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Foreword

The present volumes contain a first version of notes of the lectures de-
livered at the Fourth College on Microprocessor-based Real-time Systems
in Physics, held at the International Centre for Theoretical Physics, Trieste
from October 7 till November 1, 1996. It is hoped that these notes provide a
readable record of the College.

The “Realtime Colleges” are an outgrowth of the “Microprocessor Col-
leges™ which were organized since 1981 under the impuise of Professors Abdus
Salam and Luciano Bertocchi, and of which several were held in developing
countries. All these Colleges were sponsored by UNESCO, IAEA and UNU.

From the beginning, laboratory exercises and projects formed an essential
ingredient of the course. They made use of equipment developed in-house
until 1994, when a shift was made to the use of the Linux operating system
and PCs.

The present College differs in several respects from the two previous ones:
1994 in Trieste and 1995 in Cape Coast, Ghana. Particular attention has been
given to the configuration of the Linux operating system to make it present a
nice-looking and user-friendly interface. More emphasis has been put on the
development of embedded systerns. To this end new boards were designed
and produced in Turkey and Malaysia and the necessary software for cross-
development implemented. This is also the first time that instead of copies of
transparencies, the participants receive the lecture notes in a more readable
form.

The preparation of all this required a large effort from a number of people.
We gratefully acknowledge the essential contributions of Chu Suan Ang, Paul
Bartholdi, Manuel Gongalves, Carlos Kavka, Ulrich Raich, Pablo Santamar-
ina, Alexei Tikhomorov and Jim Wetherilt. Without their great efforts, it
would not have been possible to undertake the new things. We also wish to
mention that in the past and present some 70-80 people, lecturers and in-
structors, have contributed to shaping this College into its present form. We
gratefully acknowledge their contributions, which in a number of cases were
immense.

We hope that the participants will enjoy the College and that they will
benefit from it for their future activities.

Abhaya S. Induruwa,
Catharinus Verkerk,
Directors of the College,
Trieste, October 1996.
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Abstract

We examine the operating system support needed for a real-time
application. We'll see to what extent Linux satisfies the requirements

and what can be done to adapt it.
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1 Introduction and a few definitions

A real-time system is defined as a system that responds to an external stim-
ulus within a specified, short time. This definition covers a very large range
of systems. For instance, a data-base management system can justly claim
to operate in real-time, if the operator receives replies to his queries within
a few seconds. As soon as the operator would have to wait for a reply for
more than, say, 5 seconds, she would get annoyed by the slow response and
maybe she would object to the adjective “real-time” being used for the sys-
tem. Apart from having unhappy users, such a slow data-base query system
would still be considered a real-time system.

The real-time systems we want to deal with are much more strict in
requiring short response times than a human operator is, generally speaking.
Response times well below a second are usually asked for, and often a delay
of a few milliseconds is already unacceptable. In very critical applications
the response may even have to arrive in a few tens of microseconds.

In order to claim rightly that we are having a real-time system, we must
specify the response time of the system. If this response time can be occa-
sionally exceeded, without any real harm being done, we are dealing with
a soft real-time system. On the contrary, if it is considered to be a failure
when the system does not respond within the specified time, we are having
a hard real-time system. In a hard real-time system, exceeding the specified
response time will generally result in serious damage of one sort or another,
or in extreme cases even in the loss of human life. A data-base query sys-
tem will generally fall in the first category: it will make little difference if
a human operator will have to wait occasionally 6 seconds, instead of the
specified 5 seconds response time, and nobody will dare to speak of a failure,
as long as the replies to the queries are correct. This does not mean that
all data-base systems are soft real-time systems: a data-base may well be
used inside a hard real-time system, and its response may become part of
the overall reaction time of the system.

Data-base systems are not at the centre of our attention in this course;
we rather are interested in systems which control tne behaviour of some ap-
paratus, machinery, or even an entire factory. We call these real-time control
systems.  We are litterally surrounded by such real-time control systems:
video recorders, video cameras, CD players, microwave ovens, and washing
machines are a few domestic examples. In the more technical sphere we will
find the control of machine tools, of various functions of a car, of a chem-
ical plant, etc., but also automatic pilots, robots, driver-less metro-trains,
control of traffic-lights, and many, many more. Several of those systems are
hard real-time systems: the automatic pilot is a good example.

Fourth Coliege on Microprocessor-based Real-time Systems in Physics 2
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We implicitly assumed that the systems we are dealing with are computer
controlled. We are in fact interested in investigating the role the computer
plays, what constraints are imposed by the part of the system external to
the computer, or the environment in general, and what these constraints
imply for the program that steers the entire process. We will pay particular
attention to the role the underlying operating system plays and to what
extent it may help in the development of a real-time control system.

At this point we should define two classes of real-time systems. On the
one hand we have embedded systems, where the controlling mMicroprocessor
is an integral part of the entire product, invisible to the user and where the
complete behaviour of the system is factory defined. The user can only is-
sue a very limited and predefined set of instructions, usually with the help
of switches, push-buttons and dials. There is no keyboard available to give
orders to the device, nor is there a general output device which can give
information on the state of the system. On a washing machine we can select
four or five different programs, which define if we will wash first with cold
and then with warm water, or if we skip the first, or which define how often
we will rinse, if we will use the centrifugal drying or not, etc. If we add
the control the user has over the temperature of the water, we have prac-
tically exhausted the possibilities of user intervention. The microprocessor
included in the system has been programmed in the factory and cannot be
reprogrammed by the user. Cost has been the overriding design considera-
tion, user convenience played a secondary or tertiary role. These embedded
systems run a monolithic, factory defined program and there is no trace of an
interface to an operating system which would allow a user to intervene. This
does not mean that such an embedded system does not take account of a
number of principles, which should not be neglected in a system that claims
to operate in real-time. All real-time aspects are folded into the monolithic
program, indistinguishable of the other functions of the program.

The other class of real-time control systems comprises those systems that
make use of a normal computer, which has not been severed of its keyboard
and of its display device and where a human being caa follow in some detail
how the controlled process is behaving and where he can intervene by setting
or modifying parameters, or by requesting more detailed information, etc.
The essential difference with an embedded system is that a system in this
second class can be entirely reprogrammed, if desired. Also, in contrast
to an embedded system, the computer is not necessarily dedicated to the
controlled process, and its spare capacity may be used for other purposes.
So, a secretary may type and print a letter, while the computer continues to
control the assembly line.

It is obvious that this class of real-time control systems needs to run an

Fourth College on Microprocessor-based Real-time Systems in Physics 3
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Operating system on the control computer. This operating system must be
aware that it is controlling external equipment and that several operations
initiated by it may be time-critical. The operating system must therefore
be a real-time operating system. We will see in these lectures what this
implies for the design and the capabilities of the operating system. We should
keep in mind that we speak of generic real-time systems and generic real-time
operating systems. The real-time control system does not necessarily use all
features of the operating system, but the unused ones remain present, ready
to be used at a possible later upgrade of the control system. This again
1s in contrast with the embedded system, where the parts of the operating
system needed are cast in concrete inside the controlling program and where
all other parts of it have been discarded.

2 The ingredients of a real-time computer
controlled system

In order to investigate to some extent what the ingredients of a real-time
control system are and what the implications are for a supporting operating
system, we will take a simple example, which does not require any a-priori
knowledge: a railway signalling system.

Safety in a railway system, and in particular collision-avoidance is based
on a very simple principle. A railway track, for instance connecting two
cities, is divided into sections of a few kilometers length each (the exact
length depends on the amount of traffic and the average speed of the trains).
Access to a section — called a block in railway jargon — is protected by a
signal or a semaphore: when the signal exhibits a red light, access to the block
is prohibited and a train should stop. A green light indicates that the road is
free and that a train may proceed. The colour of the light is pre-announced
some distance ahead, so that a train may slow down and stop in time. Access
to a block is allowed if and only if there is no train already present in the
block and prohibited as long as the block is “occupied”. Normally all signals
exhibit a red light; a signal is put to green only a short time before the
expected passage of a train and if the condition mentioned above is satisfied.
Immediately after the passage of the train, the signal is put back to red. The
previous block is considered to be free only when the entire train has left it.

We will try to outline briefly what would be required if we decided to make
a centralized, computer controlled system for the signalling of the entire rail-
way system in a small or medium-sized country, comprising a few thousand
kilometers of track, with hundred or so trains running simultaneously. This

Fourth College on Microprocessor-based Real-time Systems in Physics 4
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would be a large-scale system, but it would be conceptually rather simple.
The basic rule is: if there is a train moving forward in block 4 — 1, and block
i is free, the signal protecting the entrance to block ¢ shall be put to green
and back to red again as soon as the first part of the train has entered block
i. For the time being we consider only double track inter-city connections,
where trains are always running in the same direction on a given track.

From the rule we see that we need to know at any instant in time which
blocks are free and which are occupied. So we need a sort of a data-base
to contain this information. This data base must be regularly updated, to
reflect faithfully the real situation. In fact, whenever a train is leaving a
block and entering another, the data-base must be updated.

How do we know that a train moves from one block to the next? Trains
are supposed to run according to a time table and at predefined speeds, so a
simple algorithm should be able to provide the positions of all trains in the
system at any moment. Unfortunately this assumption is not valid under all
circamstances and we need a reliable signalling system, exactly to be able
to cope with more or less unexpected situations where trains run too late,
or not at all, or where an extra train has been added, or another ran into
trouble somewhere. We conclude that it is better to actually measure the
event that a train crosses the boundary between two blocks. We could put a
switch on the rails, which would be closed by the train when it is on top of
the switch. We could scan all the switches in our system at regular intervals.
How long — or rather how short — should this interval be? A TGV of 200
meter length and running at close to 300 km/h, would be on top of a switch
for 21 seconds. A lonely locomotive, running at 100 km/h would remain on
top of the contact for less than a second. So we must scan some thousand
or more contacts in, say % second. This can be done, but it would impose a
heavy load on the system and we would find the vast majority of the switches
open in any case. We could refine our method and scan only those contacts
where we expect a train to arrive soon. This would reduce the load on the
system, as only hundred or so contacts have to be scanned, but it still is
not very satisfactory, as we will continue to find mauy open contacts. Note
that instead of contacts, we could have used other detection methods: strain
gauges on the rails, or photo-cells.

A better way of detecting the passage of a train, is by using hardware
interrupts *. We could generate an interrupt when the contact closes and
another when it opens again, indicating the entrance of a train into block

1For those who may have forgotten: a hardware interrupt is caused by an external
electrical signal. The normal flow of the program is interrupted and a jump to a fixed ad-
dress occurs, where some work is done to handle the interrupt. A “return from interrupt”
instruction brings us back to the point where the program was interrupted.

Fourth College on Microprocessor-based Real-time Systems in Physics 5
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¢ and the exit of the same train from block ;7 — 1, respectively. We don’t
lose time then anymore for looking at open contacts. We also simplify the
procedure, for we do not have to look anymore at the data-base before the
start of a scan, to find out which contacts are likely to be closed by a train
soon.

We have discovered here a very important ingredient of any real-time
control system: the instrumentation with sensors and actuators, In our case
we must sense the presence of a train at given positions along the tracks, and
we must actuate the signals, putting them to green and to red again. Gen-
erally speaking, the instrumentation of a real-time control system is a very
important aspect, which must be carefully considered. Usually, apart from
sensors which provide single-bit information, such as switches, push-buttons,
photocells, which can also be used to generate hardware interrupts, we will
need measuring devices, giving an analog voltage output, which then has to be
converted into a digital value with an analog-to-digital converter. Conversely,
output devices may be single bit, such as relays, lamps and the like, or digital
values, to be converted into analog voltages. Accuracy, reproducibility,
voltage range, frequency response etc. have to be considered carefully.
The operation of a system may critically depend on how it has been instru-
mented. The interface to the computer is another aspect to take into account
for its possible consequences. Speed, reliability and cost are some of the
concurring aspects. We will not dwell any further on these topics in these
lectures, as they are too closely related to the particular application, making
a general treatment impossible.

For our railway signalling system we mentioned the timetable, claiming
that we could not rely on it. We can however use it to check the true situation
against it to detect any anomaly. These anomalies could then be reported
immediately. For instance, we could tell the station master of the destination,
that the train is likely to have a delay of 2 minutes. Another useful thing
is to keep a log of the situation. This can be used for daily reports to the
direction (where they would probably be filed away immediately), but they
could prove valuable for extracting statistics and for global improvement of
the system. Operator intervention is also needed. For instance, when a train,
running from station A to station B, leaves station A, it does not yet exist in
the data-base. Likewise, when it arrives at B, it has to be removed from the
data-base. This could be done automatically, in principle, but what do we do
if it has been decided to run two extra trains, because there is an important
football match? We conclude that data-logging, operator intervent on and
some calculations (to check actual situation against predicted one) are also
essential ingredients of a real-time control system, in addition to the interrupt
handling, interfacing to the sensors and actuators and updating of the data-
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base reflecting the state of the system.

This idyllic picture of our railway signalling system might stimulate us
to start coding immediately. A program which uses the principles outlined
above does not seem too difficult to produce. We simply let the program
execute a large loop, where all different tasks are done one after the other.
The interrupts have made it possible to get rid of a serious constraint, so all
seems to be nice and straightforward. Once we would have a first version of
the program ready, we would like to test it. Hopefully we will use some sort
of a test rig at this stage, and abstain from experimenting with real trains.
During the testing stage, we will then quickly wake up and find that we have
to face reality.

In our model, we assumed double track connections between cities, where
on a given track, trains always run in the same direction. But, even in
the case that the entire railway network is double track between cities, we
must nevertheless consider also single track operation, because a double track
connection may have to be operated for a limited period of time and for a
limited distance as a single track, repair or maintenance work making the
other track unusable.

Assume that, on a single track, we have two trains, one in block & + 1,
the other in block k£ — 1, running in opposite directions, both toward block £.
If we would apply our simple rule, they would both be allowed to enter block
k (supposing it was free) and a head-on collision would result. The problem
can be solved by slightly modifying our rule: If a train is moving forward in
block i — 1 toward block 4, then access to block ¢ will be allowed if blocks
1 and 7 + 1 are free. So both trains will be denied access to block &k in our
example. We have eliminated the possibility of a head-on collision, but we
now have another problem. Assume that our two trains are in block £ — 2
and & + 1 respectively and running toward each other. Applying our new
rule, they would be allowed to enter block £ — 1 and & respectively and both
trains would stop, nose to nose at the boundary between these two blocks.
We have created a sort of a deadlock situation.

The true solution is of course not to allow a south-bound train into the
entire section of single track, as long as there is still a north-bound train
somewhere in the entire section, and vice-versa. South-bound and north-
bound trains compete for the same “resource”, the piece of single track
railway. They are mutually exclusive and only one type of train should be
allowed to use the resource. If the stretch of single track is long enough, and
comprises severa' blocks, more than one north-bound train can be running
on that stretch of track. Now assume that several north-bound trains are
occupying the stretch of single track and that a south-bound train presents
itself at the nothern end of the stretch. It obviously has to wait, but while it
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1s waiting, do we continue to allow more north-bound trains into the stretch?
This is a matter of priority, which should be defined for each train. A
scheduler should take the priorities into account and deny the entrance into
the stretch for a north-bound train if the waiting south-bound one has higher
priority. As soon as the stretch has then been emptied of all north-going
trains, the south-bound one can proceed, possibly followed by others.

A similar situation, where two trains may be competing for the same
resource, arises when two tracks, coming from cities A and B, merge into
a single track entering city C. Obviously, if two trains approach the junec-
tion simultaneously, only one can be allowed to proceed, which should be
the one with the highest priority. It should be noted that the priority as-
signed to a train is not necessarily static. It may change dynamically. For
instance, a train running behind schedule, may have its priority increased at
the approach of the junction and allowed to enter city C, before another train
which normally would have had precedence. This latter example illustrates
a synchronization problem: some trains may carry passengers which have to
change trains in city C; the two trains should reach the station of C in the
right order. '

We have thus discovered some more ingredients (or concepts) for a real-
time control system: priorities, mutual exclusion, synchronization.

We started off by considering our railway signalling problem being con-
trolled by a single program, which guides all trains through all tracks, junc-
tions and crossings. We have gradually come to have a different look at
the problem: a set of trains, using resources (pieces of railway track), and
sometimes competing for the same resource. We can consider our trains as
independent objects, more or less unaware of the existence of similar objects
and of the competition this may imply. In order to get a resource, every train
must put forward a request to some sort of a master mind (the real-time op-
erating system), who will honour the request, or put the train in a waiting
state.

At this stage, we realize that we better abandon our first version of the
program, because it would have to be rewritten from seratch in any case. We
have become aware that our particular real-time control system may have
many things in common with other real-time systems and that it would be
advantageous to take profit from the facilities a real-time operating system
offers to solve the problems of mutual exclusion, priorities, etc. Once we have
mastered the use of these facilities, we can build on our experience for the
implementation of another real-time control system. In case we would obsti-
nately continue to adapt our original program, we would probably find, after
months of effort, that we have rewritten large parts of a real-time operating
system, but which have been so intimately interwoven with the application
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program, that it will be difficult, if not impossible, to re-use it for the next
application we may be called to tackle.

Other aspects we have not yet considered may also build very nicely on
the foundations laid by a real-time operating system. For instance, we have
the problem of dealing with emergencies. A train may have derailed and
obstructed both tracks. Such an unusual and potentially dangerous situation
must be immediately notified to the operating system which can then take
the necessary measures. If they cannot be notified, a mechanism for detecting
potentially dangerous situations must be devised: in our particular case, the
system should be alerted if a train does not leave its block within a reasonable
time. In other words, a time-out could be detected.

Now that we mentioned time, we are reminded of the fact that time may
play an important role in any real-time system, either in the form of elapsed
time, or of the time of the day. It is difficult to think of a system that could
operate without the help of a clock. A real-time clock and the possibility
to program it to generate a clock interrupt at certain points in time, or after
a given time-interval has elapsed, are therefore indispensable ingredients of
a real-time control system.

Reliability of the entire system is another item for serious consideration.
You certainly do not want a parity error in a disk record to bring your system
to a halt or to create a chain of very nasty incidents.

In many cases, we are not dealing with a closed system, so there must be
a means of communicating with other systems (our national railway network
is connected to other networks, and trains do regularly cross the border).
User-friendly interfaces to human operators, which usually implies the use
of graphics, are also very likely to be an essential ingredient of our real-time
control system. A large synoptic panel, showing where all trains are in the
network, would be the supervisor’s dream, not to speak of makers of science
fiction films.

In the following lectures, we will investigate in more depth the various
features a real-time operating system should provide. Making use of these
features will prevent us from re-inventing the wheel.

The question then arises: which real-time operating system should I use?
There are several on the market: 0S-9 for Motorola 68000 machines, and
QNX or LynzOS for Intel machines, Solaris for Sparc processors, to mention
a few. These systems are sold together with the tools necessary to build
a real-time application: compiler, assembler, shell, editor, simulator,
etc. A minimum configuration would cost US$ 2000-2500, a full configuration
may push the price up into the 10 K$ range. This would cause no problem
whatsoever for a railway company, but what about you?

Another solution is to use a real-time kernel, useful for embedded sys-
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tems, which you compile and link into your application. ViWorks, MCX11
and pCOS are examples. They are much cheaper —or practically free:
MCX11 and pCOS *—, but you will need a complete development system
in addition. This development system could of course be Linux.

The ideal would be to be able to use Linux for development of a
real-time control system, as well as for running the application. We
will see shortly to what extent this is possible at present. Before proceeding,
however, we will make sure that we understand the fundamental concept of
a process.

3 Processes

In our example we have seen that a real-time system has a number of tasks to
accomplish: besides ensuring that trains could proceed from block to biock
without making collisions, we had to log data, keep the data-base up-to-date,
communicate with the operator, cater for emergency situations, etc. Not all
of these tasks have the same priority, of course.

When we analyze a real-time system, we will almost invariably be able
to identify different tasks, which are more or less independent of each other.
“Independent. of each other” really means that each task can be programmed
without thinking too much of the other tasks the system is to perform. At
most there is some intertask communication, but every task does its job
on its own, without requiring assistance from other tasks. If assistance is
required, the operating system should provide it. The system designer should
identify and define the different tasks in such a way that they really are as
independent of each other as possible. Some synchronization may be needed:
certain tasks can only run after another task has completed. For instance,
if some calculations have to be done on collected data, the data collection
tasks could be totally separated from the calculation task. In order to make
sense, the latter should only be executed when the data collection task has
obtained all data necessary for the caleulation. This implies that some inter-
task communication is needed here. The true difficulty of dividing the overall
system requirement up into different tasks consists of choosing the tasks
for maximum independence, or —in other words— for minimum need of
inter-task communication and synchronization.

These various tasks can now be implemented as different programs and
then run as different processes.

What exactly is a process and what is the difference between a program
and o process? A program is an orderly sequence of machine instructions,

?RTEMS is a recent, very complete real-time executive, also available for free.
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which could have been obtained by compilation of a sequence of high-level
programming language statements. It is not much more than the listing
of these statements, which can be stored on disk, or archived in a filing
cabinet. Tt becomes useful only when it is run on a machine and executing
its instructions in the desired sequence, thus obtaining some result. It is only
useful when it has become a running process.

A process is therefore a running (or runnable) program, together with its
data, stack, files, etc. 1t is only when the code of a program has been loaded
into memory, and data and stack space allocated to it, that it becomes a
runnable process. The operating system will then have set up an entry in
the process descriptor table, which is also part of the process, in the sense
that this information would disappear when the process itself ccases to exist.
The operating system may decide at a certain moment to run this runnable
process, on the basis of its priority and the priorities of other runnable pro-
cesses. This would happen in general when the running process is unable
to proceed —e.g. because it is waiting for input to become available—, or
because the time allocated to it has run out.

We should emphasize that we are considering only the case of a single
processor system, where only one process can run at a time. The other
runnable processes will wait for the CPU to become free again. If the different
processes are run in quick succession, a human observer would have the
impression that these processes are executed simultaneously.

The consequence of this is that we can write a program to calculate
Bessel functions, without having to think at all about the fact that when
we will run our program, there may already be fifty or more other processes
running, some of them even calculating Bessel functions. In as far as we have
written our program to be autonomous, it will not be aware of the existence
of other runnable processes in the computer system. Consequently, it cannot
communicate with the other processes either: its fate is entirely in the hands
of the operating system?.

There may exist on the disk a general program to calculate Bessel func-
tions and on a general purpose time-sharing computer system several users
may be running this program. A reasonable operating system should then
keep only one copy of the program code in memory, but each user process
running this program should have its own process descriptor, its own data
area in memory, its own stack and its own files. All users of the computer
system will presumably run a shell. Command shells, such as bash or tcsh
are very large programs and it would be an enormous waste if every single

3 And luckily so: the operating system will also provide protection, avoiding that other
processes interfere with ours.
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user of a time-sharing system would have his own copy of the shell in memory.

In general, we will have a number of runnable processes in our uniproces-
sor machine, and one process running at a given instant of time. When will
the waiting processes get a chance to run? There are two reasons for sus-
pending the execution of the running process: either the time-slice allocated
to it has been erhausted, or it cannot proceed any further without some event
happening. For instance, the process must wait for input data to become
available, or for a signal from another process or the operating system, or
it has to complete an output operation first, etc. The programmer does not
have to bother about this. At a given point in the program, where it needs
to have more input data, the programmer simply writes a statement such as:
read(file,buffer,n);. The compiler will translate this into a call to a library
function, which in turn will make a system call, (or service request),
which will transfer control to the kernel. Qur process becomes suspended
for the time the kernel needs to process this system call. In the case of a
read operation on a file, the kernel will set this into motion, by emitting the
necessary orders to the disk controller. As the disk controller will need time
to execute this order, the kernel will decide to block the execution of the
process which was running and which made the system call. This blocked
process will be put in the gueue of waiting processes, and it will become
runnable again later, when the disk controller will have notified the kernel
—by sending a hardware interrupt— that the I/O operation has been com-
pleted. The kernel makes use of the scheduler to find, from the queue of
runnable processes the one that should now be run. The kernel will then
make a context switch and this will start the new process running,

A context switch is a relatively heavy affair: first all hardware registers
of the old (running) process must be saved in the process descriptor of the
old process. Then the new process must be selected by the scheduler. If the
code and data and stack of the new process are not yet available in memory,
they must be loaded. In order to be loaded, it may be necessary first to make
room in memory, by swapping out some memory pages which are no longer
needed or which are rarely used. The page tables must be updated, and the
process descriptors must be modified to reflect the new situation. Finally the
hardware registers of our machine must be restored from the values saved at
an earlier occasion for the process now ready to start running. The last
register to be restored is the program counter. The next machine instruction
executed will then be exactly the one where the new process left off when it
was susperded the last time.

The execution of a program will thus proceed piecemeal, but without
the programmer having to bother about it: the operating system takes care
of everything. So the application programmer can continue to believe that
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his program is the only one in the world. The price to be paid for this
convenience is the overhead in time and memory resources introduced by the
intervention of the operating system.

For our Bessel function program we are entirely justified in thinking that
we are alone in the world. There are however situations where this is not the
case and where different processes interfere with each other, either willingly
or unwillingly. Here is my favourite example of such a case of interference®.

Assume that we have three separate bytes in memory which contain the
hour, minutes and seconds of the time of the day. There is a hardware device
which produces an interrupt every second and wakes up a process that will
update these three bytes. Any process which wants to know the time, can
access these three memory bytes, one after the other (we assume that our
machine can address only one byte at a time). Now suppose that it is 10.59.59
and that a process has just read the first byte "10”, when a clock interrupt
—which has a higher priority than the running process— occurs. Our process is
suspended, the clock process updates the time, setting it to 11.00.00. Control
now returns to the first process which continues reading the next two bytes.
The result is: 10.00.00; which is one hour wrong. What happened here is
that two processes access the same resource —the three memory bytes— and
that one or both of them can alter the contents. No harm would be done if
both processes had read-only access to the shared resource.

The reader should note that the concept of a process has allowed us to
speak about them as if they were really running simultanecusly. We do not
have to include in our reasoning the fact that there is a context switch and
that complicated things are going on behind the scenes. We only have to be
aware that access to shared resources must be protected, in order to avoid
that another process accesses the same resource ” simultaneously”. On a
multi-processor system "simultaneous” can really mean "at the same instant
in time”, on a uni-processor machine it really means "concurrently”. The
processor concept is equally valid for a uni- and a multi-processor machine.

The places in the program where a shared resource is accessed are so-
called critical regions. We must avoid that two processes access simulta-
neously the resource and this can be done by ensuring that a process cannot
enter a critical region when another process is already in a critical region
where it accesses the same shared resource. The entrance to a critical region
must be protected with a sort of a lock.

Two operations are defined on such a lock: lock and unlock. The lock
operation tests the state of the lock and if it is unlocked, locks it in the

4The reader should be aware that the example describes a primitive situation; no
modern operating system would allow this situation to occur.
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same atomic operation. If the lock is already locked, the lock operation will
stop the process from entering the critical region. The unlock operation will
simply clear a lock which was locked, and allow the other process access to
the critical region again. That these operations must be afomic means that
it must be impossible to interrupt them in the middle. Otherwise we would
get into awkward situations again. If the lock operation would not be atomic,
we could have a situation where process 1 inspects the lock and finds it open.
If immediately after this, process 1 gets interrupted, before it had a chance
to close the lock, process 2 could then also inspect the lock. It finds that it is
open, sets it to closed, enters the critical region where it grabs the resource
(a printer for instance) and starts using it. Some time later process 1 will
run again, it will also close the lock and it will also grab the same printer and
start using it. Remember that it had found the lock to be open and process
1 is unaware that process 2 has been running in the meantime!

The lock and unlock operations must therefore be completed before an
terruption is allowed. This can be done ~—primitively— by disabling inter-
rupts and then enabling them after the operation. No reasonable operating
system would allow a normal user to tinker with the interrupts, so most ma-
chines have a test-and-set instruction. The test-and-set instruction tests a
bit and sets it to "one” if it was "zero”. If it was already "one” it is left un-
changed. The result of the test (i.e. the state of the bit before the test-and-set
instruction was executed is available in the processor status word and can
be tested by a subsequent branch instruction. The fest-and-set instruction
18 a single instruction; a hardware interrupt arriving during the execution of
the instruction will be recognized only after the execution is complete. This
guarantees the atomicity of a test-and-set operation.

What do we do after the test-and-set instruction? If the lock was open,
you can safely enter the critical region. If, on the contrary, process A finds the
lock closed, it should go to sleep. The operating system will then suspend the
execution of process A and schedule another process to run, say C, or E. The
process B, which had closed the lock in the first place, will also be running
again at some instant and eventually will unlock the lock and wakeup the
sleeping process A. The system will then make process A runnable again.

Now suppose that process A gets interrupted immediately after doing
its — unsuccessful — lock operation and before it could execute the sleep()
call. Process B will at some stage open the lock and wakeup A. As A is not
sleeping, this wakeup is simply lost. When A will run again, it will truely go
to sleep, this time forever.

The solution to the problem was given in 1965 by Dijkstra, when he
defined the semaphore. A semaphore counts the number of wakeups which
have been "saved”. It can therefore have a positive value, or 70”. Two
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atomic operations are defined on a semaphore, which we will call up and
down®. The down operation checks the value of the semaphore. If it is
greater than zero, it decrements the value and just continues. If it finds that
the semaphore value is zero, the process is put to sleep. Once an operation
on a semaphore is started, no other process can access the same semaphore.
Thus atomicity of a semaphore operation is guaranteed. The work done
for a down (and similarly for an u p) operation must therefore be part of the
operating system and not of a user process. The up operation on a semaphore
increments its value. If one or more processes were sleeping, one of them is
selected by the operating system. It can then complete its down, which had
failed earlier, and it will be allowed to run. Thus, if the semaphore was
positive, it will simply be incremented, but if it was "0”, meaning that there
are processes sleeping on it, its value will remain 70", but there will be one
process less sleeping.

We have described the general form of a semaphore: the counting semaphore,
which is used to solve synchronization problems, ensuring that certain
events happen in the correct order. A binary semaphore can only take the
values "0” or 71" and is particularly suited for solving problems of mutual
erclusion, which explains its other name: mutex.

To illustrate the use of mutexes and counting semaphores we show an
example of the Producer-Consumer problem. Suppose we have two col-
laborating processes: a producer which produces items and puts them in a
buffer of finite size, and a consumer which takes items out of the buffer and
consumes them. A data acquisition system which writes the collected data
to tape is a good example of a producer-consumer problem. It is clear that
the producer should stop producing when the buffer is full; likewise, the con-
sumer should go to sleep when the buffer is empty. The consumer should
wake up when there are again items in the buffer and the producer can start
working again when some room in the buffer has been freed by the consumer.
In order to obtain this synchronization between the two processes, two count-
ing semaphores are used: full which is initialized to "0” and counts the buffer
slots which are filled, and empty, initialized to the size of the buffer and which
counts the empty slots. Access to the buffer, which is shared between the
two processes, is protected by a mutex, initially ”1” and thus allowing ac-
cess. The example is taken from Andrew Tanenbaum’s excellent book®. The

5Various other names are also used: post and signal, P and V (the original names given
by Dijkstra), and possibly others. For mutexes, lock and unlock are often used.

6 Andrew S. Tanenbaum, Modern Operating Systems, Prentice Hall International Edi-
tions, 1992, ISBN 0-13-595752-4. The reader is encouraged to read the chapter on Interpro-
cess Communication, which provides a much more detailed treatment of synchronization
problems than is possible here.
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reader should study carefully the listing of the Producer-Consumer problem
at the end of this section. He should be aware that the example is simpli-
fied: instead of two processes and a buffer structure in shared memory, the
listing shows two functions, using global variables. Also the semaphores are
not exactly what the standards prescribe. Using semaphores and mutexes
remains a difficult thing: changing the order of two down operations in the
listing below may result in chaos again.

#define N 100 /* number of slots in buffer */

typedef int semaphore; /* this is NOT POSIX !! «x/

semaphore mutex=1; /* controls access to critical region */
semaphore empty=N; /* counts empty buffer slots */
semaphore full=0; /* counts full buffer slots*/

void producer (void)

{

int item;

while(TRUE) { /* do forever (TRUE=1) */
produce_item(&item); /* make something to put in buffer */
down (Zempty) ; /* decrement empty count */
down (&mutex) ; /* enter critical region */
enter_item(&item); /* put new item in buffer */
up (&mutex) ; /* leave critical region */
up (&full); /* increment count of full slots */

}
}

void consumer (void)

{

int item;

while(TRUE) { /* do forever /
down(&full); /* decrement full count */
down (¥mutex) ; /* enter critical region */
remove_item(&item) ; /* take item from buffer */
up (émutex) ; /* leave critical region %/
up(&empty) ; /* increment count of empty slots */

consume_item{&item) /* use the item */
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4 What is wrong with Linux?

UNIX has the bad reputation of not being a real-time operating system. This
needs some explanation. Time is an essential ingredient of a real-time system:
the definition says that a real-time systermn must respond within a given time
to an external stimulus. Theoretically, it is not possible to guarantee on
a general UNIX time-sharing system that the response will occur within a
specified time. Although in general the response will be available within a
reasonable time, the load on the system cannot be predicted and unexpected
delays may occur. It would be a bad idea to try and run a time-critical real-
time application on an overloaded campus computer. Nevertheless, before
discarding altogether the idea of using UNIX or Linux as the underlying
operating system for a real-time application, we should have a critical look
at what the requirements really are, to what extent they are satisfied by off-
the-shelf Linux, and what can be done (or has been done already) to improve
the situation.

The UNIX and Linux schedulers have been designed for time-sharing
the CPU between a large number of users (or processes). It has been designed
to give a fair share of the resources, in particular of CPU time, to all of
these processes. The priorities of the various processes are therefore adjusted
regularly in order to achieve this. For instance, the numerical analyst who
runs CPU-intensive programs and does practically no I/O, will be penalized,
to avoid that he absorbs all the CPU time.

Such a scheduling algorithm is not suitable for running a real-time appli-
cation. If the operating system would decide that this particularly demand-
ing application had consumed a sufficiently large portion of the available
CPU time, it would lower its priority and the application might not be able
anymore to meet its deadlines.

