�t2

m

�
(r12) ru;12

(122)

� Update r and iterate to convergence.

� Cyclic updating of all constraints until some toler-

ance is reached : SHAKE.



Constraints

Velocities have their own constraint to satisfy :

r212 = r12 � r12 (123)

dr212
dt

= 2r12 � _r12 (124)

= 0

v12 = vu12 +
�t

m
�12r12 (125)

r12 � v12 = r12 � v
u
12 +

�t

m
�12r12 � r12 (126)

0 = r12 � v
u
12 +

�t

m
�12r12 � r12 (127)

Solve for �12
RATTLE



Tests of Suitable Timestep / Working

Code

� Conserved quantities

{ Total energy in NVE simulations

{ H 0 for Nos�e-Hoover NVT simulations.

{ Econs(t) =
E(t)�E(0)

E(0)
.

{ Econs � 10�4 typical.

{ Linear momentum conservation (machine preci-

sion).

� Velocity Verlet

{ RMS 
uctuations in energy grow as timestep

squared in linear regime.

� Numerical derivatives of potential versus force.



Analysis Techniques : Normal Modes

For a simple scalar function, we write the Taylor Series

expansion as :

V (�r) = V (0) +
@V

@r
�r +

1

2

@2V

@r2
�r2+ : : : (128)

where the last term represents the harmonic component

of V . Since the potential energy actually depends all

the atomic positions, we can analogously write:

V
�
~r(t)
�
= V

�
~r(0)
�
+
�
�F � ~�r

�
+

�
1

2
~�r

T
�D � ~�r

�
+: : :

(129)

where ~�r = ~r(t) � ~r(0), F = �
@V
@ri

and the Hes-

sian D = @2V
@ri@rj

. This last term now represents the

harmonic components of the potential energy. Normal

modes of a system, however, are independent harmonic

components. Hence, we apply a unitary matrix U that

diagonalized the Hessian D.



Analysis Techniques : Normal Modes

V
�
~r(t)
�
= V

�
~r(0)
�
+
X
�

�
�f�q� (t) +

1

2
!2
�q� (t)

�
(130)

where

q� (t) =
h
U � ~�r (t)

i
�

f� = [U � F ]�
!2
� =

�
UT

�D � U
�
��

The vector q� represents an independent harmonic

mode with corresponding frequency !�. Hence, it is

now possible to match peaks in an I.R. or Raman spec-

tra with the molecular motion that generates that peak.



Chemical Potential

� Remember that the average of a quantity B over a

distribution f is given by:

hBif =

Z
Bf (�) d� (131)

� The chemical potential is de�ned by :

� �

�
@A

@N

�
T;V

(132)

� In the limit of large N, it could be approximated by :

� � A(N + 1; V; T )�A(N; V; T ) (133)



Chemical Potential

� Remember that the Helmholtz Free Energy can be

expressed as

A(N; V; T ) = �KT lnQ(N; V; T ) (134)

where Q is the canonical partition function. We can

then write :

� = �KT ln
QN+1

QN

(135)

QN =
ZN

N !�3N
(136)

�� = ��ideal + ��residual (137)

= ln
(N + 1)�3

V
� ln

ZN+1

V ZN

� Two components : ideal gas chemical potential and

residual chemical potential.



Chemical Potential

e��r =
ZN+1

V ZN
=

R
e��U(N+1)drN+1R

drN+1

R
e��U(N)drN

(138)

� Rewrite the N+1 particle potential in the form of :

U(N + 1) � U(N) + �(rN ; rN+1) (139)

� where the last term represents the interaction of the

(N+1)th particle with the remaining N particles.

ZN+1

V ZN
=

R
drN+1

R
e��U(N)e���

V
R
e��U(N)drN

(140)

=

R
drN+1 < e��� >NR

drN+1

=



e���

�
N

�
rN+1



Chemical Potential

� Widom's Test Particle Method

{ Compatible with either MC or MD.

{ After a certain number of steps (moves), freeze

con�guration.

{ Randomly insert \test" (N+1) particles.

{ Measure increase in potential energy �.

{ Average over many insertions and con�gurations.

{ Non-destructive.

� For dense systems, �� kT ! e��� � 0.

� Poor statistics.

� Can improve sampling through Umbrella Sampling.



Pressure

$

P =
1

3V

"
NX
i=1

p2i
mi

+

NX
i=1

ri � Fi

#
(141)

P�� =
1

V

"
NX
i=1

Pi;�Pi;�

mi

+

NX
i=1

ri;�Fi;�

#
(142)

� At equilibrium,

hP��i = 0 if � 6= � (143)

P =
1

3
Tr
�
$

P

�
(144)

=
1

3

X
�=x;y;z

P��



Transport Coe�cients

� Using continuity equations (Fick's Law) for density,

Einstein presented his expression for the di�usion coef-

�cient in terms of the mean square displacement of a

particle at long times :

D = lim
t!1

1

6t



jr (t)� r (0) j2

�
(145)

� We can rewrite a particle's displacement using a ve-

locity expression:

r(t)� r(0) =

Z t

0

v (t0) dt0 (146)

� For small t, the particle velocity remains the con-

stant, i.e. v(t) � v(0) � v0. Under such \ballistic"

conditions :

r(t)� r(0) = v0t (147)

jr(t)� r(0)j2 = jv0j
2t2 (148)



Transport Coe�cients

� For a general time t :

[r(t)� r(0)]
2

=

Z t

0

dt0
Z t

0

dt00v (t0) � v (t00)(149)

D
[r(t)� r(0)]

2
E

=

Z t

0

dt0
Z t

0

dt00 hv (t0) � v (t00)i

� Stationarity and time reversibility gives us:

hv (t0) � v (t00)i = hv (0) � v (t00 � t0)i (150)

� Now, we change variables to � = t00� t0 and perform

the �rst integration:

D
[r(t)� r(0)]

2
E
= 2t

Z t

0

�
1�

�

t

�
hv (0) � v (�)i d�

(151)



Transport Coe�cients

� If � 0 is the time is takes for the particle to su�er

multiple collisions, the velocity of a particle will become

completely uncorrelated to its initial velocity, i.e.

hv (0) � v (�)i � 0 for � > � 0 (152)

� If the time t � � 0, then we can safely ignore the �
t

term.

D
[r(t)� r(0)]

2
E

= 2t

Z t

0

hv (0) � v (�)i d�(153)

D =
1

3

Z
1

0

hv (0) � v (�)i d�(154)

� In the last line, we can safely extend the integral to

1 because hv (0) � v (�)i � 0 for large � .



Transport Coe�cients

� The integral is writen using the \unnormalized" au-

tocorrelation function. We often used a normalized

version written :

C(�) =
hv (0) � v (�)i

hv (0) � v (0)i
(155)

� Since hv (0) � v (0)i = 3kT=m,

D =
kT

m

Z
1

0

C (�) d� (156)



Transport Coe�cients
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Green-Kubo relations for Transport

Coe�cients

� Self-Di�usion :

D =
1

3

Z
1

0

hv (0) � v (�)i d� (157)

� Shear Viscosity :

� =
V

kT

Z
1

0

hPxy(0)Pxy(t)i (158)

where Pxy is the xy component of the pressure tensor.

� Thermal conducivity :

� =
V

3kT 2

Z
1

0

hJQ(t) � JQ(0)i dt (159)

where JQ is the energy 
ux.


