&)

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
ENERGY AGENCY

INTERNATIONAL ATOMIC
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

T

Fourth College on Microprocessor-based
Real-time Systems in Physics
Trieste, 7 October - 1 November 1996

LECTURE NOTES
Volume I

MIRAMARE - TRIESTE
October 1996

Editors:
Abhaya S. Induruwa

Catharinus Verkerk

ph;?/}.,u'.tﬂ! L‘;} : ??' «0\ j‘*‘du}t‘u Wa - T.\‘n e

Conclusion

The completion, towards the end of the course, of Volume II of these Lec-
ture Notes gives us the occasion to acknowledge the various contributions to
the success of the Fourth College on Microprocessor-based Real-time Systems
in Phyvsics made by many individuals.

We sincerely thank the Director of ICTP, Professor Miguel A. Virasoro
for his interest in the course and the laboratory work, and for his support.

Special thanks are due to Professor Ines Wesley-Tanaskovie, Dr. Cate-
rina Casullo and Professor Luciano Bertocchi for their encouragement and
continued support. We are grateful to the United Nations University and to
the International Centre for Theoretical Physics for their respective financial
contributions.

Several members of the ICTP staff gave us valuable assistance both be-
fore and during the collegee. Our thanks go in particular to Italo Birri,
Mohammed Igbal, Stanka Tanaskovic and Marco Zorzini. Their help has
heen greatly appreciated.

We wish to acknowledge the work of the lecturers and of the instructors.
All of them did a great job in preparing and presenting their lectures, in keep-
ing the laboratory running and giving useful and friendly assistance to the
participants. Our sincere thanks go to Imtiaz Ahmed, Chu Suan Ang, Paul
Bartholdi. Razaq Ijaduola, Anita Kane, Ravindra Karnad. Carlos Kavka, Ul-
riclh Raicli. Pablo Santamarina, Abdellatif Tchantchane. Alexei Tikhomirov,
Jim Wethertlt and Wu Geng Feng. A number of them made particularly im-
portant contributions in preparing enhanced hardware and software for this
COLESe,

The hard work and dedication of the participants made the interaction
with them an enriching experience for the teaching staff. We hope that they
will all have the opportunity to apply their newly acquired knowledge on
retuyn to their home Institutes. We wish them success and full satisfaction
in theur professional life,

Abhaya S. Induruwa.
Catharinus Verkerk.
Directors of the College,
Trieste. October 1996.

Fourth College on M?Lcmprocessor—based
in Physics

Real-time Systems

Trieste, 7 Oct-1 Nov 1996

Table of Contents

Volume 11

Conclusions

Fbedded Systems
¢hi Suan Ang

Review of College Instrumentation
1..]. Wetherilt

N AW indows Programming
Iirwch Raich

Collected Adventures of Writing a Linux Device DIIVeT. oo

lrich Raich

101

Embedded Systems

Fourth College on Microprocessor-based
Real-time Systems in Physics

Trieste, 7 Oct—1 Nov 1996

Chu Suan Ang
Kuala Lumpur
Malaysia

ematl: csang@pc.jaring.my

Abstract

A cursory survey of embedded systems is first given. Embedded
system development in both software and hardware is then introduced.
This is followed by examples of embedded processors suitable for small
and medium scale embedded system applications.

Embedded Systems Ang, Chu Suan

1 Introduction

Embedded systems have been around since the early days of computers.
When a chemical plant used an IBM mainframe computer for process control
in the 1960s, the mainframe was really an embedded processor, albeit a big
and expensive one. When a physicist used a PDP11 minicomputer in the '70s
to control and monitor his cryogenics experiments, he had built an embedded
system. However, in those days, the number of such systems was not very
large, basically because of the cost of hardware. How many PDPlls can a
cryogenics laboratory possess?

With the advent of microprocessors/microcontrollers and their prices
tumbling down in recent years, there is a tremendous growth in the number
of embedded systems. The cost change for embedded controller is phenom-
enal in the last two decades - from $10,000 in 1970s to $10 in 1990s which
is three orders of magnitude change. Based on the well-known fact that an
order of magnitude change of price would have large impact on its use and
importance, one can see that embedded systems will proliferate virtually ev-
ery where. The subject of embedded systems is now a prominent, one, at least
in the Internet! A recent Internet infoseek search on ’ernbedded systems’
produces 226,063 entries! With such a vast amount of information available,
this short series of lectures can at best only give a cursory introduction to
the subject.

1.1 What are Embedded Systems?

An embedded system is one with a built-in or embedded Processor or com-
puter, typically for carrying out some kind of real-time applications. The
computer in such a system is not used as a general purpose computing ma-
chine. An embedded processor may or may not have a standard keyboard
and video monitor, but it will always have some kind of connection to the
outside world be it a synchrotron, an air-conditioner or a handphone. While
it is possible to cite many examples for which the time of response is not
critical, there are far more applications of embedded systems which are time
critical. Thus the study of real-time aspects of embedded systems becomes
an important issue - which is what this college is all about.

It is the application rather than the hardware itself that defines the em-
bedded system. A PC used as a general purpose computer, as those in the
computer room and in your office or home is not an embedded system. The
same type of PC used in the laboratory to log data or control thus forming
an integrated equipment is an embedded processor. Peripheral interface will

Fourth College on Microprocessor based Real Time Systems in Physics 1
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

be used, but then again, in a simple case, it may involve only the standard
serial (COM Port) and parallel (Printer Port) interface of the PC.

There are numerous examples of embedded systems around us. Basi-
cally the ubiquitous embedded processors can be found in a large number of
applications and situations:

e Laboratory - test equipment, data acquisition systems, control sys-
tems, dedicated equipment. The use of embedded systems in laborato-
ries has been going on for a long time. In ’60s and '70s researchers in
laboratories used minicomputers as embedded processors. Now stan-
dard PC and microcontrollers are typically used. Test and laboratory
equipment manufacturers are among the first major users of micropro-
cessors in embedded systems. The predecessor of this Real-time Col-
lege was a college on the use of microprocessors in embedded systems
in laboratories.

e Process industry - process control systems. This is the grand daddy
of real-time embedded systems. Early examples are the closed-loop
control system at a Texaco refinery in Texas in 1959 and a similar
system at a Monsanto Chemical Company ammonia plant in Louisiana.
As the industry is able to pay, they are the ones that use mainframe
computers as embedded processors. It is interesting to note that the
use of computers in the process industry more or less charts out the
history of computer engineering and computer science. Practically all
the hardware and software techniques have been used by this industry
in one way or the other.

¢ Manufacturing industry - production line assembly equipment, au-
tomatic test equipment, robots. Manufacturing industry benefits tremen-
dously from embedded processors especially in the area of automation
or robotics. Without the use of embedded systems, you would not be
paying the current price of about $1000 for your PC which is really
more powerful than a minicomputer of the '70s, let alone the ENIAC
(Pennsylvania, 1945, 19,000 vacuum tubes, 200kW, 10 decimal digits,
0.2 ms addition, 2.8 ms multiplication.) or the EDSAC (Cambridge,
1949, 3,800 vacuum tubes, 500kHz mercury delay lines, 256 words, 35
bits, 1.5 ms addition, 6 ms multiplication.)! In 1996, assembly plants
in Malaysia, Mexico, Philippines, Thailand, China and other countries
are churning out more than 3 billions microcontroller ICs worth more
than 10 billion dollars! This is only possible when large amount of
embedded systems with clever software are used in the assembly and
production lines.

Fourth College on Microprocessor based Real Time Systems in Physics 2
ICTP, Trieste, ltaly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

¢ Automotive - engine controls, anti-lock braking, lamp, indicator and
other controls. It turns out that the antomotive industry is one of the
most important customers of the embedded processors. In 1996, the
average amount spent by a car manufacturer on a car in microelectron-
ics is more than one thousand dollars. This industry stipulates high
requirements; electronics used must be highly reliable while able to
withstand severe conditions of temperature, vibration and electromag-
netic interference. Some processors were mitially specifically designed
for the automotive industry and latter only modified for general pur-
pose use.

¢ Consumer goods - audio-visual equipment, household electronics
(microwave ovens, washing machines, dishwashers, air-conditioners),
electronic toys and gadgets, etc. The list of products in this category
is very large and is expanding continuously as the costs of embedded
controllers drop. It is inconceivable now to operate a new television
set without an IR remote controller. This is of course easily made pos-
sible when the price of 4-bit microcontrollers drops to a dollar each.
(Whether one needs a remote controller to turn on a channel is a dif-
ferent story.)

¢ Office & banking equipment - autotellers, counting machines, weigh-
ing machines, photocopiers, fax machines. In many parts of the world,
fax machine is an essential equipment in running a business or oper-
ating an office. It speeds up business transactions significantly. While
e-mail is taking over facsimile service in many situations, the latter is
still an essential piece of office equipment. (I had to send my accom-
modation form to [CTP housing section by fax from Kuala Lumpur.)
Modern banking equipment are of course using a large number of em-
bedded processors, ranging from the very powerful one in autoteller
machines to simpler ones in currency notes counters and others.

¢ Computer peripherals - printers, keyboards, visual display units,
modems. A computer system consists of a number of peripheral devices
besides the CPU box. Peripheral devices inevitably use embedded pro-
cessors to either reduce cost or enhance performance. As the volume
of PCs produced is no longer trivial, the use of embedded processors in
their peripheral devices cannot be overlooked either.

¢ Telecommunications - pagers, telephones, wireless phones, hand-
phones. This is yet another major area of embedded processor appli-
cation. With the rapid growth in the telecommunications especially

[

Fourth College on Microprocessor based Real Time Systems in Physics
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

in the area of cellular phone, the telecommunications manufacturers
have been pushing the advancement of embedded processors in terms
of size, cost and complexity. With the requirement of integrating ana-
logue and digital circuitry, they are encouraging the chip designer and
manufacturer to push towards the limits of this technology.

Although there is an infinite variety of embedded systems, the principles
of operation, system components and design methodologies are essentially
the same. A typical system consists of a computer and an interface to the
physical environment, which may be a chemical plant, a car engine or a
keyboard, for example. In some applications, standard input /output devices
such as the VDU, keyboard and printer are present, as in the case of process
controller in a chemical plant. In others there are no standard I/O devices,
as in the case of car fuel injection control. In the former case, it is likely that
a general purpose computer such as a PC or a more powerful workstation PC
will be adapted as the embedded processor. In the latter, microcontrollers
designed together with dedicated electronics will be used.

We shall deal with the development of such systems in general, with
emphasis on a class of embedded systems using microcontrollers which is
currently the most prevailing form of computer used in laboratory and many
other situations.

Fourth College on Microprocessor based Real Time Systems in Physics 4
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1896

Embedded Systems Ang, Chu Suan

1.2 What are Real-time Embedded Systems?

It was mentioned earlier that embedded systems are typical used to carry out
real-time applications. What are real-time systems? The Oxford Dictionary
of Computing defines a real-time system as “Any system in which the time
at which the output is produced is significant. This is usually because the
input corresponds to some movement in the physical world, and the output
has to relate to that same movement. The lag from input time to output
time must be sufficiently small for acceptable timeliness.”

The above definition covers a wide range of systems - from UNIX work-
stations to aircraft engine control systems. When a command is entered in
a UNIX workstation, we typically get a response on the screen 'with a suffi-
ciently small time lag’. In an aircraft engine control system, the response to
commands and other input parameters has to be within certain time limits.
There is however a subtle difference between the UNIX workstation and the
aircraft engine control system in terms of timeliness.

An alternative definition of a real-time system can be as follows: “a real-
time system receives inputs and sends outputs to the target system at times
determined by the target system operational considerations - not at times
limited by the capabilities of the computer system.” This further defines the
meaning of response time and it distinguishes between the UNIX workstation
and the engine controller. In a UNIX workstation, occasionally when we issue
a command, we may not get the response in a time to our liking because the
CPU is running some other higher priority tasks or simply overloaded. In
this case, the UNIX workstation no longer qualifies as a real-time system
according to the more stringent definition mentioned above.

A real-time program is thus one for which the correctness of operation
depends both on the logical results of the computation and the time at which
the results are produced. The main objective of this Real-time College is to
deal with the various techriques and methodologies in achieving the above.