A real-time application must have high priority and —in order to be
able to meet its deadlines— must run whenever there is no runnable program
with a higher priority. In practice, the real-time process should have the
highest priority, and it should I:~on this highest priority throughout its entire
life”. Another scheduling algorithm is therefore required: a certain class of
processes should be allocated permanently the highest priorities defined in
the system. The normal scheduler of Linux does not have this feature, but
another scheduler, designed for real-time use is available and can be compiled
into the kernel.

Time being a precious resource for a real-time system, overheads imposed

It would be wise to run a shell with an even higher priority, in order to be able to
intervene when the real-time process runs out of hand. This shell would be sleeping, until
it gets woken up by a keystroke.
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by the operating system should be avoided as much as possible. Some of the
overheads can be avoided by careful design of the real-time program. For
instance, knowing that forking a new process is a time-consuming business,
all processes which the real-time application may need to run, should be
forked and exec’ed (the fork and erec system calls will be illustrated in
section 5) during the initialization phase of the application. Other overheads
cannot be avoided so simply and need some adaptation or modification of
the operating system.

Context switches may be very expensive in time, in particular when the
code of the new process to be run is not yet available in memory and Jor when
room must be made in memory. All code and data of a real-time application
should be locked into memory, so that this part of a context switch would
not cause a loss of time. Locking everything into memory will also prevent
page faults to happen, avoiding this way other memory swapping operations.
Off-the-shelf Linux does not have the possibility of locking processes into
memory, but again, there is a package available which, when compiled into
the kernel, will do it.

A further help in reducing the overheads due to context switches is to use
so-called light-weight processes or multi-threaded user processes. Linux
as such does not provide these, but a package does exist to implement the
latter.

Other places where to watch for lurking losses of time are Input /Output
operations. Normally, when a file is opened for writing, an initial block of disc
sectors is allocated -—usually 4096 bytes— and inodes and directory entries
are updated. When the file grows beyond its allocated size, the relatively
lengthy process of finding another free block of 4096 bytes and updating
inodes and directory entries is repeated. A real-time system should be able
to grab all the disc space it needs during initialization, so that these time
losses may be avoided. Linux does not allow this at present.

Allinput and output in Linux is synchronous. This means that a process
requesting an I/O operation will be blocked until the operation is complete
(or an error is returned). Upoun completion of the opera.ion, the process
becomes runnable again and it will effectively run when the scheduler decides
so. However, “completion” of an output operation means only that the data
have arrived in an output buffer, and there is no guarantee that the data
have really been written out to tape or disc. When the process is only
notified of completion of the [/O operation when the data are really in their
final destination, we have synchronized 1/0, which may be a necessity for
certain real-time problems. Linux does not spontaneously do synchronized
I/0, but it can be easily imposed by using sync or fsync.

Asynchronous I/O may be another real-time requirement. It means
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that the process requesting the I/O operation should not block and wait for
completion, but continue processing immediately after making the I/O system
call. The standard device drivers of Linux do not work asynchronously, but
the primitive system calls allow the option of continuing processing. A special
purpose device driver could make use of this and thus do asynchronous I/0.
The process will then be notified with an interrupt when the I/O operation
has been completed.

The designer of a real-time system should of course also be aware that
no standard device drivers exist for exotic devices. They have to be written
by the application programmer. In a standard UNIX system, such a new
device driver must be compiled and linked into the kernel. Linux has a very
nice feature: it allows to dynamically load and link to the kernel so-called
modules, which can be —and very often are— device drivers.

We have shown before that it would be wise to divide a real-time sys-
tem up into a set of processes, which can each care for their own business,
without excessively interfering with each other. Nevertheless, some commu-
nication between processes may be needed. Old UNIX systems had only
two interprocess communication mechanisms: pipes and signals. Signals
have a very low information content, and only two user definable signals
exist. System V UNIX added other IPC mechanisms: sets of counting
semaphores, message queues, and shared memory. Most Linux kernels
have the System V IPC features compiled in.

Probably no real-time system could live without a real-time clock and
interval timers. They do exist in off-the-shelf systems, but the resolution,
usualy 1/50 thor 1/100 th of a second, may not be enough. The user-threads
package can work with higher resolutions, if the hardware is adequate.

The IEEE has made a large effort to standardize the user interface to
operating systems. The result of this effort has been the POSIX.1 standard,
which defines a set of system calls, and POSIX.2, which defines a standard set
of Shell commands. POSIX.1 and POSIX.2 have been approved by IEEE and
by ISO and have thus gained international acceptance. Also real-time ex-
tensions to operating systems have been defined in the POSIX.4 (later
renamed as POSIX 1003.1¢-1994) standard, which has also been accepted
by ISO. All the points discussed above are part of the POSIX.4 standard,
except for the multiple threads and mutexes, which are defined in
POSIX.4a. To the best of my knowledge, POSIX.4a is now also an inter-
national standard. Linux is POSIX.1 and POSIX.2 compliant, and a truly
POSIX.1 certified version is available.

In summary, Linux is weak on the following:

e Mutexes. A simple mutex does not exist. The System V IPC semaphores

Fourth College on Microprocessor-based Real-time Systems in Physics 19
ICTP, Trieste, Italy. Oct 7 — Nov 1, 1986.



Toward Real-time Linux Verkerk, Catharinus

3

can be used, although they are overkill, introducing a large overhead.
Atomic bit operations are defined in asm/bitops.h and can be used
more easily, but care should be exercised (danger of priority inver-
sion). Mutexes are defined in the pthreads package, but work only
between user threads in the same process.

Interprocess Communication. System V IPC is usually part of
the Linux kernel and adds counting semaphores, message queues and
shared memory to the usual mechanisms of pipes and of signals.

Scheduling. A POSIX.4 compliant scheduler for Linux exists. We do
not have experience with it yet.

Memory Locking. A POSIX.4 compliant package exists for Linux
which implements memory locking. We have not yet tested this pack-
age.

Multiple User Threads. A library implementation of pthreads (as
defined in POSIX.4a) exists and can be used. You will soon get into
close contact with it.

Synchronized I/0. Can be obtained easily with sync and fsync.

Asynchronous I/0. Not available in standard device drivers. Could
be implemented for special purpose device drivers.

Pre-allocation of file space. Not available.

Fine-grained real-time clocks and interval timers. They are
part of one of the available pthreads packages and could be used if the
hardware is capable.

Creating Processes

Creating a new process from within another process is done with the fork()
system call. fork() creates a new process, called the child process, which
is an ezact copy of the original (parent) process, including open files, file
pointers etc. Before the fork() call there is only one process; when the fork()
has finished its job, there are two. In order to deal with this situation, fork()
returns twice. To the parent process it returns the process identification
(PID) of the child process, which will allow the parent to communicate later
with the child. To the child process it returns a 0. As the two processes are
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exact copies of each other, an 4f statement can determine if we are executing
the child or the parent process.

There is not much use of a child process which is an exact copy of its
parent, so the first thing the child has to do is to load into memory the
program code that it should execute and then start execution at main().
A child is obviously too inexperienced to do this on its own, so there 1s a
system call that does it for him: ezecl(). The entire operation of creating a
new process therefore goes as follows:

/* here we have been doing things */
child=fork(); /* PID of new process --> child */
if (child){ /* here for parent process */
/*continue parent’s business*/
}

else { /* here for child process */
execl ("/home/boss/rtapp/toggle rail_signal®,\
"toggle_rail signal", N sigs, NULL);
perror(“execl"); /# here in case of error */
exit(1);

}

/% here continues what the parent was doing */

ezecl() will do what was described above, so in our example it will load the
executable file /home/boss/rtapp/toggle_rail_signal and then start execution -
of the new process at main{argc,argu). The other arguments of ezecl() are
passed on to main(). erecl is one of six variants of the exec system call: erec,
ezecv, exrecle, ezecve, execlp, erecup. They differ in the way the arguments
are passed to main(): 1 means that a list of arguments is passed, v indicates
that a pointer to a vector of arguments is passed. e tells that environment
pointer of the parent is passed and the letter p means that the environment
variable PATH should be used to find the executable file.

This completes the creation of a new process. On a single CPU machine,
one of the two processes may continue execution, the other will wait till the
scheduler decides to run it. There is no guarantee that the parent will run
before the child or vice versa.

The new process can ezit() normally when it has done its job, or when
it hits an error condition. The parent can wait for the child to finish and
then find out the reason of the child’s death by executing one of the following
system calls:
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pid_t wait(int *status); /* wait for any child to die*/
or: pid-t waitpid(pid-t which, int *status, int options)
/* wait for child "which" to die %/

These wait calls can be useful for doing some cleaning-up and to avoid
leaving zombies behind. When the parent process exits, the system will do
all the necessary clean-up, childs included.

We can now understand what the shell does when we type a command,
such as cp file! dir. The shell will parse the command line, and assume that
the first word is the name of an executable file. It will then do a fork(),
creating a copy of the shell, followed by an ezecl() or ezecv() which will
load the new program, in our example the copy utility ¢p. The rest of the
command line is passed on to cp as a list or as a pointer to a vector. The
shell then does a wait/). When an & had been appended to the command
line, then the shell will not do a wait, but will continue execution after return
from the erec call.

The tollowing gives a more complete and rather realistic example of a
terminal server and a client®. The reader is invited to study this example in
detail.

The code for the server looks like:

#define POSIX_C_SOURCE 199309

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>

#include <errno.h>

#include "app.h" /* local definitions %/

main(int argc, char *targv)

{

request_t r;
pid-t terminated;
int status;

init_server(); /* set things up * /

8the example is taken from Bill O. Gallmeister, POSIX 4, Programming for the Real
World, O'Reilly, 1995,
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do {
check _for_exited_children();
r = await_request(); /*get some input/
service_request(r); /*do what wanted+/
send_reply(r); /xtell we did it/

} while (r '= NULL);

shutdown_server () ; /*tear things down%/
exit(0);

}

void
service_request(request_t r)
{
pid.t child;
switch (r->r_op) {
case OP_NEW:
/* Create a new client process */
child = fork();
if (child) {
/* parent process */
break;
} else {
/* child process */
execlp("terminal","terminal \
application","/dev/coml1" ,NULL);
perror ("execlp");

exit(1);
}
break;
default:

printf("Bad op %d\n", r->r.op),
break;

}

return;
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The terminal end of the application looks like:

#define POSIX_C_SOURCE 199309

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>

#include "app.h" /* local definitions */

char *myname;

main(int argc, char #*xargv)
{
myname = argv[0];
printf("Terminal \"%s\" here!", myname);
while (1) {
/* deal with the screen %/
/* await user input */

1

exit(0);

Presumably request_t is defined in app.h as a pointer to a structure.
await_request() is a function which sleeps until a service request arrives from a
terminal. The operations performed by the other functions: init_server, ser-
vice_request(), check. for_exited_children(), send_reply() and shutdown_server()
are implied by their names.

6 Interprocess Communication

In the case where we have a real-time application with a number of pro-
cesses running concurrently, it would be a normal situation when some of
these processes need to communicate between them. We said already that
the classical UNIX system only knows pipes and signals as communication
mechanisms. Interprocess communication, suitable for real-time applications
is an essential part of the POSIX 4 standard, which adds a number of mech-
anisms to the minimal UNIX set. In the following we will briefly describe
the various IPC mechanisms and how they can be invoked. We will follow as
much as possible the POSIX.4 standard, except where the facilities are not
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implemented in Linux. In that case we will describe the mechanism Linux
makes available.

6.1 UNIX and POSIX.1 Signals

The old signal facility of UNIX is rather limited, but it is available on every
implementation of UNIX or one of its clones. Originally, signals were used
to kill another process. Therefore, for historical reasons, the system call by
which a process can send a signal to another process is called kill(). There is
a set of signals, each identified by a number (they are defined in < signal.h>),
and the complete system call for sending a signal to a process is:
kill(pid_t pid, int signal);
The integer signal is usually specified symbolically: SIGINT, SIGALRM or
SIGKILL, etc., as defined in <signal.h>. pid is the process identification of
the process to which the signal shall be sent. If this receiving process has not
been set up to intercept signals, its ezecution will simply be terminated
by any signal sent to it. The receiving process can however be set up to
intercept certain signals and to perform certain actions upon reception of
such an intercepted signal. Certain signals cannot be intercepted, they are
just killers: SIGINT, SIGKILL are examples. In order o intercept a signal,
the receiving process must have set up a signal handler and notified this to
the operating system with the sigaction() system call. The following is an
example of how this can be done:

A structure sigaction (not to be confounded with the system call of the
same name!) is defined as follows:

struct sigaction {
void (*sa_handler) ();
sigset.t sa mask;
int sa_flags;
void(*sa_sigaction) (int,siginfo_t *,void *); };

This structure encapsulates the action to be taken on receipt of a signal.

The following is a program that shall exit gracefully when it receives the
signal SIGUSRI. The function terminate.normally() is the signal handler.
The administrative things are accomplished by defining the elements of the
structure and then calling sigaction() to get the signal handler registered by
the operating system.

void
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terminate normally(int signo)
{
/* Exit gracefully */
exit (0);

}

main(int argc, char **argv)
{ - .
struct sigaction 3a;
sa.sa handler = terminate_normally;
sigemptyset (&sa.sa_mask):
sa.sa_flags = 0;
if (sigaction(SIGUSR1, &sa, NULL)) {
perror(“sigaction");
exit(1);

The operating system itself may generate signals, for instance as the
result of machine exceptions: floating point erception, page fault, etc. Signals
may also be generated by something which happens asynchronously with
the process itself. The signals then aim at interrupling the process: 1/0
completion, timer expiration, receipt of a message on an empty message
queue, or typing CTRL-C or CTRL-Z on the keyboard. Signals can also be
sent from one user process to another.

The structure sigaction does not only contain the information needed to
register the signal handler with the operating system (in the process descrip-
tor), but it also contains information on what the recerving process should
do when it receives the registered signal. It can do one of three things with
the signal:
1t can block the signal for some time and later unblock it.

— it can ignore the signal, pretending that nothing has happened.
— it can handle the signal, by executing the signal handler.

The POSIX.1 signals, described so far, have some serious limitations:
— there is a lack of signals for use by a user application (there are only two:
SIGUSRI and SIGUSR2).
- signals are not queued. If a second signal is sent to a process before the
first one could be handled, the first one is simply and irrevocably lost.
— signals do not carry any information, except for the number of the signal.
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~ and, last but not least, signals are sent and received asynchronously. This
means in fact that a process may receive a signal at any time, for instance
also when it is updating some sensitive data-structures. If the signal handler
will also do something with these same data-structures, you may be in deep
trouble. In other words, when you write your program, you must always keep
in mind that you may receive a signal exactly at the point where your pencil
is.

Linux is compliant with this POSIX.1 definition of signals.

6.2 POSIX.4 signals

From the description above, we have seen that the POSIX.1 signals are a
rather complicated business (in UNIX jargon this is called flexibility). The
POSIX.4 extensions to the signal mechanism introduces even more flexibility.
POSIX.4 really defines an entirely new set of signals, which can peacefully co-
exist with the old signals of POSIX.1. The historical name kill{) is replaced
by the more expressive sigqueue().

The main improvements are:
- a far larger number of user-definable signals.
- signals can be queued; old untreated signals are therefore not lost.
— signals are delivered in a fixed order.
— the signal carries an additional integer, which can be used to transmit more
information than just the signal number.

POSIX.4 signals can be sent automatically as a result of timer ezpiration,
arrival of a message on an empty queue, or by the completion of an asyn-
chronous I/0 operation. Unfortunately, the POSIX 4 signals are not yet part
of Linux, so we will not dwell any further on them.

6.3 pipes and FIFOs

Probably one of the oldest interprocess communication mechanisms is the
pipe. Through a pipe, the standard output of a program is pumped into
the standard input of another program. A pipe is usually set up by a shell,
when the pipe symbol ( | } is typed between the names of two commands.
The data flowing through the pipe is lost when the two processes cease to
exist. For a named pipe, or FIFO (First In, First Out}, the data remains
stored in a file. The named pipe has a name in the filesystem and its data
can therefore be accessed by any other process in the system, provided it has
the necessary permissions.
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A running process can set up a pipe to communicate with another process.
The communication is uni-directional. If duplex communication is needed,
two pipes must be set up: one for each direction of communication. The two
“ends of a pipe” are nothing else than file descriptors: one process writes
into one of these files, the other reads from the other.

Setting up a pipe between two processes is not a terribly straightforward
operation. It starts off by making the pipe() system call. This creates two file
descriptors, if the calling process still has file descriptors available. One of
these descriptors (in fact the second one) concerns the end of the pipe where
we will write, the other descriptor (the first one) is attached to the opposite
end, where we will read from the pipe. If we now create another process, this
newly created process will inherit these two file descriptors. We now must
make sure that both parent and child processes can find the file descriptors
for the pipe ends. The dup2 system call will in fact do this, by duplicating
the “abstract” file descriptors pipe_ends[0] and pipe_ends(1 ] into well-known
ones. dupZ copies a file descriptor into the first available one, so we should
close first the files where we want the pipe to connect (usually standard out
for the process connected to the writing end and standard in for the process
which will read from the pipe). Here is a skeleton program for doing this in
the case of a terminal server, which forks off a terminal process to display
messages from the server:

/* First create a new client */
if (pipe(pipe_ends) < 0) {
perror("pipe");
exit(1);

}

global_child=child=fork();

if (child) {
/*here for parent processx/
do_something();

}

else {
/*here for the childx/
/* pipe ends will be 0 and 1 (stdin and stdout) */
(void)close(0);
(void)close(1);
if (dup2(pipe_ends[0], 0) < 0)

perror("dup2");

if (dup2(pipe_ends[1], 1) < 0)
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perror ("dup2");
(void)close(pipe_ends[0]);
(void) close(pipe_ends{1]);
execlp(CHILD_PROCESS, CHILD PROCESS, "/dev/coml", NULL);
perror("execlp");
exit (1);

The terminal process, created as the child could look:

#include <fcntl.h>
char buf [MAXBYTES]

/* pipe should not block, to avoid waiting for input */
if (fentl(channel _from_server, F_SETFL, O_NONBLOCK) < 0){
perror (“fcntl");
exit (2);
}
while (1) {
/* Put messages on the screen */
/* check for input from the server */
nbytes = read(channel _from.server, buf, MAXBYTES) ;
if (nbytes < 0) && (errmo != EAGAIN))
perror("read") ;
else if (nbytes > 0) {
printf("Message from the Server: \"%s\"\n", buf);

In this example®, the server process simply writes to the write end of
the pipe (which has become stdout) and the child reads from the other end,
which has been transformed by dup2 into stdin. To set up a communication
channel in the other direction as well, the whole process must be repeated,
inverting the roles of the server and the terminal client (the first becomes the
reader, and the second the writer) and using two other file descriptors (for
instance 3 and 4 if they are still free). Note that the dup calls must be made

9 Which was also taken from Gallmeister’s book.

Fourth College on Microprocessor-based Real-time Systems in Physics 29
ICTP, Trieste, Italy. Oct 7 — Nov 1, 1996.



Toward Real-time Linux Verkerk, Catharinus

before the child does its exec call, otherwise, the file descriptors for the two
pipe ends would be lost.

'The use of named pipes is simpler: the FIFO exists in the file system and
any process wanting to access the file can just open it. One process should
open the FIFO for reading, the other for writing. A FIFQ is created with
the POSIX.1 mkfifo() system call.

6.4 Message Queues

When we have compiled the System V IPC facilities into the Linux kernel,
we have message queues available, which however do not conform to the
POSIX.4 standard. We will nevertheless describe them briefly, as they are
the only ones we have at present.

In system V the message resource is described by a struct msqid.ds,
which is allocated and initialized when the resource is created. It contains
the permissions, a pointer to the last and the first message in the queue,
the number of messages in the queue, who last sent and who last received a
message, etc. The messages itself are contained in:

struct msgbuf {
long mtype;
char mtext[1l]; }

To set up a message queue, the creator process executes a msgget system
call:
msqid = msgget(key.t key, int msgflg);
The key i1s a unique identification of the particular message queue which
ensures that messages are delivered to the correct destination. A key can
be fabricated with the ftok(filename,character) library call; IPC_PRIVATE
is frequently used as the key. The use of IPC_PRIVATE will create a new
resource if it does not already exist. The processes wanting to receive mes-
sages on this queue must also perform a msgget call, in order to obtain the
msqid. A message is sent by exec..ling:
int msgsnd(int msqid,struct msgbuf *msgp,int msgsz, \
int msgflg);
and similarly a message is received by:
int msgrev(int msqid, struct msgbuf *msgp, int msgsz, \
long msgtyp, int msgflg);
msgtyp is used as follows:

if msgtyp = 0 : get first message on the queue,
> 0 : get first message of matching type,
< 0 : get message with smallest type which is <abs{msgtyp).
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Finally, the msgct] calls allow you to get the status of a queue, modify
its size, or destroy the queue entirely.

The message queue can be empty. If a message is sent to an empty queue,
the process reading messages from the queue is woken up. Similarly, when
the queue is full, a writer trying to send a message will be blocked. As soon
as a message is read from the queue, creating space, the writer process is
woken up.

6.5 Counting Semaphores

System V semaphore arrays are an oddity. The semget call allocates
an array of counting semaphores. Presumably, and hopefully, the array
may be of length 1. You also specify operations to be performed on a series
of members of the array. The operations are only performed if they will all
succeed!

Counting semaphores can be useful in producer-consumer problems,
where the producer puts items in a buffer and the consumer takes items away.
Two counting semaphores keep track of the number of items in the buffer
and allow to “gracefully” handle the buffer empty and buffer full situations.

Producer-consumer situations can easily arise in a real-time application:
the producer collects data from measuring devices, the consumer writes the
data to a storage device (disk or tape).

Another example is a large paying car park: There is one counting semaphore
which is initialized to the total number of places in the car park. A sepa-
rate process is associated with each entrance or exit gate. The process at an
entrance gate will do a wait on the semaphore, e.g. decrement it. If
the result is greater than zero, the process will continue, issue a ticket with
the time of entrance, and open the gate. It closes the gate as soon as it
has detected the passage of the car. If the value of the counting semaphore
is zero when the decrement operation is tried, the process is blocked and
added to the pile of blocked processes. This is just what is needed: the car
park is full and the car will have to wait, so no ticket is issued, etc.

The processes at the exit gates do the contrary: after having checked the
ticket, they open the gate and then do a post or increment operation on the
semaphore, effectively indicating that one more place has become free. This
operation will always succeed.

The System V counting semaphore mechanism is rather similar to the
message queue business: You create a semaphore (array) as follows:
int semid = semget(key_t key, int nsems, int semflg);

The key IPC_PRIVATE behaves as before. All processes wanting to use
the semaphore must execute this semget call. You can then operate on the
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semaphore;

int semop(int semid, struct sembuf *sops, unsigned nsops);

(here is the oddity, you do nsops operations on nsops members of the array;
the operations are specified in an array of struct sembuf ). This structure is
defined as:

struct sembuf
ushort semnum; /*index in array*/
short sem_op; /*operation*/
short sem_flg /*operation flags#/

Two kinds of operations can result in the process getting blocked:

i) If sem_op is 0 and semval is non-zero, the process sleeps on a queue,
waiting for semval to become zero, or returns with error EAGAIN if either
of (IPC_NOWAIT | sem_flg) are true.

ii) If (sem_op < 0) and (semval + sem_op < 0), the process either sleeps
on a queue waiting for semval to increase, or returns with error EAGAIN if
(sem fig & IPC_NOWAIT) is true.

Atomicity of the semaphore operations is guaranteed, because
the mechanism is embedded in the kernel. The kernel will not allow two
processes to simultaneously use the kernel services. In other words, a system
call will be entirely finished before a context switch takes place.

Note: If you want to use a semaphore which takes only the values 0 or 1
(for instance for mutual exclusion), you are better off by using the atomic bit
operations, defined in <asm-i386/bitops.h>: test_bit, set_bit and clear_bit.

6.6 Shared Memory

Shared Memory is exactly what its name says: two or more processes access
the same area of physical memory. This segment of physical memory is
mapped into two or more virtual memory spaces.

Shared Memory is considered a low-level facility, because the shared seg-
ment does not benefit from the protection the operating system nor-
mally provides. To compensate for this disadvantage, shared memory is
the fastest IPC mechanism. The processes can read and write shared
memory, without any system call being necessary. The user himself must pro-
vide the necessary protection, to avoid that two processes “simultaneously”
access the shared memory. This can be obtained with a binary semaphore
or mutex.

A mutex can be simulated by performing the set_bit(int nr, void * addr)
call, which sets the desired bit nr and returns the old value of the bit. The
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short integer on which this operation is performed must also reside in shared
memory, in order to be accessible by both processes.

At present the only shared memory facility available in Linux comes from
System V, and is therefore not conforming to POSIX.4. The related system
calls are similar to the System V calls we have already seen:

There is, of course, a shared memory descriptor, struct shmid.ds.
Shared memory is allocated with the system call:
int shmget(key_t key, int size, int shmflg);

The size is in bytes and should preferably correspond to a multiple of the

page size (4096 bytes). All processes wanting to make use of the shared

memory segment must make a shmget call, with the same key.

Once the memory has been allocated, you map it into the virtual memory

space of your process with:

char *virt_addr;

virt_addr = shmat(int shmid, char *shmaddr, int shmflg);
shmaddr is the requested attach address:

if it is 0, the system finds an unmapped region;

if it is non-zero, then the value must be page-aligned.

By setting shmflg = SHM_RDONLY you can request to attach the segment

read-only.

You can get rid of a shared memory segment by:
int shmdt(char *virt_addr);

Finally, there is again the shmctl call, which you may use to get the status,
or also to destroy the segment (a shared segment will only be destroyed after
all users have detached themselves).

If you are using shared memory, and you need malloc as well, you should
malloc a large chunk of memory first, before you attach the shared memory
segment. Otherwise malloc may interfere with the shared memory.

A word about the Linux implementation of the System V IPC mechanisms
is in order. All System V system calls described above make use of a single
Linux system call: ipc(). A library of the system V IPC calls is available,
which maps each call and its porameters into the Linux ipc() call. An example
is:

int semget (key.t key, int nsems, int senflg)

{
}

return ipc (SEMGET, key, nsems, semflg, NULL);

The constants are defined in <linux/ipc.h>

Fourth College on Microprocessor-based Real-time Systems in Physics 33
ICTP, Trieste, Italy. Oct 7 — Nov 1, 1996.



Toward Real-time Lingx Verkerk, Catharinus

7 Scheduling

The scheduling algorithm of Linux aims at giving a fair share of the re-
sources to each user. It is therefore a typical time-sharing scheduler. A
time-sharing scheduler is based on priorities, like any other type of scheduler,
but the system keeps changing the priorities to attain its aim of being fair
to everyone.

For time-critical real-time applications you want another sort of scheduler.
You need a high priority for the most critical real-time processes, and
a scheduler which will run such a high priority process whenever no process
with higher priority is runnable!®.

Less critical processes of the real-time application can run at lower pri-
orities and other user jobs could also be fitted in at priorities below.

SVR6 (System V, Release 6) has a scheduler that does both time-sharing
and real-time scheduling, depending on the priority assigned to a process.
Critical processes run at priorities between, say, 0 and 50, and benefit from
the priority scheduling. Other jobs run at lower priorities and have to accept
the time-sharing scheduler. This aspect of System V has not {yet) been
ported to Linux.

A POSIX.4 compliant scheduler has been ported to Linux. In order to
make use of it, you must make patches to the kernel code and recompile the
kernel together with this POSIX.4 scheduler. At the time these notes were
prepared, we had not yet had a chance to try it.

The advantage of a POSIX.4 scheduler is, of course, that your application
program will be portable between different platforms.

What does a POSIX.4 scheduler do? Here is what it provides'!:

#tinclude <unistd.h>
#ifdef POSIX_PRIORITY_SCHEDULING
#include <sched.h>

int i, policy;
struct sched.param *scheduling parameters;
pid_t pid;

sched_setscheduler(pid_t pid, int policy, \
struct sched param *scheduling parameters);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, \
struct sched param *scheduling _parameters);

WRemember that you need a sleeping shell at a still higher priority.
1 Again from Gallmeister’s book.
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int sched_setparam(pid_t pid, \
struct sched_param *scheduling _parameters);
int sched_yield(void);
int sched get_priority min(int);
int sched_get_prioritymax(int);
#endif _POSIX_PRIORITY_SCHEDULING

You see that you define a scheduling "policy”. You have a choice:

SCHED_FIFQ:  pre-emptive, priority-based scheduling,
SCHED.RR: pre-emptive, priority-based with time quanta,
SCHED.OTHER: implementation dependent scheduler.

With the first choice, the process will run until it gets blocked for one
reason or another, or until a higher priority process becomes runnable. The
second policy adds a time quantum: a process running under this schedul-
ing policy will only run for a certain duration of time. Then it goes back to
the end of the queue for its priority (each priority level has its own queue).
Thus, at a given priority level, all processes in that level are scheduled round-
robin. In future, deadline scheduling will probably have to be added as
another choice.

There is a range of priorities for the FIFO scheduler and another range
for the RR scheduler.

After a fork(), the child process inherits the scheduling policy and the
priority of the parent process. If the priority of the child then gets in-
creased above the priority of the running process, the latter is immediately
pre-empted, even before the return from the sched setparam call! So be care-
ful, you may seriously harm yourself.

On the other hand, you may "yield” the processor to another process.
You cannot really be sure which process this is going to be. As a matter of
fact, the only thing yield does, is to put your process at the end of the queue
at your particular priority level.

All this is nice, but we are still stuck with the fact that the kernel itself
cannot be pre-empted. This is usually not too much of a problem. Most of
the system calls will take only a short time to execute.

Usually, the system calls that may take a considerable time (such as
certain I/O related calls), should be relegated — as far as possible — to
those tasks that run at a lower priority level. Also some common sense will
help: it is much faster to write once 512 bytes to disk than to write 512 times
a single byte!

Other system calls do take a long time. fork and exec for example. You
should therefore create all necessary processes during the initialization
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phase of your application. Let the processes that you only need sporadically
Just sleep for most of the day.

8 Timers

You may want to arrange for certain things to happen at certain times, or
a given time interval after something else happened. So you will nearly
always have the need for a timer and/or an interval timer.

Standard UNIX (and Linux) has a real-time clock. It counts the num-
ber of seconds since 00:00 a.m. January 1, 1970. (called the Epoch). You get
its value with the time() function:

#include <time.h>
time t time(time_t *the_time_now);
You can also call time with a NULL pointer.
Linux also has the gettimeofday call, which stores the time in a structure:

struct timeval {
time.t tv.sec /* seconds */
time t tv.usec } /* microseconds */

gettimeofday returns a 0 or -1 (success, failure respectively).
You can make things happen after a certain time interval with sleep:
unsigned int sleep(unsigned int n_seconds);

The process which executes this call will be stopped and resumed af-
ter n_seconds have passed. The resolution is very crude! As a matter of
fact, many real-time systems would need a resolution of milliseconds and, in
extreme cases, even microseconds.

To overcome this drawback, Linux has also interval timers. each process
has three of them:

#include <sys/time.h>

int setitimer(int which_ timer, \
const struct itimerval *new_itimer.value, \
struct itimerval #*old.itimer_value);

int getitimer(int which_timer, \
struct itimerval *current_itimer_value);

The first argument, which_timer, has one of threé values: ITIMER_REAL,
ITIMER_VIRTUAL and ITIMER_PROF. setitimer() sets a new value of the
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interval timer and returns the old value in old_timer_value. When a timer
expires, it delivers a signal: SIGALRM, SIGVTALRM and SIGPROF
respectively. The calls make use of a structure:

struct itimerval {
struct timeval it_val /* initial value */
struct timeval it.interval } /* interval */

The ITIMER_REAL measures the time on the “wall clock” and there-
fore includes the time used by other processes. ITIMER_VIRTUAL mea-
sures the time spent in the user process which set up the timer, whereas
ITIMER_PROF counts the time spent in the user process and in the kernel
on behalf of the user process. It is thus very useful for profiling.

The resolution of these interval timers is given by the constant HZ, defined
in <sys/param.h>. On Linux machines, HZ=100, so the resolution of the
interval timers is 10000 microseconds.

POSIX.4 extends the timer facilities to a number of implementation de-
fined clocks, which may have different characteristics. Timers and intervals
can be specified in nanoseconds.

9 Memory Locking

As we already pointed out before, the real-time processes — at least the critical
ones — should be locked into memory. Otherwise you could have the very
unfortunate situation that your essential task has been swapped out, just
before it becomes runnable again. Faulting a number of pages of code back
into memory may add an intolerable overhead.

Remember also that infrequently used pages may be swapped out by the
system, without any warning. Faulting them back in again may make you
miss a deadline. Thus, not only the program code, but also the data and
stack pages should be locked into memory.

A POSIX.4 conformant memory locking mechanism is available for Linux.
Unfortunately, we have not yet been able to test it. It does the following:

#include <unistd.h>
#ifdef _POSIX_MEMLOCK
#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);
#ondif /* _POSIX_MEMLOCK =*/
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miockall will lock all your memory, e.g. program, data, heap, stack and
also shared libraries. You may choose, by specifying the flags, to lock the
space you occupy at present, but also what you will occupy in future.

Instead of locking everything, you may also lock parts:

#include <unistd.h>
#ifdef _POSIX_MEMLOCK_RANGE
#include <sys/mman.h>

int mlock(void *address, size.t length);
int munlock(void *address, size_t length);
#endif /* _POSIX_MEMLOCK_RANGE =/

Finally, you may want to lock just a few essential functions: a signal
handler or an interrupt handler, for instance. You should not do this from
within the interrupt handler, but from a separate function:

void intr_handler()

{
}

void right_after_intr_handler()

{

/* do your work here */

/* this function serves to get an address */
/* associated with the end of intr_handler() =/

}

void intr_handler_init()

{

i = mlock (ROUND_DOWNTO PAGE (intr handler),\
ROUND_UPTQ_PAGE(right _after_intr handler - \
intr_handler));

The function right_after_intr_handler() does nothing. It serves only to get
an address associated with the end of the interrupt handler. This is needed
to calculate length argument for the mlock() call.
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10 Multiple User Threads

All we have seen so far happened at the process level and kernel intervention
was needed for every coordinating action between processes. The overall
picture has become quite complicated and a programmer must master many
details or else he runs into trouble.

Is there not another solution, where the user has more direct control over
what is going on? Fortunately, there is: multiple user threads. POSIX 4a
(or POSIX.1c if you prefer) standardizes the API {Application Program-
mer’s Interface) for multiple threads.