In view of the fact that not all embedded systems require very rigid
response times, real-time systems may be classified bro~dly into three cate-
gories:

* Clock-based (cyclic, periodic) - e.g. process control systems. Gen-
erally all process control related systems would require a clock-based
system. The real-time program is conscious of time by means of a sys-
tem clock. Actions are taken at the precise moments of time. When a
stimulus is present or when a limit is reached the system must respond
within a certain clock cycles (time).

Fourth College on Microprocessor based Real Time Systems in Physics 5
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

¢ Event-based and Interactive - e.g. alarm systems, autoteller. An
event based system such as an alarm system in your house generally
does not have the sense of 'time’. When a contact is opened because
the house is broken in, the siren is triggered or the police is notified, to
within an acceptable time limit.

Strictly based on time constraints, real-time systems can be grouped into:

e Hard real-time - must satisfy deadlines on each and every occasion,
e.g. temperature controller of a critical process.

e Soft real-time - occasional failure to meet deadlines acceptable, e.g.
autotellers.

While real-time embedded systems have received a lot of attention in re-
cent years, the earliest proposal of using a computer in real-time applications
for controlling a plant actually dates back to 1950 when Brown and Campbell
published their paper:

e Brown, G.S., Campbell, D.P., ‘Instrument engineering: its growth and
promise in process-control problems’,Mechanical Engineering, 72(2):
124 (1950).

A couple of early industrial installations of embedded systems are listed
below:

o September 1958 by Louisiana Power and Light Company for plant mon-
itoring at a power station in Sterling, Louisiana.

e I'irst industrial computer control installation was by Texaco Company
for a refinery at Port Arthur in Texas in March 1959.

The above systems, as well as many other early systems were supervisory
control systems that used steady-state optimisation calculations to determine
the set points for standard analogue controllers. In other words, the digital
computer was used to compute and to send simple commands to many stan-
dard analogue controllers which had been in use for a longer time in the
industry. These analogue controllers were generally expensive, complicated
and required periodic calibrations. Later, direct digital control which allowed
the direct control of plant actuators was added and analogue controllers were
not required.

Fourth College on Microprocessor based Real Time Systems in Physics 6
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

The early real-time programs were written in machine code which was
manageable when the tasks were well defined and the system small. However,
in combining supervisory control with direct digital control, the complexity
of programming increased significantly. The two tasks have very different
time scales and interrupting the supervisory control is necessary. This led
to the development of general purpose real-time operation systems and
high-level languages for such systems.

Fourth College on Microprocessor based Real Time Systems in Physics {
ICTP, Trieste, Italy. Oct 7- Nov 1, 1996

Embedded Systems Ang, Chu Suan

2 Design and Development of Embedded Sys-
tems

There are four major steps involved in the design and development of em-
bedded systems:

e System design.
e Design and build hardware.
e Design and develop software.

e Integrate software into target system.

For very small projects involving only one person, the above tasks are
carried out sequentially in that order. However, for bigger projects, it is
often possible to develop the hardware and the software in paralle]l. This
calls for a thorough system design in the first place.

2.1 Designer’s Skills

In order to carry out the task effectively, the designer of embedded system
must possess several skills:

¢ Good knowledge of the microcontroller resources. This should in-
clude the architecture, the instruction set, the addressing modes and
the on-chip resources. The knowledge should generally extend beyond
the simplified and idealised devices. For example, a good designer must
know how the microcontroller handles interrupts and related timing is-
sues so as to handle real-time activities effectively.

¢ Good knowledge of real-time control. The real-time requirement
of the target system must be clearly understood before an effective
solution may be found.

¢ Good knowledge of software technigues. The amount of software
effort needed for an embedded system often far exceed that of hard-
ware nowadays. A good designer thus must possess good knowledge of
languages, operating systems, and software building blocks in handling
various requirements and tasks of the target system. Many experienced
programmers found that collecting useful algorithms and software tools
is very helpful for future projects.

Fourth College on Microprocessor based Real Time Systems in Physics 8
ICTP, Trieste, Italy., Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

For example, it may be an advantage to represent a system by a state
machine. In this case, how can the state machine be implemented in
software easily? In an embedded system where a keyboard is used, how
does one handle the keyboard parsing?

¢ Good knowledge of hardware I/0 components or sub-modules.
To be able to design a good embedded system, knowledge of the state-
of-the-art peripheral devices is helpful. For example, the technology
of output devices including LED, LCD and CRT has progressed sig-
nificantly. Manufacturers have implemented very sophisticated device
drivers for some displays and it is a good idea to consider using them
whenever possible.

¢ Many embedded systems involve the use of ADC or DAC. Again, a good
knowledge of accuracy, resolution, and speed of conversion is essential.
If a target system is expected to measure 1 millidegree in 100 degrees,
it is useless to design a system with a 10-bit ADC, for example. Other
components such as drivers, position control and position encoding are
often used and should be included in the repertoire of hardware skill.

* Good knowledge of development tools . Development of embed-
ded system requires both hardware and software development tools.
Hardware tools: multimeter, oscilloscope, logic probe, pulser, EPROM
programiner, logic analyzer, in-circuit emulator, development system.
Software tools: editor, cross compiler, cross assembler and linker, sim-
ulator, development system.

2.2 System Design

Designing of embedded system is no different, from designing any other com-
puter based system and it is important that one applies a good design and
engineering methodology. Many different approaches have been advocated
and there are many books written on the subject but basically the obiective
is to apply a system approach so that the target system may be built to
specification functionally and it is easy to maintain.

First of all, define the functions and requirements of the target system.
The problem must be well defined. Otherwise there is no solution. Difficultics
arise when the scope of the work is not rigidly known or when the designer is
uncertain of the capabilities of the various hardware and software resources.

This may happen in the initial phases of a project and as time goes on,
one must have a clear idea of all the requirements and freeze the spectfications
before embarking on the next phase of work.

Fourth College on Microprocessor based Real Time Systems in Physics 9
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

In general, once the first phase is over, one can specify the interface to
the target system clearly, for example:

e Number and type of parallel I/O needed for interacting with the target
system.

e What kind of real-time requirement is needed?

e Any serial communication needed? If so, what is the distance of com-
munication?

e Is the target system localised or distributed over a wide area?

¢ Any ADC and DAC requirement? If so, what are the requirements on
resolution, accuracy and sampling rate?

Is it a networked or a stand-alone system? In the case of distributed or
networked application, define the type of networking facility to use. This
usually depends on the data rate and response time. For example,

o If the data rate requirement is kbps and below and the response time
requirement is around a second, a low cost serial link based on RS232
or RS422 interfaces may be used.

e If a high data rate up to Mbps is needed, use a standard LAN-type
link, Ethernet or Token Ring for example.

Specify the user interface. Is it an instrument panel-type interface? Or
is it a graphical user interface (GUD)? In either case design a friendly user
interface.

2.3 Choosing An Embedded Processor

When the functional requirements of an embedded system is defined, one
can choose an appropriate microcontroller/microprocessor. The choice really
depends on many factors, amongst them are:

o Unique functional requirements of the target system. It may be that
the ADC requirement calls for a particular processor, or the tempo-
rary buffer needed dictates another. Other applications may require a
microcontroller with EEPROM as a non-volatile storage.

Fourth College on Microprocessor based Real Time Systems in Physics 10
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems ‘ Ang, Chu Suan

e Production volume of the target system. A one-off laboratory em-
bedded system may use an expensive or oversized processor whereas a
system that has to be produced in quantity may be very cost sensitive.
One may have to use a $1 processor with masked ROM instead of $50
processor with EEPROM.

o Experience of the designer.
e Availability of the devices.

s Your boss says ‘use microcontroller xyz’.

Besides using a microcontroller and building the target system from scratch,
there is yet another alternative - obtain or purchase general purpose em-
bedded computers with the necessary I/O and build only the interface to
the outside world. This is an attractive option if you can afford it. There
are manufacturers producing a wide variety of embedded computers ranging
from 8-bit microcontroller-based systems to full-fledged 486 PC with 1.44MB
ROM disk on a single expansion card.

However, the importance of embedded system design really arose from
the availability of a wide range of microcontrollers. And knowing these mi-
crocontrollers well is a necessary skill of an embedded system designer.

2.4 Microcontrollers (MCU)

If you ever wonder why we should study microcontrollers, please look at the
following table of the total number and value in USD of microcontrollers
shipped by manufacturers in 1996 alone:

MCU Quantity (Millions) | Value (Million USD)
4-bit 1,100 1,800
8-hit 2,100 6,500

16-bit 200 1,600

The evolution of microprocessor has been along two different paths. One
has been the development of powerful CPU with 16- and 32-bit data bus
and very large memory space (e.g. gigabytes). These processors are used
in personal computers and workstations which form the backbone of com-
puting facilities in home, commercial, educational, engineering and research
environments.

Fourth College on Microprocesser based Real Time Systems in Physics 11
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

The power and speed of the 16-and-32-bit CPU of course do not limit
them to the domain of stand-alone computers. They are used as embed-
ded computers as well. In fact they are used in many applications where
sophisticated control or high speed operation is needed, e.g. HP Laserjet
printers.

However, it is true that for a large number of laboratory and other ap-
plications, the tasks can often be performed by a range of smaller processors
_ the 4-and-8-bit microcontrollers. In this short series of lectures, we shall
not deal with the development of embedded systems using 16- and 32-bit
CPUs because of the complexities of such systems. However, their use as
cross-development tools for microcontroller-based embedded systems will be
elaborated.

The second evolution path of microprocessor is along the line of micro-
controllers which on a single chip the processor is integrated with RAM,
ROM, EPROM, EEPROM, timers, serial and parallel I/0 facilities. These
microcontrollers are most suited for real-time embedded systems or used as
real-time modules in large systems.

It is noted that the 8-bit microcontrollers is the main workhorse in embed-
ded systems and this trend is likely to continue. However, the 4-bit smaller
brother has its part to play too, with shipment of about half that of the 8-hit.
There is really no point in putting an 8bit MCU in a TV remote control
when a 4-bit version would do the job efficiently at a lower cost. This is
of course due to that fact, that more powerful microcontrollers normally re-
quire complex hardware. Cost considerations can be very important in high
volume applications. The price range is wide - from low cost (~USD1) 4-bit
chips to high performance 16-/32-bit chips at (USD50-100).

Choosing a microcontroller for use is not a simple task if you are a se-
rious user because there are many manufacturers offering a wide variety of
seemingly similar devices. Besides the few points mentioned earlier, one has
to look at several other factors:

e Development tool and technical support. This applies to your local
agent support really. It is no good to you when the catalogue lists
some superb development tools at low prices but the local agent is
unable to get it for you or provide the necessary technical information.

o Documentation. Can you get full data book, reference manuals, appli-
cation notes?

e Does the manufacturer produce all the supporting chips? If not, are
they readily available? Is there a second source for the MCU?

Fourth College on Microprocessor based Heal Time Systems in Physics 12
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chy Suan

¢ Does the series have a one-time-programmable (OTP) version? What
about EEPROM, and windowed EPROM?

The major suppliers of microcontrollers are: Motorola, Mitsubishi, NEC,
Hitachi, Philips, Intel, SGS-Thomson, Microchip, Matshushita, Toshiba, Na-
tional Semiconductor, Zilog, Texas Instruments, Siemens, and Sharp. Mo-
torola, the leading supplier of microcontrollers, shipped more than 350 mil-
lions units in 1993 while the last jn the above list shipped more than 17
million units.

We shall look at two microcontrollers in greater detail later. In this
section, a brief survey of some commonly used microcontrollers is given.

* 6805 (Motorola) - This is a popular family of microcontrollers by
Motorola based loosely on the 8-bit 6800 microprocessor which has a
von Neumann architecture where instructions, data, I/0 and timers ali
share the same memory space. Some members of this family include
on chip serial I/O, ADC, and PLI frequency synthesizer. There are
EPROM and mask ROM versions. Expanded and single chip modes

are available.

® 6811 (Motorola) - This is another popular 8-bit microcontrolier by
Motorola which is more powerful than the 6805 and is a CMOS do-
vice drawing typically less than 20mA. It has most of the features and
peripheral devices of a microcontroller including digital 1/0 ports, pro-
grammable timers, ADC, PWM generator, pulse accumulator, asyn-
chronous and synchronous communication ports and watchdog circuit.
We shall use this device to design a small embedded system in this
College.

* 683xx (Motorola) - These are high performance (32-bit) microcon-
trollers capable of very high processing speeds and addressing large
memory space. They are produced by incorporating various peripheral
devices into the 63000 family core processor. The 68331 for example

has a 68020 core and about the same processing power as an Intel
80386.

¢ 8048, 8051 (Intel ard others) - Two very famous series of 8-bit
. microcontrollers by Intel. The 8048 js & first generation microcontroller
and is still popular because of the wide rar:ge of software available and
its low cost. The 8051 is a second gezneration microcontroller which
rules the microcontroller world of the 8-bit class of embedded systems
at the moment. It is not as orthogonal as the Motorola counterpart,

Fourth College on Microprocessor based Real Time Systems in Physics 13
ICTP, Trieste, Italy. Oct 7- Nov 1, 1998

Embedded Systems Ang, Chu Suan

but it is powerful and can be easy to program and design if you are
familiar with the architecture.

The 8051 has a modified Harvard architecture with separate address
spaces for program and data. The program space is 64K (bytes), with
the lower 4 or 8 K residing on chip. It uses indirect addressing to
access up to 64K of external data memory. It has 128 bytes of on-chip
RAM (256 bytes in 8052) plus several special function registers. 1/0 is
mapped separately into its own space as in the other Intel processors.

It has the capabilities of performing Boolean operation on bits just
about anywhere in the system and then carry out relative jumps based
on the results. There are large amount of software available for this
microcontroller and there are many other chip manufacturers that sec-
ond source this device with many different variants if the customers so
desire. Finally, probably the most important of all, it is more readily
available than others and perhaps cheaper than other chips in many
parts of the world.

¢ 80C196 (Intel) - This is a third generation Intel microcontroller fea-
turing 16-bit operation and CMOS fabrication (though the original
version 8096 is NMOS). As a high-end microcontroller, it has 40 digi-
tal [/O, high speed ADC, serial communications, 8 priority interrupts,
PWM generator, watchdog timer, hardware multiplication and divi-
sion.

¢ 80186, 80188 (Intel) - These are the microcontroller versions of the
famous 8086 and 8088 used in the PC. There are a number of variants
available but they all have 2 DMA channels, 2 counters or timers,
programmable interrupt controller, and dynamic RAM refresh output.
The use of the same CPU as the PC means that a lot of programs
are readily available and that one can use standard development tools
for PC to develop applications for this microcontroller. This may cut
down the learning curve drastically if one is previously familiar with
the editors, assemblers and compilers in PC. Of course it is basically a
very powerful processor to use.

¢ 80386EX (Intel) - This is the microcontroller version of the 386 pro-
cessor of Intel. As in the case of 80186 and 80188, the major advantage
is compatibility with the 386 PCs. The chip has serial /O, DMA chan-
nels, power management, counters or timers, programmable interrupt
controller, and dynamic RAM refresh output. This is of course a even
more powerful chip to be used as microcontroller. It is worth noting

Fourth College on Microprocessor based Real Time Systems in Physics 14
ICTP, Trieste, ltaly. Oct 7 - Nov i, 1996

Embedded Systems Ang, Chu Suan

that in this case the eflort of designing your own 386 microcontroller
embedded system versus buying a standard ready built 386 PC as your
embedded PC has to be weighed carefully. The latter may turn out to
be a better solution.

e COP400 (NS) - This is a 4-bit microcontroller from National Semi-
conductor which features 512 to 2K ROM, 32 to 160 4-bit RAM with
many different packaging (DIP/SO/PLCC) from 20 to 28 pins. It can
operate from 2.5 to 6 volts. A wide range of applications call for this
type of low end chips, especially when its price goes under 50 cents in
quantity.

e COP800 (NS) - This is a 8-bit microcontroller from National Semi-
conductor which features static memory, and voltage range of 2.5V to
6V. It has a memory mapped architecture as in the Motorola series of
microcontrollers.

e HPC (NS) - This High Performance microController family from Na-
tional Semiconductor is a 16-bit chip with von Neumann architecture
operating at 3.3V. It has hardware multiplication and division capa-
bilities. Other features include HDLC for data communications, mul-
tiply/accumulate unit for low to medium DSP applications.

o Z8 (Zilog) - The Z8 family of microcontroller is from Zilog and is
loosely related to the Z80 MPU. It has a rather unique architecture
with three memory spaces for program, data and registers. Standard
features include digital I/O (up to 40 lines), serial communications,
timers, DMA, fast interrupts. One member has a ROM Basic. An-
other one (Z86C95) has 256 registers and an internal 16-bit Harvard
architecture DSP. The DSP registers are accessible as additional regis-
ters. ADC and DAC are also included.

e HD64180 (Hitachi) - This is a microcontroller family from Hitachi
that is compatible with Z80 but runs in fewer clock cycles. It has digi-
tal I/O, asynchronous and synchronous serial communication channels,
timers, interrupt controls, DMA. Hardware multiplication and a few
other instructions have been added.

e TMS370 (TI) - This microcontroller family by Texas Instruments is
similar to 8051 and has large number of on-chip devices such as RAM,
ROM (mask, OTP, or EEPROM), timers, watchdog, SCI, SPI, ADC
and interrupts. Instructions are mostly 8 bits with a few 16-bit ones.
Hardware multiplication and division included.

Fourth College on Microprocessor based Real Time Systems in Physics 15
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

e PIC (Microchip) - This is a family of first RISC microcontrollers
which is gaining popularity recently. The predecessors of this family
have been around for more than 20 years under the name General In-
struments. The new PIC series are fabricated in CMOS with enhanced
features and more family members.

The chip features a Harvard architecture with fewer instructions than
other microcontrollers (33 for the 16C5X versus over 90 for the 8048).
Simplicity in design allows more features to be added. The major
advantages of this chip are small size, small pin count, low power con-
sumption and low cost.

Fourth College on Microprocessor based Real Time Systems in Physics 16
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

3 Hardware Design and Development

Once the system requirements are well defined and the type of embedded
processor chosen, one can embark on the task of hardware design and devel-
opment. If the choice is a standard PC or ready built hardware as the embed-
ded processor, then the hardware design step is simplified to that of designing
the interface board or circuitry to the target system. Although there can be
an infinite variety of target systems, the interface requirements however can
be grouped into just a few standard categories - digital I/0, analogue 1/0,
serial data communications and parallel data communications. Many of the
interface requirements are normally provided for by the embedded processor
hardware. Perhaps signal conditioning circuits (instrumentation amplifiers,
precision attenuators, current drivers, etc.) are needed in the case of analogue
I/0 or special actuators or sensors.

We shall look at the case where the embedded processor is not already
available but built. This is more likely the case for embedded system design-
ers! Ten or fifteen years ago, one would build a microprocessor based system
using a handful of chips including microprocessor, memory, peripheral de-
vices and other glue chips. And to do that effectively, certain basic skills
have to be acquired. In fact, the earlier Microprocessor College at ICTP
spent four weeks trying to achieve just that.

Nowadays, we may still build microprocessor-based embedded system.
The 6809 system used in the laboratory of this College is one such example.
There are many good reasons for doing so. First of all, it generally has more
memory resources than a single chip microcontroller. This facilitates the
use of more sophisticated resident firmware including a full featured monitor
or a real-time kernel, for example. Often, there are many readily available
software for a popular microprocessor such as the 6809. The designer may
already be familiar with a well-known microprocessor and need not learn to
use a new one.

The trend however, is to use single chip microcontrollers whenever possi-
ble. The beauty of designing embedded systems using micracontrollers is the
relative ease and simplicity. You no longer have to be a 20-year-experienced-
electronic-engineer to be able to design the hardware. As you may be aware,
the topic of embedded system in this College has been reduced to six lectures!

Whether we use microprocessors or microcontrollers, there is a set of good
design rules or practices that one should adhere to. Amongst them, one that
has often been over looked is that the design must incorporate facilities for
debugging and testing. Small tests or diagnostics, switches or indicators,
added during the designing stage cost very little, but help tremendously in
the later stages.

Fourth College on Microprocessor based Real Time Systems in Physics L7
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

Once the circuit design is completed, the next step is circuit board layout
and fabrication. Unfortunately the hardware development process does not
end there. In most cases, a certain degree of hardware testing and debugging
must be done.

3.1 Outline of Hardware Test Procedure

To carry out these tasks, it would be advantageous if sophisticated tools such
as development system, in-circuit emulator and logic analyser are available.
However, it is possible to test and debug with the basic electronics labora-
tory equipment such as multimeter, oscilloscope, logic probe and function
generator alone, if a systematic approach is adopted.

e Printed circuit board (PCB) inspection for track continuity and pos-
sible bridging. This is a step that is often overlooked. However, it is
a vital step because easily locatable faults if left undetected, usually
cause much more debugging efforts at a later stage.

o Power up the bare PCB and check voltages.

o Ifit is a microprocessor-based system, such as the 6809, or a microcontroller-
based system operating in ezpanded multiplered mode, test the address
bus and (partially) the data and control bus on the hardware kernel
which is the processor itself. This step is skipped if the system is
single-chip, micocontroller-based.

In the case of 6809, this is done by forcing a NOP ($12) on the data bus
by pulling up D1 and D4 to 5V via resistors and grounding all other
data lines. It causes the continuous execution of NOP for all memory
locations. This in turn results in AQ toggling at half the system clock
rate, Al toggling at half the rate of A0 and so forth. The address bus
can thus be checked easily with an oscilloscope. In this test, data bus
and control bus are partially verified.

The above test procedure is actually making use of the 1-byte instruc-
tion of the microprocessor in a unintended manner. For Z80, 8085 and
8088 similar techniques can be used. In Z80 and 8083, RST 7 ($FF)
instruction is used whereas in 8088 either the 1-byte INT 3 or PUSH
instructions may be similarly used.

e If a logic analyser is not available, implement a tight loop program in

the EPROM or EEPROM such as a branch-to-itself loop (LOOP BRA
LOOP). For 6809, this consists of two bytes (520 $FE) and takes three

Fourth College on Microprocessor based Real Time Systems in Physics 18
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

machine cycles to execute. A two-byte reset vector is also needed in
the ROM. The execution of this very short program can be followed
cycle by cycle on an oscilloscope and thereby confirming the proper
operation, at least partially, of the data and control bus.

e It is a good idea to include DIP switches and LED indicators in the
hardware even if they are not required in the final target system. Test
routines for I/O ports which have these input switches and output
indicators can be written and tested. Commonly used routines include
incrementing the binary value of the output port at a slow rate for visual
inspection, reading status of switches and sending it to the output port.
This stage of testing serves to verify the operation of I/0O ports and to
provide users with function selection. Normally on power up the system
is programmed to check the status of the input switches and jump to
appropriate test routines or the main program.

¢ Small test routines for other components in the system are then imple-
mented. This includes testing the serial link, the timers, ADC and the
memories.

e In some embedded systems where the memory is not very small, a
monitor program or kernel is then implemented.

o At this stage most of the hardware testing is done and the task moves
on to application software testing and debugging. However, there is one
type of hardware bug which is not detected by the testing mentioned
above. These are problems caused by intermittent faults, glitches or
external interference. These are detected by means of logic analyser or
m-circuit emulator running in surveillance mode.

3.2 Some Hardware Development Tools

While one can get by with the basic tools for small embedded system devel-
opment, nevertheless it will help if a number of other hardware development
tools are available, especially when one is dealing with more sizeable projects
or when problems such as intermittent faults, external electromagnetic in-
terference, and glitches arise as mentioned above. It is impossible to give
a thorough treatment of various hardware tools in detail here. However, a
number of more important ones are introduced below.

o Oscilloscope - The oscilloscope really needs no introduction other
than listed here for completeness sake. It is noted that while the con-
ventional dual-trace 20MHz cathode ray oscilloscope (CRO) is still the

Fourth College on Microprocessor based Real Time Systems in Physics 19
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

faithful workhorse in the lab, there exists in the market now digital
oscilloscopes with liquid crystal display (LCD) at a reasonable price.
Often it combines the function of a digital (memory) oscilloscope with
a logic analyzer. The importance of the oscilloscope cannot be over-
emphasized - after all the HP and Tektronix logic analyzer designers
used their oscilloscopes to debug their embedded systems in the "70s!

e Logic Analyzer - The two traces of an oscilloscope is ready rather
inadequate or impossible when it comes to simultaneously monitoring
the 40 or so lines of a typical microprocessor or microcontroller circuit.
Logic analyzers capture 48 or more signals and display them in multiple
traces or in coded form. Being a powerful embedded system itself, the
logic analyzer can perform a number of other things that expedite the
debugging of embedded systems.