Threads are independent flows of control inside @ single process. Each
thread has its own thread structure —comparable to a process descriptor—
. its own stack and its own program counter. All the rest, i.e. program
code, heap storage and global data, is shared between the threads. Two
or more threads may well execute the same function simultaneously. The
services needed to create threads, schedule their execution, communicate and
synchronize between threads are provided by the threads library and run
in user space. For the kernel exists only the process; what happens inside
this process is invisible to the kernel.

Lightweight Processes, as in Solaris or SunOS 4.x, are somewhere mid-
way: a small part of the process structure has been split off and can be
replicated for several LWPs, all continuing to be part of the same process,
using the same memory map, file descriptors, etc. The split-off part is still a
kernel structure, but the kernel can now make rapid context switches between
LWPs, because only a small part of the complete process structure is affected.
Inside a LWP, multiple threads may be present.

Multiple threads offer a solution to programming which has a number of
advantages. The model is particularly well suited to Shared-memory Multiple
Processors, where the code, common to all threads, is executed on different
processors, one or more threads per processor. Also for real-time applications
on uniprocessors, threads have advantages. In the first place, the fastest,
casiest intertask communication mechanism, — shared memory — is there for
free!

There are other advantages as well. The responsiveness of the process
may increase, because when one thread is blocked, waiting for an event, the
other can continue execution. The fact that threads offer a sort of “do-it-
yourself” solution makes the user have a better grasp of what he is doing
and thus he can produce better structured programs. Communication and
synchronization between threads is easier, more transparent and faster than
between processes. Fach thread conserves its ability to communicate with
another process, but it is wise to concentrate all inter-process communication
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within a single thread.

Multiple threads will in general lead to performance improvements on
shared memory multiprocessors, but on a uniprocessor one should not ex-
pect miracles. Nevertheless, the fact that there is less overhead and that
some threads may block while others continue, will be felt in the per-
formance.

It sounds as if we just discovered a gold mine. Well ..., there are a
few things which obscure the picture somewhat. For threads to be usable
with no danger, the library functions our program uses must be threads-
safe. That is, they must be re-entrant. Unfortunately, most libraries contain
functions which modify global variables and therefore are not re-entrant.
For the same reason, your threaded program must be re-entrant, so it has
to be compiled with _REENTRANT defined. In addition, for a real-time
application, you still need at least a few facilities from the operating system:
memory locking and real-time priority scheduling'?.

Threads can be implemented as a library of user functions. One stan-
dard set is defined in POSIX.4a, but other implementations also exist. The
package we are using implements the POSIX.4a pthreads. There are some
50 service requests defined. They are briefly described in Annex III and in
more detail in the man pages. We will illustrate only a few of them, the most
important ones.

pthreads defines functions for Thread Management, Mutexes, Condition
Variables, Signal Management, Thread Specific Data and Thread Cancella-
tion. Threads, mutexes and condition variables have attributes, which can
be modified and which will change their behaviour. Not all options defined
by the various attributes need to be implemented. <pthread.h> defines eight

types:

Type Description

pthread_attr_t Thread attribute
pthread mutexattr_t Mutex attribute
pthread condattr_ t Condition variable attribute

pthread mutex_t Mutual exclusion lock (mutex)
pthread_cond_t Condition variable

pthread.t Thread ID

pthread_once_t Once-only execution
pthread_key. t Thread specific data key

*? Alternatively, you run on a dedicated machine, where you have killed all daemons, so
that your application is the only active process in the system.
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Attributes can be set or retrieved with calls of the following type:

int pthread.attr_setschedpolicy( pthread attr.t *attr, \

int newvalue);

or:

int pthread mutexattr_getprotocol( pthread mutexattr.t *attr, \
*protocol) ;

See Annex III for the complete list. The scheduling policy can be one
of- SCHED_FIFO, SCHED_RR and SCHED_OTHER, as for the POSIX.4 standard.
The scheduling parameters can also be set and retrieved.

When the process is forked, main(argc, argv) is entered. In the main pro-
gram you may then create threads. Each thread is a function, or a sequence
of functions. At thread creation, the entry point must be specified:

int pthread create( pthread t *thread, \
const pthread attr_t *attr, void *(#entry)(veid %), \
void *arg };

void pthread exit( void #*status );
does what is expected from it. It should be noted that NULL may often be
used to substitute an argument in the function call. This is notably the case
for pthread-attr_t *attr and void *status above.

An important function is:
int pthread-join( pthread_t thread, void **status );

When this primitive is called by the running thread, its execution will be
suspended until the target thread terminates. If it has already terminated,
execution of the calling thread continues. pthread_join() is therefore an im-
portant mechanism for synchronizing between threads. So-called detached
threads cannot be joined. You specify at creation time or at run time if the
thread has to be detached or not.

Mutexes can have as the pshared attribute PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE, meaning that the mutex can be accessed also by
other processes or that it is private to our process. Private mutexes are de-
fined in all implementations, shared mutexes are an option. The two usual
operations on a mutex are:
int pthread mutex_lock( pthread mutex_t *mutex );
and
int pthread mutex_unlock( pthread mutex.t *mutex );
but you can also try if a mutex is locked and continue execution, whatever
the result:
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int pthread mutex_trylock( pthread mutex t *mutex );

All memory occupied by the process is shared among the various threads,
which we said was an important advantage of threads. Nevertheless, some-
times a thread needs to protect its data against attacks from other threads.
For this reason a few primitives which allow to create and manipulate thread
specific data are defined. For details see the man pages.

We have not yet met condition variables, which are another feature of
pthreads. Condition variables are always associated with a mutex and they
are useful if you want to make things depend on complex situations. Maybe
you want to execute a piece of code in a thread only if the temperature is
below some limit, it is raining outside and the number of your ticket of the
lottery is odd. If you can express your condition as a piece of program, you
can use it as a condition variable (CV). It works as follows:

Thread 1 Thread 2

lock the mutex
test the condition
FALSE! unlock mutex

sleep on CV
lock the mutex
change the condition
signal thread 1
unlock mutex

lock mutez

test condition again
TRUE! do the job
unlock mutex

Translated into code, this becomes:

Thread 1 Thread 2

pthread mutex_lock (&m);

while (!my_conditionm)

while (pthread_cond wait(&c, &m) !'= Q) ;
pthread mutex_lock(&m);
my_condition = TRUE ;
pthread cond signal (&c);
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pthread mutex_unlock(&m);
do_thing();
pthread mutex_unlock(&m) ;

Note that pthread_cond_ wait() will free the mutex for you and your
thread will go to sleep on the condition variable.

pthreads is really a subject in itself and our quick review has been very
superficial. Threads are well suited for implementing Server-Client prob-
lems. Due to the shared memory, the communication between the server and
the —possibly many— clients is easy. We will see an example of a Server-Client
problem in one of the coming afterncons.

A brief resume of the POSIX.4a definitions is given in Annex III. For
more details, the reader is referred to the “man pages”.

We close this section with a complete code example. In the example a
reader thread reads characters from standard input and puts them into one
of two buffers, a writer thread reads from a buffer and sends the characters
to standard out. The reader or the writer want to use a buffer which must
be in a given state (DIRTY or CLEAN). If the buffer of interest is not in
the desired state, the thread will block. The reader runs first. This example
illustrates several aspects of multiple threads, including the use of mutexes
and condition variables. The reader is again invited to study this example
carefully.

e
*

DBCP - Double-Buffer Copy

Copyright (C) 1995 by Sun Microsystems, Inc.
All rights reserved.

This file is a product of SunSoft, Inc. and is provided for
unrestricted use provided that this legend is included on all
media and as a part of the software program in whole or part.
Users may copy, modify or distribute this file at will.

THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND
FITNESS FOR A PARTICULAR PURPOSE, OR ARISING FROM A COURSE
OF DEALING, USAGE OR TRADE PRACTICE.

This file is provided with no support and without any
obligation on the part of SunSoft, Inc. to assist in its use,

X R X X X # R K ¥ K K X K X ¥ ¥ ¥
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correction, modification or enhancement.

SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS
OR ANY PATENTS BY THIS FILE OR ANY PART THEREQF.

IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE
FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

SunSoft, Inc.
2550 Garcia Avenue
Mountain View, California 94043

#OOR K FOK X X A X K O* X X X

*
~

/* Include Files */

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>

/* Constants and Macros */
#define NBUF 2

#tdefine ST_DIRTY 0x01
#define ST_CLEAN 0x02
#define ST_INUSE 0x04

/* Data Declarations */

typedef struct {

char buffer [BUFSIZ];
int state;
int nbytes;

pthread_mutex_t 1k;
pthread_cond_t cv;
} buffer_t;
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/* External Declaratiocns */

buffer_t buf (NBUF] ;

/* External References */

extern void xreader( void * );

extern void xwriter( void * );

extern buffer_t *alloc_buffer( int, int );
extern void enable_buffer( buffer_t *, int );
extern int read_buffer( int, buffer_t * );
extern int write_buffer( int, buffer_t * );
/* Main */

main( int argc, char *argv[] ) {

int i;
int n;
pthread_attr_t attr;
pthread_t tid;

for ( i=0; i < NBUF; ++i ) {
buf [i] .state = ST_CLEAN;
pthread_mutex_init( &buf[i].lk, NULL );
pthread_cond_init( &buf[i].cv, NULL );
buf [i] .nbytes = 0;

}

pthread_attr_init( &attr );
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);

if (n=pthread_create(&tid,&attr,reader, (void *)STDIN_FILEND)){
fprintf (stderr,"pthread_create.reader: %a\n",strerror(n));
exit( 1 );

T

if(n=pthread_create(&tid,&attr,writer,(void *}STDOUT_FILENO)){
fprintf (stderr,"pthread_create:writer: %s\n",strerror(n));
exit( 1 );

}
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pthread_attr_destroy( &attr );
pthread_exit( 0 );

/* NOTREACHED */
return( 0 );

}
/* Reader - reader thread */

void *
reader( void *arg ) {
int fd (int) arg;
int eof = 0;
int iter = 0;

It

while ( leof ) {
buffer_t *bp = alloc_buffer( iter++, ST_CLEAN );

eof = read_buffer( fd, bp J);
enable_buffer( bp, ST_DIRTY );

return( 0 );

}
/* Writer - writer thread */

void =*
writer( void *arg ) {
int fd = (int) arg;
int eof ;
int iter = D

do {
buffer_t *bp = alloc_buffer( iter++, ST_DIRTY );

eof = write_buffer( fd, bp };
enable_buffer( bp, ST_CLEAN );
} while ( leof );

return( 0 );
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}
/¥ alloc_buffer - allocate the buffer for iteration ’iter’ */
/* when in ’state’. */
buffer_t *
alloc_buffer( int iter, int state ) {
buffer_t *bp = gbuf[iter % NBUF];
pthread_mutex_lock( &bp->1k );
while ( bp->state != state )
pthread_cond_wait ( &bp->cv, &bp->lk };
bp->state = ST_INUSE;
pthread_mutex_unlock( &bp->1k );
return( bp );
¥
/* enable buffer - change ’state’ of buffer ’bp’. */

void

enable_buffer( buffer_t #bp, int state ) {
pthread_mutex_lock({ &bp->1k );
bp->state = state;
pthread_cond_signal( &bp->cv );
pthread_mutex_unlock( &bp->1k );

return;

}

/* read_buffer - read into buffer ’bp’. */
int

read_buffer( int fd, buffer_t *bp ) {
if((bp—>nbytes=read(fd,bp->buffer,BUFSIZ))==~1) {
fprintf (stderr,"read_buffer: %s\n",strerror(errno));
exit( 1 );
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return( bp->nbytes == 0 );

int
write_buffer( int fd, buffer_t *bp ) {
if ( bp->nbytes )
if (write(fd,bp->buffer,bp~>nbytes )!=bp->nbytes) {
fprintf (stderr,"write_buffer: %s\n",strerror(errno));
exit( 1 );
¥

return( bp->nbytes == 0 );

11 Conclusion

We have tried in this course to give a brief overview of the requirements of
a real-time application and we have investigated to what extent Linux can
do the job. We have also mentioned the improvements to Linux which have
already been made. We are confident that more will come. To our knowledge
there is however no concerted effort to develop a real-time version of Linux,
so —at least for the time being— , all improvements have to be added to the
kernel individually.

The pthreads package does contain the major part of the improvements
a user would like to see. When a real-time application has been written using
pthreads, the only essential features the operating system has still to provide
are memory locking and real-time scheduling.

The important thing to remember is that you should analyze your prob-
lem very carefully, before deciding that you can (or cannot) use such or such
an operating system. It is not very likely that you will need a large array of
semaphores, but if you do, this course has shown you where to find them.

All depends therefore on your application. If you expect high data rates
or high interrupt rates or if you are otherwise pressed for time constraints,
or if you must meet stringent deadlines, then you will need many of the
mechanisms described and you may have to accept acquiring a true real-time
operating system.

This can be the case in physics experiments, in particular in Particle
Physics and in Nuclear Physics.
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There will however be situations where you don’t need the heavy guns and
where the standard Linux system will do the job. To give you an idea: Ulrich
Raich runs a real-time application on a 66 MHz 486 machine, concurrently
with X11. The machine sustains a rate of 200 external interrupts per second,
in addition to the 100 Hz clock interrupts. It obviously all depends on what
has to be done as the result of an interrupt.

With prices of PCs and PC-boards going down, there is now a tendency
to use a PC-board also for an embedded system, where before you would
have used a small, dedicated microprocessor. Using a PC-board has the
obvious advantage of portability: you can develop your application on a
large configuration, and then download it to the embedded system.

The reader may be interested to learn that there is a Linux Development
Project to port a cut-down version of Linux to the Intel 8086 processor™.

Many people may be just interested in hooking up existing instruments,
for instance those which are equipped with an interface to the GPIB bus.
This situation arises routinely in chemistry labs, or medical analysis labs,
etc.

There is good news for those people as well: There is a project to
develop for Linux a complete package for controlling instruments
with GPIB and Camac. The first parts of it have been released already
a year ago. It has graphical interfaces, uses X11 and is extensible!*. And it
is free! This project will certainly deliver the ideal solution for laboratories
using standard equipment. No need to spend a lot of money on LabView or
other products.

To end, T wish you a happy time programming your real-time applications.
Enjoy!

13The project is called ELKS (Embeddable Linux Kernel Subset) and is led by Alan
Cox. The project can use more volunteers. For more information, consult the Linux
Documentation Project homepage ( http:/ /sunsite.unc.edu/mdw/linux.html), where you
will ind ELKS under the link “projects”.)

14¥5u can ftp this package from chemie.fu-berlin.de.
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12 Annex I — Annotated bibliography

The last year has seen a real explosion of the number of books on Linux. A
number of them are nothing but collections of HOW-TOs from the Linux
Documentation Project. Others are specific for certain Linux Distri-
butions, e.g. Slackware, RedHat, Caldera Desktop, Yggdrasil Plug and
Play Linux. These books contain one or more CD-ROMs, or the CD-ROM
set is sold separately (the Linux Developers Resource from InfoMagic is an
example).

Below is an annotated bibliography of the books I found most useful and
which is limited to those publications which are not specific to a distribution,
or just collections of HOW-TOs.

1. Matt Welsh and Lar Kaufman, Running Linuz, Sebastopol, CA95472,
1995, O'Reilly & Associates, Inc; ISBN 1-56592-100-3
An excellent book, very complete and very readable. Contains exten-
sive indications on how to obtain and install Linux, followed by chapters
on UNIX commands, System Administration, Power Tools (including
X11, emacs and IfTEX), Programming, Networking. The annexes con-
tain a wealth of information on documentation, ftp-sites, etc. One of
the most readable books on Linux.

2. Marc Ewing, Running Linuz Installation Guide and Companion CD-
ROM, O’'Reilly & Associates, Inc.; no apparent ISBN.

3. Matt Welsh, Linuz Installation Guide, 1995, Pacific Hi-Tech, 3855
South 500 West Suite M, Salt Lake City, Utah 84115,
email: orders@pht.com; No ISBN found.
The book is thin (221 pages) and cheap ($ 12.95). It contains a few
extra chapters on XFree86, TCP/IP, UUCP, e-mail and usenet.

4. OlafKirch, Linux Network Administrator’s Guide, Sebastopol CA95472,
1995, O’Reilly & Associates, Inc; ISBN 1-56592-087-2
Another excellent book on Networking for Linux. Covers not only lo-
cal networks and TCP/IP, but also the use of a serial line to connect
to Internet, and other chapters on NFS, Network Information System,
UUCP, e-mail and News Readers. Essential reading if you want to use
your Linux box on the network.

Stefan Strobel and Thomas Uhl, Linuz, unleashing the workstation in
your PC, Berlin, 1994, Springer Verlag; ISBN 3-540-58077-8
This book is good to whet the appetite of someone who has no idea of

(W]
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10.

what Linux is or what it can do. It has many illustrations, in particular
of graphics applications and it mentions many software packages which
are not part of the usual Linux distributions, together with indications
on how to obtain and install the package. It mentions on the cover:
Friends don’t let friends use DOS.

Linuz Bible, 1994, San Jose, Yggdrasil Computing. No apparent ISBN.
I know about this book only from the advertisements.

Kamram Hussain, Timothy Parker et al., Linuz Unleashed, 1996, SAMS
Publishing, ISBN 0-672-30908-4

Approx 1100 pages of text, covering Linux and many tools and ap-
plications: Editing and typesetting (groff and Tex), Graphical User
Interfaces, Linux for programmers (C, C++, Perl, Tcl/Tk, Other lan-
guages, Motif, XView, Smalltalk, Mathematics, Database products),
System Administration, Setting up an Internet site and Advanced Pro-
gramming topics. The book contains a CD-ROM with the Slackware
distribution.

Randolph Bentson, Inside Linuz, a look at Operating System Devel-
opment, 1996, Seattle, Specialized system Consultants, Inc; ISBN 0-
916151-89-1.

This book provides some more insight into the internal workings of op-
erating systems, with the emphasis being placed on Linux. It is written
in general terms and does not contain code examples.

John Purcell (ed.), Linuz MAN, the essential manpages for Linuz, 1995,
Chesterfield MI 48047, Linux Systems Lab, ISBN 1-885329-07-5.
Indispensable for those who cannot stare at a screen for more than 8
hours a day, or who like to sit down in a corner to write their programs
with pencil and paper, but want to be sure they use system calls cor-
rectly. As the title says, 1200 pages of “man pages” for Linux, from
abort to zmore, and including system calls, library functions, special
files, file formats, games, system administration and a kernel reference
guide.

M. Beck, H. Béhme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner,
Linuz Kernel Internals, 1996, Addison Wesley, ISBN 0-201-87741-4.
For the real sports! A translation of a german book, revealing all the
internals of the Linux kernel, including code examples, definitions of
structures, tables, etc. The book contains a CD-ROM with Slackware
and kernel sources. Indispensable if you want to make modifications to
the kernel yourself.
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The following books concern real-time and POSIX.4 and 4a:

i)

ii)

iii)

iv)

Bill O. Gallmeister, POSIX.4: Programming for the Real World, 1995,
O'Reilly & Associates, Inc.; ISBN 1-56592-074-0.

This book gives an in-depth treatment of programming real-time ap-
plications, based on the POSIX.4 standard. Several of the examples in
the present course were taken from this book. In addition to approxi-
mately 250 pages of text, the book contains 200 pages of “man pages”
and solutions to exercises.

Bil Lewis, Daniel J. Berg, Threads Primer, A Guide to Multithreaded
Programming, 1996, Sunsoft Press (Prentice Hall);

ISBN 0-13-443698-9.

An introduction to threads programming, mainly based on the So-
laris implementation of threads, but containing comparisons to POSIX
threads and a full definition of the Applications Programmer’s Interface
to POSIX.4a pthreads.

S. Kleiman, Devang Shah, B. Smaalders, Programming with Threads,
1996, Sunsoft Press (Prentice Hall;

ISBN 0-13-172389-8.

At the time of writing these notes, this book had just been published
and [ had not yet seen it. It should contain a more in-depth treatment,
of threads programming than the previous title. It should also be more
pthreads-oriented.

Andrew S. Tanenbaum, Modern Operating Systems, 1992, Prentice
Hall; ISBN 0-13-595752-4.

This excellent book is not specifically tuned to real-titme, but it pro-
vides a comprehensive introduction to the features of modern operating
systems and their implementation. An older edition of the book con-
tained a complete listing of the minix operating system. The reader
may appreciate that Linux was born when Linus Torvalds set out to
Improve minix . ..

Note that there are many more books available, in particular from O'Reilly,
which may be of relevance to topics treated in the present course.
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13 Annex II - CD-ROM sets

The following CD-ROMs or CD-ROM sets are available at affordable prices.
The list is certainly incomplete; new titles have appeared during the last
vear. Caldera desktop and RedHat distribution are obvious examples of CD-
ROMSs which do exist, but for which I have no reference. I find the last item
in the list (InfoMagic’s Linux Developers Resource) particularly useful.

1. “Linux Developers Resource 6 CD set”, approx.$ 50.00 (I paid 57.00
CHF). Contains Slackware, SLS, RedHat, Debian, Bogus, JE and JF
distributions, from: InfoMagic, P.O. Box 30370, Flagstafl, AZ 86003,
fax: +1-602-526-9573, e-mail: info@infomagic.com.

This is probably the most useful CD-ROM set.

9 «Glackware Linux”, a 2 disc set with Slackware and archives, from:
Walnut Creek CDROM, 4041 Pike Lane, Suite D-461, Concord, CA
94520, e-mail: info@cdrom.com, WWW: http://WWW.cdrom.com,
fax: +1-510-674-0821. $39.95.

3. “Linux Developers Kit”, 2 disc set,
“]inux Runtime System”, 1 CD with a runnable system (no file com-
pression), both from: Pacific Hi-Tech, $19.95. Address: see above.

4. “WGS Linux Pro CD”, § 19.95, or “WGS Linux Pro 4 CD set”, $
929.95, or the latter + “WGS Linux Compendium” (1200 pages), $ 69.
All from: Work Group Solutions, Inc., P.O. Box 460190, Aurora, CO
80046-0190, e-mail: info@wgs.com, URL: ftp://ftp.wgs.com/pub2/wgs/Filelist.

5. “SoftCraft Linux”, 1 CD-ROM + 30 support, $ 69.95 from: Solutions
R Us, 4320 Stevens Creek Blvd, Suite 170, San Jose, CA 95129, e-mail:
info@sru.com, fax: (408) 985-1880.

6 “LinuxWare”, 1 CD-ROM $29.95, Supplement of 3 CD-ROMs with
Slackware $ 9.95, both together $34.95, from: Trans-Ameritech Sys-
tems, 2342A Walsh Ave., Santa Clara, CA 95051, e-mail: order@trans-
am.com, fax: (408) 727-3882.

7§ 1.8.E. Linux”, 3 disc set with Slackware etc., DM 89,-/US$ 49.95,
from: S.u.S.E., Gebhardtstrasse 2, D-90762 Fuerth, e-mail: suse@suse.de,
WWW: http://www.suse.de.
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1 Introduction

The C programming language was developed by Dennis Ritchie in the Bell
Laboratories and was designed to be run on a PDP-11 computer with a
Unix operating system. It is a small, flexible and concise language, with
a mix of low-level assembler-style commands and high-level commands. It
is an excellent selection in those areas where you may want to use assembly
language but would keep it a ’simple to write’ and ’easy to maintain’ program.

The first standard was the Kernighan and Ritchie’s book: “The C pro-
gramming language” (1988). The ANSI C standard was defined when it was
evident that the C programming language was becoming a very popular lan-
guage. The ANSI C standard defines not only the syntax and semantics of
the programming language but also a standard library. We will follow this
standard in all the examples,

There is also another standard known as POSIX.1, which defines the in-
terface of the system calls and some library functions, used to obtain services
from the operating system. We will encounter this standard in the examples.

2 Getting started

The first example (see figure 1) is a program that prints the mean of two
integer values. Not so much, but enough to begin. Note that the line numbers
in the left column do not belong to the program; they are intended only for
reference.

All C programs need a main function, and this is the place where the
execution begins. In this example, three local variables in main are created.
The first two, named a and b are of type integer, and the other one, named
answer is of type float.

The sentences in line 17 assign values to the two integer variables. Then
the function mean is called to calculate the mean of the two integer arguments
given to it. The types of the formal parameters of the function (in this case
x and y) should be compatible with the actual parametcrs in the call. The
initial values of x and y are copied from the variables mentioned in the call
(a and b).

The function mean returns the mean of the two integer arguments (a float,
hence the float before the function name). It also declares a local variable £
of type float to be used to store the mean value, which is computed in line 3.
This value is returned to the main program through the return statement.

We have used 2.0 (a float constant) instead of 2 (an integer constant) in
line 5, because we want a float as the result of the division operation. If we
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1. #include <stdioc.h>
2. #include <stdlib.h>

3. float mean(int x,int y) {

4, float f;

5. f=(x+y)/20;
6. return f;

7. }

8. int main() {

9. int a,b;

10. float answer,

11, a=23; b=2;

12. answer = mean{a,b);

13. printf("the mean of %d and %d is %f\n",a,b,answer);
14. exit(0);

15. }

Figure 1: a program to print the mean of two integers

divide an integer by another integer, we obtain an integer:

@+2y/2 =12
(3+2) /20=25

The values are printed in the main function by using the standard library
function printf. The on-line manual page describes this function fully. For
now, just note that the first argument is a string in which some format
specifiers are embedded: %d for integers and %f for floats. The string is
printed with these format specifiers replaced with the values of the variables
that follow the string as arguments.

The exit function terminates a program normally. It expects a single
integer as argument, which is called the erit status, and can be examined by
ﬂwpumwswhdqmﬁthsmow%tomnumﬁmWﬂmﬂmm.Hdmmymun
'falls off the end’ (implicit return}, the exit status of the process is undefined.
By convention, an argument of 0 means OK, and an argument between 1 and
255 means an error has occurred.
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The two #include directives found in lines f and 2, instruct the pre-
processor to include the definitions and declarations from the include files
stdio.h and stdlib.h. For standard include files we use the form <filename>
to indicate that the standard include directory must be searched. Our own
directory is searched first if we use the form ” filename” instead. The on-line
manual page for each function shows which files must be included.

3 Control structures

3.1 Repetition statements

The C programming language provides three structures for looping: the
while loop, the do while loop and the for loop.

The while loop continues to loop while some condition is true. When the
condition is false, the looping is discontinued. Let’s see an example (figure 2).

1. #include <stdioc.h>

2. int main() {
int i = 1,sum = 0;

4, while(i < 5) {

5. sum += 1;

6. 1t++;

7. 1

8. printf ("summation is %d\n",sum);
9. exit (0);

10. }

Figure 2: while statement

This small program just prints the summation of the integer numbers
from 1 to 4. As long as the expression of the while staternent in parenthesis
is true, all statements within the braces are repeatedly executed.

If the variable i were initialized to any number greater than or equal to
3, the statements inside the braces of the while loop would not be executed
at all. If the variable were not incremented in the loop, the loop would never
terminate. lf there were just one statement to be executed within the loop,
no braces would be needed.
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Note the short expressions used in lines 5 and 6. The operator ++ is called
the increment operator. The meaning of these expressions is the following:

sum += 1 sum = sum + 1
i++ i=1i+1

The for loop is nothing new; just a new way to deseribe the while loop.
The same example from figure 2 is re-written using the for statement in
figure 3.

1. #include <stdio.h>

2. int main{() {

3. int i,sum;

4. for(sum = 0,i = 1;i < 5;i++)

5. sum += 1i;

6. printf("summation is %d\n",sum);
7. exit (0);

8. 1}

Figure 3: for statement

The for statement has three expressions separated by semi-colons (3)-
The first one contains sentences that are executed prior to the first pass
through the loop. In this case, two assignments. The comma (,) operator
allows to put more than one expression, where only one is allowed. The
second field is the test which is evaluated at the beginning of each pass
through the loop. The third field is executed in every pass, but after all the
statements in the body of the loop.

The for loop is convenient because all the control information of the
loop is in one place. We will see later more examples on the use of the for
statement.

The other construction, the do while loop is a variation of the while
loop. The main difference is that the condition is evaluated at the end of the
loop. This means that the body is executed at least once. The same example
is re-written in figure 4. Note that the meaning of the program is the same,
because in both cases, the body of the loop is executed at least once.
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1. #include <stdio.h>»

2. int main() {

3. int 1 = 1,sum = 0;

4, do {

5. sum += 1i;

6. i++;

7. } while (i < 5);

8. printf("summation is ¥%d\n",sum);
9. exit (0);

10. }

Figure 4: do ... while statement

3.2 break and continue

The break statement is used to jump out from a loop.

The continue statement does not cause a termination of the loop but
causes a jump out of the present iteration. It always jumps to the end of the
loop just prior the terminating brace. The loop is terminated or not based
on the loop test. In the for statement, the last expression is evaluated as
usual. A complete example is provided in figure 5.

3.3 if and switch

In the simplest form, the if statement has a condition and a statement. If the
condition is true, the statement is executed, and if it is false, the statement
is skipped. Note that the single statement can be replaced by a compound
statement composed of several statements between braces.

The second form is simitar, but with the addition of the word else and
another statement. If the condition is false, this statement is executed.

The switch statement is like a multi-branch if. The key word switch is
followed by a value between parenthesis, and a set of cases between braces,
identified by the word case followed by a constant. The control is transferred
to the first statement of the case whose constant is the same as the value
between parenthesis. If no constant is found, the control is then transferred
to the first sentence after the key word default, if there is one. If no case

Fourth College cn Microprocessor based Real Time Systems in Physics 64
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996



C Refresh Kavka, Carlos

1. #include <stdio.h>
2. #define N 50

3. int main() {

4, int i,c;

5. int n_spaces = 0,n_symbols = 0,n_chars = 0,
6. for(i = 0;1 < M;i++) {

7. ¢ = getchar();

8. if (¢ == EOF) break;

9. if (¢ == ’\n’) continue;
10. gswitch(c) {

11. case ’ ’: n_spacestt;
12. break;

13. case ',’:

14. case ’.°:

15. case ’;’: n_symbolst+;
16. default: n_chars++;
17. }

18. }

19. printf('chars: %d spaces: %d symbols %d\n",
n_chars,n_spaces,n_symbols);

20. exit(0);

21. }

Figure 5: control statements

matches, and there is no default, no action is performed. Once an entry
point is found, statements will be executed until a break is found, or until
the control runs out of the switch braces.

An example that shows the use of most of the control structures discussed
so far is presented in figure 5.

The objective of this program is to read at most 50 characters from the
standard input, and print the number of spaces, the number of punctuation
symbols (only *., ;" and ’)"), and the number of characters read without
considering spaces. Newlines ("\n’) must be ignored, but considered in the

Fourth College on Microprocessor based Real Time Systems in Physics 65
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996



C Refresh Kavka, Carlos

50 characters limit. EOF should be considered as the end of the input.

The line 2 contains a definition of a constant by using the preprocessor
directive #define. Each occurrence of the identifier N in the program is
replaced with the string 50. It can also be used to define macros.

The function getchar () reads a character from the standard input.

The break in line & will cause a jump out of the loop effectively termi-
nating the loop, if the character read is an EOF. The continue statement
on line 9 will cause a jump to the end of the loop if the character read is a
newline. The third expression of the for statement (i++) will be executed.

If the character is a space, the corresponding counter (n_spaces) will be
incremented, and the break in line 72 will cause a jump out of the switch
statement.

If the character is a symbol, the corresponding counter (n_symbols) will
be incremented, and the execution will continue also with the default sen-
tences, allowing the counter of characters (n.chars) to be incremented.

If the character does not belong to this set, the default sentences are
executed, incrementing the counter of characters (n_chars).

4 Expressions

e Most operations in C that are designed to operate with integers will
work equally well with characters, because they are a form of integer
values. The following code will convert upper case characters to lower
case.

int ¢;

¢ = getchar();
if (¢ >= A’ k& c <= '2%)
c=c - A+ a’;

The && operator is the logical and. The logical or operator is || and
the negation operator is !.

e The operators ++ and -- are known as the increment and decrement
operators respectively. i++ is equivalent to i = i + 1, and i-- is
equivalent to i = i - 1. The operation can be done after the variable
is used, or before, by using i++ or ++i, so
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i = 10;

printf("i = %d\n",i++);
and

i = 10;

printf("i = %d\n",++i);

will both leave i as 11, but in the first example 10 will be printed, and
in the second 11 will.

e There is an abbreviated form that can be used with binary operators.
For example, the following expressions are equivalent:

i+6 i+=6
i * 12 i *= 12

e The assignment expressions produce a value: the value that is effec-
tively assigned, so

a=(b=1+2) + 4;

will assign 3 to b and 7 to a.

o Comparisons will return 1 if the comparison is true, and 0 1if it is false,
S0

i = (3 <=8) + 2;

will assign 3 to 1.

e There is no boolean type in C; the integer 0 stands for false, and any
number different from 0 is considered as true. So

while(i !'= 0)

where != stands for different, is equivalent to while(i).
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¢ Some conditional expressions can be abbreviated by using the condi-
tional operator (7:}. For example,

if (x < 2)
a=25;

else
a=12;

can be re-written as
a=(x<2)?5: 12;

e There are also operations for bit manipulation, that can be applied to
operands of types int, short, long, unsigned and char. They are the
bitwise and &, the bitwise or |, the bitwise erclusive or ", the left shift
<<, the right shift >> and the one’s complement -

The example of the figure 6 shows a function used to count the number
of bits in 1 in an unsigned long.

int n_bits(unsigned long x) {
int n = Q;

N =

while (x) {
if (x & 0x01) n++;
X >>=1;

}

~N O, W

}

Figure 6: bit manipulation

As we previously said, while(x) is equivalent to while(x !'= 0). This
1s a safe stop point, because we are shifting x, and as it is unsigned, it
i1s filled with 0’s from the left.

The test on line 4 checks if the least significant bit of x is 1. Note that
the constant 0x01 is hexadecimal. If a constant begins with 0 (zero) it
is an octal one (like 077).

The expression in line 5 is an abbreviated form of x = X > 1,
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e The cast operator can be used to prescribe a conversion to a target
data type, independent of the context. For example,

int x = 5,y = 2;

float f,g;
f=x/y;
g = x / (float)y;

will assign 2 to £, and 2.5 to g. The cast consists of the name of a type
between parenthesis.

5 Arrays, Structures and Unions

An array is a set of contiguous variables of the same type, that can be accessed
through an integer index. For example, the declaration:

int al100];

reserves memory for 100 integer variables. They can be accessed by using
subscripts from 0 to 99. For example, the program in figure 7 initializes all
the components in an array and then print the summation of them.

A structure is a collection of variables grouped as a single object, where
each one could be from a different type. For example, the following structure
could be used to define a point giving its x and y coordinates:

structure point {
float x;
float y;

i

We can declare variables of this type:
struct point a,b;

and fill data by using the dot (.) operator:

5;
6.

H

a.x = 2.
a.y = 5.

We could have created an initialized point by using:
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1. #include <stdio.h>
2. {#define N 50

3. int main(} {

4, int a[N],i,sum = 0;

5. for(i = 0;i < N:i++)

6. ali]l = i % 2;

7. for(i = 0;i < N;i++)

8. sum += a(i];

9. printf("summation is ¥%d\n",sum);
10. exit (0);

11. }

Figure 7: arrays

struct peint b = { 5.0 , 1.25 };

Structures can be assigned, passed to functions and returned, but they
cannot be compared, so:

c = a;
is possible (all the fields from a are copied into c}, but you cannot do:
if (a == b) ... /* not possible */

The figure 8 shows a program that assigns into a point structure ¢ the
structure a if a is equal to b. If this is not the case, the greater coordinates
between a and b are assigned to c.

A union is like a structure, but the felds occupy the same memory loca-
tions, with enough memory allocated to hold the largest one. For example,
the following union has two fields that overlap.

union option {
int number;
float price;

};
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1. struct point {

2. float x;

3. float y;

4, };

5. int main(} {

6. struct point a = { 2.3, 3.1 }.,b.c;
7. b.x = 1.5;

8. b.y = 8.9,

9. if (a.x == b.x & a.y == b.y)
10. cC = a;

11. else {

12. c.x = (a.x > b.x) 7 a.x : b.x;
13. c.y = (a.y >b.y) 7 a.y : b.y;
14. }

15 exit (0);

16. }

Figure 8: structures

An assignment to one of its fields overlap what it has in the other, so
union option X;

x.number = 13;
x.price = 12.5;

the value 13 will be over-written with the value 12.5. The programmer
has to remember what the union is used for.
Structures and arrays can be combined, for example,

struct point arr[10];

is an array of then structures point, and their components can be accessed
for example as follows: :

arr[4] .x = 3;
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6 Type declarations

The typedef declaration allows us to give an identifier to a type, so it can
be used in the same way as the predefined ones. For example,

typedef int integer;

will define the type integer as the standard type int, so now we can
declare an int variable x by doing:

integer x;
A more useful example is the following:

typedef int array[100];
typedef struct point Point;

Now, we can declare:

array a;
Point x;

and a is an array of 100 integers, and x a structure. An array of 10
structures point can be defined as;

Point b[10];

7 Pointers

All variables are stored in some position in the memory, for example, as a
result of

int 1 = 10;

the situation in the memory (simplified) could be as is shown in figure 9,
assuming the base address of the variable is 3000.

i 3000 10

Figure 9: memory situation 1

A pointer to an integer can be defined as follows:
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int *p;

and it can point to i by assigning to it the address of the variable. This
value can be obtained by using the & operator:

p = &i;

and the situation in memory will be as is shown in figure 10.

1 3000 10

v

Figure 10: memory situation 2

p 1000 | 3000

The value pointed by a pointer can be accessed by using the operator *.
We can print the value pointed by a pointer, and modify it by executing:

printf("value pointed by p = %d\n",#p); /* prints 10 */
*¥p = 5;
printf("value of i = Yd\n",i); /* prints 5 */

8 Pointers as parameters

We have seen that C copies the values of the actual arguments into the
formal parameters of the function when it is called. It is not possible for a
function to modify the arguments, so a function that swaps the values of the
arguments cannot be defined.

To be able to remove this restriction, the addresses of the arguments can
be passed as parameters. In figure 11 the code for a function that swaps the
values of the arguments is shown.

The memory situation when the function is called is depicted in figure 12.

Note that the function defines the parameters as pointers to integers. The
addresses of the variables are passed by walue, so they can not be modified.
But this is not important. We want to use them to be able to interchange
the values of the original variables.

The standard library function scanf can be used to read from the stan-
dard input. The first argument is a format string which gives information on
the external representation of the data (similar to the one used in printf}.
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void swap(int *x,int *y) {
int temp = *x;
*xy = *y;
*y = temp,

}

N W N =

int main() {
int a = 2,b = 5;
swap(&a,&b);

}

O W~ 3

Figure 11: pointers as arguments

a 2 b 5

S

/
X ¥

Figure 12: parameters when swap is called

The next arguments are the addresses of the variables where the input values
must be stored. For example, to read two integers and one float value from
standard input, we can do:

int 1i,j;
float f;

scanf (”./.d %d ./of” ,&1 :&J r&f) y
We must pass the address of the variables. This is the only way in which
the scanf function will be able to store the values.
9 Pointers to structures

It is also possible to assign the address of structures to pointers. For example,
if we declare a structure of type Point (declared in section 6):

Point s = { 2.0 , 3.0 };
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and a pointer to Point structures:

Point *p;

We can make the pointer p to point to s by executing:
p = &s;

so the situation in memory may now be as is shown in figure 13.

s 5000 2.0 8.X
’/////" KXY sy

Figure 13: pointer to a structure

p 1100 | 5000 -

To modify a field of the structure by using the pointer, we can write:
(xp) .y = 8.0;

The parenthesis can not be omitted, since the dot operator has a higher
precedence than the asterisk operator. The same behavior of these two op-
erators can be obtained with the operator ->. So, we can write:

p—>y = 8.0;

10 Program structure

We have seen that a program consists of a set of functions. The variables
we have used so far were all local variables to these functions. When the
program is not executing statements in a function, these local variables do
not even exist. Space is created for them when the function is called. This
space is deallocated when the function is abandoned. These variables have
an automatic storage class.

Local variables can be defined in such a way that the values they can
have will still remain between calls, even if they can not be accessed when
the statements of the function are not under execution. These variables have
an static storage class. See the example in figure 14.

This program has a function f that receives no arguments and has no
return value (this is the meaning of the void key word). It defines in lines &
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1. #include <stdio.h>
2. wvoid f() {

3. int a = 0;

4, static int b = 0;
5. printf("a = %d b = %d\n",a++,b++);
6. }

7. int main() {

8. t0;

9 £();

10, exit (0);

11. 1}

Figure 14: storage classes

and 4 two local variables named a and b initialized to 0. a has an automatic
storage class, and b has a static storage class. This means that a is initialized
every time the function is called. b is initialized just the first time the function
is called, and the value is maintained through successive function calls. So,
the values printed by the program are:

0 0
0 1

We have defined only variables that are local to functions. It is possible
to define variables that can be accessed in more than one function, and also
local to some compound statement.

Large C programs usually consist of several source files. They are com-
piled separately, and the object files are combined into one executable pro-
gram. C provides the possibility that variables and functions defined in one
module can be used in another one. They are called esternal,

This is illustrated in figure 15. The example is not meaningful, but it
shows the different possibilities.

In module one.c, two variables are declared outside the scope of the
functions. The variable b is static. This means it can be accessed in all
functions, but in the same file in which it is defined (it is called file scope).
The variable a is an extern variable, and can be accessed in the file in which
it is defined, and also in all the files in which it is declared (program scope).
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1. /% module one.c */

2. int a;

3. static fleat b;

4. int main() {

5. int f(int,float);

6. extern float g(int);
7. b =3.9 + g(2);

8. a = £(2,b);

9. exit(0);

10. }

11. int £(int x,float y) {
12. return a + b + X;
13. }

14. /% module two.c */
15. extern int a;
16. extern int f{int,float);

17. float g(int x) {
18. return (x + a + f(x,3.1)) / 2.0;
19. }

Figure 15: scope

The definition is in line 2 and a declaration is in line 15. A declaration
just specifies the attributes, and a definition does the same thing, but it also
allocates memory space. An external variable has oaly one definition, but it
can have several declarations.

1%e@dm%bnmhm15MbmﬂMvmhMeahmnmﬂdewe&tom
accessed in module two.c.

In order to access the function g in module one.c, a declaration is pro-
vided in line 6. As it is a local declaration, the function g can be called just
from the main function.

The line § contains a declaration of the function £, which is defined later
in the same file. This declaration is called a prototype and is required every
time we want to call a function that is defined later in the file.
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The declaration of the function £ in line 16 allows this function to be
called from functions in the file two.c.
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1 Pointers and Arrays

The relation between pointers and arrays in C is quite strong. All operations
that could be defined with arrays can also be implemented by using pointers.
Let us define an array of integers, and a pointer to integer:

int al5] = {7 ,4, 9, 11, 8 };
int *p;

After the assignment
p = &al0];

the pointer p points to the beginning of the array a. This could have
been done also by:
p=a;

because the name of the array represents also a pointer to the first element
al0].
The situation in memory may now be as follows:

al0] alll a[2] a[3] a[4]
7 4[ 9} 11] 8

3000

b

Figure 1: a pointer to an array

The value of the first component of the array can be assigned into an
integer variable x by using an index i

x = a[0] (where i = 0 in this case)

or through the pointer
X = *p;

It is allowed to add an integer constant to a pointer. By definition, if a
pointer p points to a component of an array a, p+i points to i components
after p. See figure 2.

The value of the fourth component of the array a can be assigned into
the integer variable x by using the index
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al0] a(1] a[2] a[3] al4]
a 7 4 9 ul s

,./' T p+2 T p+3 +p+4

p p+l

Figure 2: adding constants to p

x = al3l;
or by using the pointer
x = *(p+3);

If a pointer p points to the beginning of the array a, then *(p+i) is
equivalent to a[i]. Note that this is also valid for the name of the array, so
*(a+1) is equivalent to a[il.

2 Pointer arithmetic

C allows several forms of arithmetic operations with pointers, and this is one
of the distinctive features of the language.
We have seen in the previous section that it is possible to add a constant to
a pointer that points to an array. Likewise, subtraction is permissible. When
a constant i is added (subtracted) to a pointer p, p is moved ahead (back)
in the array i positions, without considering the size of the components.
Let us, for example, assume that we have declared an array of structures:

typedef struct Point {
int Xx;
int y;
};
Point al[4];
and two pointers to this kind of structure:

Point *p,*q;

These pointers can point to some components in the array:

p = &alil;
q = &a[3];
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al0] all] a2} a[3]
[ 8 2] | x

| | ¥

Figure 3: pointers to array of structures

as can be seen in figure 3.
It is possible to access the components of the structure pointed by a
polnter using the pointer operator, for example,

p—>x = 2;

which in this case, is equivalent to a{1].x = 2.
By subtracting the constant 3 from the pointer 9, we can access the Oth
component of the array:

*(q - 3).y = 8;

Pointers to components of an array can also be compared. In the following
example, the first two conditions evaluate to true (1) and the last one to false

(0):

<gq
I=

q
>=q

T oo

Pointers can also be modified. As an example, if we execute:
P=p-1; (orp--)

p will now point to the previous component in the array, as is shown in
figure 4.

The subtraction of pointers is also valid, and it produces an integer that
represents the number of components between the two pointers. As an ex-

9 - p returns 3
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a[0] afl] af2] a[3]

Figure 4: after p—-

p - q returns -3

To initialize all the fields of the structures of the array a to 0, we can
execute:

for(p = &a;p <= &al3];p++) {
p—>x = 0;
p=>y = 0;

kL,

3 Pointers to void

A pointer to void is called a generic pointer, and it can point to objects of
any type. We have defined in the previous sections just pointers that point
to an object of a specified type. Let us see an example:

int 1;
float f[5];

void *p,*q,
p = (void*)&i;
q = (void*)&f [3];

In this example, two generic pointers p and q are defined. The pointer p
is pointed to the integer variable i, and q is pointed to a component of the
array £ of type float. Note that we must use the cast operator to explicitly
convert the types.

These pointers can point to objects of any type. However, there are
some operations that cannot be done with these pointers. For example, it is
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not possible to add a constant to a generic pointer. The reason is that the
compiler does not know the size of the object pointed by the pointer. So, for
example,

q++ cannot be done

although, with the appropriate cast, the following operation can be done:
(float*)q++ is legal.

As another example, to print the integer value pointed to by p, we can
do:

printf ("4d\n",* ((int*)p));

4 Strings

A string is represented in C as an array of characters. The end of the string
is denoted by a null character, which is written as >\0’. So, one extra byte
is needed to represent the string.

As an example,

char stri[] = "C is nice';

will define an array of 10 elements, as is shown in figure 5. Note that
the size of the array is obtained from the length of the string plus one byte
for the null character. If we had defined a longer array, the extra space will
remain uninitialized.

strl

Figure 5: our first string

The name of the array can be considered as a pointer. However, there is
a significant difference if we define a string like this

char *str2 = "C is nice";
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str2

Figure 6: our second string

In this case, we obtain a real pointer and an array, as is shown in figure 6.
In both cases, references to individual characters can be done, by using
both the notation of pointers or with indexes:

stril2] is equivalent to  *(stri+2)
str2[2] is equivalent to  *(str2+2)}

However, an important difference is that the name of the array is a con-
stant pointer, so it cannot be modified:

stri++ is not allowed, and
str2++ advances the pointer by one position.

C does not provide operators that work with whole strings. As an exam-
ple, if we have two strings s1 and s2, we would like to execute s1 = s2 to
assign strings. This is not possible, because they are pointers, and we would
have just copied the addresses. We must copy the characters one by one, by
using a loop. The next function strcpy allows us to do this.

void strcpy(char *sl1,char #s2) {
while (*sl++ = *52++4);

}

The following is a situation in which the function strcpy can be used:

char al[12];
char b[] = "C is nice";

strcpy(a,b);

Note that as we are passing the name of the arrays as arguments, we are
really passing the addresses of these arrays as arguments. The figure 7 shows
the situation when the function strepy is just called.

The code of the strcpy function is extremely compact and efficient, and
it could be intimidating. The while loop has no body. This means that the
condition will be evaluated, until it becomes faise. Note that the condition
is an assignment expression,
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sl

s2

Figure 7: just to execute strcpy

*¥gl++ = *g04+

so the assigned value will be used to determine if the condition is true or
not: if this value is 0, the condition will be considered false, and true if it is
different from 0.

In the assignment expression, the right hand side is considered first:

*32++

The ++ is executed first, so the pointer s2 is advanced to the next position.
However, it is a post-increment operation, this means, that it returns the
pointer as it was before the operation. This value is de-referenced with the
* operation. In the example, the first time this expression is evaluated, g2
will point to the position b(1], and the character obtained will be 'C?,

On the left side:

*31++

the process is the same. The character is assigned to the position pointed
to by s1, and the pointer is advanced to the next position. The process
is repeated until the character ’\0’ is copied. In this last case, the value
returned by the assignment will be 0, and the condition will be evaluated to
false. This situation can be seen i figure 8,

Note that the target string must have enough space to contain the char-
acters to be copied from the source string,.

9 Library functions for strings

There exist many functions that work with strings in the standard library.
We will go through some of them.
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'C’ LI ] ri1 lsv 1 !nl J'lv ,C, re) ‘\0
b C i |’s it e e | NG

52

Figure 8: just to return from strcpy

e void strcpy(char *sl1,char #s2)

We have already seen the operation of the function strcpy in the pre-
vious example. It copies all the characters pointed to by s2 to the area
pointed to by si, until the null character is copied. There must be
enough space for them on the area pointed to by si. As an example:

char a[12];
char b[] = "C is nice";

strcpy(a,b);
printf(“a: %s\n",a);

will print:
a: C is nice

e void strcat(char *sl,char *s2)

This function concatenates the characters pointed to by s2 to the string
pointed to by s1. There must be enough space in the area pointed by
s1 to store the characters from both strings. As an example:

char a(12];
strcpy(a,"C is ");
strcat(a,"nice");

printf(“a: %s\n",a);

will print
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a: C is nice

® int strcmp(char *si,char *s2)

This function allows to compare lexicographically strings s1 and s2. It
returns 0 if both strings are equal, a negative value if s1 is before s2
and a positive value if s1 is after s2.

® int strlen(char *s1)

This function will return the number of characters in the string s1
without considering the null character. As an example:

char a[] = "C is nice";

printf("length of a: %d\n",strlen(a));
will print
length of a: 9

¢ int sprintf(char *s,char *format,...)

This function works like printf, but the actual output goes to the
string s instead of the standard output. The notation .. . indicates
that the number of arguments is variable, and in this case, it depends
on the number of format specifiers in the format string. Let us see an
example:

char af[20];
int i = 5;
float f = 3.5;

sprintf(a,"%d -- %f",i,f);
printf("a: %s\n",a);

will print
a: 5 -- 3.5
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6 Using strings
It is possible to define an array of strings, and initialize it at the same time.
For example:

char *a[3] = { "C" , "is" , "nice" };

In this example, a is an array of three pointers to characters, or, an array
of three strings. The memory may be as is shown in figure 9.

a

af0l = | \0
all] 1
3[2] ] s s’ ‘\0
i et e [ ND

Figure 9: an array of strings

the expression a[i] can be used to access the i-th string. As an example:
strlen(af{2]) returns 2.

Strings can also be used as fields in structures. For example, a structure
that represents a person with his or her name and age, could be defined as
follows:

typedef struct person {
char name[10];
int age;

};

and created and initialized by:

person x;

strcpy(x.name,"John") ;
x.age = 30;

Note that we must define the string as an array of characters, and not as
a pointer. If we would have defined it as a pointer to characters, there would
not have been space for the characters to be copied by strcpy.

If we would like to reserve just the exact amount of characters needed
by the name of the person, we can define the field as a pointer, and ask for
memory in a dynamic way. This point will be introduced in the next section.
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7 Dynamic memory administration

Dynamic memory administration is the process by which memory can be
allocated and freed at any point during the execution of the program.

C provides some functions in its standard library related to dynamic
memory administration. The two most important ones are:

void #*malloc(size_t n};
void free(void *p);

The malloc function asks for a memory block of size n (in bytes). If n
consecutive bytes are available, it returns a pointer to the first byte. Other-
wise, it returns the constant NULL.

As an example, if we want to copy the string b into a, we can reserve
space for the exact amount of characters, and then copy the string:

char *a;
char *b = "a string";

if ({a = (char*)malloc(strlen(b)+1)) == NULL) {
printf{"not enough memory\n");
exit(1);

}

Note that we must consider also the null character when we ask for mem-
0Ty Space.

Let us suppose we need to obtain space for n integers during the execution
of the program. The malloc function requires the size expressed in bytes.
To know how many bytes an integer uses, we can use the operator sizeof,
which takes as argument the name of a type or an object, and returns its
size in bytes. The following piece of code allocates dinamically space for an
array of n integers, and initializes all its compouents to zero.

int #*arr,n,i;
scanf ("%d",&n) ;

if ((arr = (int*)malloc(n * sizeof(int))) == NULL) {
printf ("not enough memory\n");
exit(1);

}

for(i = 0;i < m;i++) arr[i] = 0;
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As another example, to reserve memory for n structures person (as de-
fined in the previous section), we can execute:

person *p;
scanf ("%d",&n) ;

if ((p = (person*)malloc(n * sizeof(persom))) == NULL) {
printf (“not enough memory\n");
exit(1);
+
for(i = 0;i < n;i++) {
strcpy(pli] .name,"");
plil.age = 0O;
}

The standard library function free, is used to return back the memory
that was obtained by calling malloc. For example, to return back all the
memory that was dynamically assigned in the examples in this section, we
can execute:

free((void*)a);
free({void*)arr);
free((void*)p);

8 A bigger example

In section 6 we have seen that an array of strings could be defined and
initialized in a very simple way. For example:

char *a[3] - { "er o, nigh , "nice" };

However, if we want to build a structure like this in a completely dynamic
way, it is not so easy. Remember that in this example, a is a pointer to
pointers of characters, because a is the name of an array, and the name can
be considered as a pointer to the first element.

We must begin with an empty structure

char #*#*b;

First, we need to create the array of pointers.
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if ((b = (char**)malloc(3 * sizeof(charx))) == NULL) {
printf('not enough memory\n");
exit(1);

}

then we can ask memory for the individual strings and we are ready to
copy them

for(i = 0;i < 3;i++) {
if ((b[i] = (char*)malloc(strlen(al[il)+1)) == NULL) {
printf("not enough memory\n");
exit(1);
}
strcpy(bli],afil);
1

The three steps we have followed are shown in figure 10.

b

b L —

b - TN
RN
\’n’ e | e | VO

Figure 10: steps in dynamic memory allocation

To release the area that was dynamically allocated, we must follow the
opposite procedure:

for(i = 0;1i < 3;i++)
free((void*)bli]);
free((void*)}b);
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9 Program arguments

It is possible from the C program, to access the arguments that are passed in
the command line. For example, if our program is called program, it can be
executed from the shell prompt with a series of arguments, like for example:

$ program file.tex -b 123

The program arguments can be accessed through two parameters of the
main function, named by convention argc, the argument count, and argv,
the argument vector. argc is an integer, and argv is an array of strings, like
the one we have been discussing in the previous sections. In this example,
the values of the parameters are shown in figure 11.

arge

argv

T

11, 929 ,31 !\0

NULL

Figure 11: program arguments

The following program prints all the strings that are passed as arguments
to the program.

#include <stdio.h>
int main(int argc,char *a:~v[]) {
int 1i;

for(i = 0;i < argc;i++)
printf("¥%s\n",argv[il);
exit(0);
}

If we compile this program under the executable name program, and we
execute it as it was shown before, we will obtain:
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program
file.tex
-b

123

Note that the name of the program is the first string in the argv argument.
Also the ANSI standard guarantees that argv[arge] is a NULL pointer. The
notation char *argv[] is equivalent to char **+argv, and can be used just
when defining the arguments of a function.

We will see now an example, which will show how a program can deal
with parameters as the standard Unix commands do. The program expects
a file name as argument, and it has two options: -a and -b. The usual
notation for this is the following:

program [[-a][-b]] <filename>
So, the program can be called, for example, as follows:

$ program a.tex

$ program -a a.tex

$ program -b a.tex

$ program -a -b a.tex
$ program -b -a a.tex

The code for the program is the following:

#include <stdio.h>

int main(int argc,char *argv[]) {
int a_option = 0,b_option = 0;
char **p_to_arg = &argv[i];

while (--argc && (*p_to_arg) [0] == *-») {
if ((*p_to_arg)[1] == *\0’) {
printf("invalid option\n"); exit(1);
}
switch((*p_to_arg) [1]) {
Case ’a’: a_option = 1; break;
case ’b’: b_option = 1; break:
default: printf("invalid option\n"); exit(1);
}
p-to_arg++;

}
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if (arge 1= 1) {
printf ("invalid arguments\n'); exit(1);

}

printf("a option: %s\n", (a_option) 7 "yes" : "mo");
printf("b option: %s\n", (b_option) 7 "yes" : "no"};
printf("file: %s\n",*p_to_arg);

exit (0);

¥

In the program, p_to_arg is a pointer initialized to point to the second
entry in the argv argument, the one that corresponds to the first program

argument.
The while loop processes the optional arguments. In every iteration the

pointer p_to_arg is advanced to the next argument, and the argument count
is decremented. This last operation is valid because argc is a local variable.
The condition stands for: continue iterating while there are still arguments
and the first character of the current argument is a —. At the end of the loop,
p_to_arg will point to the filename, if there is one in the input line.

10 Pointers to functions

The functions are also stored in memory, and in C, pointers are allowed to
point to themn. As an example, let us define a pointer to functions, that take
two integers as arguments and return an integer value:

int (*p) (int,int);
and define two functions with these characteristics:

int add(int x,int y) {
return x + ¥y,

¥
int sub(int x,int y) {

return x - ¥y;

¥

The pointer p can point to each of them. With the expression:

p = add;
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the pointer p will point to add. This function add can be called through
the pointer, by de-referencing it:

printf ("%d\n", (*p) (2,3));

The important point is that the function pointed to by p is evaluated.
So, if we make p a pointer to the function sub

p = sub;

and we return back to execute the printf function, sub will be called.

A pointer to a function can be passed to another function as a parameter
and can be used within the function to call the function which it is pointing
to. It is not permitted to increment or add a constant to a function pointer.

As an example, the following function do_op receives an integer n as

argument, two arrays of integers with n elements in each and a pointer to a
function:

int do_op(int n,int x[J,int y[I,int (*f) (int,int)) {
int i,sum = Q;

for(i = 0;1 < n;i++)
sum += (*f) (x[i],y[i]);
return sum;

}
This function can be invoked, for example, as follows:
int al3] = {2, 1, 5 3};
int b[31 = {1, 3, 4}

printf ("%d\n",do_op(3,a,b,add));
printf ("%d\n",do_op(3,a,b,sub)) ;

The first printf will print 16 (2+1 + 143 + 5+4), and the second 0 (2-1
+ 1-3 + 5-4).
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11 Linked lists

We will see now an example in which we will combine dynamic memory

allocation with structures.
A linked list has a pointer to access the first node, this node contains a

pointer that points to the second one, and so on. The last node contains a
null pointer. Each node keeps some information. In our example, we will

assume it contains an integer data.
A node is an ideal candidate to be implemented with a structure. It must

contain a feld to store data, and the pointer to the next node. Note that
this structure is recursively defined:

typedef struct node {
int data;
node *next;
};
The list will be a pointer to the first node:
typedef node *1list;
A list 1 could be defined as follows.
list 1;

An example of a list built with the previous structures is shown in fig-
ure 12,

data

7 4 3
ﬁxt s 17 NULL

Figure 12: a linked list

A list like this could be traversed printing the integer information by
using the following function:

void print(list 1) {
node *p;

for(p = 1;p !'= NULL;p = p->next)
printf ("%d\n",p->data);
}
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The pointer p begins by pointing to the first node, and if its value is
not NULL, the data field of the node pointed to by p is printed. Then p
is advanced to the next node, by using the address stored in the next field.
This process continues until p is NULL.

To create the list, we can define a function to create and insert a node into
the list 1 in the position pos with a data value. Note that this function must
allocate dynamically space for the node, and modify the involved pointers.
If the node must be created in the first position, the pointer 1 that points
to the first element of the list must be modified. So, its address is passed as
argument (not the value).

void insert(list *first,int value,int pos) {
node *p = *first,*prev = NULL;
node *new_node;

/* a new node must be created */
if ((new_node = (node*)malloc(sizeof(node))) == NULL) {
printf("not enough memory\n"); exit(1);

}

/* advance the pointers to reach insertion position */
while (--pos) {

prev = p;

P = p->next;
}

if (prev == NULL) { /* first position */
*first = new_node;
new_node->next = p;

} else { /* other position */
prev->next = new_node,
new_node->next = p;

}

}

The pointer p is used to point to the node which is currently at the
pos position. The pointer prev (previous) is used to point to the previous
position. If we want to insert a node in the first position, the pointer p will
point to this position, and the pointer prev will be NULL (no position to
point). This situation is shown in figure 13. In this case, the pointer to
the first element must be modified to point to the new first one. The new
pointers are drawn with a dotted line.
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prev P

NULL )

first
data 7 4 3

/ /
1 next . ] NULL
\ ©
-~ _
o 7

Figure 13: insertion in the first position

A situation in which the node to be inserted is not the first is shown in
figure 14.

prev p
AN b
first
data
7 / 4 / 3
1 next ’ ] NULL
1)
- 7
Figurc 14: insertion in another position
12 Files

There are two possibilities to work with files in C. The first one is called
unbuffered I/0. It is not part of the ANSI C standard, but it is part of
POSIX.1. The term unbuffered refers to the fact that each read or write
invokes a system call in the kernel. The other one, usually called, the standard
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I/0O routines belongs to the ANSI C standard, and provides higher level
services.

12.1 Unbuffered I/0

All open files are referred to by file descriptors. A file descriptor is a non-
negative integer. When we open a file, the kernel returns a file descriptor to
the process. When we want to read or write a file, we identify the file with
this integer value.

By convention the Unix shell associates the file descriptor 0 to standard
input, file descriptor 1 to standard output and file descriptor 2 to standard er-
ror. In POSIX.1 these numbers are replaced by the constants STDIN_FILEND,
STDOUT_FILENO and STDERR_FILENQ.

The functions available for file I/O are five: open, read, write, Iseek
and close. We will look at them right now:

¢ int open(char *pathname,int oflag)

The pathname is the name of the file to open or create. The value to
be passed to the argument of lag is obtained from one of the following
constants:

O_RDONLY  Open for reading only.
O_WRONLY  Open for writing only
O_RDWR Open for reading and writing

optionally OR’ed with constants from the following set (Not all the
possibilities are shown):

O_APPEND  Append to the end of file on each write.

O_CREAT Create the file if it does not exist. This option requires
a third argument specifying the access permission bits of the new
file.

0_TRUNC If the file exists, and its open mode allows write opera-
tions, truncate its length to 0.

O_NONBLOCK Sets the non blocking mode.

e int close(int filedes)
Close the file with file descriptor filedes.
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e off t lseek(int filedes,off_t offset,int whence)

Every open file has an associated *current file offset’. It is a non negative
integer that measures the number of bytes from the beginning of the
file. The interpretation of the offset argument depends on the value
of the whence argument.

— If whence is SEEK_SET, the offset of the file is set to offset bytes
from the beginning of the file.

— If whence is SEEK_CUR, the offset of the file is set to its current
value plus the offset. The offset can be positive or negative.

— If whence is SEEK_END, the offset of the file is set to the size of the
file plus the offset. The offset can be positive or negative.

The offset of the file can be greater than the current size, in which case,
the next write to the file will extend it.

e ssize_t read(int filedes,void *buff,size_t nbytes)

This function read nbytes from the file and store them in memory
beginning at the address pointed to by buff. It returns the number of
bytes successfully read.

e ssize t write(int filedes,void *buff,size_t nbytes)

This function writes nbytes from the address pointed to by buff to
the file. It returns the number of bytes successfully written.

12.2 Some examples

Let us see some examples. The following program, opens a file named
file.data, writes a string and closes it.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main() {
int fd;
char #*str = "some data";
int n = strlen(str)+i;

if ((fd = open("file.data",0_WRONLY | O_CREAT | O_TRUNC,
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S_.IRUSR | S_IWUSR)) < 0) {
perror(“can not open");
exit (1);
}

if (write(fd,str,n) != n) {
perror("can not write");
exit(1);

}

exit (0);
}

The file is opened only for writing; it is truncated to zero length if it
existed, and if it is created, permissions to read and write are granted to the
user. The function perror prints the string it receives as argument and then
print the system error message. Note that a close is not necessary at the
end, because all files are closed automatically when the program exits.

The following program can read from the file just created. Ten characters
are read from the file to the area pointed to by str. Note that we must have
enough space for the characters read.

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

int main() {
int fd;
char str[10];

if ({(fd = open("file.data",0_RDONLY)) < 0) {
perror("can not open");
exit(1);

}

if (read(fd,str,10) !'= 10) {
perror("can not read");
exit(1);

}

exit(0);
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The following program can create an empty file with 1KB size:

#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>

int main() {
int fd;
char ¢ = '\0’;

if ((fd = Open("file.data”,U_WRONLY | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR)) < 0) {
perror("can not open");
exit(1);
}

if(lseek(fd,1024,SEEK_END) 1= 1024) {
perror(”can not seek");
exit(1);
}
if (write(fd,&c,1) '= 1) {
perror (“can not write");
exit(1);
}

exit(0);
}

12.3 Standard I/O library

The ANSI C standard 1/O library handles details such as buffering allocation
and performing I/O in optimal-sized chunks.

When we open a file, the standard I/O function returns a pointer to a
FILE object. This object contains all the information required by the other
library functions. We never use this structure directly. We pass a pointer to
this structure to the other standard functions, in the same way as we were
using the file descriptors before.

Some of the functions available are described now. Note that just a shor.
description is presented. For more information, please refer to man pages.

¢ FILE *fopen(char *pathname,char *type)
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This function opens the file pathname. type could be one of the fol-
lowing values:

"r" open for reading.
"y" open for writing.

"a" append; open for writing at the end of the file, or create for
writing.

"r+" open for reading and writing.
nw+" truncate to 0 length or create for reading and writing.

"a+" open or create for reading and writing at the end of file.

If the file can be successfully opened, a pointer to a FILE structure is
returned. If there is a problem, a NULL pointer is returned.

e int fclose(FILE *fp)
Closes the file specified by fp.

e int fgetc(FILE *fp)
Reads one character from the file specified by fp. getc is equivalent
to fgetc, but it is implemented as a macro. It returns EOF to indicate
an error condition.

e int ungetc{int c¢,FILE *fp)
Push back the character ¢ into the stream specified by fp. This means
that it will be available on a subsequent reading.

e int fputc(int c,FILE *fp)

Write the character ¢ in the file specified by fp. putc is equivalent to
fputc, but it is defined as a macro. It returns EOF to indicate an error
condition.

¢ char *fgets(char *buff,int n,FILE *fp)

This function reads at most n-1 characters into the area pointed to
by buff from the file specified by £p. The reading is stopped after an
EOF or a newline. It returns NULL to indicate an error condition.

e int fputs(char *str,FILE *fp)

This function writes the string pointed to by str to the file specified
by fp. It returns EOF to indicate an error condition.
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e int fflush(FILE *fp)

This function causes any unwritten data to be passed to the kernel. If
£p is NULL, all output streams are flushed.

The output cannot be directly followed by input without an intervening
fflush or fseek. The same is true in the other way.

12.4 Some examples

Let us see some examples. The following program opens a file and writes
three strings.

#include <stdio.h>

int main() {
FILE *fp;
char *str[] = { "one" , "two" , "“three" I;
int i;

if ((fp = fopen("file.data","w")) == NULL) {
perror("can not open");
exit(1);

}

for(i = 0;i < 3;i++)
if (fputs(str(il,fp) == EOF) {
printf("can not write");
exit(1);
}
exit (0);
}

There exists three predefined file pointers: stdin, stdout and stderr.
These pointers can be used with all the functions shown here. As an example,
the following program copies its standard input into its standard output:

#include <stdic.h>
int main() {
int c¢;

while ((c¢ = fgetc(stdin)) '= EOF)
if (fputc(c,stdout) == EOF) {
perror("can not write");
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exit(1);
}
exit(0);
}

12.5 Binary I/0

Most of the functions shown operate with one character at the time or one
line at a time. If we are doing binary I/O we would like to read or write an
entire structure at a time. Two functions are provided for this purpose:

® size t fread(void *ptr,size_t size,size.t nobj,FILE *fp)

Reads nobj objects of size size from the file specified by fp and stores
them in memory starting at the address pointed to by ptr. It returns
the number of objects successfully read.