It allows a trigger condition (data, address and control bus pattern)
to be set up and captures the cycle by cycle information in memory
(typically few thousand cycles deep) when the trigger condition is met.
The captured data can be viewed as traces, in binary/hex form or
in mnemonics of the target processor after being disassembled. This
provides a very power tool for monitoring what’s going on at a very low
level non-intrusively - at least while the embedded system 1s running
at its normal speed.

Most logic analyzers also provide timing analysis whereby the traces
are sampled at rates higher than the system clock and hence glitches
or other irregular waveforms may be detected.

e Emulator - First introduced by Intel, now in-circuit emulators are used
in large number of embedded system development. This tool brings the
debugging of hardware one step higher than using the logic analyzer
alone. Basically it not only allows the target system to be monitored,
but also has the ability to st~ execution in a controlled manner, change
memory and register contents and resume execution. This is achieved
by replacing the target system CPU with a more elaborate system
typically containing the same type of CPU but having other resources
which can carry out the actions mentioned above. In theory the system
emulates all the CPU’s functions in real time.

The major features of the in-circuit emulators are breakpoint, real-time
trace, RAM overlay, and performance analysis. Breakpoint setting,
as mentioned above, allows us to stop execution, for example, at the
end of a function and monitor the return value. When the code does

Fourth College on Microprocessor based Real Time Systems in Physics 20
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

not behave as expected, real-time trace can be used to look at what
the code is doing. Embedded systems often have their code stored in
ROM or EPROM. To change the code during debugging is tedious.
RAM overlay is a technique to circumvent this difficulty. Instead of
running the code in the target system ROM or EPROM, RAM in the
emulator which can be easily modified is used. Performance analysis
deals with the problem of code not able to deliver the performance
required, such as keeping up with external events. The analysis allows
the programmer to scrutinize the execution of his code carefully and
find remedies if possible.

In the case of microprocessor-based systems, the target microprocessor
is replaced by an emulating processor which has overall control over
the data, address and control bus and thus the operation of the entire
system. In the case of microcontroller-based systems, it is more com-
plicated. Typically, the emulator operates the microcontroller in the
expanded mode so as to gain access to the internal bus. It must also
have:

— extra RAM to hold the application software during development,
— a monitor program, and

— rebuilt ports to replace those lost in the expanded mode.
Other features available in an emulator are:

— communication facility between the monitor program and a host
computer,

— ability to download object code from the host computer to the
target system,

— ability to display and change RAM contents and processor status
of the target system,

— single stepping and breakpoint features, and

— execution of the application program at full speed.

The emulator is almost an indispensable tool in the development of em-
bedded systems but the downside is that it is generally not cheap. Good
emulator can run to tens of thousands of dollars. Fortunately there are
a number of low-cost emulators typically produced by chip manufac-
turers themselves to promote the sales of their microcontrollers. These
are often sold under the name of evaluation board of system. They lack

Fourth College on Microprocessor based Real Time Systems in Physics 21
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

the sophistication of full featured emulators but nevertheless are very
useful for small projects.

One such example of a low-cost standalone in-circuit emulator is the
M6SHC11EVM designed for developing 68HC11 embedded systems. It
has the following features:

— Emulate both the single-chip and expanded-multiplered modes of
operation.

— Code may be generated using the resident assembler/disassembler,
or may be downloaded through a host or terminal.

_ Microcontroller ROM is simulated by write-protected RAM during
program execution.

— Two serial links for host and terminal communication.

The system operates in either one of two memory maps - the monitor
map and the user map. Two types of memory map switching are
possible. Temporarymap switching allows modification of user memory,
and permanent map switching allows execution of user programs.

e ROM Emulator - ROM emulators are like RAM overlays mentioned
above, used to temporarily replace the target system firmware. A ROM
emulator consists of RAM and associated circuit, a connection to the
ROM socket in the target system and a link to a host computer. The
host computer downloads the data into RAM which is then used by
the target system as its ROM memory. This relatively simple tool is
very effective in embedded system development because it reduces the
iteration time significantly.

Fourth College on Micraprocessor based Real Time Systems in Physics 22
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

4 Software Design and Development

Software design and development for embedded systems is no difference from
most other software project design and development.

o First of all write down the software specifications before anything else.
Resist the temptation to start programming before the overall software
design is done. How often do you see an electronic engineer grab a
soldering iron the moment he has a rough specification of an amplifier
to build? As far as possible, adopt a top-down approach.

® The major task in software design is the breaking up of the entire
project into smaller manageable modules or components. Ideally mod-
ules and components should not be longer than 2 or 3 pages. The longer
it is, the more difficult to debug. Write comments on your code, not
Just a few token lines haphazardly thrown in to satisfy your manager
or instructor. On each routine, write a detailed header describing the
algorithm, strategy, calling procedure, return value, etc. After 20 years
of pleas, coaxing and threatening, I am sure we can produce better
commented code.

¢ What programming language to use? Most people agree that one
should use a high level language (HLL) to develop embedded systems.
Amongst the HLLs, C is known to be a good choice for embedded sys-
tems. However, other HLL have not fallen entirely into oblivion yet.
Interpretative HLLs such as BASIC and FORTH are used by some.
PL/M from Intel is also being used.

* Besides knowing C, an embedded system programmer usually has to
learn the assembly language as well. For very small projects, assembly
language is still a good choice in view of the memory constraint. Fven
when one writes in C, a small amount of code such as the interrupt
routines and sometimes the device drivers are still implemented in as-
sembly language. Source code debugging is nice, but occasionally, one
may have to debug at a lower level, especially when hardware debugger
such as logic analyzer is used. In which case, a good knowing of the
assembly language is needed.

e One important point in designing software for embedded system is to
design with debugging in mind. More often than not, your code won’t
work the first time. Unlike hardware development, the time taken in
testing and debugging during software development can be surprisingly

Fourth College on Microprocessor based Real Time Systems in Physics 23
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

long if you are not careful. Well organized code is a must if you want
to minimize debugging time. Well commented code mentioned above
is another cardinal virtue in programming.

Basically, one must adhere to good software engineering methodology.
We shall look at a number of issues pertaining to software development for
embedded systems. Ideally a development environment system for embedded
system work should have the following three components:

o Host computer - This is typically a PC which runs the editor, linker
and compiler. PC has become the de facto standard as development
platform for embedded systems because of its availability and the amount
of commercial and public domain software tools obtainable. Traditional
embedded system vendors have designed their development tools with
the PC in mind. This also encourages a large number of third party
software vendors to use the PC platform for their software tools.

o Debugging engine - This refers to the component that allows you
to look into your target system in terms of code execution. It may be
in the form of an in-circuit emulator or in smaller projects a monitor
program resident in the target system itself. This debugging engine
allows you to open a window in the host computer and monitor the
execution of your code or status of your processor in the target system.
For any serious work, it is no longer acceptable to compile your code,
program the EPROM, plug it in and hope that it will work!

» Source-level debugger (SLD) - This is a piece of software running
in the host PC which allows you to debug your code at source level, in
conjunction with the debugging engine. Not only does it communicate
with the debugging engine or target system, it also provides intelligent
assistance in the debugging stage. For example it displays the source
code (actual C statement instead of assembly code) at which the target
is at, resolves symbolic references, examines in the high level format,
allows breakpoint to be set at source level, single step through the code
again at source code level, etc. Generally a good SLD will provide all
these features in very neat multiple window environment, thus making
debugging a much easier task than if it is done at assembly code or
machine code level.

4.1 Cross Development

As mentioned above, mainly because of the ubiquitous position, the PC is
almost universally used as the platform for embedded system development.

Fourth College on Microprocessor based Real Time Systems in Physics 24
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

In which one would be doing cross development running a host of cross
software - cross assemblers and linkers, cross interpreters, cross compilers.
Unless of course one is developing an embedded system with the same CPU
as the PC used (e.g. 80186, 80188, 80386EX or the PC itself used and
embedded processor.).

Cross development is necessary for a number of other reasons:

e Many microcontrollers used in embedded systems are just too small
to be used as processors in development systems. Native or resident
assemblers and compilers may not be available for such systems.

o Existing computer facilities are readily available and with the appro-
priate cross-development software tools, are suitable for carrying out
the task of software development. This is considered an important ad-
vantage because no extra hardware is needed and software tools such
as editors are already available.

e Nowadays, one can find cross-development software tool for almost any
processor in the market. Some manufacturers are supporting their
products with a dial-up facility or through Internet which allows users
to download cross-assemblers and cross-compilers to the PC.

Thus, cross assemblers are programs that run on a computer with a differ-
ent processor from that of the target system, and assemble programs written
for the target system into relocatable object code. The linkers then relocate,
usually with other object modules such as library modules, to the desired exe-
cution addresses for the target machine. Common features of cross assemblers
are: (1) provision for using macros in program, thus macro-assembler, (2)
conditional assembly, (3) assembly time calculations and (4) listing control.

Similarly, cross compilers are programs that run on a computer with a
different processor from that of the target system, and compile high level
language programs written for the target system typically into assembly lan-
guage programs. The use of a - sss compiler can reduce program devel-
opment time significantly for large projects. It also makes programs more
portable, since they are written in a high level language such as C. A typical
cross compiler consists of: (1) macro preprocessor, (2) parser, (3) optimizer
and (4) code generator.

4.2 Simulation

Simulation is a way of using software to model the target system including the
target processor itself. The program can see his system running in the stable

Fourth College on Microprocessor based Real Time Systems in Physics 25
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systemns Ang, Chu Suan

environment of his host computer which run the simulation program. This
is used when the target system is not available, when the target prototype is
still unreliable, or when the programmer has to access the low level status of
the system not normally accessible in embedded systems.

While it sounds like a great idea, unfortunately good simulators for em-
bedded systems are not readily available. This is due to the fact that the
simulator has to deal with real-time events and sometimes rather complex
I1/0. How can you get a general purpose simulator to understand your ob-
tuse or ingenious interface to the solar tracking system? How do you simulate
real-time, asynchronous events? To duplicate the data stream coming from
the outside world is not easy either.

Nevertheless, there are simulators available for many processors. One
successful category of simulators seems to be the microcontrollers such as
the 8051. When most of the I/Q are integrated on a single chip, they are
well defined and thus can be simulated more readily.

Fourth College on Microprocessor based Real Time Systems in Physics 26
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

5 Other Techniques for Embedded Systems

Armed with the above, one can embark on the actual coding, compiling,
downloading and debugging of the embedded system. Elegant structuring of
the program is very important in embedded system design, as in all other
software design. A monitor program tugged in the EPROM of an embedded
system is not too much to ask for nowadays. This will help in the debugging
process tremendously. In structuring your program, however, there are two
other techniques that have been used by many designers and found to be
very useful. These are (1) state machine technique and (2) real-time kernel.

5.1 State Machines and State Tables in Embedded Sys-
tems

For small systems, sequential organization of the program is often used. The
entire function of an embedded system is represented by a flowchart and
implemented accordingly using a single main loop. When external inputs or
events arrive, the program branches off to some modules to carry out the
required actions.

There are however a number of shortcomings using the above method:

¢ Testing of a monolithic program is often difficult.

® When the loop becomes large as more functions are added, life becomes
complicated. When single large loop is used, there is a tendency to
produce spaghetti code.

e Subsequent modifications of system function, like adding another con-
trol switch, are tedious because the entire flowchart has to be revised
and often re-implemented entirely.

For many embedded systems, the complexities often justify a more sys-
tematic approach of designing the software. Representing the function of a
system by a state machine is such a approach. The power of state machine
representation comes from the fact that it can subsequently bhe represented
by a state table which is well suited for microcontroller and microprocessor
implementation, even at assembly language level.