¢ size t fwrite(void *ptr,size.t size,size.t nobj,FILE *fp)

Writes nobj objects of size size into the file specified by fp copied
from the memory address pointed to by ptr. It returns the number of
objects successfully written.

We can write the elements 3 through 6 of a floating point array into a file
by executing:

float datal[10];

if (fwrite(&data[B],sizeof(float),4,fp) 1= 4)
perror('can not write");

or write a complete structure as follows:

struct person {
char name[10];
int age;

};

struct person x;

if (fwrite(&x,sizeof(x),1,fp) = 1)
perror(“can not write");

There are two functions related to the file position:
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e long ftell(FILE *fp)

Returns the current file position.

e int fseck(FILE *fp,long offset,int whence)

with the same semantic of the 1seek function.

12.6 Formatted I/0

The formatted 1/O functions allow to read or write from a file in a similar way
as scanf and printf work with standard input and output. The information
is always written in ASCII code into the file. The great advantage is that
they are simple to use, and the files can be read directly with a text editor.

The disadvantage is that files are usually bigger.

e int fprintf(FILE *fp,char *format,...)
Tt works like printf, but the output goes to the file specified by fp.

e int fscanf(FILE xfp,char *format,...)
It works like scanf, but the input data comes from the file specified by
fp.
As an example, the following program writes into a file called numbers
the integers from 0 to 5.

#include <stdio.h>

int main() {
FILE *fp;
int 1i;

if ((fp = fopen("numbers","w")) == NULL) {
perror("can not open");
exit{(1);

}

for(i = 0;i < 6;i++)
if (fprintf(fp,"%d\n",i) !'= 1) {
perror("can not write');
exit(1);
¥
exit (0);
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If we list the contents of this file, we will see the numbers.

$ cat numbers
0

TN W =
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1 Introduction

Computer networks are increasingly becoming an integra'! and indispensable
part of scientific as well as public life. Over the last couple of decades data
networks have changed their character from a slow speed point to point
connection to a high speed data communication backbone supporting full
multimedia information transfer.

'Today the technology offers the possibility of merging Real Time appii-
cations such as voice and data, acquisition services which are time sensitive,
with time insensitive non Real Time services on a single network infrastruc-
ture. The largest Real Time Network in the world (also the oldest) is the
telephone network which provides ouly 4 kHz bandwidth per voice channel.
The newer architectures such as ISDN (Integrated Services Digital Network)
and Broadband ISDN offer channel bandwidths of 64 Kbps and above. These
higher bandwidths are suitable to carry either a number of basic voice chan-
nels or a single application requiring a larger bandwidth. Asynchronous
Transfer Mode (ATM), a cell based transport technique has been developed
to support the B-ISDN services.

RTP (Real time Transport Protocol), together with RTCP (Real time
Transport Control Protocol), have been devised to facilitate the communica-
tion of Real Time data over computer networks, which have been designed
and built to guarantee the delivery of time insensitive bursty data.

2 Network Classification

A computer network is a collection of computers interconnected by one or
more transmission paths for the purpose of transfer and exchange of data
between the computers. Today these networks span the entire globe and be-
long to many different nations and network operators. Such networks can be
classified in many ways depending on the switching mechanism, transmission
speed, etc [Black 93], [Stallings 94al, [Stallings 94b).

For the purpose of this discussion it is appropriate to classify them based
on their:

a. geographical coverage

b. network topology.
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2.1 Geographical Coverage

Networks can be classified into 4 categories depending on their geographical
coverage (from the smallest to the largest) as follows:

1. Desktop Area Networks (DANs) !

9. Local Area Networks (LANSs)

3. Metropolitan Area Networks (MANSs)
4. Wide Area Networks (WANs).

There is a significant level of deployment of all or some of the above
even in developing countries (most notably LANs and WANs with DANs
just appearing) and hence should be of interest to research scientists.

2.2 Network Topology

Networks can be classified according to their topology in the following manner
[Stallings 93], [Stallings 94b}.

1. Bus Topology {eg. CSMA/CD; Ethernet)

2. Ring Topology (eg. Token Ring, FDDI)

3. Star Topology (eg. ArcNet, Switched networks)
4. Mesh Topology (eg. Telephone network).

The bus topology has been used initially in the Ethernet (broadcast) and
later in Token Bus. Today it is important in the DQDB (Distributed Queue
Dual Bus).

The token passing mechanism shown in Figure 1 has been originally used
in the Token Ring and later in FDDI.

If however networks are categorised according to their transfer mecha-
nism, then the following classification results.

1. Broadcast Networks

Figure 2 shows a broadcast network which is used to broadcast from 1 to
many. CSMA/CD (Carrier Sense Multiple Access/Collision Detect) is
a medium access protocol which is used to broadcast on a bus topology.

ln recent classification arising out of delivering ATM to the desktop at 25 Mbps. DANs are used to interconnect
devices such as camera, telephone and workstations.
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Figure 1: Token Passing Ring

!

rr ot

Figure 2: Broadcast Network

2. Switched Networks

In Figure 3 is shown a switched network which is used to switch data
from 1 to 1, 1 to many, or many to many. The telephone network is an
example of a switched network. It can be used to support applications
such as tele conferencing which involves the switching of many to many.

Figure 3: Switched Network

Although initially switched networks were mainly used in telecommu-
nication networks, today because of its superior performance, switched
technologies are used in LANs (for example switched Ethernet) and
ATM networks.
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3. Hybrid Networks

Figure 4 shows a hybrid network which consists of a switched part and
a broadcast part.

Swilched Network Broadcast Network

Figure 4: Hybrid Network

3 Network Architecture

The topology, transmission mechanism, and a protocol which manages the
transmission mechanism together define a network architecture.

3.1 What is a Network Protocol?

A network protocol is used to facilitate the transmission of data between
a sender (transmitter) and a recipient (receiver) across a data communica-
tion network in an agreed manner. Over the years several different network
protocol architectures have evolved, the most notable being:

i. ISO - OSI (Open Systems Interconnect) Reference Model
ii. IP (Internet Protocol)
iii. ISO 8802.X (for LANs and MANSs - same as IEEE 802.X)

In addition to the above there are hundreds of vendor specific protocols such
as:

a. IBM’s SNA (Systems Network Architecture)
b. DEC’s DNA (DEC Network Architecture),

which are proprietary and hence are not truly interoperable.

Because todays networks span the entire globe, it is important to utilise
standard protocols to facilitate seamless data communication over the net-
works belonging to different network operators to ensure interoperability.
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This has been the major objective of the bodies involved in preparing stan-
dards, such as the International Standards Organisation (ISO), Internet En-
gineering Task Force (IETF), International Telecommunication Union (ITU),
Institute of Electrical and Electronic Engineers (IEEE), American National
Standards Institute (ANSI) and the ATM Forum.

Figure 5 shows the layered architectures of the protocols developed by
the above standards bodies.

[30-0SI TCP/IP ITU-T TEEE 802.X
Application .
- Application
Presentation
Sesston
TCP
Transport
Nerwork g X253
Link , ) X.25-2 LLCMAC
Physical link
Physical X.25-1 Physical
WAN LAN

Figure 5: Layered Architectures of different Protocols

In Figure 6 is shown the architecture of the IEEE 802 family of standards
for LANs and MANs. FDDI is a standard developed by ANSI-ASC X3T9
(Accredited Standards Committee) and provides services specified by the
ISO Data link and Physical layers (ISO 9314).

802.1 Higher Layer Interfaces
Bridging, Netwark Management
802.2 Logical Link Control
LLC
802.10 Securc Data Exchange
802.3 502.4 802.5 802.6 8027 302.8 8029
CSMa/ Token Token DB Broad Fibre Ingg.
D Bus Ring e band Optic Voigcl MAC
(FL | tech, tech, Data
COAX COAX STP COAX
uTP (’)'P[U M ‘(’)';5 Mi| oF Physical
10M $90M oM | P5-155 M

Figure 6: The Architecture of IEEE 802 LAN/MAN Standards

The key features of FDDI are 100 Mbps data rate, use of optical fibre
(multi mode fibre, single mode fibre, low cost fibre), the token ring style
protocol and the reconfiguration concept (automatic healing property in case
of faults). The FDDI standard however allows the FDDI to be carried on
other physical media such as twisted pair copper {CDDI).
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IEEE 802.6 MAN standard specifies a DQDB (Distributed Queue Dual
Bus) protocol which can support data, voice and video traffic. It can also
serve as a LAN. DQDB MAN operates on a shared medium with two uni-
directional buses that flow in opposite directions. Two methods of gaining
access to the medium depending on the type of traffic have been specified.
In the first method a node on the DQDB subnetwork can queue to gain ac-
cess to the medium by using a distributed queue or by requesting a fixed
bandwidth through a prearbitrated access method. Data is transmitted in
fixed size units called slots of length 53 bytes (52 bytes data + 1 byte access
control field).

DQDB private networks are connected to the public network by point to
point links. A DQDB MAN can typically range upto more than 50 km in
diameter and can operate at a variety of speeds ranging from 34 Mbps to 150
Mbps.

DQDB has been conceived to integrate data and voice over a common
set of equipment, thereby reducing maintenance and administrative costs.
B-ISDN is an attempt to provide universal and seamless connectivity for
multimedia services. IEEE 802.6 MAN has been designed to provide an
interim solution and to act as a migration path to B-ISDN.

Nodes in a DQDB subnetwork are connected to a pair of buses flowing
in opposite directions and can operate in one of two topologies, namely;
open bus (Figure 7) or looped bus (Figure 8) (open bus topology is similal to
Ethernet and looped bus topology is simialr to token ring).

Head Head

Figure 7: Open Bus DQDB Network

Although the DQDB access layer is independent of the physical medium,
the speeds at which DQDB MANSs operate demands the use of fibre or coaxial
cables. For example, ANSI-DS3 operates at 44.736 Mbps over 75 {2 coax or
fibre and ANSI SONET STS3 operates at 155.52 Mbps over single mode
fibre. The ITU-T G.703 operates at 34.368 Mbps and 139.264 Mbps over a
metallic medium.

Fourth College on Microprocessor based Real Time Systems in Physics 115
Trieste, [taly. Oct 7 - Nov 1, 1996,



Real Time Data Communication in Computer Networks Induruwa, Abhaya S

Head

Figure 8: Looped Bus DQDB Network

A complete treatment of both the FDDI (Fibre Distributed Data Inter-
face) and the DQDB (Distributed Queue Dual Bus) along with LANs and
MANs is found in [Stallings 93], [Stallings 94b].

3.2 Transmission Mechanism

From the beginning, the voice data in a telephone network had been trans-
mitted in real time using circuit switching techniques. Since circuit switching
1s not an efficient transmission mechanism for data communication, packet
switching techniques have been devised.

3.2.1 Packet Switching

Transmission mechanisms based on packet switching allows the multiplexing
of data packets from different sources on the same transmission path thereby
making use of the channel bandwidth more efficiently. Tt also allows the
transmission of packets from one source along different paths thus taking
care of line congestion and availability problems. When the packets reach
the intended destination in whatever path they may have taken, they are
reassembled and presented to the user application.

The most widely used protocols which manage the packet transfer across
a data network belong to the family of standards conceived by the ITU-T
(X.25) and Internet Architecture Board (IP). However the variable packet
lengths and the multiplexing technique introduce jitter making their Quality
of Service {QOS) unacceptable for real time applications. The inherent lim-
itation of X.25 in high speed data transfer has been removed to some extent
in the Frame Relay [Smith 93] transfer mechanism.
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3.2.2 Frame Relay

Frame Relay offers a high speed version of packet switching and has the
potential of operating effectively at much higher speeds compared to X.25,
reaching speeds of 45 Mbps. Frame relay is well suited to high speed data
applications, but not suited for delay sensitive applications such as voice and
video because of the variable length of frames [Smith 93], [Stallings 95;.

3.2.3 Cell Switching

Cell Relay is a transmission mechanism that combines the benefits of time di-
vision multiplexing with packet switching. It operates on the packet switch-
ing principle of statistically interleaving cells on a link on an ‘as required
basis’, rather than on a permanently allocated time slot basis. The fixed
cell size used enables a reasonably deterministic delay to be achieved across
a network. This deterministic nature of cell relay makes it suitable for all
traffic types within a single network.

ATM (Asynchronous Transfer Mode) is fast becoming the dominant form
of cell relay. It uses a cell of 53 bytes long (5 bytes header and 48 bytes data)
and typically operates at speeds of 155 and 622 Mbps. ATM is delivered to
the desktop at 25 Mbps and Gbps platforms are being tested [Partridge 94}.
ITU-T has selected ATM as the transport technique for B-ISDN (Broad-
band Integrated Services Digital Network) [De Prycker 95], [Handel et al 94],
[Stallings 95].

3.3 Physical Media

The most popularly used physical media are:
e Optical fibre cables
e Coaxial cables
¢ Unshielded Twisted Pair (UTP) cables

o Shielded Twisted Pair (STP) cables

Today all of the above media are used to carry data in excess of 100 Mbps
speeds. Only the distances they cover are different (for example, optical fiber
can operate at gigabit speeds for a few km whereas UTP can operate at 100
Mbps for a 100 m without repeaters).
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4 Internetworking

By internetworking is meant the process of interconnection of computers and
their networks to form a single internet. The Internet (note the uppercase ‘T)
is such an internet and uses TCP/IP (Transmission Control Protocol /Inter-
net Protocol) protocol suite.

TCP is connection oriented and provides a reliable stream transport.
Although TCP is commonly associated with IP (as its underlying protocol),
it is an independent, general purpose protocol that can be adapted to use
with other delivery systems. The popularity of TCP has resulted in ISO -
TP4, which has been derived from TCP. TCP, together with IP, provides a
reliable stream delivery for data traffic.

TCP/IP protocol suite has become the defacto standard for open system
interconnection in the computer industry. It is used world wide in academic,
government, private and public institutions. Some of the reasons for its wide
acceptance can be attributed to the following;

e It provides the highest degree of interoperability.
e It encompasses the widest set of vendors’ systems.

e It runs over more network technologies that any other protocol suite.

Over the years Unix (and hence linux) and TCP/IP have become almost
synonymous. Today it has become part of the operating system kernel. The
OS runs a separate process for IP, TCP input/output and UDP input/output.

In building internets, following hardware devices used to interconnect
networks are of interest [Black 93], [Comer 88].

1. Repeaters
2. Bridges
3. Routers

4. Gateways.

Figure 9 shows the use of these components in relation to the ISO-0SI
Reference Model.
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Figure 9: Interconnection Components

4.1 Repeaters

When two networks are to be connected at the lowest level, ie. the physical
level, an interconnecting device known as a repeater is used. A repeater
simply takes bits arriving from one network and repeats them on to the
other. In some cases a repeater might have to translate between two different
physical layer formats, for example from optical fiber to UTP (Unshielded
Twisted Pair) cable. This may involve some processing of the received signal
such as signal regeneration for noise elimination. Repeaters pass on the data
received without paying attention to the address information.

4.2 Bridges

Bridges are used to interconnect networks at the medium access control
(MAC) layer. Typically this requires the interconnected networks to have
identical MAC layers although networks with different but related MAC lay-
ers can be interconnected. Since Bridges operate at the MAC layer, they
can be used to effectively segment the traffic by filtering the traffic entering
to one segment from another thereby reducing the unwanted traffic flow on
network segments. -

Unlike a repeater which replicates electrical signals, bridges replicate
packets. They are superior in their function, because they do not repli-
cate noise and errors or malformed frames. Moreover, bridges implement
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Figure 10: Use of Repeaters

CSMA/CD rules and hence collisions and propagation delays remain isolated
without affecting the other segments. As a result an almost arbitrary number
of Ethernet segments can be connected together with bridges whereas with
repeaters the maximum number of segments is five giving a total length of
2.5 km. Since bridges hide details of interconnection, a set of bridged seg-
ments acts like a single Ethernet.

A bridge can be used to make a decision on which frames to forward from
one segment to another. Such bridges are called adaptive or learning bridges.
They learn over time, which hosts are connected to which segment. Thus
an adaptive bridge builds up the address table automatically without human
intervention.

Bridges are often used to improve the performance of an overloaded net-
work by effectively partitioning the network into segments.

The type of bridges used in CSMA/CD LANs are known as transparent
bridges (IEEE 802.1D) since their presence is not visible to the stations. The
type of bridges used to interconnect token rings are called source routing
bridges (IEEE 802.5) and the routing information is provided by the source
station. :
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4.3 Routers

Routers interconnect networks at the network layer (level 3 in the OSI-RM
and the IP layer of the TCP/IP suite) and perform routing functions. This
is the main building block in internetworking using IP. Most routers now
support at least one of the multicast routing protocols, which is an essential
functionality to support the delivery of Real Time data over IP.

4.4 Gateways

Gateways are used when networks have to be interconnected at layers higher
than the network layer and when protocol translation is necessary. A typical
example is interconnecting two networks based on TCP/IP suite and OSI
suite of protocols. An application level gateway is required to support FTP
on TCP/IP and FTAM on OSI. From this it should be clear that a different
application level gateway is required for every application supported across
the interconnected networks.

4.5 Multiport-Multiprotocol Devices

The multiplicity of transmission media and protocols used in today’s net-
works require the use of multiport repeaters and bridges, as well as multi-
protocol routers which support more than one protocol stack.

5 A word about the Internet

The one and only global network of interest to the whole scientific community
of the world today is the Internet, which is based on the Internet Protocol
(IP).

Internet Protocol is a truly scalable protocol used to connect computers
to small LANs and to WANs forming a global internetwork. IP is available
for almost all computing platforms ranging from the smallest laptop to the
largest ultrasuper computer.

The Internet is an ever expanding network of networks. As of this writing
(September '96), it interconnects 13 million computers and 135,000 computer
networks in 154 countries. It experiences a staggering growth rate of 100%
per year. The Internet connectivity in the world is shown in Figure 11.

Due to this unprecedented popularity and the growth of usage of IP,
today IP suite is included as a standard component of all UNIX and UNIX
like (and hence linux) distributions, making the networking of any computer
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Figure 11: Worldwide Internet Connectivity

running linux much easier. [P is also incorporated into the OSI-RM thus
ensuring compliance with ISO standards.

6 Internet Protocol Architecture

By far the most successful and the most widely used protocol architecture for
LANs and WANs alike is the Internet Protocol (IP) [Black 93], [Comer 88],
{Stallings 89).

IP is a layered architecture (see Figure 4) consisting of only 4 layers
(ISO-OSI RM has 7 !). TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol) are the two transport protocols supported over IP.
Both the TCP and UDP make the assumption that the link is of acceptable
reliability (measured in terms of its BER) and is capable of delivering a
packet to the intended destination without the intervention of the upper

layers. Some of the services supported in TCP/IP, including RTP are shown
in Figure 12.
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Figure 12: Services Supported Over [P

6.1 IP Addressing

IPv4 uses 5 classes of addresses as shown in Figure 13.

01234 § 16 o4 1
Class A 0| nefd hostid
ClassB 1[0 netid hostid
Class C |19 netd hosti
ClassD |1[1/1]0 multicast address
ClassE |11t 10 reserved fo future use

Figure 13: IP Addresses

An example of IP address allocation in a typical network is shown in
figure 14. :

Many hosts have a host name associated with the 1P address which can
be used to address them. However it must be understood that an IP address
does not identify a host. It identifies a network connection to a host because
an IP address encodes both a network and a host on that network. Hence if
the host is moved to another network, its [P address has to be changed.

Fourth College on Micraprocessor based Real Time Systerns in Physics 123
Trieste, Italy. Oct 7 - Nov 1, 1996.



Real Time Data Communication in Computer Networks Induruwa, Abhaya S

Ethernet 126.10.0.0

128.10.2.70 128.10.2.26

128.10.2.3 128.10.2.8

192.5.48.3 192.5.48.7

Internet

192.5.48.6 10.2.0.37

192.5.48.1

192.5.48.0

One address for each network / segment

internet 10.0.0.0 (Class A)
Ethernet 128.10.0.0 (ClassB)
Token Ring 192.5.48.0 (ClassC)
Network Hosts

128.10.2.8

192.5.48.1

128.10.2.3

192.5.48.3

Two addresses for each gateway,

Figure 14: IP Addresses on an internet
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No two devices on the global Internet should be allocated the same IP
address, although on a private network with no connection to the outside
world, arbitrary addresses can be allocated. The address allocation has been
initially handled by the Network Information Centre (NIC). Now it is handled
by the NIC as well as RARE in Europe and APNIC in the Asia- Pacific region.
The addresses must be officially obtained from one of the above before using
them on your network.

Nowadays there are Internet Service Providers (ISPs) in many countries
(most of the time more than one !) who are allocated blocks of IP addresses
by the relevant NIC. These ISPs in turn allocate the IP addresses to their
customers.

The explosive growth of the Internet has resulted in the exhaustion of the
address space provided in TPv4 which uses a 32 bit (4 byte) address. I[Png (IP
new generation), also known as IPv6, has been designed to provide among
other things an enhanced address space using 16 bytes (128 bits) [RFC 1883].

6.2 The Internet Protocol

The Internet Protocol is a connectionless network layer protocol. TCP is a
higher layer protocol which sits on top of IP. IP provides a connectionless (or
datagram type) service to its user. In other words data given to I[P (by the
higher layer) is not guaranteed to be delivered.

The IP datagrams are the encapsulation of data packets passed from the
higher layer with an IP header as shown in Figure 15.

TCP header data

IP header data

Figure 15: IP Datagram

6.3 Internetworking with IP

Figure 16 shows how IP used to internetwork two networks running different,
medium access control mechanisms namely, CSMA/CD and Token Ring.

6.4 IP Datagram Format

The IP datagram format which has a preamble of ten 16 bit words and an
option field of variable length is shown in Figure 17.
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Figure 16: Internetworking Using IP

4 . # of 16 bit
< 16 bits words

Y
Version (4b) | Hoaser Lresgih Type of Service (8b) —‘
£rsion T of Service
! THL (ab) ype * 1

Total Length (16b) L

Identification (16b) I

Flags (3b) Fragment Offser {13b} 1

Time to Live (8b) Pratacol (8b) t

Header Checksum (16b) 1

Source Address (32b) 2
Destination Address {32h) 2
Options (varibale) vanable

Padding{variabie)

Figure 17: IP Datagram Format

6.5 Brief Description of TCP and UDP

TCP and UDP are the two transport protocols used in the IP architecture
[Comer 88], [Stallings 89)].

TCP is a connection oriented transport protocol designed to work in
conjunction with IP. TCP provides its user (application layer) with the ability
to transmit reliably a byte stream to a destination and allows for multiplexing
multiple TCP connections within a transmitting or receiving host computer.

Being connection oriented, TCP requires a connection establishment phase
(like dialing a number to make a phone call) which is followed by the data
transmission phase. A connection is terminated when it is no longer in use.
TCP/IP is ideal for the transmission of bursty data. It works on the principle
of retransmission of dropped packets which is one of the major contributors
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32 bits

Source Port (16 bits ) Destination Port (16 bils )

Sequence Number (32 bits)

Acknowledgement Number (32 bits)

Data UiAIP|R|SIF

Reserved
Ofsel | gp  [RICIS|SIY! Window (16 bits)
(4 bits) GIKH|TIN|N

Checksum (16 bits) Urgent Pointer (16 bits)

l
Oplions {variable) ’l’ Padding
Data {variable)

“

Figure 18: TCP packet format

to delays in transmission. However, since voice and video data are time
sensitive, packet technologies such as TCP/IP cannot guarantee the proper
delivery of such data. Figure 18 shows the TCP header format.

UDP, on the other hand, is a connectionless transport protocol designed
to operate over IP. Its primary functions are error detection and multiplexing.
UDP does not guarantee the delivery of packets (compare with the ordinary
postal service) but guarantees that if a packet is ever delivered in error, such
error will be detected (use of checksum). It also allows for communicating
with multiple processes residing on the same host computer.

UDP packet format is simple (see Figure 19). It is also fast compared to
the use of TCP, since there is no connection establishment phase. Moreover,
UDP is important since RTP (Real time Transport Protocol) is supported
over UDP.

¢ 32 bits 4
. 4
Source Port Destination Port uDP
Header
Length Checksum 47
:: Data ATL

Figure 19: UDP Packet Format
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6.6 IP Multicasting

Multicasting is important in allowing a stream of data to be sent efficiently
to many receivers. In multicasting, rather than sending a separate stream
of data packets to each intended user (unicasting) or transmitting all pack-
ets to everyone (broadcasting), a stream is transmitted simultaneously to a
designated subset of network users. The concept of multicasting is shown in
Figure 20.

IP Multicasting is defined in [RFC 1112] of 1989. A key to IP multicasting
is the Internet Group Management Protocol (IGMP). IGMP enables users
to sign up for multicast sessions and allows these multicast groups to be
managed dynamically, in a distributed fashion. Enhancements have been
done to existing protocols to direct the traffic to the members of the group.
These include Distance Vector Multicasting Routing Protocol (DVMRP) and
Multicast Open Shortest Path First (MOSPF) protocol. An entirely new
protocol developed specifically for multicasting is the Protocol Independent
Multicast (PIM).

At the start of a multicast session group addresses are allocated which
are relinquished at the end of that session and reused later.

Internet MBONE is Internet’s multicast backbone which is a collection of
multicast routers that can distribute multicast traffic. MBONE participants
use class D Internet addresses which identify a group of hosts rather than
individual hosts.

Recipients

OO
]
¥

Router
Router

Router

A

Router

=

E E Recipient

Multicast Server

Figure 20: Multicasting
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6.7 Resource Reservation Protocol (RSVP)

A key factor in achieving real time quality of service is a reservation set up
protocol, a mechanism for creating and maintaining flow specific state infor-
mation in the end point hosts and in routers along the data flow path. The
IETF has developed its Resource Reservation Protocol (RSVP) specifically
for the packet switched multicast environment.

RSVP has been designed to meet a number of requirements:

1. support for heterogeneous service needs;

2. flexible control over the way reservations are shared along branches of
multicast delivery trees;

3. scalability to large multicast groups;

4. and the ability to preempt resources to accommodate advance reserva-
tions.

The RSVP protocol basically acts according to its name. An RSVP re-
quest specifies the level of resources to be reserved for some or all of the
packets in a particular session. An application requests resources by spec-
ifying a flow specification, which describes the type of traffic anticipated
(for example, average and peak bandwidths and level of burstiness), and a
resource class specifying the type of service required (such as guaranteed de-
lay). A filter specification is also specified, which determines the sources to
which a given reservation applies.

RSVP mandates that a resource reservation be initiated by the receiver
rather than the sender. While the sender knows the properties of the traffic
stream it is transmitting, it has been found that the sender initiated reserva-
tion scales poorly for large, dynamic multicast delivery trees. Receiver initi-
ated reservation deals with this by having each receiver request a reservation
appropriate to itself; differences among heterogeneous receivers are resolved
within the network by RSVP. After learning sender’s flow specification via a
higher level “out of band mechanism”, the receiver generates its own desired
flow specification and propagates it to senders, making reservations in each
router along the way.

RSVP itself uses a connectionless approach to multicast distribution. The
reservation state is cached in the router and periodically refreshed by the end
station. If the route changes, these refresh messages automatically install the
necessary state along the new route.

RTP and RTCP information is simply data from the point of view of
routers that move the packets to their destination. RSVP prioritises multi-
media traffic and provides a guaranteed quality of service. Routers that have
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been upgraded to support RSVP can reserve carrying capacity for video and
audio streams and prevent unpredictable delays that would interfere with
their transmission.

7 Data Communication in Real Time

Packet switching techniques based on ITU-T X.25 and IP have been tradi-
tionally used for non Real Time data transfer. Since they do not guarantee
packet sequence integrity and consistent latency times in delivery, they are
inherently unsuitable for Real Time applications.

The following are required to carryout Real Time data transfer on existing
networks.

1. Enough bandwidth for extremely dense audio and video traffic.

2. A transport protocol appropriate for the streaming requirements of real
time data (RTP).

3. A protocol to reserve network bandwidth and assigning priorities for
various traffic (RSVP).

7.1 RTP Data Transfer Protocol

A Real time Transport Protocol is therefore needed to provide end to end
network transport functions suitable for applications communicating in real
time. Such applications include transmission of interactive audio and video
data or real time simulation data over multicast or unicast network services.

The largest (and the oldest) network which supports real time data com-
munication is the telephone network which falls in to the category of a circuit
switched network. However in terms of a network protocol there is not much.
Once the network connection is established the communication process is
largely in the hands of the two persons communicating with each other.

In view of this a Real time Transport Protocol (RTP) along with a profile
for carrying audio and video over RTP were defined by the IETF in January
1996 [RFC 1889], [RFC 1890].

7.1.1 Characteristics of RTP

The Realtime Transport Protocol has the following characteristics.

i. Payload type identification
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ii. Sequence numbering
ili. Time stamping
iv. Delivery monitoring.

Real Time applications typically run RTP on top of UDP to make use
of its multiplexing and checksum services (see Figure 21). Tailoring RTP to
the application is accomplished through auxiliary profile and payload format
specifications. A payload format defines the manner in which a particular
payload, such as an audio or video encoding, is to be carried in RTP. A
profile assigns payload type numbers for the set of payload formats that may
be used in the application.

Real time Server

Real ume Application

A Router Router
v e Emb
|
<] [RTCH
Lo ——= EBE<|— —— ——— — 1> ER
RTCP contro} RSYP control
information information
[RSVE]
RTP and RSVP
RSVP - Resource Reservation Protocol .
RTCP - Real time Transport Control Protocol £
i
RTP - Real tine Transport Protocol
UDP - User Datagram Protocol Recipient

Figure 21: Real Time Application running RTP on top of UDP

However RTP is not limited to be used with UDP/IP. It can be used
equally with other underlying network or transport protocols such as ATM
or IPX. Moreover, RTP supports data transfer to multiple destinations using
multicast distribution if provided by the underlying network, a feature which
makes RTP ideal for multi party multimedia conferencing.

RTP is designed to work in conjunction with RTCP (Real time Trans-
port Control Protocol) to monitor the quality of service. RTP delivers real
time traffic with timing information for reconstruction as well as feedback
on reception quality. The Resource Reservation Protocol (RSVP) is used to
reserve network bandwidth and assign priority for various traffic types.
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7.1.2 Definitions in RTP
The following definitions are extracts from [RFC 1889, RFC 1890].

e RTP Payload

The data transported by RTP in a packet, for example audio samples
or compressed video data.

e RTP Packet

A data packet consisting of the fixed RTP header, a possibly empty list
of contributing sources, and the payload data. Typically one packet of
the underlying protocol contains a single RTP packet, but several RTP
packets may be contained if permitted by the encapsulation method.

e RTCP Packet

A control packet consisting of a fixed header part similar to that of
RTP data packets, followed by structured elements that vary depending
upon the RTCP packet type. Typically multiple RTCP packets are
sent together as a compound RTCP packet in a single packet of the
underlying protocol. This is enabled by the length field of the fixed
header of each RTPC packet.

e Port

The “Abstraction” that transport protocols use to distinguish among
multiple destinations within a given host computer (TCP/IP protocols
identify ports using small positive integers and the transport selectors
(TSEL) used by the OSI Transport layer are equivalent to ports). RTP
depends on the lower layer protocol to provide some mechanism such
as ports to multiplex the RTP and RTCP packets of a session.

e Transport Address

The combination of a network address and port that identifies a trans-
port level end point, for example an IP address and a UDP port. Pack-
ets are transported from a source transport address to a destination
transport address.

e RTP Session

The association among a set of participants communicating with RTP.
For each participant, the session is defined by a particular pair of des-
tination transport addresses consisting of one network address and a
port pair for RTP and RTCP. The destination transport address pair
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may be common for all participants, as in the case of IP multicast,
or may be different for each, as in the case of individual unicast net-
work addresses plus a common port pair. In a multimedia session,
each medium is carried in a separate RTP session with its own RTCP
packets. The multiple RTP sessions are distinguished by different port
number pairs and/or different multicast addresses.

e Synchronisation Source (SSRC)

The source of a stream of RTP packets, identified by a 32 bit numeric
SSRC identifier carried in the RTP header so as not to be dependent
upon the network address. Examples of synchronisation sources include
the sender of a stream of packets derived from a signal source such as
a microphone, a camera or an RTP mixer. If a participant generates
multiple streams in one RTP session, for example from separate video
cameras, each must be identified as a different SSRC.

e Contributing Source {CSRC)

A source of a stream of RTP packets that has contributed to the com-
bined stream produced by an RTP mixer. The mixer inserts a list of
the SSRC identifiers of the sources that contribute to the generation
of a particular packet into the RTP header of that packet. This list
is called the CSRC list. An example application is audio conferencing
where a mixer indicates all the talkers whose speech was combined to
produce the outgoing packet, allowing the receiver to indicate the cur-
rent talker, even though all the audio packets contain the same SSRC
identifier (that of the mixer).

e End System

An application that generates the content to be sent in RTP packets
and/or consumes the content of received RTP packets.

e Mixer

An intermediate system that receives RTP packets from one or more
sources, possibly changes the data format, combines the packets in some
manner and then forwards a new RTP packet. Since the timing among
multiple input sources will not generally be synchronised, the mixer
will make timing adjustments among the streams and generate its own
timing for the combined stream. Thus all data packets originating from
a mixer will be identified as having the mixer as their synchronisation

source.
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s Monitor

An application that receives RT'CP packets sent by participants in an
RTP session, in particular the reception reports, and estimates the
current quality of service, fault diagnosis and long term statistics,

7.1.3 RTP Fixed Header Fields

The RTP header format is shown in Figure 22. The first twelve octets are
present in every RTP packet, while the list of CSRC identifiers is present
only when inserted by a mixer.

01234 E] 15 3

T LI et |

ST

T
sequence number

time stamp

synchronisation source (SSRC) identifier 4]

' contributing source (CSRC) identifier

Figure 22: RTP Header Format

The RTP header provides the timing information necessary to synchronise
and display audio and video data and to determine whether packets have
been lost or arrive out of order. In addition, the header specifies the payload
type, thus allowing multiple data and compression types. This is a key
advantage over most proprietary solutions, which specify a particular type
of compression and thus limit users’ choice of compression schemes.

7.1.4 Multiplexing RTP Sessions

In RTP, multiplexing is provided by the destination transport address (net-
work address and a port number) which define an RTP session.

7.1.5 Real time Transport Control Protocol (RTCP)

The RTCP is based on the periodic transmission of control packets to all
participants in the session, using the same distribution mechanism as the
data packets. The underlying protocol must provide multiplexing of the data
and control packets, for example using separate port numbers with UDP.
The primary function of RTCP is to furnish information on the quality of
data distribution. This feedback is a critical part of RTP’s use as a transport
protocol, since applications can use it to control how they behave. The
feedback is also important for diagnosing distribution faults. For instance, by
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monitoring reports from all data recipients, network managers can determine
the spread of a problem. When used in conjunction with IP multicast, RTCP
enables the remote monitoring and diagnosis.

In addition RTCP controls the rate at which participants in an RTP
session transmit RTCP packets. In a session with a few participants, RTCP
packets are sent at the maximum rate of one every five seconds whereas
for a larger group, RTCP packets may be sent only once every 30 seconds.
In other words, the more participants there are in a conference, the less
frequently each participant sends RTCP packets. This makes RTCP scalable
to accommodate tens of thousands of users.

7.2 Real Time Data Transfer using ATM

Audio and video applications generate lots of bits, and the traffic has to
be streamed or transmitted continuously rather than in bursts. This is in
contrast to conventional data types such as text, files and graphics, which
are able to withstand short and inconsistent periods of delay between packet
transmissions. What is needed then is a network capable of transporting
both streaming and bursty data. ATM (Asynchronous Transfer Mode) is a
technique which just does this [De Prycker 95], [Stallings 95].

ATM is a connection oriented protocol designed to support high band-
width, low delay (even services with predictable delay), packet like switching
and multiplexing. The design of ATM ensures the capability to carry both
stream traffic (such as voice and video) and bursty traffic (such as interactive
data). It uses a fixed cell size for all types of traffic. In the case of stream
trafic ATM guarantees the integrity of cell sequence which is essential for
the successful delivery of such trafhic.

ATM has grown out of the need for a worldwide standard to allow inter-
change of information regardless of the “end system” or type of information.
Historically there have been separate methods used for the transmission of in-
formation among users on LANs and the users on WANs. This situation has
been made more complex by the user’s need for connectivity expanding from
the LAN to MAN to WAN. ATM is a method to unify the communication
of information on LANs and WANs (Figure 23).

ATM is the only technology based on standards, and has been designed
from the beginning to accommodate the simultaneous transmission of data,
voice and video. It is an easily scalable backbone which can be upgraded
merely by adding more switches or links. ATM is switched instead of routed
and therefore it is faster since not every IP packet at every node is exam-
ined to determine its destination. ATM LAN Emulation (LANE) allows
transparent interconnection of “legacy” LANs based on Ethernet or FDDI
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ATM WAN

Figure 23: ATM LAN-WAN Connectivity

technology, making the ATM backbone look like a fast Ethernet or FDDI to
workstation applications. As more and more ATM nodes are deployed, the
differences between local and wide area networks will disappear to form a
seamless network based on one standard.

To use the limited bandwidth more efficiently, ATM uses circuit switching
principles to give the users a full channel to themselves. Since these users do
not use the full channel all the time, ATM uses statistical analysis to time
division multiplex several users onto the same line. This allows each user
to have all of the channel’s bandwidth for the period of time in which it is
needed.

To achieve this ATM uses two connection concepts; the Virtual Channel
(VC) and the Virtual Path (VP).

A virtual channei (also known as a virtual circuit) provides a logical
connection between end users and is identified by a VCI (Virtual Channel
Identifier) in the ATM header (see Figure 24). A virtual path defines a
collection of virtual circuits traversing the same path in the network and is
identified by a VP1 (Virtual Path Identifier). The VPI emulates the functions
of the trunk concept in circuit switching. Thus virtual paths define the
cross connection functions across the network, whereas virtual channels are
concerned with switching and connection establishment functions. Virtual
paths are statistically multiplexed on the physical link on a cell multiplexing
basis.
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VP1 - Virtual Path Identifier CLP - Cell Loss Priority
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Figure 24: ATM Cell Formats

GFC (Generic Flow Control) is used to control the amount of traffic
entering the network.

VP! and VCI are used for routing. VPI will change from one node to the
next when it travels through the ATM layer. VCI is predefined and usually
remains the same throughout the duration of the transmission. PTI (Payload
Type Identifier) is used to distinguish between cells that are carrying user
data and those carrying control information. CLP is a single control bit
which provides selective discard during network congestion and HEC is used
to check header errors.

The ATM cell formats used at the UNI (User-Network Interface) and NNI
(Network-Node Interface) are shown in Figure 24.

7.2.1 ATM Protocol Structure

Figure 25 shows the ATM layered architecture as described in ITU-T rec-
ommendation 1.321 (1992). This is the basis on: which the B-ISDN Protocol
Reference Model has been defined.

e ATM Physical Layer

The physical layer accepts or delivers payload cells at its point of access
to the ATM layer. It provides for cell delineation which enables the
receiver to recover cell boundaries. It generates and verifies the FEC
field. If the HEC cannot be verified or corrected, then the physical
layer will discard the errored cell. Idle cells are inserted in the transmit
direction and removed in the receiving direction.
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Figure 25: ATM Protocol Architecture

For the physical transmission of bits, 5 types of transmission frame
adaptations are specified {by the ITU and the ATM Forum). Each one
of them has its own lower bound or upper bound for the amount of bits
it can carry (from 12.5 Mbps to 10 Gbps so far).

Synchronous Digital Hierarchy (SDH) > 155 Mbps;
Plesiochronous Digital Hierarchy {(PDH) < 34 Mbps;
Cell Based > 155 Mbps;

Fibre Distributed Data Interface (FDDI) = 100 Mbps;
Synchronous Optical Network (SONET) > 51 Mbps.

RNl e

The actual physical link could be either optical or coaxial with the pos-
sibility of Unshielded Twisted Pair (UTP Category 3/5) and Shielded
Twisted Pair (STP Category 5) in the mid range (12.5 to 51 Mbps).

e ATM Layer

ATM layer mainly performs switching, routing and multiplexing. The
characteristic features of the ATM layer are independent of the physical
medium. Four functions of this layer have been identified.

1. cell multiplexing (in the transmit direction)
2. cell demultiplexing (at the receiving end)
3. VPI/VCI translation

4. cell header generation /extraction.

This layer accepts or delivers cell payloads. It adds appropriate ATM
cell headers when transmitting and removes cell headers in the receiving
direction so that only the cell information field is delivered to the ATM
Adaptation Layer.
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Figure 26: VC/VP Switching in ATM

At the ATM switching/cross connect nodes VPI and VCI translation
occurs. At a VC switch new values of VPI and VCI are obtained
whereas at a VP switch only new values for the VPI field are obtained
(see Figure 26). Depending on the direction, either the individual VP’s
and VC's are multiplexed into a single cell or the single cell is demul-
tiplexed to get the individual VP’s and VC's.

e ATM Adaptation Layer (AAL)

The ATM Adaptation Layer (AAL) is between ATM layer and the
higher layers. Its basic function is the enhanced adaptation of services
provided by the ATM layer to the requirements of the higher layers.

This layer accepts and delivers data streams that are structured for
use with user's own communication protocol. It changes these protocol
data structures into ATM cell payloads when receiving and does the
reverse when transmitting. It inserts timing information required by
users into cell payloads or extracts from them. This is done in accor-
dance with five AAL service classes defined as follows.

1. AAL1 - Adaptation for Constant Bit Rate (CBR) services (con-
nection oriented, 47 byte payload);

2. AAL2 - Adaptation for Variable Bit Rate (VBR) services (con-
nection oriented, 45 byte payload);

3. AAL3 - Adaptation for Variable Bit Rate data services (connec-
tion oriented, 44 byte payload);

4. AAL4 - Adaptation for Variable Bit Rate data services (connec-
tion less, 44 byte payload);

5. AALS5 - Adaptation for signalling and data services {48 byte pay-
load).
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In the case of transfer of information in real time, AAL1 and AAL?
which support connection oriented services are important. AAL4 which
supports a connection less service was originally meant for data which
1s sensitive to loss but not to delay. However, the introduction of AALS
which uses a 48 byte payload with no overheads, has made AAL3 /4 re-
dundant. Frame Relay and MPEG -2 (Moving Pictures Expert Group)
video are two services which will specifically use AALS.

7.2.2 ATM Services
e CBR Service

This supports the transfer of information between the source and des-
tination at a constant bit rate. CBR service uses AALL. A typical
example is the transfer of voice at 64 Kbps over ATM. Another usage
is for the transport of fixed rate video.

This type of service over an ATM network is sometimes called circuit
emulation (similar to a voice circuit on a telephone network).

e VBR Service

This service is useful for sources with variable bit rates. Typical exam-
ples are variable bit rate audio and video.

e ABR and UBR Services

The definition of CBR and VBR has resulted in two other service types
called Available Bit Rate (ABR) services and Unspecified Bit Rate
(UBR) services.

ABR services use the instantaneous bandwidth available after allocat-
ing bandwidths for CBR and VBR services. This makes the bandwidth
of the ABR service to be variable. Although there is no guaranteed time
of delivery for the data transported using ABR services, the integrity
of data is guaranteed. This is ideal to carry time insensitive (but loss
sensitive) data such as in LAN-LAN interconnect and IP over ATM.

UBR service, as the name implies, has an unspecified bit rate which
the network can use to transport information relating to network man-
agement, monitoring, etc.
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Figure 27: Real Time Audio/Video Over IP based LAN/WANs

7.3 IP/TV - A Real life Example

IP/TVTM is a client server application that multicasts live or prerecorded
digital video and audio streams in real time to an unlimited number of users
over any IP based local or wide area network including the global Internet,
using fully compliant TCP/IP protocol stacks supporting real time protocol
components. It uses state-of-the-art Internet standards such as IP multi-
casting, RTP, RT'CP and RSVP in its F lashware™™ software suite to pro-
vide high quality, synchronised audio/video information over existing packet
switched networks simultaneous with current network data traffic.

IP/TV 2 consists of a Viewer, a Program Guide and a Server (Figure 27).
The program guide shows a schedule of multicasts and can be accessed via
Web browser with HTTP (Hyper Text Transport Protocol). MBONE session
information can be accessed with the Program Guide which controls the
number of streams allowed on the network and the format of those streams,
ie. audio only, audio and video or some other combination. The server
delivers prerecorded or live multimedia streams based on the Program Guide
schedule and parameters su’. as start time and file name.

The IP/TV viewer, a tool for signing up for scheduled multicasts, is de-
signed to provide VCR like controls as well as “channel changing” controls.
With a software based codec (compliant with I'TU video conferencing stan-
dard H.320/H.261) colour video running at a rate of 30 frames per second
uses about 500 Kbps bandwidth. The use of IP multicasting helps to conserve
network bandwidth by transmitting over the network a single data stream
that can be picked up by any interested user. The use of RSVP provides the
ability to reserve bandwidth on RSVP compliant routers, thereby giving pri-

2available with Flashware from Precept Software Inc.
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ority to time dependent audio/video streams over less critical network traffic
thus ensuring the desired Quality of Service (QOS).

8 Summary

Real time Transport Protocol (RTP), together with a host of other protocols
facilitate the transfer of real time data streams over existing LANs and WANs
based on the Internet Protocol (IP) technology. The efforts in the commercial
sector had been focussed mostly towards the support of multimedia audio
and video streams on PCs running Windows environments (such as Windows
3.11, Windows 95 and Windows NT). IP/TV is a strong case in point which
demonstrates how fast commercial products adhering fully to international
standards appear (RTP/RTCP on which IP/TV is based were proposed only
in January 1996!!}.

However, the technology and the tools developed are available for other
real time data transfer applications, such as data acquisition, which are of
interest to research scientists.
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Abstract

In this chapter, we will look at various topics concerning Software
Design, from program documentation to very specific aspects of real-
time. It contains also an introduction to shell programming and the
use of various unix tools.
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1 Documentation

Some program are used once and never used again.
However most programs

¢ will be used many times;

¢ will be changed, upgraded;

e will go to other users;

e will contain undetected errors.

Maintaining, upgrading, using again, debugging, cost more time and money
after a program is “finished” than before.

]Good programming + Good documentation = lower future cost

1.1 Various Types of Documentation

Documentation will serve many goals, and be read by many different users.
It should be

e Useful, that is concise and readable;

o Consistent, any change should be time stamped;

¢ Maintainable, indexes and cross-references should be produced auto-
matically;

e Up-to-date, in parallel with the codes.
Here is a short list of various situations:

1. Source Code Comments

2. Maintenance Manual

3. User’s Guide {Tutorial)

4. Reference Manual
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5. Reference Card

6. Administrator’s Guide

7. Teaching Notes

&. General Index

Depending on the importance of the system, some of these points may be
ignored, or be part of others. For large project, they should be independent

documents.

1.2 Internal Documentation to the Code

Goal: Document each module at the local level for the programmer. It
should be short and informative (not paraphrase), easily readable on a screen.

Header .

In-line comments .

name + descriptive title

programmer’s name and affiliation

date and version of revisions with changes
short description of what it does and how
input expected, limits

output produced

error conditions, special cases

other modules called

should help to follow execution
break into sub-sections
indent if useful

use meaningful names

e do not duplicate code
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1.3 Maintenance Manual — Programme Logic

Goal: Present a global view of the product to a programmer, at the func-
tional and structural level.

e table of contents

¢ program purpose, what it does and how

e names and purpose of principal modules

e cross-reference between modules

¢ name and purpose of main variables

o flow chart of main activities, dynamical behaviour
e debugging aids, how to use them

o interface for new modules

index

It should complement the internal documentation (not, duplicate it)

Look at your program from above, think about it as an outsider.

1.4 User’s Guide

Goal: Should help the user, present him a global overview of the product
and how to use it!

e Table of contents

e how to use the documentation

how to contact author/maintainer (E-Mail) addresses, phones etc

acknowledgements

program name(s)

what it does (briefly)

explanation of the main notions and concepts used
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references (how it does it)

e how to start and stop the programs

e input expected, controls available

e unusual conditions, errors, limitations

e sample run with input, output and comments

e index

1.5 Reference Manual

Goal: Present an exhaustive and formal description for the various elements
of the product.

e table of contents
s table of function, with a short description

e reference pages: list of all functions in a standard form, with a complete
description similar to the module headers

e table of global variables with complete description and cross-indexing
e glossary for all specific words

o table of errors

e table of drivers

e annexes

e index

1.6 Reference Card

Goal: Single sheet with formal references for rapid consultation.

List of all commands, with their syntax, ordered by subject. Should be
produced automatically from the Reference Manual and User’s Guide.
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1.7 Administrator’s Guide

Goal: Easy installation and maintenance of the product in various environ-
ments.

o Table of contents

® minimum configuration and necessary associated products
¢ installation

¢ documentation production

e updates

¢ des-installation procedure

e list of supported machines and configurations

e list of attached files

¢ table of variables

e index

1.8 Teaching Manual, Primer

Goal: Easier understanding and learning of the product,.

Step by step introduction of the various concepts and commands of the sys-
tem, with examples, exercises, answers ete

It will depend considerably on the product. It could be part of the User’s
Guide.

As a rule, make suggestions for serial execution, avoid to force the reader on
a given path, let him try whatever he wants, put data files at his disposition.
In my opinion, many Introduction to ... are far too restrictive in this sense.

1.9 General Index

Goal: Find information anywhere in the documentation.

Should be prepared at the same time as the various documents.
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1.10 Reference Page Contents

Here is a quite exhaustive list of fields for a reference page:

name

list of commands linkages to other products

short description long description remarks

synopsis (BNF) syntax return value(s)
options global variables context

input parameters output parameters optional parameters
author version date

examples keywords optional keywords
known bugs limitations cross-references
errors level of errors bibliography
algorithms precision complexity

input files library files external references
temporary files used files modified files

1.11 Literate Programming

Knuth, while writing his set of books on TEX in parallel with the design of
the product, has build a new concept for the documentation of codes, where
the text around the code is the main object of attention.

cweb is particularly well adapted to € programming.

Here is a small extract from a cweb file:

@ Most \.{CWEB} programs share a common structure. It’s probably a
good idea to state the overall structure explicitly at the outset,
even though the various parts could all be introduced in unnamed
sections of the code if we wanted to add them piecemeal.

Here, then, is an overview of the file \.{wc.c} that is defined
by this \.{CWEB} program \.{wc.w}:

Qc

@<Header files to include@>@/
@<Global variables@>@/
@<Functions@>@/

@<The main program@>
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@ We must include the standard I/0 definitions, since we want
to send formatted output to |stdout| and |stderr|.

Q<Header files...@>=
#include <stdio.h>

@ The istatus| variable will tell the operating system if the
run was successful or not, and |prog_namel!l is used in case
there’s an error message to be printed.

@d OK 0 /* |status| code for successful run */
@d usage_error 1 /* Istatus| code for improper syntax */
@d cannot_open_file 2 /* |status| code for file access error */

@<Global variables@>=
int status=0K; /* exit status of command, initially |OK| */
char xprog_name; /* who we are */

From this code, two files can be extracted, a .tex for the printed document,
and a .c file for the compiler.

Here is the corresponding extract in printed form:
2 AN EXAMPLE OF CWEB wC §1

2. Most CWEB programs share a common structure. It’s probably a good idea to state the overall structure
explicitly at the outset, even though the various parts could all be introduced in unnamed sections of the
code if we wanted to add them piecemeal.

Here, then, is an overview of the file wc.c that is defined by this CWEB program wc.w:

{ Header files to include 2}

(Global variables 4)

{ Functions 20)

{ The main program 5}

3. We must include the standard [/O definitions, since we want to send formatted output to stdou! and
stderr.

{ Header files to include 3} =

#include <stdic.h>

This code is used in section 2.

4. The status variable will tell the operating system if the run was successful or not, and prog_neme is
used in case there’s an error message to be printed.
#tdefine 0K 0 /* status code for successful run */
#define usage_error 1 /* status code for improper syntax =/
#deflne cannol_open_file 2 /* status code for file access error »/
{ Global variables 4} =
int status = 0K; /#* exit status of command, initially OK */
char +prog_name, /* who we are +/

See also section 14,
This code i3 used in section 2.
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and the C code:

#define 0K O

#define usage_error 1
#define cannot_open_file 2 \
#define READ_ONLY O \
#define buf_size BUFSIZ \

#define print_count(n)printf(*%81ld",n) \

/x2: %/
#line 30 "wc.w"

/*3:%/
#line 39 "wc.w"

#include <stdio.h>

/*:3x/
#line 31 "wc.w"

/x4 x/
#iline 50 "wc.w"

int status= 0K;
char*prog_name;

Jx 4%/ /*¥14 %/
#line 150 "wc.w"

long tot_word_count,tot_line_count,tot_char_count;

2  Quality Assurance!

The goal of Quality Assurance is to systematise the process of verification
and validation:

U'This section has been prepared from notes by Merja Tornikoski, Finland
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e Verification: Are we building the the product right?

e Validation: Are we building the right product?

2.1 Standards, Practices and Conventions
Will depend on the environment (ex. programming language). It should be

e generally agreed on,

e then followed by evry one.
In general:

e The code should reflect the problem, not the solution;
e the methods used has to be predictable;
e the style has to be consistent throughout the program;

e special features of the programming language or hardware environment
should be used very carefully, or avoided altogether;

e the program should be written for a reader as much as for a computer.

2.2 Software Quality Factors

Correctness does it satisfy its specifications and fulfill the objectives?
Does it do what I want?

Reliability does it perform its intended functions?
Does it do it accurately all the time?

Efficiency Amount of resources required
Will it run on a given hardware as well it can?

Security controlled access to the code and data
Is it secure?

Usability Effort required to learn, operate, upgrade the code
Can I run it in the long term?

Maintainability Effort required to locate and fix errors in the code
Can I fix it?
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Flexibility Effort required to modify an operational program
Can I upgrade it?

Testability Effort required to test fully a program
Can I test/trust it?

Portability Effort required to transfer the program to another system
Will I be able to change my OS or hardware?

Re-usability Reuse of parts of a program in another application
Can I reuse some of my work?

Interoperability Effort required to couple one system to another
Can I interface my program to another system?

2.3 Review and Audits

An innocent view on your work can be very useful to

e uncover errors in function, logic or implementation;
e verify that it meets the requirements;

e agree with accepted standards;

e achieve consistency with other works;

e case management.

A technical review should take place each time a module of a reasonable size
has been completed, or results from some extensive test exist.

The review team should be small: 2-3 persons. E-Mail has the advantage
that everything will be documented.

Imaginary checklist for a review:

1. System engineering: definitions, interfaces, performances, limitations,
consistency, alternative solutions

2. Project planning: budgets, deadlines, schedules

3. Software requirements
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4. Software design: modularity, functional dependencies, interfaces, data
structures, algorithms, exception handling, dependencies, documenta-
tion, maintainability

5. Testing: identification of test phases, resources, tools, record keeping,
error handling, performance, tolerance

6. Maintenance: side effects, documentation, change evaluation and ap-
proval ...

2.4 Testing

1. Executing a program with the intent of finding an error

2. Successful test: one that uncovers an as-yet undiscovered error, with
minimum amount of time and effort.

3. Testing cannot prove the absence of defects

2.4.1 Black Box Testing

Using only the specified functions and input/output description, demonstrate
that each function is fully operational in all circumstances, and has no de-
fective side effects.

Some questions:

e Which functions are tested?

Which classes of inputs are used?

Is the system sensitive to input values? to user errors?

What data rates and volumes can be accepted?

How does it affect system operations?

2.4.2 White Box Testing

Using not only the external specifications, but also the internal working of
the modules, demonstrate that it does work in the expected way, exercising
all internal components.
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All procedural details should be closely examined.
Exhaustive testing is generally impossible for large modules.
Some questions:

e Do the data structures maintain their integrity during the execution?

Which paths are exercised, which are not?

e How are “special paths” executed?

e How is error handling executed?

How does the system react to stress, deliberate attacks?

2.5 Defensive Programming in the Lab

The previous section is mainly valid for large projects, in particular when a
team of many people is involved with external requirements.

Here are a few hints that can be applied during the exercises in the lab:

e Try to explain clearly what you are doing to your colleague. It is not
far from a psychiatric experience. You will find your own errors that
way.

e Do not trust anything!

— Print the status for all file operations
— When you open a file, verify that it exists

— When you read a record, check that you are not at eof
check that the data are valid
— When you write a record, check that you have write permissions

— When you do some complex calculation, check that the results are
in the right order

— If some input data must be on a given range, check its bounds

If anything may last more than a few seconds, print some flags or
indications

- When your program has terminated, check the size and contents
of every file involved (it may not be a bad idea to print inside the
program a summary of all written files with their length)
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¢ Keep a backup of all important (a constantly changing concept) files

2.6

Use the facilities of UNIX, like make, grep, tee ...

Debugging

Almost all programmes contain errors (= bugs in relay). You can help the
detection of them:

add guards while coding

prepare simulated input, first simple (easy to trace by hand), then more
complex (difficult)

Debug each module alone, then in small integration

chose critical points where you know what you should get if previous
step are correct.

advance by small steps

- from input forward

— from output backward
analyse wrong results to see what/where this value comes from

try all (very) improbable cases

Rules :

e if some thing can go wrong, it will !
e if an error can be damaging, it will !

e if it is very improbable, it will still exist !
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2.7 Murphy’s Laws

Murphy was an american engineer whose pessimism paid — his famous law,
“If anything can go wrong, it will,” should remain a model of conservative
system design. Many scientists were inspired by him (as seen from the fol-
lowing):

e Any given program, when running, is obsolete.

e Any given program costs more and takes longer to develop.

o If any program is useful, it will have to be changed.

e If a program is useless, it will have to be documented.

e Any given program will expand to fill all available memory.

e The value of a program is proportional to the weight of its output.

e Program complexity grows until it exceeds the capability of the pro-
grammer who must maintain it.

e If the input editor has been designed to reject all bad input, an inge-
nious idiot will discover a method to get bad data past it.

e Make it possible for programmers to write in English and you will find
the programmers cannot write in English.

e Bolub’s Fourth Law of Computerdom: Project teams detest weekly
progress reporting because it so vividly manifests their lack of progress.

e The Briggs/Chase Law of Program Deévelopment: To determine how
long it will take to write and debug a program, take your best estimate,
multiply that by two, add one, and convert to the next higher units.

e Computers are unreliable, but humans are even more unreliable.
o Any system which depends on human reliability is unreliable.

e A carelessly planned project takes three times longer to complete than
expected; A carefully planned project takes only twice as long.

e (Grosch’s Law: Computing power increases as the square of the cost.

e Putt’s-Brook’s Law: Adding manpower to a late software project only
makes it later.
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e Shaw’s Principle: Build a system that even a fool can use, and only a
fool will want to use it.

o Weinberg’s First Law: If builders built buildings the way programimers
wrote programs, then the first woodpecker that came along would de-
stroy civilisation.

o Weinberg’s Second Law: A computer can make more mistakes in 2
seconds than 50 mathematicians in 200 years.

e Efforts in improving a program’s “user friendliness” invariably lead to
work in improving user’s “computer literacy”.

e “But [ only changed one line and it won’t affect anything!”

3 UNIx Tools

The goal of this section is not to introduce UNIX per se, but to show how
some UNIX tools can help in the production of good software.

3.1 Pipes and Redirections

Pipes permit to write small modules dedicated to simple tasks, and to in-
terconnect them through standard input/output. Such modules are much
simpler to develop and test individually, while the pipe checks for the in-
terfaces. When fully tested, these modules can be put together in larger
ones.

Redirection is a good way to have all input data (including test ones) in files
that can be text-edited. Output redirection, in particular using tee, builds
sets of files against which future version’s output can be compared (use diff
for that).

3.2 UNIX as a Programming Language

Forty years ago, much programming was done in assembler, if not with wires.
‘Then higher level languages like Fortran, C, Cobol etc. permitted the de-
velopment of codes more or less independent of the hardware and operat.ng
system, that is much easier to read, that can be developed in reusable mod-
ules. Yet, the basic building blocks are still relatively low level instructions
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that are combined into higher and higher modules to form a single large
program, where the modules are ‘hard’ interconnected.

The pipes and redirections, the very large number of simple standard tools
available in UNIX and the facilities to build newer tools in the same spirit,
and then interconnect them into streams and shells, make UNIX an ideal
interactive programming environment.

3.3 Aliases

Every complex command that may be used regularly could be aliased into a
simple mnemonic name :

alias mnemonic ’equivalent command string’

The exact form of alias depends on the shell used. Here I have adopted the
cshell form. Another method, probably safer and shell independent, is to
have a reserved ~/bin directory, and a corresponding scripts for each alias:

Put in your .login file a command:
PATH="/bin: $PATH
and then:
echo "/bin/rm -i" > ~“/bin/rm
instead of the alias command.
Many examples of aliases are given below.

Aliasing into usual UNTX command should be carefully avoided if the use of
the original version can be dangerous when the aliased one is expected.

alias rm ’/bin/rm -1i’

is a typical example. In another environment, rm will not ask you for confir-
mation when you expected it.

Inversely, tools that require a mode, should specify so: use "~ /bin/rm -f”
and not "rm”.

But:
alias 1s ‘/bin/ls -CF’

is a perfectly acceptable one.
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3.4 Searching Tools

grep is a very powerful tool to do all sorts of searches and filters, in particular
as part of a pipe stream. It looks for all occurrences of & pattern inside a set
of files, and print the corresponding lines.

For exampie, finding all files that use stdio.h:

grep stdio.h *.¢ *.h or *. [ch]
Printing error messages only, with full output into a file:

test < test.data | tee test.res | egrep -i error

grep can also be used very effectively to “search” through a “data base”.
Suppose that you have a file with names, phone numbers and remarks, more
or less in free form, another with hints on different subjects concerning your
programs etc.

Then you can define the following aliases:

alias help "egrep -ih \'+ \"{ }./help ./ .help"

alias tel ‘egrep -ih \!¥ \"{ }/.phones /share/phones"
help xxx will print all lines from "/.help and ./.help that contains the
string ’xxx’.

and tel nnn will do the same for the phone files. With tel or help you can
look for anything, not necessarily name or first name, but also for partial
phone numbers etc. tel 0039 will list all entries in Italy.

Here is another application, to list only the files that have been modified this
day in the current directory:

alias today ’set TODAY=‘date +"%h %d"‘ ; 1s -al | egrep
H$TDDAYHJ

A similar command to see all files modified this day, in alphabetical order:
alias Today ’find . -ctime 0 -print | sort’
head and tail can be used to select only a few useful lines:
To see only the first line of a set of subroutines:
head -1 *.c¢
To see only the largest (or the most recently modified) files:
1s -1 | sort +4 -5 | tail -1§
1s -rtl | tail
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Long output could also be piped into more (or less, most).

uniq can be combined efficiently with sort to find ‘words’ that are rarely
used, and so possibly wrong (sort -u would do the same).

3.5 Stream Editor: sed and gawk

sed is a very simple yet powerful editor that can be inserted in the mid-
dle of a stream. gawk can be used in the same way for very complex text
manipulation. The simplest use of sed looks like:

| sed -e ’s/abc/efgh/g’ |

It will simply replace everywhere the pattern ‘abc’ with ‘efgh’. The first
character after s will be used as separator, it is not necessarily a /.

3.6 Executing just What is Necessary, using make

When a project gets larger, it becomes more and more difficult to track which
compilations, link and execution are necessary.

make permits to do such operations automatically, based on declared depen-
dencies and last modification time. The set of commands executed in each
case is completely open and not restricted in any way to compilation or link.
Further, the dependencies can be given explicitly, supplied by compilers like
gce -M, or even assumed implicitly by make itself in many cases from the file
suffixes.

The use of implicit assumptions make it faster to write but more difficult to
read the dependency file.

The general form of a dependency file (usually named Makefile)} is the fol-
lowing:

target(s): dependencies
<TAB> commands to produce the target(s)

make without a parameter will check the first target for dependencies, and
then recursively through the file. If a target is older than a dependency, then
the corresponding commands are executed.

If make is used with a parameter {a target in the Makefile), then the search
starts from this target.

Here is a small example of a Makefile
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all: prog test

prog: main.o sub.o
$(LINK.c) -o $@ main.o sub.o

main.o: incl.h main.c
gcc —¢C main.c

sub.o: incl.h sub.c
gee —¢ sub.c

test: prog test.data
prog < test.data > test.results

touch can be used to change the date of last modification.

make can also be used as a simple user interface for commands, when there
are dependencies among them. Suppose that you have a dBase on which
you can edit, make extraction, preformat, visualize or print. The user could
then say: make visualise or make edit, and all necessary operations will

be done automaticaly. Here is the corresponding makefile:

all : catalogue stickers

catalogue : Catalogue.dvi
dvips -Php0d Catalogue

stickers : Stickers.dvi
dvips -Php0 Stickers

catalogue.win : Catalogue.dvi
xdvi Catalogue &

stickers.win : Stickers.dvi
xdvi Stickers &

Catalogue.ps : Catalogue.dvi
dvips Catalogue -o

Stickers.ps : Stickers.dvi
dvips Stickers -o
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Catalogue.dvi : Catalogue.tex catalogue.tex
latex Catalogue

Stickers.dvi : Stickers.tex stickers.tex
latex Stickers

catalogue.tex : m.rdb
report catalogue.report < m.rdb > catalogue.tex

stickers.tex : m.rdb
report stickers.report < m.rdb > stickers.tex

m.rdb : mediatheque.rdb
cp mediatheque.rdb m.rdb

mediatheque.rdb : mediatheque.db
m.awk mediatheque

clear :
rm catalogue.tex stickers.tex Catalogue.dvi Stickers.dvi \

Catalogue.ps Stickers.ps Catalogue.log Stickers.log \
Catalogue.aux Stickers.aux

If the files reside on more than one machine (using NFS for example), they
should all be synchronised with ntp or similar time protocols.

For very large projects, when many persons are involved in the development,
make is not sufficient. make ignores the notion of version or file locking that
are necessary in these circumstances.

Other tools exists for them, in particular sccs, RCS or CV. diff and patch
can be used to keep track of incremental updates and versions (including the
recovery of previous code).

3.7 RCS and SCCS: Automatic Revision Control

RCS and SCCS designate sets of tools that help maintaining revisions of a
product. Only RCS will be discussed; SCCS offers approximately the same
capabilities while having an older, clumsier syntax.

If a program of a certain importance is being developed, it is essential to keep
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all versions of the source code — not just the last, or the ten last. All versions
should be numbered; a log file should account for all the modifications made
between two numbers; version numbers should be allowed to ramify in a tree-
like manner; the binary code produced should be stamped with the version
number; and if many people work on the same project, there should be some
coordinating means between them.

RCS is a set of tools for UNIX that manages automatically these tasks. Text
files are normally hidden by RCS. A developer may check a file out, that is
make it visible in his directory for modification, while locking other devel-
oper’s access to it; edit it, write appropriate logging information; and check
it in. Initially, a file f.c¢ is placed under RCS’ supervision with

ci f.c

with initial version 1.1. The file is moved to a special directory, usually
“/RCS. An edit cycle would now be:

co f.c
edit f.c
ci f.c

If you have EMACS, you may use its built-in capabilities to simplify this
process: edit the file using its true path {7/RCS/f.c), and type Ctrl-X and
Ctrl-Q to check the file in and out respectively.

It is not necessary to modify your Makefiles, as make automatically checks
out and deletes files it doesn’t find. If vou really wanted to, you would just
put:

f.c: /home/mickeymouse/RCS/f.c
<TAB> co §<

RCS can stamp source and object code with special identification strings. To
obtain them, place the marker “$1d$” somewhere inside your source file. co
will automatically replace it with $1d: filename revision_number date time
author state locker$ and the marker “$Log$” is replaced by the log messages
that are requested during a check-in.