Using the state table method of implementing the functions of a system,
it is natural that the job be broken down into small, more manageable and
often independent modules, called the action routines. Such routines are
more easily tested and often reusable.

Fourth College on Microprocessor based Real Time Systems in Physics 27
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

However, the single most important advantage of state table implemen-
tation really lies in the ease of function modification. In most cases, only the
state table is modified together with the necessary new routines, while most
of the old code would be intact.

5.2

An Example of State Machine Representation

A simple example of a system with keyswitches and display is given here to
illustrate the method of state machine representation.

Suppose we have a keypad with ten numeric keys 0 to 9 and two func-
tion keys [ENTER| and |DELETE | and a 4-digit numeric LED display.

On power up, the display shall show 0.

Numeric values can be entered on the keypad and as each digit is en-
tered, it is scrolled into the display from the rightmost digit. During
this mode, the display blinks to indicate digit entering mode.

The digit entering mode is terminated with either the [ENTER| key or

the key.
If is pressed, the display stops blinking.
If is pressed, the display stops blinking and shows 0.

There are 3 possible states in this example:

State Name Description
S0 Initial Power-on state or after DELETE, display shows
0 in steady mode.
51 Data Entry Digit entry mode, display shows digits in blinking
mode.
s2 Display Final display mode, display shows final value in
steady mode.

There are 3 types of events:

Event Name Description
EQ Number Entry of any numeric key.
El Enter ENTER key is pressed.
E2 Delete DELETE key is pressed.
Fourth Coliege on Microprocessor based Real Time Systems in Physics 28

ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

There are three action routines needed:

Action Name Description

A0 | Reset Display 0.

Al Build digits Build up display buffer from right while numbers
are entered and blink display.

A2 Steady display | Show steady display.

A3 Nuil No action.

The specification mentioned earlier is represented by a state diagram.

EO(A1)

E1(A2)

The above state diagram can be easily transformed into a state table rep-
resentation.

Present State Event Action | Next state
EO Al S1
SO El A3 SO
E2 A3 SO
EO Al S1
S1 El A2 S2
E2 AOQ SO
EO A3 S2
S2 El A3 S2
E2 AQ SO
Fourth College on Microprocessor based Real Time Systems in Physics 29

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

The complexity of the system has thus been broken down into:

A number of action routines.

e A service routine to scan the keypad and update display.
e A state stable.

e A very small main program.

The main program structure is represented below:

Initialization

STATE=50

Read input buffer

Scan state table

Execute action routine

Fourth College on Microprocessor based Real Time Systems in Physics 30
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

The keypad and display service routine may be implemented as an in-
terrupt service routine based on 10-ms clock ticks from a programmable
timer module, for example:

ﬁnterrupt Service Routinq

Update display

Scan & debounce keypad
Update key buffer

5.3 Task Scheduler in Embedded System

An application in real-time embedded system can always be broken down
into a number of distinctly different tasks. For example,

* Keyboard scanning

¢ Display control

e Input data collection and processing

¢ Responding to and processing external events

* Communicating with host or others

Fourth Coltege on Microprocessor based Real Time Systems in Physics 31
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

Each of the above tasks can be represented by a state machine. However,
implementing a single sequential loop for the entire application can prove
to be a formidable task. This is because of the various time constraints in
the tasks - keyboard has to be scanned, display controlled, input channel
monitored, etc.

One method of solving the above problem is to use a simple task sched-
uler. The various tasks above are handled by the scheduler in an orderly
manner. This produces the effect of simple multitasking with a single proces-
sor. A bonus of using a scheduler is the ease of implementing the sleep mode
in microconirollers which will reduce the power consumption dramatically
(from mA to pA). This is important in battery operated embedded systems.

There are several ways of implementing the scheduler - preemptive or
cooperative, round robin or with priority. In a cooperative or non-preemptive
systemn, tasks cooperate with one another and relinquish control of the CPU
themselves. In a preemptive system, a task may be preempted or suspended
by different task, either because the latter has a higher priority of the time-
slice of the former one is used up. Round robin scheduler switches in one
task after another in a round robin manner whereas a system with priority

will switch in the highest priority task.

For many small microcontroller based embedded systems, a cooperative
(or non-preemptive), round robin scheduler is adequate. This is the simplest
to implement and it does not take up much memory. Ravindra Karnad has
implemented such a scheduler for 8051 and other microcontrollers. In his
implementation, all tasks must behave cooperatively. A task waiting for an
input event thus cannot have infinite waiting loop such as the following:

While (TRUE)
{
Check input

}..

This will hog processor time and reprieve others of running. Instead, it
may be written as:

If (input TRUE)
{

} :
Else (timer[i]}=100ms)
In this case, task ¢ will check the input condition every 100 ms, set in

the associated timer[i]. When the condition of input is false, other tasks will
have a chance to run.

Fourth College on Microprocessor based Real Time Systems in Physics 32
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

The job of the scheduler is thus rather simple. When there is clock
interrupt, all task timers are decremented. The task whose timer reaches 0
will be run. To simplify things, the state status of the task is used by the
scheduler to decide where to pass control to.

The greatest virtue of the simple task scheduler ready lies in the smallness
of the code, which is of course very important in the case of microntrollers.
The code size ranges from 200 to 400 bytes.

5.4 Real-time Kernel in Embedded Systems

Real-time operating system (RTOS) is the central theme of this College and
it would be nice if we can incorporate such an OS in our embedded systems.
Unfortunately, more often than not, the memory and other resources of most
embedded systems we build do not permit this. There is however an alterna-
tive - that of using a subset of the RTOS to solve the problem of embedded
systems. If the I/O and file handling is removed from the fully fledged RTOS,
we are left with a kernel which deals with tasks handling. This turns out
to be a powerful tool in dealing with real life embedded system applications,
such as the state machine technique.

In embedded systems, interrupts are used to respond to external events
and in doing so avoid the waste of CPU time by constant polling for such
events. However, interrupt handling can be rather complex if there are many
processes to be handled simultaneously. In many situations, embedded sys-
tems run more or less independent programs which share some common re-
sources. A very large intertwined program will result if we use simple inter-
rupt handling technique. Real-time kernel (RTK) will help the programmer
to deal with such circumstances by thinking in terms of concurrent tasks
instead of individual routines that execute when certain events occur,

Real-time kernels come in a great variety of types. Many of the small
RTKs are implemented in assembly langnage; others are implemented in
HLLs such as C. A recent survey shows that there are more than 40 RTK
manufacturers producing kernels for 8-, 16- and 32-bit processors including
proprietary and open :narket ones. The price tag cf these commercial RTKs
ranges from USD$100 to USD$10,000.

There are also a small number of real-time kernels appearing in journals,
magazines and books, which are normally available in source code. Later
in this series of lecture, we shall look at one designed by Jean J. Labrosse
called pC/OS, which is implemented in C with full source code available to
the user.

Fourth College on Microprocessor based Real Time Systems in Physics 33
[CTP, Trieste, ltaly, Gct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

6 The 68HC11 Microcontroller

We have mentioned earlier that there are now many microcontrollers available
in the market. We shall look at one of them, the 68HC11, in this section.
It is a family of microcontrollers with members providing different 1/0 and
memory facilities. They can be used in single-chip or expanded mode.

The main features are:

e Parallel I/0O - 40 I/O lines arranged as five 8-bit ports, two general
purpose and three fixed direction.

e ADC - 8channel, multiplexed-input, successive approximation with
sample and hold. Conversion time 16 ps for 2 MHz system.

e Serial communications - A full-duplex two-wire asynchronous serial
communications interface (SCI) with baud rate ranges from 75 bps
to 131 Kbps. A full-duplex three-wire synchronous serial peripheral
interface (SPI) with a maximum master bit frequency of 1 MHz.

¢ Programmable timer - 16-bit with four stage prescaler, three capture
functions and five output compare functions.

o Memories - ROM (4K, 8K or 12K), EPROM (4K or 12K), EEPROM
(512, 2K or 8K), RAM (256, 512 or 1K).

e Interrupts - Nonmaskable interrupt (XIRQ) and maskable interrupt
(IRQ). IRQ is either level-sensitive or falling-edge-sensitive.

¢ Pulse accumulator - A 8-bit counter used for event counting or gated-
time accumulation.

o COP watchdog - A computer operating properly watchdog is used to
detect error in the system. When it is used, the program is responsible
for keeping an internal free-running watchdog timer from timing out.
If the watchdog times out, the MCU will be reset. This is an 1mportant
feature in embedded systems as most of them are running unattended.
In the case where watchdog is not built in, an external watchdog circuit
using a couple of monostable multivibrators is often used.

o Low power modes - In single chip mode, 15 mA for normal operation,
6 ma in WAIT mode and 100 gA in STOP mode.

Fourth College on Microprocessor based Real Time Systems in Physics 34
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

6.1 Architecture of the 68HC11

A simplified diagram of the architecture of the 68HC11 is shown in the fig-
ure ?7. The parallel I/O subsystem consisting of ports PB, PC and STRA
and STRB is lost if the MCU is used in the expanded mode. A MC68H(C24
port replacement unit can be used to regain the functions of the ports and
the control lines. The functions are restored such that there is no distinction
between the two. Thus an expanded system with an MC68HC24 and an
external EPROM can be used to develop software intended for single-chip
application.

PULSE ACCUMULATOR | PAl PAT
oc2 PAB
ROM - 8K BYTES g o® < PAs
TIMER oce = PA4
ocs § PA3
1 PAZ
PERIODIC INTERRUPT K2 PA1
RAM - 256 BYTES COP WATCHDOG fca LI PAd
33 PDS
SCK s PD4
EEPR SPI o
OM - 512 BYTES MOS) Ela PDI
MISO ﬁ kE PO2
8|8
—_— o«
PE7
sc' Txb : PD1
PES RaD a PDO
PES
PE4 .
PEJ § AD
::: CONVERTER
PED M68HC11 CPU
L1
VRepy —— -
¥ REFL —
RESET L | | ADDRESS/DATA BUS]
S INTERRUPTS P 0 A S S N 0 G
LT S ; ;
VppguLk) ; HANDSHAKE 10 l ;
XTAL o | : g
EXTAL . OSCILLATOR : ol 8
: DATA DIRECTION C g 2
E o | | g8
‘ PORTB ‘ PORT € 3 'ﬁ
' <
POWER | & X
o~ wMoDE : P E
SELECT -
MoDR — 58832858 58533285 2 & ! siNGLE
sray) eegeEERE EEE§1§2§ BB cwe
8 8 lsonceoss isnicnis oo
- Moo
> > [23333%%7% 58838558 %9 meawm
Fourth College on Microprocessor based Real Time Systems in Physics 35

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systemns Ang, Chu Suan

6.2 Programming Model

The 68HC11 has 91 new opcodes in additions to those of 6800 and 6801.
Now it has a total of 109 instructions. Both multiplication and division are
possible now. Bit manipulation instructions are also available.

7 iccuomuatomra 0]7 accumutatons O] 4n

t5 DOUBLE ACCUMULATOR D o] o
[1s AKX REGETER X 0]
(15 . o] w
{1s TACK FOINTER o] ar
f1s PROGRAM COUNTER 0]

7 0

conprmoncopepecisTER [§ X HI NZ ¥V C | cox

Lo

OYERFLOW
—— IERQ
T NEGATIVE
T INTERRUPT MASK
HALF CARRY (FROM BIT 3
© " X INTEERUFT MASK
STOF ISABLE

6.3 Modes of Operation

There are 4 hardware controllable modes of operations that are available:

Mod A | Mod B Mode of Operation
Y 1 Single Chip
1 1 Expanded
0 0 Bootstrap
1 0 Special Test

¢ Single-chip mode. The chip functions as a monolithic microcontroller
without external address or data bus.

¢ Expanded-multiplexed mode. The chip can access a 64KB address
space. The total address space includes the on-chip memory addresses.
The expansion is made up of port B and port C, and control signals
AS and R/W.