RCS keeps all your previous versions through reverse deltas, i.e. keeps the
last version in full, and reverse diff’s to obtain previous revisions. These are
accessed through
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co -r<revision #>
and a sub-branch, new level major release etc. may be defined with
ci -r<new revision #>

Besides ci and co, RCS provides a few commands:

ident extracts identification markers
rlog extracts log information about an RCS file
rcs changes an RCS file’s attribute

rcsdiff compares revisions

Refer to the manual pages for more detail.

3.7.1 Remarks concerning RCS

1. The directory ~/RCS is not made automatically (use mkdir RCS)
2. ci will nor move ...c,v files automatically to RCS (use mv )

3. co and c¢i will look automatically in “/RCS/ if the file is not found in
the current directory, and ~/RCS exists.

4. co and ci will not lock automatically the files, use co -1 instead.

5. co and ci work also on wild card. For example, co -1 *.c will extract
all .c files at once.

6. rcs -1 file will lock the file. This is necessary if you modified a non
locked file.

7. rcs -U/rcs -L file will enable/disable the file, doing strict locking.

3.8 Shell programming

When a set of commands is repeated more than 2 or 3 times, then it is
usually worth puting them into a file and executing the file, passing possibly
parameters. Such files are called script files in UNIX.

All UNIX shells offer lots of usual programming constructions, as variables,
conditionals and loops, input and output, even some rudimentary arithmetic.
Shell programming cannot replace C programming, in particular it is much
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slower, but it can be very effective to organize together the repetitive and
possibly conditional execution of programs.

Writing script files can have two other advantages:
— They can be edited until it works, even once ...

— They keep track of what was done, either as a log, or as an example for a
similar problem in the future.

To be executable, a file just needs the x bit set. This is done with the
chmod +x script command.

As many different shells can be used in UNIX, it is preferable to add as a
first line a comment telling the system which one is used. So the first line
of a script file should look like #!\bin\sh or whatever other shell is used
(remember they have different syntax, and should not be confused).

3.8.1 Comments

Any character between the # and the end-of-line is treated as a comment.
The example just above is realy a comment, and is interpreted by the shell
as a possible indication about which shell should be used. In such a case, the
# is called the magic number.

3.8.2 Quotes

Two quotes symbols can be used: * and ",

Inside ’ ’, no special character is interpreted.

Inside " ", then $, ‘, !, and \ are the only ones interpreted.

Any special character can be transformed into a normal one with a \ in front.
Try:

Test="NoGood"

echo 1. Test # just ascii string
echo 2. $Test # 9% in front
echo 3. \$Test #\$ in front
echo 4. \\$Test # \\$ in front
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3.8.3 Parameter passing

A command can be followed by parameters as “words” separated with spaces
or tabs. The end-of-line, a ;, redirections or pipes end the command.

Inside a script, $n, where n is a digit, will be replaced by the corresponding
parameter. Notice that $0 corresponds to the name of the command itself.

As a very simple example, here is a script that will compile a C program, and
execute it immediately. The name of the program is passed as a parameter.

...) cat ccc
#!/bin/sh -x

gcc -03 -0 $1 $1.c
$1

To compile and execute threads.c, one would type ccc threads .

3.8.4 Variables

Variables can be defined inside a shell. Except if exported, they are not seen
outside the shell. Variable names are made of letters, digits and underscores
only, starting with a letter or an underscore.

They can be defined with =, or read from the terminal or a file.

Test="0rder==31"
read answer

and used, as for parameters, with a $ in front for them to be replaced with
their content.

if [ "x$answer" = "xY" ]; then
SetPower $level

fi

select "$Test"

3.8.5 Environment variables PATH , MANPATH and LD_LIBRARY PATH

When the name of a program (a file name effectively) is given for execution,
the system will look in successive directories, and execute the first one found.
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In the same way, man looks in successive directories and prints the first cor-
responding pages found, and the loader looks in the list of directories for
dynamic libraries.

These lists of directories are given in the variables LD.LIBRARY _PATH, MANPATH
and PATH.

The directory names are separated with colon (“:") characters.
To add a new directory, use command:

setenv PATH ${PATH}: < my_dir>

or

setenv PATH <my._dir >:${PATH}

The first version puts the new directory at the end, the second in front of
the list. Both versions have some advantages.

tcsh keeps a hash table of all executables found in the PATH. This table is
setup at login, but it is not automaticaly updated when PATH changes. The
command rehash can be used to update manually the hash table.

® a “generous” PATH is predefined in most Linux systems

e the current directory “.” is usually part of the PATH . It is better to
put it at the end of the list to avoid replacing a system program.

e you can put all your executables in a directory called ~/bin and add
“/bin to your PATH . (in the file “/.login ).

® you can do the same for your personal man pages.

® to see the full PATH as defined now, use the command;
echo $PATH

e to see all environment variables:

env

¢ to find where an executable is:

which my_program

¢ to find where are all copies of a program (in the list defined by PATH ):
whereis your_program
You may have to redefine whereis in an alias to search the full PATH -

alias whereis "whereis -B $PATH -f"
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e If you add directories in an uncontrolled way, the same directory may
appear in different places . .. To avoid this, you can use the PD program
envv

eval ‘envv add PATH my.dir 1°

The last number, if present, indicates the position of the new directory
in the list. Without a number, the new directory is put at the right
end of the list.

3.8.6 Reading data

Variables can be read from the keyboard with the read command as seen
above. Any file can be redirected to the standard input with the command
exec 0<file. Then the read command gets lines form the file into the vari-
ables. The arguments can be individualy recovered with the set command:

exec 0< Classes

read head

set $head

echo The heads are: $1 $2 $3

3.8.7 Finding something in a large directory tree — find

find allows to search through any directory tree, looking for matching file
names or files modified before or after a given date for example, and then
execute any sort of command, like printing file name with full path, deleting,
executing a grep on them etc.

find has many options, but we will see only four. Refer to the man pages
for all other ones.

find . -name < file_name, possibly with wild card > -print
find . -ctime <n> -exec < command>

In the command, use {} to replace the file name, ending the command with
\s

The first parameter (“.”) is the starting point, root of the directory we are
searching.

The second is the selection criteria, according to file nhames or times.
Then comes the execution for all files that match the selection criteria.

Examples:
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1. Remove all core files, printing their full path:

find . -name core -exec rm -f {} \;

2. List all files created today in any subdirectory:

find . -ctime 0 -print

3. Search for use of stdio.h in all ¢ files:

find . -name \#\.c -exec grep stdio {}\;

3.8.8 Loop — foreach command

In csh, the command foreach permits to loop over many commands with a
variable taking successive values from a list.

The syntax is:

foreach < variable name> ( <list of values> )
< commands >
< commands >

end
The variable names can be modified with the following modifiers:
< variable name > :r suppresses all the possible suffixes.

< variable name >:s/<old >/ < new >/ substitutes < new > for < old>.

Example:
1. Save all executables and recompile:

foreach file ( *.c )
echo $file
cp $file:r $file:r_org
gee -g -o $file:r $file
end

2. Repeat 10 times a benchmark:

foreachbench(12345678910)
echo Benchmark Nb: $bench
benchmark | tee bench.log_$bench
end
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3. Doing ftp to a set of machines. We assume that the commands for
ftp have been prepared in a file ftp.cmds:

foreach station ( 1 2 37 13 19 27 )
echo "Connecting to station infolab-$station”
ftp infolab-$station < ftp.cmds

end

Such commands enable us to update a lot of stations in a relatively
easy way.
3.9 Use of the history

tcsh keeps a log of the last n commands. n is defined with the command
set history=n in the file .cshrc .

This log can be used in the following ways:
history prints (on screen) the list of the last n commands executed,

~old~new repeats the last command, replacing the first occurrence of old
by new

I'l repeats the last command,

In repeats a given command,

tabc repeats the last command starting with the same letters,
11:3/0ld/new/g repeats the last command with editing (substitution [+global]),

1$ reuses the last parameter of the last command.

3.10 Command/file name completion

After vou have typed a few letters of a command or file name:
< TAB > will complete it if possible and unique,
< ctrl>d will list all possible completions.
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3.11 Very High Level Programming

Many tools exist now where the basic data unit is not numbers or words,
but vectors, matrices, records or files, whose internal structure and detailed
manipulation can be ignored by the user.

matlab, Scilab, Yorick or SuperMongo are good examples of very high level
programming environments for graphic, vector and matrix manipulation.

/rdb is a similar environment to manipulate relational tables.

For example, here is a small program in SM, that reads a file, does some
computation, and draws a graph with points of various sizes:

data cluster.dat

read{size 1 viscosity 2 temperature 5}
set LogT = lg(temperature)

set size = 0.1 + 2 * viscosity

expand viscosity

Diag size LogT

and another that selects some columns and rows from a table, using their
names and a selection criteria, then prepares a file for later processing with

TRX.

column name first_name institute < ictp.rdb | \

row ’ country == "India" || country == "China" * | \
jointable -j1 institute - addresses.rdb | \
tabletotex > addresses.tex

3.12 Notes about Relational Data Bases

Data Base systems are not part of this course, but it is difficult to build real
time systems without producing data that must be stored for later analysis.
Environmental parameters, usunally noted in log books, should also be put in
files.

Many models have been invented to organize (some very large) sets of data,
the final goal being to be able to extract rapidly part of these data according
to given criteria (see the example in page 174).

The relational model is probably the simplest to understand and use, the
only one where mathematical proofs can be used and for which a standard
interrogation language (SQL) has been defined.
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3.12.1 The relational model

The relational model was introduced by E. F. Codd of IBM in 1970. Its main
characteristics are:

e it is mathematically defined
e it is always coherent
e it is fully predictable

e it contains no redundancy

Many commercial or not relational data Bases are now available, for example
DB2, Informix, Ingres, Oracle, Sybase, /rdb ...

In a relational RdB the data are organized in sets of rectangular tables:

PIN | name | surname | birth PIN | Insurance

9318 | Weber | Luc 610711 9318 | Medica

Test | Blood | Sugar PIN | Diag | Interv | Test
316 9318 | ... 316
49 o318 ... |... |45

Some columns (in bold) are key columns. Usually, each row has a different
value in them. They do not depend on another one. Non key columns depend
on a key one.

The rule behind the choice of columns and the structure of tables, is that no
information should appear twice or more anywhere.

3.12.2 RdB basic commands

The basic commands are: insert, delete, sort, search, edit, append and join.

The join commands combine two or more tables whose records match on a
given column.

Fourth College on Microprocessor based Real Time Systetns in Physics 175
Trieste, Italy. Oct 7 - Nov 1, 1996.



Software Design Bartholdi Paul

Example: Join Personal Medical on PIN
Join Medical Lab on Test

SQL, the Standard Query Language, is a standard way to do interrogation on
a RdB. SQL commands can be embedded into C or Fortran programs, but
this is not standardized.

3.12.3 Real Time RdB

Concept: Associate with critical columns a trigger function(s) that is exe-
cuted whenever an entry is added or changed in it.

The trigger has access to any other data, and can start any operation, in-
cluding modification in the dB that may start another trigger.

Example of applications:

e stock exchange
e patient monitoring
e central control for complex instruments

e storage monitoring (Af > 1d)

Real time dBs are good examples of the concept of “Objects = Data +
Functions”.

4 Use of network

The network concepts are part of another chapter. Here are just a few notes
on how to use the network for file transfer and remote connection.

4.1 File transfer

File transfer between two computers can be done with the program ftp (file
transfer protocol)

ftp <remote host name >

On some computers (including infolab-n), ncftp is available with some extra
facilities. It will record all recent hosts you have been connected to and in
which directory you worked. It will reuse this information the next time you
connect to the same host. Hosts can have short nick names.
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4,1.1 Host names

The computer you want to connect to can be local, part of your local network,
or nonlocal, part of the rest of the world.

For a local host, the host name is sufficient.
For a non local host, the full name of the host.domain.country is necessary.

For example: infolab-27 is locally acceptable, but obsmp2.unige.ch must
be given in full.

Every computer on the Internet has an IP number, made of 4 groups of digits
(1-255). For example, infolab-20 has the number 140.105.28.186 .

Both full name and IP number are unique in the world, and must stay so!
They can usually be used interchangeably.

4.1.2 User names

If you have an account on the remote computer, then use your own username
and your own password on that machine to transfer files back and forth
between your local and your remote computer.

If the remote machine is an anonymous server, from which you intend to fetch
or send files, then you must use anonymous as user name, and your email
address, in the form user@host.domain. country as password. Some servers
will accept anything as password, some others will check that it is a valid
address. In any case, politeness dictate that you use your true email address,
or at least your name and host.

4.1.3 Going to the right directory

When you are connected to the remote computer, you can use the usual cd
and 1s or dir command to locate your files.

Note that on anonymous servers, directories ready to accept files from anony-
mous users are usually not readable! ...but you can still fetch a file from
them if you know its name.
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4.1.4 Setting the mode of transfer

The files can be transmitted either in ascii, possibly with code conversion if
necessary, or in binary mode. The tenex mode is for binary files with very
long records.

4.1.5 Getting files

get <remote file> <local file name > will fetch the file.
mget < first file> <second file> ...file fetch a set of files.

reget <remote file> <local file name > will restart the transfer of the file
after the last previously transferred block (after a problem on the line ... ).

4.1.6 Putting files

put <local name>> <remote file name > will transfer the file to the remote
host.

mput < first file> <second file > ... will transfer a set of files to the remote
host.

4.1.7 Compression and tar files

Some servers are set to compress files before transferring them. They can
also tar a complete directory and even compress it before sending.

To use these facilities, one must add .gz , .tar or .tar.gz after the file or
directory names.

4.1.8 Decompressing a file or directory

gzip -d <compressed file > will decompress that file.
tar xzvi <compressed tar file > will decompress and detar the full tar file.

gzip -dc < compressed tar file> | tar vxf - will do it if the decompres-
sion is not available within tar.
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4.2 Working on another computer

To do so, you MUST have an account on the remote machine. No anonymous
user is possible (On infolab-nn machines, the username public, possibly with
password public can be used in a way similar to anonymous!).

telnet < remote host name > will establish the connection to the remote
host.

rlogin -1 < username > < remote host name > will establish a new session
for you on the remote host.

4.2.1 Password transfer

If you have in your home directory a file called .rhosts with entry lines in
the form:

hostl username
host2 username

with your current host name on the left part of this file, then the remote
system will not ask you for your password if you use the rlogin connection.

4.3 Executing a command on a remote host

It is possible to execute a line of commands on a remote station with:
rsh <remote host> "< command line >"

Your local host should be present in the .rhosts file in your remote home
directory.

If more than one command is present on the line, they should be separated
with “;” characters.

For example, to list your files in the directory tbl on the remote host
infolab-21, use the command:

rsh infolab-21 "cd tbl; 1s -1"

4.4 Remote copying a file

rcp <local file > <remote host >:< remote file > will copy the local file onto
the remote system. Your local host should be present in the .rhosts file in
your remote home directory.
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4.5 Displaying on another station

To have a process running on a station with a X11 display on another, you
must:

On the display station: give the permission to write on its screen with the
command:

xhost < process station name or IP address >

(xhost + will give permission to any computer in the world. This can be
dangerous . ..)

On your process station, you may have to redefine the global variable DISPLAY
with the command:

setenv DISPLAY < display address>:0.0
Then on, all your X11 output will go to the screen of the display station.

5 Structured Design

5.1 Introduction

The continued improvement of computer performances have permitted to
develop more and more complex programs, leading to a posteriori misunder-
standing of the code, and to difficulties in the support and modification of
the program.

This has lead Dijkstra in 1965 to the concept of structured programming,
which can be understood as creating programs recursively consisting of mod-
ules of lower level complexity. The modules should describe a whole, a log-
ical entity, at all levels. The operations involved in each module should
be described in the most general terms available at this level, and hide the
unnecessary details.

5.2 Program Development Phases

Any software project goes through a series of phases, possibly with many
loopbacks to previous steps. This is true for both simple modules and large
projects as a whole.

The main steps are:
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user’s requirements , idenfication of what are the data, what has to be
done, which results are expected, what is the time-scale for the project,
what money, what hardware is available?

system definitions , formalisation of the previous informations
system analysis , looking for solutions to the requirements
program design , software architecture for the adopted solution
program coding , implementation of the architecture

testing , verification against definitions and requirements

improving , smoothing the bottlenecks, getting better user’s interface

upgrading , to new requirements, new hardware available etc

The analysis phase is very important as it should lead to a good design for
simple programming, maintenance and should enable anyone to further en-
hance the program without having been involved in the original programming
work.

The question is how to decompose the probiem in modules 7

There are two main ways in the decomposition process:

5.3 Ascending Design and Programming

Ascending approach is the construction of a complex system by combining
modules from the lowest level operations to the complete system, in increas-
ing order of complexity. This is also called Bootom-Up design.

Pros: The modules can be tested in their real functioning at the time they
are built.

Cons: We can’t know at the module’s programming time if it will best fit the
next level module.
We don't have a general sight of the problem to be presently solved.

The interfaces are difficult to fix from below.
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5.4 Descending Design and Programming

Descending approach is the construction of a complex system by expressing it
in terms of simpler layers, with stepwise refinement. This is also called Top-
Down design. The descending design presents exactly the reverse situation
for the programmer, that is:

Pros: General problem is more correctly decomposed in sub-problems.

Good sight of the problem or sub-problem to be solved at any time of
the design.

Design error can be detected and corrected at programming time quite
easily.

The interfaces between modules are defined from above.

Cons: Testing the already built modules (which are the higher level mod-
ules) need to write drivers submodules simulating the input-output
behaviour of the real submodules.

In practice, a mixture of both approaches is often used, by combining a
descending analysis and design with a ascending programming phase. This
mixture can be a good practical way as long as the analysis and design
phase are kept detailed and precise enough to avoid design errors. If one
has to correct the design at the programming time, this one should also be
descending.

5.5 Structured Design Principles

Structured programming enables to:

¢ give a program a better clarity, so that future enhancements may be
easily done.

e augment the reliability of the code, because modules can be tested as
soon as they are built.

¢ hide unnecessary details.

The principle of structured programming is to give the programmer tools
enabling him to express his problem in structured blocks.
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body

|

Figure 1: Structured block construction

A structured block is a module (at design level), or a piece of code (at
programming level) which stands on its own and has only 1 input and 1
output.

The content of this block may be very simple or very complex, in which case
it should be decomposed itself into other structured blocks.

This can be done with the flow control instructions. With these instructions,
the GOTO instruction is not needed anymore, so that one can avoid the un-
verifiable and multiple paths in a program.

5.6 Flow Controlling

Each language defines it’s own set of flow control instructions, and renames
them differently. In this section, we will describe the main flow control
instructions, which can be separated into three groups:

Conditional instructions

5.6.1 IF...THEN...ELSE...

Only one of two possible blocks is executed (figure 2):

if condition then body_true
else body_false
end
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true false
condition
[ N
I I
body_true | body_false |
I may be absent |

e

Figure 2: if...then...else construction

5.6.2 CASE...QOF...

Only one of many possible blocks is executed (figure 3 ):

case erpression of
value_I:= body_I
value_2:= body_2

end

Please take notice that expression and values are sometimes replaced
by conditions.

Counting loops

5.6.3 FOR...DO...

A given block is executed an exact number of times {figure 4):

for variable:= first_value to last_value do
loop_body
end

Please take notice that loop. body is usually executed at least once.
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expression

= value_1 = yalue_2 = value.n

body_1 body_2 oo body.n

add value_other and body_other

Figure 3: case...of construction

var = first_value

may have other increment

usually executed at least once body var = var + 1

false true
var < last_value

Figure 4: for...do construction
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Conditional loops A given block may or may not be executed many times
depending on a condition. The condition may be set inside the block.

5.6.4 WHILE...DO...

while condition do
conditional_body
end

Please take notice that condition is tested before the first execution of
the conditional_body (figure 5).

If the condition is the constant 1, then the loop will go for ever. You
will have to use break to get out of it.

true false

body

body may never be ezecuted

Figure 5: while...do construction

5.6.5 REPEAT...UNTIL...

repeat
conditional_body
until condition

Please take notice that condition is tested after the first execution of
the conditional _body (figure 6).
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body

always executed atl least once

true

Figure 6: repeat...until construction

5.6.6 REPEAT...WHILE...DO...

repeat
body_1
while condition do
body_2
end

Please take notice that condition is tested after the first execution of
the body_1, but before the first execution of the body_2 (figure 7.

Consider the following real situation (in pseudo code):

read;
if not EOF do computations
read again

We can solve it in three ways:

1. as in Pascal:
s=read( );
while(s!=EQF) { calculations; s=read( }};
read is used twice, and appear illogicaly after the calculations ...

2. while((g=read( ))!=EOF) { calculations } ;

Now we have side effects in the condition, doing two things in one
statement;
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body.1

always ezecuted at least once

false

true

body.2

may never be executed

Figure 7: repeat...while...do construction

3. while(1) { s=read( );
if(s==EQF) break;
calculations
This matches the logic much better, though the code is longer.

5.6.7 Side effects

In C and many other languages, the tested condition can be any expres-
sion, possibly with strong side effects, that is variables get changed by the
condition evaluation. For example, consider the expression, given in the C
notes:

while ( *S1++ = %8§2++ )

.
3

Such expressions are very compact, but rather difficult to read, and quite
prone to errors.
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5.7 Implementation Addresses

Some languages are more appropriate than others to structured program-
ming, and amongst the procedural languages, let’s cite as examples the Pas-
cal, C, Modula and Ada languages.

These languages offer all the preceding possibilities by specialised instruc-
tions, except the last one which should be programmed with a loop and
an internal if instructions. Moreover, Ada language doesn’t support the
repeat...until structure.

Other branching instructions complete the set, enabling the program to in-
terrupt or skip an occurrence of a loop.

Most of the procedural languages offer a goto instruction, just in case...,
but to avoid using it will lead to better design, and maintenance.

5.8 Weaknesses of the Structured Approach

The modules are based on their functionality, and define procedures and
functions, while variables are often passed as parameters, or are globally (on
the outside) defined.

This leads to

e logically incomplete modules.
o difficulty to reuse a module in a slightly different way

e variables can be modified from the outside of the module.

5.9 Practical remarks concerning the exercises

1. All system calls and standard library routines return a value indicating
the success or failure of the operation. The error code is also returned
in the variable errno.

This value should always be checked, with an erorr message and ap-
propriate action (continue with default, do it again, exit ...) in case
of failure (See the examples below).

2. stdio.h and other header files (including your own) contain list of
declarations like #DEFINE OEF (-1) or even #DEFINE NULL (0) and
also typedef ... { ... } FILE;
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Use them! They help you hide something and make the code easier to
read, check and understand.

Examples:

FILE *Pn
Pn = fopen("/ds", "w" ); /* not "2" but "w" */

if( (fn=open("/ds", "w")) == NULL )
{ printf("cannot open file /ds \n") ;
exit (11);
}

if ( (fn=open("specific", "r")) == NULL )
if( (fn=open)"default", "r")) == NULL )
{ printf(“neither specific nor default available \n");
exit (13);
}

Notice in the last example, that the second if is skiped if the first succeeds.

6 Data structures

Data structures can be classified into two main categories: linear and non-
linear. Linear structures are composed of a sequence of elements and include
arrays, linked lists, stacks and queues. Non linear structures include trees
and graphs. We will limit our scope to a general introduction to the linear
structures, as they are the basis of the structures used in real-time systems.

The operations that can be performed on a linear structure are:

e Traverse the structure and process each element.
e Search a particular element of the structure.

¢ Add a new element to the structure.

e Remove an element from the structure.

e Rearrange the elements in some order.

'The internal representation of a linear structure may take two shapes:
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¢ Array representation, where logically consecutive elements of the struc-
ture are represented by sequential memory locations.

e Linked list representation, where the relation between the elements are
represented by means of pointers.

The type of representation one chooses for a particular structure depends on
how it will be accessed, and on how many times the different operations will
be performed.

6.1 Arrays

Arrays can be linear or multidimensional homogeneous structures. We will
limit our scope to linear arrays; the extrapolation of the algorithms to the
other cases is relatively easy.

The linear array is a finite list of data elements. The elements are referenced
by an indez, which is the ordering number of the element. The elements are
stored in consecutive memory locations. That implies that the index set is
composed of consecutive numbers.

The smallest index is called the lower bound (LB), and the largest is the
upper bound (UB). The length of the array is given by the formula

L=UB-LB+1

Usually, LB=0and L=UB+1,0or LB=1and L =UB.

The logical representation of an array consist of a series of compartments pic-
tured either vertically or horizontally, depending on the number of elements
and on the available space, as shown on the figure 8.

DATA
1) 247
2 26 DATA
3| 429 [247 {56 ] 429 [ 135 | 87 ] 156 |
41 135 1 2 3 4 5 6
5 87
6| 156
Figure 8: Logical pictures of array DATA.
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The computer keeps only track of the base address (BA) of the array A, and
calculates the position of the kth element by the formula:

LOC(A[K]) = BA(A) +w - (k — LB)

where w is the number of memory words (bytes for an 8-bit architecture) per
element for the array A. The figure 9 shows the internal representation of an
array AUTO, with BA = 200, LB = 1932, and w = 4.

AUTO[1932]

AUTO[1933]

AUTO[1934}

Figure 9: Memory representation of array AUTO.

6.1.1 Operations on linear arrays

Operations on arrays are simple, due to the linear structure of the arrays.

Traversing an array is done by a counting loop (5.6.3), the index of the
array being used as the control variable of the loop. The body of the
loop defines the operations to do on each element.
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Inserting an element at the end of an array is quite simple. Inserting an
element in the middle of the array implies moving all the elements
located after the insertion point up back a position. This again may
be done by using a counting loop initialized at the upper bound, and
running down to the insertion point. One has to do it this way, as the
higher indexed memory locations may be overwritten without problem.

The figure 10 illustrates this by inserting the value “Ford” in a string
array at position 3.

QO ~N M W N =

Figure 10: Insertion of an element in an array.

NAME

Brown

Davis

Johnson

Smith

Wagner

O~ 3 bW

NAME

Brown

Davis

Ford

Johnson

Smith

Wagner

Notice that decreasing index counting loops are not supported by all
languages. If not supported, this operation can be simulated by a
conditional loop (5.6.4).

Deleting an element of the array is very similar to inserting, at the algo-
rithmic level. A counting loop running upward from the deletion point

should be used to move down the succeeding elements.

Searching an element in the array can be done through two algorithms:
linear and binary search.

Linear search implies a conditional loop executed at least once. The
loop body should check if the element fits the desired item and if
the bound of the array is reached. This implies two comparisons at
each occurrence of the loop, leading to a possible 2NV comparisons.

The estimation of the number of basic operations an algorithm
needs to be completed is called the complexity of the algorithm.
It gives the notion of computation time for the implementation of
the algorithm. It is sometimes expressed with the O notation:
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fm) s Ofg(n))

Where f(n) is the complexity, g(n) is a simple function.

An enhanced algorithm will first write the searched item at the
end of the array, in position N + 1. Then a single comparison
is done in the loop, checking for the item, and when successful,
a last comparison determines if the item was found in the array
or in position N + 1. The maximum comparisons number is thus
N+ 1.

The average number of comparisons, in case of equally probable
position of the item, with an absence probability of € is given by
NN+1) 1

1
- - N L N
+---+N N+(N+1)s 5 N+( +1)e

= (N+ 1)(% +€)

1. — 42

1 1
N N

If the absence probability is very small, the average number of
comparisons will be about half the length of the array.

Binary search is used for maximum efficiency. The array needs to be
somehow sorted. The comparisons will not be done sequentially,
but accessing recursively the middle of the part of the array con-
taining the item to find. At the beginning, the containing part is
the whole array.

After M comparisons, the segment containing the item is 5‘5‘;’; long.
Locating the item implies thus a maximum of M = log,(N) + 1
comparisons. This means that a 65000 element array could be
searched successfully in 16 comparisons.

So why not use always a so economical algorithm 7 Binary search
is only possible if the array is sorted, ard maintaining a sorted
array can be very resource-consuming, for big arrays with a lot of
modifications.

Sorting an array is a bit more complicated. There are several algorithms
suitable for different data structure. The most simple is called bubble-
sort.

Let’s have a N-element array. The algorithm consists of traversing the
array, comparing each element with the element immediately following
it and swapping the two elements if necessary. This traverse operation,
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called a pass, enables to put the smallest or the largest element (ac-
cording to the test) at the upper bound, in element N. This step is
repeated N —1 times with the subarrays upper-bounded by the element
indexed N — I, N — 2, etc.

The complete sort is a N — 1 passes process. The passes involve N —1,
N —2, etc. comparisons, so the entire sort process need, to be complete,
a total of

N(N -1)

(N-D+(N-2)+(N-3)+ -+2+1= 3

which is proportional to N2,
Another well-known sorting algorithm is the quicksort algorithm.

In this algorithm, each step (fig. 11) is used to find the proper place for
one element of the array. Let’s take the first number of the array. We
compare it with the others, starting backwards from the last. When a
smaller number is found, we exchange the two numbers, and start again
traversing from left to right the array until we find a larger number.
This step stops when the comparison with the element itself. This
element is at its correct place in the array.

We then have two subarrays which are themselves to be quicksorted.

Comparison 1 |44 33 11 90 40 22 88 66
Comparison 2 [44| 33 11 90 40 22 88 66
Comparison 3 (44| 33 11 90 40 22 88 66
Swap 1 22 33 11 90 40 |44} 88 66
Comparison 4 22 33 11 90 40 |44{ 88 66
Comparison 5 22 33 11 90 40 |44| 88 66
Comparison 6 22 33 11 90 40 |[44| 88 66

Swap 2 22 33 11 (44 40 90 88 66
Comparison 7 22 33 11 |44 40 20 88 66
Swap 3 22 33 11 40 [44] 90 88 66
N . . —~——

subarray 1 subarray 2

Figure 11: One step of the quicksort algorithm.

The quicksort algorithm is in the worst case when the array is already
sorted. Each step needs N comparisons and produces only one subar-
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ray, of length N — 1, leading to a total of

2
Nt (V-4 (N =2+ (V-3 b r 2 1=
comparisons, which is proportional to N2. The advantage over the
bubble-sort appears for the average case. Bubble-sort has a constant
number of comparisons. Quicksort, on the other hand, produces 2
subarrays in each step, so the successive levels place 1,2,4,..., 25!
elements. About log,(N) levels will be necessary to sort the array,
with a maximum of N comparisons at each level. The average number
of comparison for the quicksort is thus proportional to N log(N).

6.2 Linked lists

As the insertion or deletion of an element in an array is a quite expensive
operation, and as arrays are static structures that cannot easily be expanded,
it is sometimes necessary to use another type of structure, whose elements
contain, in addition to the data, a link to the next element. This way,
successive elements need not occupy consecutive memory locations.

This type of structure is called a linked list, and is widely used in computer
science, due to it’s dynamic behavior. A linked list is composed of nodes.
Each node is divided into two parts: the information part and the link field
or next pointer field, which contains the address of the next node in the list.

NAME
or

START

Nextpointer field of third node
Information part of third node

Figure 12: Horizontal representation of a linked list.

A linked list is represented by a series of double boxes linked by vectors, either
horizontally or vertically, as shown in figures 12 and 13. The information part
may be further subdivided, as seen in figure 13. ‘A separate variable indicates
the first element of the list. It is the list pointer variable (START). The
last element of the list contains a null pointer to indicate the end of the list.
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Bed
Number Patient Next
START | 5§ ~ | Kirk 7
2
< 3 Dean 1
4 —Naxwel— |12
R 5 Adams 3
6
7 Lane 4
8 Green 1

——2___ | Samuels P | Sy

| o T
C 11 Fields 8 >
12 Nelson 9

Figure 13: Vertical representation of a linked list.
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6.2.1 Operations on linked lists

A linked list may be maintained in memory by means of two arrays, one
containing the data and the other the links, or by using an array of records
containing both the data and the links. Let the informative part of element
K be INFO[K] and the link field of the same element be LINK|[K]. Let
also START contain the first node address and NULL be the content of the
last link.

Traversing a linked list is done by using a variable PTR containing ini-
tially the address of the first node (PTR := START). After hav-
ing processed the first node’s data, the pointer is updated to point to
the next node (PTR := LINK[PTR]) and the loop is repeated until

PTR=NULL.
START Data list
[
Node A Node B
[ - L - »> I - S [ » X
AVAIL
"
Node N

[ [ [ [d—  —L I

Free-storage list

Figure 14: Linked list before an insertion.

Insertion To insert a new node in a list, we need to have some available
memory locations, and to be able to allocate them to the list. This is
done by maintaining a parallel list called the list of available space, the
free-storage list or the free pool. Let this list be called AV AIL.

The insertion of a node between nodes A and B of a list (fig. 14) is
done by removing the first node of AV AIL and storing its address in an
auxiliary variable NEW (NEW := AV AIL). The AV AIL is updated
(AVAIL := LINK[AV AIL]); we will then copy the new data in the
new node (INFO[NEW| := ITEM), and at last we have to insert

Fourth College on Microprocessor based Real Time Systems in Physics 198
Trieste, Italy. Oct 7 - Nov 1, 1996.



Software Design Bartholdi Paul

START Data list
Node A Node B
. » . > . ————- . » . > X
AVAIL
-
Node N

A T T

Free-storage list

Figure 15: Linked list after an insertion.

the new nodes in the list (LINK[NEW] := LINK[A]; LINK[A] =
NEW). The resulting lists are presented on figure 15. Note that were
the insertion point be the first node, the two last assignments would
have been LINK[NEW| := START; START := NEW.

Deleting a node of a list seems very simple, as we have only to reassign
the pointer of the preceding node to point to the next node. In reality,
we can’'t know the address of the preceding node without traversing
the list to compare each node with the deletion point, while remem-
bering the preceding node until the actual node is processed. Another
problem is to deallocate the memory we don’t use anymore. This task
is called garbage collection and is done by returning the node to the
AV AIL list (fig. 16). Thus, deleting an element of a list is done by
traversing the list once, and then returning the node to the free pool,
which implies about the same operations as inserting a node. While
doing the traversing, we are able to do another task, as searching, for
example, a node with specific data, which we want to delete.

Searching a specific item throughout a list implies a loop with an internal
concordance test. If the list is sorted, the test may be smarter to check
if the item position is already overpassed, which would lead us to stop
the loop.

Binary search is not possible with linked lists, since there is no way to
point to the middle of a list.
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START Data list

Node A Node N Node B

[ [ [

— I

Free-storage list

Figure 16: Deletion in a linked list.

Sorting a list may be done by different algorithms. The bubble-sort al-
gorithm (6.1.1) will be suitable for a linked list, but the quicksort al-
gorithm (6.1.1) will need the particular properties of a two-ways list
(6.2.2).

Another good way to have a sorted list is to keep it sorted, i.e. insertion
is done at the right place (searching).

6.2.2 Particular lists

There are several particular forms of lists that can be used in different situ-
ations.

START

5 g B e I e L H-I_J%

Figure 17: Circular linked list.

A circular list (fig. 17) is a linked-list whose last node’s link points to the first
node. This kind of list is widely used in computer science, because all the
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pointers contain valid addresses, and no special treatment is thus required
neither for the first node, nor for the last.

FIRST INFO field of node N
BACK pointer field of node N
[ (—FORW pointer field of node N
[~

e B Y~ B0

Node N

LAST

Figure 18: Two-ways linked list.

A two-ways list (fig. 18) contains three parts nodes. In addition to the data
part and the link field LINK[K] now called FORW/[K], there is a second
link BACK[K] pointing to the preceding node. The START variable is
replaced by two entry point variables FIRST and LAST. A two-ways list
has the fgllowing properties:

e FORW[A]=B <= BACK[B] = A
¢ Operations can be done in either direction.
e For deletion, the localization of the preceding node is trivial.

e Insertion is a bit more complicated by the presence of the second
pointer, i.e. needs two more assignments than insertion in a one-way
list.

A two-ways circular list mixes the properties of the two previous lists.

6.3 Stacks

A stack is a linear structure accessible only by one extremity. This notion is
very familiar to us, as we use a lot of stacks in everyday’s life, as illustrated
in figure 19.

All the operations will be done on a particular point called the top of the
stack. Adding an element is done by pushing it on the stack. Removing an
element from the stack is called popping (fig. 20). As the top is the only
access to the stack, the last element pushed in will be the first popped out
from the stack. This last-in, first-out property has given to the stack its
second name: LIFO.
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Stack of Stack of
dishes

Stack of
folded towels

pennies

Figure 19: Everyday’s life stacks.
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Figure 20: Stack push and pop operations.
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Stacks are widely used in computer science. They are the basic structures
on which the notion of recursion is implemented, and many well-known al-
gorithms or problems have been implemented and solved through its usage.

Remember the quicksort algorithm (6.1.1). A practical way to keep track
of all the subarray bounds while processing one of them is to put them on
stacks. The Towers of Hanoi problem is implemented recursively (recursion
uses stacks), or may be implemented with stacks in an iterative way. Reverse
Polish Notation (RPN) which writes operations as operands followed by the
operator uses stacks: The operands are put on the stack, where each operator
pops the number of operands it needs.

6.4 Queues

A queue is another familiar concept (fig. 21). In computing, queues are also
widely used for bufferizing data arriving from or leaving to a peripheral, or
to schedule tasks to a processor. They have a first-in, first-out structure, and
thus are also called FIFO.

BUS
s1or

L

Figure 21: Familiar queue.

Data may be added in a queue only at the end called the front, and removed
only at the other end, called the rear .

Special implementations of queues allow other types of access:

Deques are double ended queues, that can be accessed by either ends, but
not in the middle.

Priority queues are queues where the highest priority element is to be pro-
cessed first. The implementation will determine the ease of inserting
or deleting the element in a priority queue. A way to implement a pri-
ority queue is to use a linked list with its usual properties for insertion,
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Figure 22: Representation of a priority queue implemented as a list.
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but where processing and deletion is limited to the first element. In
the figure 22, successive deletions will remove AAA, BBB, etc., while
mnsertion of an element X XX is done at a place determined by the
algorithm according to its priority (2) .

7 Object Oriented Computing

It is highly preferable to group in one unit a logically linked data set. On the
other hand, it is not necessary that higher level modules know the internal
functioning of the routines or the structure of a complex data set. An external
module should perceive them as a functional black box. This vision is close
to the block diagrams used in electronics or automatics.

The interface of the module is its visible and accessible part. It represents the
specifications of the module and can be separated from the implementation
part, which describes the functionalities of the module.

The Modula-2 language was one of the first languages to comply with the
separate compilation of the modules. It addresses the notion of visibility,
with library modules consisting of a definition and an implementation parts.

7.1 Objects

The basic concept of object-oriented description is to consider a program as
a model for a real world situation. Now, the real world consists of related
objects. Objects are thus more stable than relations in the system evolution.

It seems thus natural to decompose this real world situation’s model in ob-
jects models rather than in models of the relations existing between these
objects.
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From now, we will call objects the models of real world objects. An object
is the whole set of characteristic properties satisfactory to describe the object
with regard to the studied model.

In classical programming, we consider an algorithmic description of the sys-
tem, in which we introduce data. In object-oriented programming (O0P),
we consider objects, whose behaviour is described by algorithms.

(Ob ject = Data structure 4 Related operations]

7.2 Object Oriented Design

Different advantages of the object-oriented approach are examined in the
next sections:

7.2.1 Easy Design

QOur brain is used to apprehend real objects. The definition of a program’s
main concepts as objects enables us to better conceive, thus better express
the application’s goal.

7.2.2 Better Support and Debugging

With the gathering of data structures and related procedures in a single
locus (the object), the localisation is better, leading to more direct access
and easier debugging.

7.2.3 Data Security

An object is a black box. The OOP insists on the separation between the
object’s properties, described by related operations, and the internal repre-
sentation of this object. An object provides the handling interface, while
hiding the implementation details.

Seen from the outside, an object will be manipulated only on its properties
knowledge, without considerations to its realisation.
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7.2.4 Flexibility

Internal representation of the objects can be modified, adapted to the hard-
ware and so allow performance optimisation, without meddling with the ap-
plication software.

7.2.5 Recycling

An application can be developed from existing objects. This can speed up
software production and decrease the development costs.

7.3 Competence Sharing

The overall process of software development involves three aspects:

7.3.1 The Role of the Application’s Conceptor
He has to define the objects in three phases:
1. What are the intervening objects of the application ?

2. What are they doing ?

3. How do they interact with each other ?

7.3.2 The Role of the Objects’ Programmer
He will create the objects defined by the first above-mentioned point. The

answers of the second and third questions will give him the data structure
and the associated operations, as illustrated in figure 23.

@ — Data structure

®

l

Associated methods

Figure 23: Concepts — objects relation.
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The objects’ programmer should be aware of the hardware, to be able to op-
timise the objects’ code, if necessary. No hardware dependent programming
should be done at another level, and even at any level, if possible.

7.3.3 The Role of the Application’s Programmer

He uses the objects according to the functionalities defined by the conceptor.
He is responsible for the application’s functioning optimisation.

7.4 Object Oriented Programming

Procedural (algorithms based) languages such as Fortran or Pascal associate
data to procedures, but OOP associate procedures to data structures to
create objects. New languages with some new characteristic are to be used
for objects creation and manipulation. As we’ll see in the next sections, the
object approach is implemented in these languages, as well as some other
ideas allowing an easy and complete implementation of the objects.

First, the notions of abstract data types, which defines meta-objects, and
of encapsulation is the implementation of the objects themselves. The con-
cepts of inheritance enables the creation of hierarchy of related data types.
The polymorphism allows an object to take several shapes, and the dynamic
binding dispatches general calls to specific methods adapted to the object
type.

In the object-oriented concept, the communication between the objects is
done via messages, which are used to schedule the methods.

7.4.1 Data Abstraction and Encapsulation

Every data structure should give rise to a control of its manipulation, in
order to guarantee the data consistency. One should think of this structure
in terms of the actions to be carried out on it, rather than in terms of its
representation.

The definition of a type as the whole set of operations linked to a data struc-
ture meet this view, provided that one can only manipulate this structure by
these operations.

Such a type, whose name is associated with the data structure and whose
internal functioning and representation details are hidden by providing the
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appropriate operations for the variables of this type is called an abstract data

type.

The gathering of hidden data structures and appropriate operations is called
encapsulation. The data structures embedded in an abstract type are called
members data, and the operations making up its interface are called methods
and form the specification of the abstract type.

The specification should be complete in the sense that no access to a variable
of the type should neither be necessary nor even possible, without going
through the specified operations.

This will increase the data security.

7.4.2 Inheritance

Inheritance or class derivation is a mechanism by which OOP languages
allow relations between types and sub-types to be defined.

New abstract types can be defined, sharing the properties (including meth-
ods) of an already defined abstract type, without having to re-implement
these characteristics. The new type inherits all the members data and meth-
ods from a defined type, and may modify some of the already defined meth-
ods, as well as it may define some new members data and methods. The
figure 24 illustrates this concept.

Ling_ling Quinn

Figure 24: Single inheritance: The bear family class
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Some object-oriented languages implement the multiple inheritance concept,
allowing a class to be derived from more than one base class, with the aim
of inheriting members from different and independent classes. This concept
is illustrated in figure 7.4.2.

The new type is said to be a subclass or derived class of the original type,
which is a superclass or base class. We will adopt this terminology from now.

A derived class has obviously to be declared as inheriting, by specifying it’s
base class.

A derived class can itself be an object of derivation, as seen on the figure 26.

In the base class, the hidden objects have to be declared as accessible to
the derived classes: C++ defines three access levels for the members data or
functions of a class: public, private and protected.

The public declaration in a class enables visibility and access from outside,
and usually includes the manipulating functions of the embedded objects.

The private declaration is provided for the hidden data structures and func-
tions, that are not accessible, even by a derived class.

The protected declared members and methods are only accessible by the
derived classes.

The zoo animals fit nicely in an inheritance hierarchy, as already seen in
figures 24 and 7.4.2. The figure 26 show a three level inheritance hierarchy
with multiple base classes and multi-level derivation.

7.4.3 Polymorphism

Derived class variables {objects) can be assigned to its base class variables.
Only the inherited methods and data structures will be copied, specific mem-
bers added after the derivation will be ignored. This rule is very important
to guarantee the compatibility between related classes, and implies that an
object declared of the base class can take the shape of any object of the
derived classes. This peculiarity is known as the polymorphism concept.

The special relationship existing between derived classes promotes a generic
style of programming. The polymorphism mechanism implies the dynamic
binding concept, which authorises the run-time address resolution of the
method to use for a specific object.

C++ provides virtual member functions, which can be implemented differ-
ently for each derived class, despite it is referred to by the same name for all
these classes, and the adequate function can be binded at run-time.
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Mr

Ling_ling Quinn

Figure 25: Multiple inheritance: The bear family class, with endan-
gered species indication. Notice that multiple inheritance transform
the tree structure of the class hierarchy into a directed graph struc-
ture.

A function should only be declared virtual if the class is supposed to be a
base class, the implementation of the function is type-dependent, and it will
be called through the base class. In the other cases, the code will be more
efficient if the function is declared as a usual member function. The multiple
definition process necessary for implementing the class-dependent versions of
a function is called overloading.

In C++, even basic operators can be overloaded. One may define, for exam-
ple, a + (plus) operator for adding strings, graphs, or stacks. The multiple
declaration of the + operator stands out the necessity to choose from the
different functions at some point. If this choice is doge at the compilation
time, this is called early-binding or static binding. The late-binding approach,
where the choice is carried out at run-time, is used with virtual functions (dy-
namic binding),

7.5 OOP Languages

Languages supporting the different concepts of object-orientation to a cer-
tain extent include amongst other Ada, C++, Eiffel, Oberon, Simula, and
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Quinn

Figure 26: Complete inheritance: A zoo animal inheritance graph.
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Smalltalk. We will restrict our view to C++, which is not the most se-
cure and consistent object-oriented language, but which is compatible with
its predecessor, the C language, with all the advantages and drawbacks this
compatibility involves.

The Eiffel, Simula and Smalltalk are real object-oriented languages, while
Ada and Oberon are conventional languages with minimal object-oriented
programming support: the concept of object is defined, but neither classes,
nor inheritance, even though these concepts may be simulated with some
programming effort.

7.5.1 C++

C++ is an extension to C language, for supporting object orientation. The
most important extensions from this point of view are

e data abstraction
e operator overloading
e classes with multiple inheritance

e objects with dynamic binding

Abstract data types: Classes

Classes consist of data and functions members, and is divided into a
public and a private part. The public part describe the interface, while
the private part is inaccessible for heirs and clients. Members may be
declared as protected in order to be used by subclasses.

The declarative part of the class is stored in a separate header file,
inserted in each file using the class, as well as in the implementation
file for the class itself.

Inheritance: Derived classes

Publicly inherited members are public both in the superclass and in the
subclass. Privately inherited members cannot be accessed from outside
the subclass, and thus inhibit polymorphism.

Multiple inheritance is supported. Virtual derivation allows multiple
inheritance while avoiding multiple copy of inherited parts.
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Polymorphism:

The assignation of subclass objects to variables of the superclass is
allowed, with the previously mentioned exception.

Dynamic binding:
Virtual functions allow to override inherited methods. Functions de-
clared as such in the superclass are dynamically binded.

Objects:
Objects are created either by declaration or by the new operator.

An initialisation procedure called constructor is automatically called
by the compiler each time an object is created. This procedure has the
same name as the type. Another function of each class is the destructor
which is used to delete objects, as well as the memory allocated by those
objects.

8 Real-Time Systems

Real-time applications are characterised by the strict requirements they im-
pose on the timing behaviour of their system. Systems ensuring that those
timing requirements are met are called real-time systems. We will exclude
from the beginning the transactions processing systems (seat reservations,
banking), where the transactions are done in real-time, but without any con-
straint.

8.1 Concurrent and Real-Time Concepts

A concurrent program is a non-sequential program, in the sense that some
operations are performed simultaneously. This technique, obviously useful
in the case of a multiprocessu: system, can even be attractive in a inono-
processor environment, to take full advantage of the independence of the
processor and the peripherals.

Consider for example that we want to write characters on a terminal. The
figure 27 illustrates the activities of both the processor and the terminal
interface.

e The processor has to wait until the terminal is ready to accept a char-
acter, it then sends the character to the interface and loops back to its
waiting state.

Fourth College on Microprocessor based Real Time Systems in Physics 213
Trieste, Italy, Oct 7 - Nov 1, 1996.



Software Design Barthoidi Paul

e The interface waits for a character, accepts it, write it to the screen
and loops back to its waiting state.

That description shows that both processes are waiting for an information
given by the other party, before doing any useful task. This is solved by task
or process synchronisation. In this example, the synchronisation is done for
one way by an interrupt, and for the other direction by means unspecified at
this point. There are several mechanisms able to signal that the character is
ready to be processed by the interface process.

N £

Wait ‘® Signalize
Interrupt
Transmit Wait
U Character
Processor Output
Interface

Figure 27: Respective activities of processor and terminal interface for writ-
ing a character.

During this time, a concurrent program can perform another task!

Of course, even with the synchronisation, one of the two processes will be
faster than the other. In our example, the processor will be mostly waiting
for the interface to be ready.

Concurrent tasks should avoid accessing shared data simultaneously. This
could lead to incoherent informations if two processes write at the same time
in a data structure. Concurrent programs always present these two problems:

¢ Mutual exclusion (Critical resource access).
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e Synchronisation between processes.

These problems are solved by tools (mechanisms) specific to concurrent pro-
gramming, called locks, events, semaphores, monitors, mailbozes, rendez-vous
or interrupts.

A real-time program is very much like a concurrent program. It has to manage
peripherals, and the mechanisms mentioned above still apply. A real-time
program includes a supplementary issue: timing constraints imposed by the
fact that a real-time program controls an external system.

With the improvement of the performance of the microcomputers, and as
their price, size, weight, and power requirements decrease, real-time systems
are more and more widespread.

Current fields of applications include scientific instrumentation, medicine,
industry, cars and military. For example, a real-time system may drive and
monitor an astronomical telescope or an X-ray medical scanner, control an
industrial production line or a car motor and navigation system, as well as
drive a weapon delivery system or control a entire nuclear powerplant.

You have noticed that the word control or a synonym come often in those
examples:

Timing and control are the master-words in the real-time systems world.

In general, we’ll call real-time system any system meeting external timing
constraints and able to solve these constraints during its execution; without
any specification on the architecture of the system.

A Real-time system can be divided into two groups: The hard real-time
systems, for which a failure to meeting the timing constraints is considered
as a major failure (crash) of the system, and the soft reai-time systems that
will give an error or a warning on such failures, without stopping execution.

8.2 Embedded and Distributed Real-Time Systems

Many complex systems require nowadays an elaborate control system to sup-
port their internal functioning. Such systems often use a dedicated computer
as controller. Such a computer is called an embedded computer.

An embedded computer system has to control the rest of the system. It gets
information like data and status from sensors, then issues control commands
to actuators.

One feature that distinguishes embedded systems from other real-time sys-
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tems is that they are only executing a task relative to a fixed and well-defined
workload. They don’t provide any development environment.

Study of embedded systems must consider the controlled system as a whole:
In particular, mechanical, electro-mechanical parts and electronics should be
considered at the specification level of such a real-time embedded system.

The most general way of defining a real-time system is to consider a maulti-
machine, distributed computing environment. The term multi-machine im-
plies that, in addition to the internal timing constraints due to its peripherals,
each machine (node) has to deal with timing constraint requests of the other
nodes of the system.

8.3 Implementation Issues

Most of the real-time applications cannot be programmed with traditional
languages under a traditional operating system, or at least at their standard
level, as those languages don’t know how to handle the timing constraints
imposed by the system. Additional features known as real-time ertensions
are defined for some languages, enabling such systems to be programmed and
checked. These extensions often enable the programmed real-time system to
override the operating system mechanisms to control directly the hardware.

On the other hand, real-time systems can be programmed with classical
languages such as C, if there is a library of functions implementing the real-
time mechanisms. In this case, the real-time aspects of the application is
shared between the language and the real-time operating system (LynxOS,
0S5/9).

Another aspect of the implementation of complex, multi-machines real-time
applications is the operating system. The traditional approach to multi-
tasking operating systems design is to split the time ir slices and to at-
tribute those slices to the different computing-resources demanding applica-
tions. This kind of management is called time-sharing. Time-sharing doesn’t
address correctly the problems arising in real-time systems.

So, the execution of real-time applications has to be supported by a correct
environment, which is obtained through a real-time operating system.

These real-time operating systems have to manage timing and interactions
problems. Different mechanisms allow them to handle timing constraints
correctly, including interrupts and signals. They also contain mechanisms
to solve the processes scheduling problem, that can be quite difficult, with
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preemptive tasks and dynamic priority setting. Another aspect treats the
communications between tasks, with semaphores and shared data zones.

8.4 Time Handling

Time handling is the most important issue in real-time systems. Time han-
dling includes:

e Knowledge of time
e Time representation concepts

e Time constraints representation

8.4.1 Knowledge of Time

Time is given by clocks. In a multi-machine environment, multiple clocks may
exist and should be synchronised, in order to get a coherence between the
different timing constraints and interactions specifying the real-time system.

A clock is characterised by its correctness, which defines the quality of the
knowledge of time, and by its accuracy, which defines the way the clock drifts.
The accuracy is given by the derivative of the clock signal, as shown by the
following definitions:

A standard or reference clock is one for which the relation
C{t)y=1t ,vt
is confirmed. A clock is correct at time g, if
C(ty) = to

A clock is accurate at time g, if

acw| _,
dt |,
8.4.2 Clock Systems
There are different clock systems.
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The simplest one consists of one central clock server, that should be very ac-
curate and reliable, even though a redundant system can be used. Therefore,
this kind of clock system is quite expensive.

Another type of clock system defines a master clock polling multiple slave
clocks, measuring their differences and sending to them the corrections to do.
All the clocks can be of the same accuracy, and if the master fails, another
one amongst the other is elected to become the new master. This type of
clock system is called centrally controlled.

A distributed clock system consists of an interlinked network of clocks, which
all run the same algorithm, polling the other clocks to get their time, and then
estimate their correctness. This type of system can be simple or enhanced,
depending on the complexity of the algorithms used at the nodes, and implies
a relatively heavy traffic load on the communication network.

The graph linking the nodes can be closely connected, with any of the clock
polling all the others, or loosely connected with only a subset of the connec-
tions used for time synchronisation.

A protocol named zntp working through network with the UDP protocol is
publicly available, and works as a distributed clock system with a hierarchy
defining more or less reliable clocks. This hierarchy is organised in levels
(strati), a lower level number meaning a more preemptive clock. Each node
can be configured to communicate with a certain number of other clocks,
either for synchronising itself (same or lower levels), or to only read the time
on higher level clocks.

The Global Positioning System (GPS) is a satellite based navigation system
providing precise position, velocity and time information. The heart of the
GPS consists of 21 satellites and three spares, that revolve round the earth
twice a day, at an altitude of 20000 kms. They allow a 24 hours per day
worldwide coverage by more than 3 satellites. This system can be used by
special hardware to get a good timing information to synchronise clocks. The
receivers are cheap (about § 6uu-1000).

Other special hardware may take advantage of the time signals broadcasted
by radio waves from different standard clock systems in the world, as DCF
in Germany, WWYV in Boulder, Colorado, WWVH in Hawai or JJY in the
Pacific North.
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8.4.3 Time Representation

Time representation in real-time systems should be sufficiently well-designed
to take into account the properties of the system, and to allow a precise
definition of the characteristics of the time constraints.

As a preliminary definition, we should state that the time granularity of a
system is the clock resolution. This notion is more complex than it seems.
Each operating system uses a system clock (fig. 28a) to manage the timing
synchronisation between processes. This clock gives interrupts to the system
at a certain rate, which can usually be modified, but which should neither
be too high, for fear of excessive system overhead, nor too low, because it
would penalise the interactive processes by a long response time. This time
is usually about some tens of milliseconds. This gives the granularity for
scheduling processes, or time-slicing in a classical operating system.

There is another clock used for time measurement (fig. 28b), which can
also be used to drive a programmable timer for scheduling events at certain
time. This is called the real-time clock, and has a granularity of about
microseconds. A real-time operating system will usually use this clock to
synchronise the processes or manage timing constraints.

a) System Clock

lus
b) Real-Time Clock

Figure 28: Different clocks are defined in a system.

Point-based representation defines events of zero-length duration, occur-
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ring at some time instants in a system, which are responsible for a
change in the state of the system.

Interval-based representation defines activities of finite duration, having
a start and a stop time. These activities can exist simultaneously.

Both approaches have their drawbacks:

Point-based-representation Interval-based-representation
Events cannot be decom- It is difficult to take into
posed while maintaining account the time granu-
an order, as they have no larity of the system.
duration.

Partially overlapping ac-
tivities cannot be de-
scribed by this model.

The best solution is highly dependent of the system, but will often be based
on a compromise between both approaches, leading to an interval based rep-
resentation, with system’s granularity support.

8.4.4 Timing Constraints Representation

A real-time system has to deal with the arrival of time-constrained requests,
i.e. the invocation of processes to be executed in due time.

The system has to allocate the resources to meet the specifications, in order
that the process can begin at a specified time, and be completed at another
specified time.

The minimal definition of a timing constraint is the triple
(Id, Thegin{conditionl), Tona(condition?2))

where Id is the name or ID-number of the process.
Thegin{conditionl) is the starting time of the process.
Tena(condition2) is the completion time of the process.

Depending on the system and the temporal uncertainties on the allocation
time of certain resources, we may need some additional time parameters in
the constraint representation.
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In particular, the completion time may not be a very severe constraint, and
in case of earlier process completion, the resources should be freed for other

processes.

On the other hand, a very long process should not monopolise the resources
of the system, and the global efficiency of the system would be improved, if
time-slices were attributed to this process.

This leads to the more mature definition of a timing constraint as the quin-

tuple
(Id: Tbegin (conditionl ) ) CIdy f[d, Tend(conditz’onQ) )

where I'd is the name or ID-number of the process.
Tegin(conditionl) is the starting time of the process.
Crd is the computation time of the process, or the time-slice.
fra is the frequency with which the time-slices have to be attributed.

Tona(condition2) is the completion time of the process.

8.4.5 Interrupts driven Systems

Interrupts are often used as a synchronisation mechanism in real-time sys-
tems, particularly in control applications.

An interrupt is a signal occurring asynchronously and triggering a service
routine. This routine is called by the interrupt handler, which identifies the
interrupt, locates in a table the appropriate address, and passes it to the
program counter (instruction pointer). The handler or the service routine
itself has to save the current environment before beginning processing the
request, as it could modify this environment.

A signal enabling the interrupt system (IE) is disabled by the acceptance of
an interrupt by the handler. It is usually the service routine’s responsibility to
re-enable it, at some time. In the figure 29, we have a first interrupt arriving
(IR5). The interrupt handler accepts it, as there are no other interrupts
being processed, and passes control to the IR5 service routine. A second
non-preemptive interrupt arrives before the routine has reieased the IE signal.
This interrupt is blocked for a while, until the interrupt handler being re-
enabled. Then it is normally processed. This illustrates the fact that response
time to interrupt may vary.

The routine has to be carefully designed to meet the time constraints on it’s
duration, deadline and frequency. Sometimes, the task has also a starting
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Figure 29: Interrupt Service Scheme
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time condition, in which case it can be executed only if both the interrupt
has occurred, and the starting condition is met.

8.4.6 Signal Synchronisation

Another way to synchronise processes is to signal certain states of the system.
Typically, one process needs the system to be in a certain state which it
cannot control for continuing it’s execution. Arrived at that point, it checks
a signal specifying the desired state, and if unsatisfied, waits until the signal
arrives, indicating the change in the system state.

On the other hand, another process is responsible of modifying the state of
the system, and has to signal it after completion. This method leading to
mailboz or rendez-vous synchronisation does not fit well to real-time systems,
because it cannot ensure that deadlines are respected, and is mainly used for
concurrent processing.

8.5 Real-Time Systems Design

The design of any system should begin by a requirement specification phase,
followed by the design phase itself. These phases will be followed by the
implementation, tests, etc. The design phase can also be decomposed into
a preliminary and a detail phase. The different phases and sub-phases may
sometimes overlap each other in time.

Take care that a too rigid approach in the design, obtained for example by
avoiding any time-overlap between phases, may lead to a very formal and
well-documented design, but that will possibly be neither creative nor the
best one.

Another aspect is that a project is in itself very much like a “real” real-time
system, with timing constraints and deadlines. To achieve a project in the
specified delays, one will tend to minimise the specification and design phases
to begin as quickly as possible the implementation. This attitude may lead
to a badly-designed and possibly fragile system. A better way is to begin the
implementation of well-designed parts while refining the design of the rest,
ensuring both a good overall design and a quick development of the system.

Let’s examine the two phases of the design.
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8.5.1 Requirements Specifications

The requirement specification phase is important in real-time systems, be-
cause the descriptive aspect of the document enables to easily include the
timing constraints.

The requirement specification document should:
e state external behaviour of the system.

e avoid specifying any implementation details, but only constraints on
the implementation, as the details of the hardware interface.

e state the responses to the exceptions.
e be easily modified.

e be well documented to serve as a reference during all phases of the
project.

¢ specify the timing constraints and deadlines of the project itself.

Some systems may be described in a verbose documentation style only, while
others may need some more sophisticated tools as, for example, state-charts.

Figure 30: State-chart example.

8.5.2 State-Charts

State-charts describe the system as states and transitions between them, trig-
gered by events and conditions. States are represented by boxes, transitions
by arrows, events and conditions are labels for the arrows (figure 30).

States can be decomposed to lower level states or combined into a higher
level state (figure 31). These operations are called refinement and clustering.
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Figure 31: Clustering states in a state-chart.
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Figure 32: Zooming in and out.
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Zooming in and out {figures 32) enables one to have different levels’ views of
the system.

R8.5.3 Petri Nets

The complexity of real-time systems is essentially due to the interactions
between tasks, the access conflicts and the temporal evolution of the system.
It is necessary to use powerful tools to represent the evolution of such a system
at the conception level. The Petri net representation is a very powerful
tool, which enables to represent the interactions between processes and the
evolution of processes.

A Petri net is a quadruple C = (P,T,I,0) including N places p; € P and
L transitions t; € T. The structure is described by two matrices 7 and O of
dimension L x N specifying inputs and outputs viewed by the transitions.

The elements of those matrices are integers specifying the weight of the link
between a place and transition. The absence of a link is obviously described
by a weight w = 0.

A Petri net can be represented by a Petri graph, with two types of nodes:
places and transitions. The directed edges may only link nodes of different
type. As an example, a Petri net described by

C = (PT,I,0)

P = Ipl,Pz,Pa}P4,P5|
T = [t
Pr P2 P3 Ps Ps

0 0 0 0 1|t

Py P2 P3 Ps Ps
O =10 0 0 1 2!
G 0 1 0 01t

is represented by the graph of figure 33

This definition of a Petri net enables only the static representation of a
system. To modelize the temporal evolution, the Petri net is completed by
marking. A marked Petri net represents a state of the system. Marking
tokens are represented by dots on the graphs (fig. 34).
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Figure 33: Petri graph with weighted arcs

Figure 34: Marked Petri graph
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A marking is a N-dimensional vector specifying the numbers of tokens in
each place. The system becomes dynamic when the tokens travel through
the net. The travelling is done through transition firing. A transition may
be fired only if all the preceding places are marked (active). This transition
is said to be enabied.

Only one transition is fired at a time, randomly chosen between enabled
transitions. A firing has the following effects on the places preceding and
succeeding the transition:

e w token is removed from each preceding place.
e w token is put in each following place.
Firing is:
Voluntary An enabled transition may be fired, but it is not mandatory.

Instantaneous All the operations related to a firing occur simultaneously,
and take no time.

Complete All the operations related to a firing do occur.

The figure 35 shows the result of firing transition ¢; in figure 34.

Figure 35: Petri graph after the firing of #;.

A Petri net may be annotated as shown in the figure 36 illustrating the
allocation of a processor: As soon as the processor is idle (p, marked) and
there is a task waiting in the queue (p; marked), the processing may begin
(t1). The task is executed (ps marked). At the end (¢;), the task is completed
(ps marked), and the processor is deallocated {p, marked).
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Figure 36: Petri net modelizing a processor allocation.

Figure 37: Petri net modelizing a rendez-vous type synchronisation.
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Figure 38: Petri net modelizing a mailboz type synchronisation.

Figure 39: Petri net modelizing the semaphores primitives P(s) (left) and
V{(s) (right).
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critical

Figure 40: Petri net modelizing mutual exclusion by semaphore.

Without going into the details of the Petri net model, we can say that con-
ditions are associated to places, and events to transitions. The figures 37-40
show Petri nets representing some real-time issues.

The Petri net model may be used by the designer in a kind of top-down
structured approach (figs. 41-44) :

e Start with a global Petri net model of the system (fig. 41).

e Stepwise refine it by substituting (fig. 43) the transitions by well-
formed blocks (fig. 42) . A well-formed block should have only one
input and one output (fig. 44).

The Petri nets can be transformed to flowcharts. The nodes of the flowcharts
are associated to the Petri net transitions, while the arcs will replace the
places (figs. 45 and 46).

8.6 Structured design of Real-Time Systems

In addition to the concepts of structured design, we have to address the no-
tions of timing constraints and interprocess communications. DARTS (De-
sign Approach for Real-Time Systems) was developed by General Electric to
extend the notion of structured design to include process decomposition and
process interfacing.

First, an analysis of the system has to be done in terms of functions: The
system is then viewed as a date flow transformed by functions.
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Figure 41: Initial step for structured design.

Figure 42: Block example.
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Figure 43: Replacement of ¢y, p3, f3 in fig. 41 by the block of fig. 42 .

SEQUENCE

IF THEN ELSE WHILE DO

Figure 44: Well-formed blocks.
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Figure 45: Petri net example.
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Figure 46: Flowchart for the Petri net of the figure 45.
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8.6.1 Process Decomposition

When the functions have been identified and described, they must be as-
signed to processes. DARTS defines criteria to assign a function to a separate
process, or to group it in a process with other functions:

I/0 dependency If a slow peripheral dictates the speed of execution of a
function, this function should be put in a separate process.

Time-critical functions High priority functions should be kept in a sepa-
rate process.

Computational requirements Intensive computation functions should re-
ceive a separate process.

Functional cohesion Closely related functions should be grouped in a pro-
cess.

Temporal cohesion Functions triggered by the same stimulus should also
be grouped.

Periodic execution Periodically executed functions should be kept in a
separate process.

So we see that functional and temporal cohesion are a criterion to group func-
tion in a single process, where they can still be separated and distinguished
by creating modules inside the process. Timing constraints and special re-
quirements justify on the other hand separate processes.

8.6.2 Interprocess Communication

DARTS provides two types of modules for the communication between pro-
cesses:

e Message communications modules (MCM).

¢ Information hiding modules (IHM). It is used mainly in cases of shared
data. IHM defines the data structure in a hidden way, with procedures
to access it.

The figure 47 shows three processes P;, P, and P; communicating through
the data they share, and which is defined in the module 7H M, with the data
hidden in structures B and C, accessed only through the procedure a.

Please notice how close this approach is from the object concept.
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Figure 47: IHM module
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Use of man pages and apropos

One should not forget all the man pages, either interactively on the screen,
or in printed form. The man pages for gcc, in particular, are very detailled.

When printed pages are realy needed, they can be produced with

man command | lpr
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or, if troff is installed,

man -t command

man -~k keyword and apropos keyword can be used to retrieve command
names that are related to some keywords.

Here is an example:

obssql8:” 551> apropos administration

admind admind (im) - distributed system administration daem
admintool admintool (im) - system administration with a graphical
dispadmin dispadmin (im) - process scheduler administration
nis_checkpoint nis_ping (3n) - misc NIS+ log administration functions
nis_ping nis_ping (3n) - misc NIS+ log administration functions
nisgrpadm nisgrpadm (1) - NIS+ group administration command
nistbladm nistbladm (1) - NIS+ table administration command
nlsadmin nlsadmin (im) - network listener service administratior
pmadm pmadm (im) - port monitor administration

sacadm sacadm (1m) - service access controller administratic
obssql8:” 552>
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10 Think

Think !

e think before doing
e think while doing
e think after having done

e your are responsible, you are the master
never give it to uP

e 1P must obey, not dictate

Think small !

e ‘Small is beautiful’
e keep things manageable, under control

e use small modules
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Think with others !

¢ do not reinvent the wheel
e make your work shareable
e build-up libraries

e accept help, call for help

e the others can and must think too

Think on your own !

e do not accept buzz words for granted
e adapt to your own country
e do not destroy your richness

e never accept dogma
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