Fourth College on Microprocessor based Real Time Systems in Physics 36
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

AT IAS

REEEEERRY

v 3IJSTRI
F WHRRPERD

Tf

r

BTYHERKRS

¢ Bootstrap mode. A special operating mode that uses a boot loader
program in the bootstrap ROM to load program into RAM via SCI.
This is how you get your program loaded into the MCU memory.

¢ Special test mode. This is a factory testing mode similar to the
expanded- multiplexed mode except that the reset and interrupt vectors
are fetched from external memory locations.

Fourth College on Microprocessor based Real Time Systems in Physics 37
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems

Ang, Chu Suan

6.4 Memory Maps

The memory maps of the four different modes are shown below. In expanded
mode, the areas not used internally are for external memory and 1/O. If
an external memory or I/O device is located to overlap an enabled internal
resource, the internal resource will take priority.

$1000
$2000

$B00C

$C000

$F800

$FFFF

NOTE:

%

{MAY BE REMAPPED TO ANY

109F | % PAGE BY THE INIT REGISTER)

7 VA W s 0000 | 256 BYTE RAM
A } ‘\7 (MAY BE REMAPPED TO ANY
EXT EXT oofF | #K PAGE BY THE INIT REGISTER)
A L //*/// 7777, /} 77, 1000 | 64 BYTE REGISTER BLOCK

BOOT

BF40 | ROM BFC| SPECIAL
MODES
INTERRUPT

7

N\

.

o

7

VECTORS
R BFFF BFFF
Fao0 | 2<EEPROM (MAY BE REMAPPED
TO ANY 4K PAGE BY THE EEPROM
CONFIG REGISTER)
RMAL

FFCO

NO

INTERAUPT

VECTORS
A | FFFF | FFFF

VA /.
5:,'::,%5 Exwioso SPECIAL SPECIAL
{MODE 0) {MODE 1) BOOT TEST

1. Either or both the internal RAM and registers can be remapped to any 4k boundary by software.

Fourth College on Microprocessor based Real Time Systems in Physics 38
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

7 A Design Example Using the 68HC11

7.1 System Overview

The 68HC11 embedded system is one of several designed in this College to
demonstrate the concepts of real-time embedded systems and the technique
of cross development of such systems. In this particular one, simplicity of
hardware and development tool is emphasised. In fact, besides the micro-
controller, only one other chip, the RS232 interface driver, is essential in the
system, making it a really minimal system. It is conceivable that every par-
ticipant can go home with one such system, or at least the PCB for such a
system.

However, it is noted that though very small, it is nevertheless a fully func-
tional simple development system working in conjunction with a host station
such as a PC and the appropriate software. Only a standard RS232 serial
link between the host station and the target system is needed. Assembled
or compiled object code can be downloaded to the target system and stored
permanently in the EEPROM without requiring an external EEPROM pro-
grammer or other hardware. Uploading of target system code can also be
done if necessary.

As a simple system, in circuit emulation and debugging facilities such
as those provided by the Motorola Evaluation Module M6S8HC11EVM are
not available. This however is not a serious hindrance in learning the cross
development of a real-time embedded system.

A block diagram of the 68HC11 system is shown below followed by de-
scription of the various sub-units in other sections.

HOST PC J1 - 6BHC11 EXTENDED /O PORT
COM1 /2 J2 - ICTP (STANDARD) VO PORT
J3 - RS232 ASYN. SERIAL PORT
o
=
=
od
& ICTP
2 1=
% /7O BOARD
(o =
Ll
HEI
-
(&)
= 68HC 11
- /O BOARD
Fourth College on Microprocessor based Real Time Systems in Physics 39

ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

7.1.1 Host PC

The external host is typically a PC running Linux or other operating system
with suitable cross development software for the 68HC11. A COM port on
the PC is used to communicate with the 68HC11 target system. This link
serves as a code downloading or uploading channel during the development
stage. During the running or execution stage, the serial link may be used
for data communications between the PC and the target system if necessary.
Or it may be used by the target system to communicate with an external
instrument or equipment.

7.2 HC11 Microcontroller Kernel

The HC11 Kernel is a small board capable of communicating with a host
and interfacing to different target I/O subsystems. The entire board consists
of merely a 68HC811E2 microcontroller, an R5232 driver, a 5-V regulator, an
8-MHz crystal, a low voltage inhibitor (for reset), pull-up resistors, capacitors
and connectors. It highlights the capabilities of a typical microcontroller.
The main features of this board are as follows:

e ICTP PORT - A 26-pin standard ICTP 1/0 port (J2) to interface
with ICTP 1/0 board or other similar boards. However it does not fully
conform to the specification of the ICTP Port which is essentially based
on the ports of a Motorola peripheral interface adapter (PIA). PAG-7
of J2 is connected to Port B of the 68HC11. This port is a output only
port. PB0-7 of J2 is connected to Port C of the 68HC11. Thisis an I/O
port. CA1l and CB1 of J2 are connected to input strobe pin (STRA)
whereas CA2 and CB2 are connected to the output strobe (STRB) of
the microcontroller. There are functional differences between the PIA
strobe lines and those of the 68HC11.

e8HC11 J2 (lCTP PORT)
s5v ———1{ sv
5V —21 sV

STAB 34 cBz
STRA 1 cBeil
PC7 H pB7

PCE PB6

PGS (=

PCa £ pPRa

PC3 = eea

PCz2 1 pE2

PG e ==

PCO 123 peo

PB7 124 pA7

PBe 141 pas

PBS PAS

PB4 n PA4

PB3 1 PA3

PB2 PA2

PB1 189 pay

FBO PAQ

CA1

cAaz
GND ————224 GND
GND ———— 241 GND

PA3/OCS ey TO

PAC/ICS o TG

Fourth College on Microprocessor based Real Time Systems in Physics 40

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

J1

TIMER FUNCTION/
REAL-TIME INTERRUPT

OUTPUT

INPUT/OUTPUT

SERIAL COMMUNICATIONS INTERFACE/
SERIAL PERIPHERAL INTERFACE

ANALOGUE-TO-DIGITAL CONVERTER

/O STROBES(PORT B & C)

SYSTEM INTERRUPTS

‘ilTERRUPTS STROBES PORTE PORT D PORTC PORTB PORT A

* HC11 PORT - A 40-pin extended I/O port (J1) to bring out most of
the peripheral lines for use with a 68HC11 1/O board. This connector
consists of the following:

— Timer function and real-time interrupt port (Port A).

— General purpose ortnut port (Port B).

— General purpose 1/O port (Port C).

— Serial communications interface (SCI) and serial peripheral inter-
face (SPI) port (Port D). This port may be used as general purpose
I/0.

— ADC or general purpose input port (Port E).

— Input and output strobes (STRA, STRB).

— Interrupts (IRQ, XIRQ)

Fourth College on Microprocessor based Real Time Systems in Physics 41
ICTP, Trieste, Italy, Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

¢ RS232 Serial Port - An RS232 serial communications port (J3).
This port uses the TxD and RxD of Port D for asynchronous serial
communications. A Maxim RS232 driver/receiver chip operating at
single 5V supply is used.

¢ Power Consumption - The board is powered either by a regulated
5V DC supply or an unregulated DC supply ranging from 7 to 12 V
which is readily available in the form of AC adaptor. For the latter
a 5V regulator is used to produce the 5 V required by the MCU and
other components. The regulated 5V is also brought to the 68HC11
1/O board through connector J1. Current consumption of the micro-
controller (MC68HC811E2) is 15 mA which is relatively small. Other
components in the board have low power consumption teo. The cur-
rent consumption of the I/Q varies a bit depending on the states of the
LED lamps. An overall 200 mA should suffice for this system.

o Clock frequency - An 8-MHz crystal is used to produce a MCU clock
frequency of 2 MHz.

e Reset circuit - A low voltage inhibit device (MC34064) is used in
the RESET set to drive the RESET low when the supply is below
legal limits. This will prevent the unintentional corruption of the on-
chip RAM and EEPROM. Of course the manual RESET button is still
there.

¢ Boostrap/Normal mode selection - A bootstrap/Normal mode se-
lection switch is connected to MODB pin of the MCU. In the boot-
strap mode, the resident ROM bootstrap loader which will download
a 256-byte program into the RAM. This feature together with the on-
chip EEPROM programming capability make the board a small self-
contained development station.

7.2.1 ICTP 1/0O BRoard (or Colombo I/O Board)

ICTP 1/0 boards may be connected to the HC11 Kernel board via J2. As
mentioned earlier the J2 pins are not exactly the same as those specified.
However, the original ICTP (or Colombo) I/O board should pose no problem
in its present form. This is because PAO-7 are used as outputs for connecting
to four 7-segment LEDs and not as a general purpose I/O port. Strobe lines
do behave differently and program/driver should be modified accordingly.

Other I/O boards requiring J2 connection may be used as long as PAO-7
are not required to function as inputs.

Fourth College on Microprocessor based Real Time Systems in Physics 42
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

7.3 HC11I/0 Board

There are innumerable ways of designing the I/O board. It is hoped that
several 1/O boards may be constructed to demonstrate the versatility of the
microcontroller. It is envisaged that participants may subsequently wish
to design and construct their own I/O subsystems which are more specific
to their problems. For example, an experiment that requires counting of
events, measurement of pulse width or precise pulse generations would make
full use of the timer and real-time interrupt offered by the entire Port A of the
68HC11. Similarly, a situation where 4 ADCs are required may call for the
design of a different I/O subsystem with the appropriate signal conditioning
circuits.

For a start a rather basic board is built. It is intended to demonstrate the
basics instead of showing the full capabilities of the microcontroller. Some
functions and components presently available in the ICTP I/O board are not
duplicated. Others that are simple to incorporate and considered useful in
learning the cross development of an embedded system are included. The

first HC11 I/O board consists of the following:

¢ LED indicators — Small LED lamps are connected to Port B. These
can act as general purpose indicators but they are considered impor-
tant in the development of embedded system as a debugging aid for
reporting status.

e DIP switches - A 8-way DIP switch module is connected to Port C to
act as simple digital input devices. These switches, as the LED lamps,
are important aid in the development of embedded system. They allows
the user to interact with his system easily.

e Pulse input — A push-button switch is connected to the input strobe
pin (STRA).

e Strobe output — An LED lamp is connected to the output strobe pin
(STRB) through a buffer. This output also select either the LCD mode
or LED/S%W mode. A HIGH selects the LCD.

¢ Analogue input - A miniature multiturn potentiometer providing
0-5V is connected to one of the ADC inputs.

¢ External analogue input - Provisions are made of connecting exter-
nal sources to ADC inputs.

¢ LCD panel - A 16-character by 1-line LCD display panel is connected
to Ports B and C. This is a more sophisticated output device capable

Fourth College on Microprocessor based Real Time Systems in Physics 43
ICTP, Trieste, Italy, Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

of displaying simple text messages. It is a rather usefuluser interface
in a standalone system.

7.3.1 LCD & LED/SW Mode Selection

There are two ports (J1 & J2 connectors) brought out of the HC11 I/O Board
which match those on the HC11 Kernel Board. J1 (HC11 PORT) is a 40-way
connector which carries most of the HC11 I/O lines. J2 (ICTP PORT) is a
26-way standard ICTP I/O port. Most of the I/O devices mentioned above
(with the exception of analogue input and pulse counter) can operate with
either the ICTP PORT or or HC11 PORT. This is a constraint because in
doing so we have only Port B and Port C of the HC11 only. Consequently,
the LCD and LEDs/Switches cannot function simultaneously. A selection of
either the LCD or the LED/SW has to be made. This is done either by the
STRB signal or manually using a jumper through the use buffers. However,
LEDs connected to PB3-7 are not required by the LCD and hence can be
used during the LCD mode. Please refer to the appended circuit diagram for
details.

7.83.2 LED Panel

This itself is an embedded sub-system consisting of a twisted nematic mode
reflective liquid crystal dot matrix display and an embedded controller and
driver in bare chip form directly attached on the PCB. The display appears
as a 16-character by 1-line alphanumeric display while internally, as far as the
controller is concerned, it is connected as 8 characters by 2 lines. The con-
troller chip is a Samsung (or equivalent) dot matrix LCD controller KS0066.
Please refer to the manufacturer’s data sheet for programming this chip. If
you don’t see any pattern at all the panel, please adjust the contrast control
(potentiometer).

Fourth College on Microprocessor based Real Time Systems in Physics 44
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1998

Embedded Systems

Ang, Chu Suan

J1 orJ2

PORTB

PORT C

LED INDICATORS

STRA & STRB

DIP SWITCHES

PORT B &C

SWITCH & LED (STROBES)

ADC (PE0)

LCD MODULE

(Not in J2)

Counter (PA7)

POTENTIOMETER

(Not in J2)

STRB

PUSH BUTTON

SELECT

MANUAL J
!

PORTB &C

MODE SELECT

LCD MODULE

LEDs
SWITCHES

Fourth College on Microprocessor based Real Time Systems in Physics 45

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

7.4 Program Development

Program development for the 68HC11 Embedded System consists of the fol-
lowing steps:

e Develop source program in host environment either in high level lan-
guage or in HC11 assembly language.

e Compile or assemble source into HC11 object code in 519 format.

e Download and run HC811 programmer (PRGHC811) memory image
code to the 68HC11 Embedded System RAM using the bootstrap mode.

e Download the application in 519 format into the system and program
the EEPROM using the PRGHC811 which is now running.

e Reset and run the loaded target program.

e Repeat from the first step if target program does not behave as required.

DEVELOP PROGRAM
COMPILE/ASSEMBLE

LOAD & RUN
PRGHCS11 (image)

LOAD & PROGRAM
OBJECT CODE (519)

RUN & DEBUG

NO YES
OK? DONE

Fourth College on Microprocessor based Real Time Systems in Physics 46
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

47

Ang, Chu Suan

f the 68HC11 Kernel Board

ircuit Diagram o

TET ERET T IR LAL | TN —— _— - —
'} a Ll CR] 1Ll
MIS TN piati] ey fozig| DT B BENET, mn
TR N 1T 2o,2311 80HE89
&-_-UH ™ on Jem SD:llmdel e
PINGY M- n o Fhol " - CSue0 W aw SE0LSI5Td 1w
N r—
" F] Gl U3a13365 IEID SEIWA
s3loh
T ol]
i 7| P23
£ —— T AL W
M turola
. p— A —— S04
g [3lrtod o T n] 55
S0-E! —W— WIS nl
T B VAR ITJJ“T ISpureTa [LUREI T
=M1 e ———— | oSlurina
F— "=t S — T BT
-— 1 | e
.._.ul.rum LITH .ng g
Ay 434
b ond [
m|| 104 " —p— 9 51 g
204 —-—1— hHy €34 1=y
" € " ..ﬂ"[.lﬁlau Kid :
M A €
|n..|_ <d T e %
For—— %4 b {1
LI ——1 | 034 Tar
w1 1 w1
Fr—- tX L . £ T o
Hr— 13« o 2ar] wE1s i
Fr—— 24 -
3 A — 5 L >
.NI. 34 =
M Ir [ARLT] b
e ¢M [1] B e '
L] T skd
[£] 2] vla
—— s 51|
bp—— w5 L a ~o13p, er
g L]
B i oo
r—— ::an T) oae ;
Jlrr
ang
a0l -9l L2534 sy | MOOE
U L]
er o w -
p——t— | T 190 10assva | ARTEDS
110-220- 904
T H poA
g%+ 120205 - e . , . T cr
130+ 20/ wog. * i
: 51 130,620 w4 1" :
Y L1 L el FLIRFTE) T w0 L, T pw ﬁ
Pt #l![!gwl 1oy T teas ! Eyﬂ L VL ﬂ -
S . LI t - —
- L m— . Ha ._.guau: . - ~3 " o] cme ;r _jmﬁ -
| W= Irg — - e
Boa 001d0-Okg i
r

Embedded Systems

75 C

ystems in Physics

Fourth College on Microprocessor based Real Time S

LCTP, Trieste, Italy, Oct 7 - Nov 1, 1996

Ang, Chu Suan
t Diagram of the 68HC11 I/O Board

ircui

*

Embedded Systems

7.6 C

[T BT 5w R JE T

WIS 201-110W

vty by e

ez _lm BRI T BV

GdvOr B-1 11IDHEY

¥WINT MiL-R

or

201 dn-9210
L0 d)JT

#an.or [noE

coLen -0 HE
Lu0d

Ir

k2

ToMiwail IS MoK

er

7] ss0
w7 2l
zr Rl
| e (L-Tgs D0
S 23
7
T e 03y
v
al
] _ss-ead =
x| WIS M4 T
w1 15004 Kl
3 0sin-204 7
| amige |
g I¥u-00d |
o -
-Eﬁ < »
Ll
¢34
.umlmml %34 e e
= e L] Pt
crale - K- HA
77| £ . 08
B 74 K Lo
w1 12 . ad
TE 034 <} P
T ﬂ.‘.<,M
5] Powis Tmﬁ g
[z .
e "
= T
e] b K
. FlN 4
T £l
i e
T $ta
hild
mm e
o ot
gy
1] 4 7]
Ll
| 09
i)
e ™
Y thamie
| 120<1vacud "
3 120,200 -94d
3 130-€20-5%d
5 170eK70- v
4 130-820-Ebd
T 2 031e2vd <
=] %
T Caicond
POy

47 NI Jep S#01[2Mg8] 7Y
nol GG -ce SO NI JWY SEOISISHY TV
071410345 I5IMEIH0 5537w !

5300w

159.N007027

48

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

8 The Z80180 Microprocessor

The 780180 is listed as a microprocessor in the catalogue but it is rather
close to a microcontroller and is a good candidate

a microcoded execution unit in CMOS, this chip offers rather high per-
formance and maintains compatibility with a large amount of existing 780
programs.

The main features are:

e Improved performance - Higher performance than the Z80 is ob-
tained by reduced execution times, an enhanced instruction set, and
high operating frequencies. Up to 33 MHz at 5 V or 20 MHz at 3.3 V

1s available.

¢ Large memory space - An on-chip memory management unit (MMU)
supports extended address space of up to I MB of memory.

¢ DMA channels - Two direct memory access channels provide high
speed transfer of data between memory and [/O devices using either
request, burst or cycle-steal mode. Transfer can be effected between
memories, between I/Os or between memory and I/0.

¢ Serial communications channels- Two full-duplex asynchronous se-
rial communication channels (UART) each with a programmable baud
rate generator and modem control. Some versions offer break detection
and generation. A clocked serial I/0 (CSIO) provides a half-duplex se-
rial transmitter and receiver, which can be used for high speed data
transfer.

e Programmable timers - Two 16-bit programmable timers. One can
be used as a waveform generator.

¢ 7280 MPU - Code compatible with Z80 MPU.

® Low power consumy.ion - Power consumption at 10 MHz is 25 mA
in normal operation and 6 mA in STOP mode. Versions that provide
STANDBY mode consumes less than 10 pA in this mode.

Fourth College on Microprocessor based Real Time Systems in Physics 49
ICTP, Trieste, ltaly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

8.1 Architecture of the Z80180

The architecture of the Z80180 is shown below. Basically it has a CPU core
with number of system and I/QO resources. The core has a clock generator,
bus state controller, interrupt controller, memory management unit and a
central processing unit. The integrated peripheral resources consist of direct
memory access controls, asynchronous serial communication interface and
clocked serial interface and programmable timers.

farsflis
HHHH

[€—— XTAL
[t—— EXTTAL

Timing Bus Btate Control I Interrupt
¢ -
- cru
AN
Y
16-0kt < Jl> f—— /DREQL
Al8/TOUT - Prog: bl pMacs [™ TEND1
| |Retond Timens < > < :: (2] -
] (2) _
TXB % Clocked < Jl> > TXAD
L& mang
RXS/CTS1 o~ Bertal IO Asynchronous | |+ o CKAO/DREQR
- e K= = s w0
CKS -~
g { Channel 0} = /RTS0
2 : Q:"\/ - sets0
| o: B
g a
3 s
2 &
< > Asynchro] - TIAL
o = = CEKAL/TENDO
8CI
——) P
<1,:> { Channel 1)
Address Data - vee
Buffer Buffer
—-———— V88
Al9-AD D7-DO
Fourth College on Microprocessor based Real Time Systems in Physics 50

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

8.2 Programming Model

The 780180 is object code compatible with the Z80 MPU. Thus one can refer
the Z80 technical data for the full instruction set and programming model.
It has three groups of registers:

* Register Set GR - This consists of a 8-bit Accumulator (A), a 8-
bit Flag Register (F) and three general purpose registers (BC, DE and
HL) which may be treated as 16-bit or 8-bit registers depending on the
instruction.

* Register Set GR’ - An alternate set of registers to the GR. They
are not directly accessible but the contents may be exchanged with the
GR set at high speed.

¢ Special Registers - These consist of an 8-bit Interrupt Vector Reg-
ister (I), an 8-bit R Counter (R), two 16-bit Index Registers (IX and
1Y), a 16-bit Stack Pointer (SP), and a 16-bit Program Counter (PC).

Besides the Z80 instructions, a number of new ones have been added.
They include instructions to enter sleep mode, 8-bit multiplication, I/O ma-
nipulation, etc.

Fourth College on Microprocessor based Real Time Systems in Physics 51
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

9 A 780180 Embedded System

9.1 System Overview

We have earlier introduced a very small embedded system using the 68HC11
single chip microcontroller. The elegance of that design is in its simplicity
- a mere two-chip board. Come with the simplicity is resource limitation,
essentially in memory size. The version we used has only 2KB of EEPROM
and 256 bytes of RAM.

[n this section, we shall introduce a larger embedded system using the
780180 MPU. This has a memory capacity of 1 MB which is more than ad-
equate for really a large number of the embedded system applications. We
shall look at a Z80180-based Micro Genius developed by Z-World Engineer-
ing. Together with a C cross-compiler running in the PC, this embedded
controller provides a rather powerful system for real-time applications. The
commercial version is compact in size (3.2” by 2”) and relatively low cost
(USD89). Another essential feature of this system is the provision of real-
time multitasking capability by means of costatements and/or a real-time
kernel.

9.2 System Hardware Configuration

RS232 Port («—
Z80180 CPU
RS485 Port =———
Watchdog SRAM
32K

Real-time Clock ?29.'!‘12}(EPROM

256K flash EPROM
- PIO Ports 3

Timer (ADC) Two B-bits ports

Fourth College on Microprocessor based Real Time Systems in Physics 52

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

A diagram of the hardware configuration is shown above. It has the following
sub-units:

A 780180 which is an enhanced Z80 microprocessor outlined earlier,

An R5232 port with the following features:

— With RTS & CTS handshaking.
— 9600, 19200 or 57600 baud.

= It is used to communicate with PC during program development
and can be subsequently programmed for other use.

An R5485 port which provides half-duplex serial communication using
balanced differential drives for distances up to 4 km.

32K bytes of RAM.

Up to 512K bytes of EPROM or up to 256K bytes of flash EPROM.
Flash EPROM is non-volatile and can be written under program con-
trol.

The following parallel I/0 (PIO) are available:

— Two 8-bit ports, A and B.
— Port A with handshaking.

~ 4 lines of port B are pre-assigned for real-time clock and RS485
use.

A watchdog circuit restarts the system if software fails to reset the
watchdog timer every 1.2 seconds. It also resets when Vec falls below
4.62V. '

A 535 timer is used as an analogue-to-digital converter for interfacing
with external resistive sensors.

A real-time calendar clock acts as a timekeeper. [t also provides 31
bytes of scratchpad RAM.

Fourth College on Microprocessor based Real Time Systems in Physics a3
ICTP, Trieste, Italy, Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

9.3 Program Development

Programs for the Micro Genius are developed using Dynamic C which is an
integrated editor-compiler-debugger, run in Windows or DOS environment.
When a program is compiled, it is downloaded directly to the RAM of the
target system that is connected to one of the COM ports of the PC. Serial
communication is at 9600, 19200 or 57600 baud.

When the program development is finished, the entire program may be
compiled for EPROM. An EPROM may then be programmed in a separate
process and plugged into the target system to run.

Three modes of program development are available:

o Use target system with EPROM. Use the target system with a
Dynamic C BIOS EPROM and connect the R5232 port directly to the
PC. The RAM provides up to 32K of code and data space.

e Use target system with flash EPROM. Use the target system with
a 256K flash EPROM and connect the RS232 port directly to the PC.
In this case the flash EPROM provides 256K of program space and the
RAM 32K of data space.

e Use target system with a separate development board. A devel-
opment board that plugs into the EPROM socket of the target system,
provides its own RS232 port for communicating with the PC and em-
ulates the BIOS EPROM as well as providing 504K bytes of program
space in addition to the 32K data space on the target RAM. In this
case, both the serial ports of the target machine are free.

9.4 Interface Description

The interface of Micro Genius consists of bit- and byte-wise parallel 1/0,

serial ports, precision timer, and real-time clock. They are arranged in two
headers (H2 and H3) as shown below:

oND — 26 25 — DCIN
fs4ss. —| 24 23 — RS486+
EXTRES — 22 21 [VBAT
GND — 20 19— /RESET
RTCDAT — 18 17— RTCCLK
: - PB4 —] 18 H3 18— PBS
TDAT — 1 3 a— cTs PBs — 14 13— pe?
/MDAT—5 H2 & — RTs ASTE —| 12 1 —— ARDY
"**; 1%: GND —{ 1o 9 |— PaA?
pas — & 7 [— PAS
PAd — @ 5 — PaAz
pAz — 4 3 [— PAl
pac —| 2 11— +sv
Fourth College on Microprocessor based Real Time Systems in Physics 54

ICTP, Trieste, ltaly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

* RS232 & programming port A 10-pin header (H2) provides a 5-wire
R5232 interface. This interface can also be used as the programining
port, in which case the communication port temporarily lost to the
user program.

¢ RS485 port - An RS485 driver chip provides a half-duplex RS485 in-
terface. An RS485 serial communication channel can be used to create
a network of embedded systems with links spanning several kilometres.
The RS485 signals are available on pins 23 and 24 of header H3.

® Supervisor - A supervisor (DS1232) provides a watchdog timer that
guards against system or software faults by resetting the processor if
software does not hit (by calling hitwd) the timer at least 1.2 seconds.
It also resets the entire system on power-up or when Vcc falls below

4.62V.

¢ Real-time clock A real-time clock (DS1302) provides time and date
function, plus 31 bytes of scratchpad RAM. An external battery (con-
nected to VBAT) is used to retain data when power is down. Data are

clocked using RTCCLK and RTCDAT. RTCRST resets the real-time
clock.

® Timer - A timer (555) is used to measure external resistance, such
as a thermistor, control potentiometer, or a position sensor. It behaves
like an analogue input channel. The resistance of the input device is
deduced from the timer value using the following formula:
A = 1.1RC seconds where (' = 4.7uF

e Parallel input/output ports A PIO chip is used to provide parallel
input/output ports.

— Port A (PA0-7, ARDY, ASTB) is a full I/0 port with handshaking
lines. PAO-7 are TTL compatible.

— PBA4-7 are available to user applications. Each line can supply up
to 1.5mA at 1.5V to drive Darlington transistor.

— PB0-3 are used as RTCRST, EN485, RTCDAT and RTCCLK
respectively,

— Impedance of the I/O lines are 801 for sinking current and 1601
for sourcing current.

— Port A may be programmed to operate in mode 0 (strobed byte
output), mode 1 (strobed byte input} or mode 3 (bitwise 1/0).
Port B is in mode 3.

Fourth College on Microprocessor hased Real Time Systems in Physics a5
ICTP, Trieste, ltaly. Oct 7 - Nov 1, 1996

Embedded Systems

Ang, Chu Suan

9.4.1 Memory Map

e The memory map of the Micro Genius is as follows:

FFFFF
Unused

88000

32K RAM
80000

Top of 512K EPROM
40000

Top of 256K EPROM
20000
10000 Top of 128K EPROM
08000 Top of 64K EPROM
00000 | Top of 32K EPROM

512K

512K

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

56

Embedded Systems

Ang, Chu Suan

9.5 Driver Software For I/0 Devices

An extensive set of C functions for programming the interfaces is available

from Z-World Engineering. The following table forms a partial list.

FUNCTION DESCRIPTION
void setPIOCA(byte mask) Set port A control register.
void resPIOCA(byte mask) Reset port A control register.
void setPIODA(byte mask) Set port A data register.
void resPIODA (byte mask) Reset port A data register.
void setPIOCB(byte mask) Set port B control register.
void resPIOCB(byte mask) Reset port B control register.
void setPIODB(byte mask) Set port B data register.

void resPIODB(byte mask)

Reset port B data register.

int tm_rd(struct tm *t)

Read the RTCinto the structure *t.

int tm_wr(struct tm *t)

Write the values in the structure *t,

int WriteRAM1302(int ram_loc, byte data)

Write data to any of the 31 RAM
locations of the DS1302.

int ReadRAM1302(int ram_loc)

Read data from any of the 31 RAM
locations of the DS1302.

void WriteBurst1302(void*pdata, int count)

Write count bytes, in burst mode, to
the D§1302.

void ReadBurst1302(void*pdata, int count)

Read count bytes, in burst mode,to
the DS1302.

void Write1302(int reg, byte data)

Write data to a specific register of
the DS1302.

int Read1302(int reg)

Read data from a specific register
of the DS1302.

charger1302(int on_off, int diode, int resistor)

Turns the trickle charger on the
DS§1302 on,

void Set555(uint max_count)

Trigger the 555 circuit and start the
2180 timer.

int Read555(uint *lapse_count) 7

Read 7180 timar.

struct tm {
char tm_sec; //0-53 char tm min;
char tm_hour; //0-23
char tm_mday; //1-31
char tm_mon; //1-12
char tm_year; //0-150 (1900-2050)

char tm_wday; //0-6 where 0 means Sunday

//0-59

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Ttaly. Oct 7 - Nov 1, 1996

3

Embedded Systems Ang, Chu Suan

9.6 Serial Communication Software

The serial communication library includes the following functions:

¢ Initialization of the serial ports.

¢ Monitoring and reading a circular receive buffer.

e Monitoring and writing to a circular transmit buffer.

e An echo option.

e CTS (clear to send) and RTS (request to send) control.

o XMODEM protocol for downloading and uploading data. Downloading
of data is in multiple of 128 bytes. Uploaded data is written to specified
area in RAM.

e A modem option.

Serial communication is done by a background interrupt routine that
updates receive and transmit buffers. Using the CTS/RTS option, the RTS
will be pulled high when the receive buffers has reached 80% of its capacity.
The RTS line is pulled low again when the received buffer has gone below
20% of its capacity.

The RS232 library supports communication with Hayes Smart Modem.
The CTS, RTS and DTR lines of the modem are not used. They are tied
together. The CTS and RTS lines on the Micro Genius are also tied together.
A NULL connection is required for the TX and RX lines.

9.7 Master-Slave Networking

Functions for master-slave two-wire half-duplex R5485 9th-bit binary com-
munication are also available. In a network, one system is configured as
master (address 0} and the rest as slaves (address 1-253). The data transfer
scheme is as follows:

e 7180 is initialized for RS485 communication.
e The master sends an enquiry and waits for a response.

e Slaves monitor for their address during the 9th-bit transmission. The
slave that matches the address will listen to the rest of the message
and reply to the master.

Fourth College on Microprocessor based Real Time Systems in Physics h8
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

¢ The format of a master message:
[slave id] [lenJ[J [] ...[1 [CRC hi] [CRC 1o]

¢ The format of a slave message:
[len] [1L 1 ...[1 [CRC hil [CRC lo]

9.8 Dynamic C Development System

As mentioned earlier, Dynamic C is an integrated development system com-
prising a C compiler, an editor, and a source-level debugger. In the Windows
version, it has eight menu: File, Edit, Search, Compile, Run/Debug, Watch,
Options, and Window. It compiles, links and downloads to the target ma-
chine under the same environment. :

Embedded assembly language is supported (#ASM #ENDASM direc-
tives). C statements can be placed within assembly code by placing a C in
column 1. It supports hard and soft breakpoints where the former disables
interrupts whereas the latter leaves interrupts on so that higher priority tasks
can continue to execute.

Debugging supported by printf and watch expressions. A watch expres-
sion is a C language expression that can include preprocessor substitutions,
variables and function calls.

9.9 Extension To C for Extended Memory Data

Extension to C allows the access of extended memory data. Extended mem-
ory addresses are 20-bit physical addresses. Pointers are 16-bit machine
addresses. Two non-standard keywords are used for this purpose: zstring
and zdata.

xstring name { stringl, ... stringn };

defines an array of string addresses. The term name is the name of the
array, itself a 32-bit unsigned long integer whose lower 20 bits are the address
of the array.

xdata name { datum!, ... datumn }

defines an array of addresses of initialized extended memory data. The
data must be constant expressions.

xdata name /nj;

defines a block of n bytes in extended memory.

Fourth College on Microprocessor based Real Time Systems in Physics 59
I[CTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

9.10 Multitasking In Micro Genius

Both preemptive and cooperative multitasking are supported. In preemptive
multitasking, tasks are interrupted and control is taken away involuntarily. A
kernel is needed to monitor, regulate and dispatch tasks. A real-time kernel
(RTK) included in the Dynamic C library supports prioritized preemption.
As many priority levels as desired may be used.

A simplified real-time kernel (SRTK) is also available. There are only
three levels of priority in this case. The top priority task executes at 25ms
intervals, the low priority task executes at 100ms intervals. The background
task executed when no other tasks are executing.

A special fastcall task is available that can execute as often as 1280 times
per second. It preempts all other tasks.

In cooperative multitasking, each task voluntarily gives up control so
that other tasks can execute. A kernel is not required. This method provides
easier communications between tasks and is simpler to program. However it
requires a costaternent mechanism to function. Costatement mechanism is
another extension to C provided by Dynamic C compiler.

9.11 Costatement Mechanism

Costatements are an extension to C that facilitate cooperative multitasking.
Costatements are cooperative concurrent tasks that can suspend their own
operation:

e They can waitfor event, condition, or the passage of time.
o They can yield temporarily to other costatements.

o They can abort their own operation.

Costatement can be aciive (ON) or inactive (OFF). For each costate-
ment, there is a structure of type CoData associated with if. It maintains
a position pointer to resume execution after being stopped. It also carries a
start flag and other data in the following syntax:

costate[name[state]]{

[statement|yield;|abort;| waitfor(exzpression);] ...}
Three delay functions can be used by waitfor:
int DelaySec(ulong seconds);
int DelayMs(ulong milliseconds);
int DelayTicks(uint ticks);

Fourth College on Microprocessor based Real Time Systems in Physics 60
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

9.12 A Real-time Problem Without Using Costate-
ments

Consider the following sequence of events to be programmed:
» Wait for a push-button to be pushed.
o Turn on device 1.

Wait for 60 seconds

Turn on device 2.

Wait for 60 seconds.

Turn off both devices.

Go to the beginning.
The above can be written in C without using costatements as follows:
// Normal C program without using costatement

extern shared long time;
long timeri, timer2;

int state;
// Intialization:
state=1;
for(;;){
if(state==1){
if (buttonpushed()){
state=2;
turnondevice1():
timel=time;
}

} else if(state==2){
if((time-timer1)>=60L)}
state=3;
turnondevice2():
timer2=time;
}
} else if(state==3){
if((time-timer2)>=60L{

state=1;
turnoffdevice1();
turnoffdevice2();
}
}
}
Fourth College on Microprocessor based Reat Time Systems in Physics 61

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

9.13 Real-time Problem Using Costatements

Now if the above sequence is just one of several tasks to be performed, the
code above has to be modified, often involving changes to keep track of the
state or time. Using costatement, the entire problem can be solved elegantly
as follows:

// Using costatements

for(;;) {
costate { // task 1
waitfor{buttonpushed());
turnondevicel();
waitfor(DelaySec(60L));
turnondevice2();
waitfor{DelaySec(6§0L));
turnoffdevicel();
turnoffdevice2();
}
costate { // task 2}
}
costataeq{ // task n}
}
}

9.14 The Virtual Driver In Micro Genius

The virtual driver (invoked by VDInit) is a set of functions that provides the
following services:

¢ Periodic time interrupts

Second, millisecond and tick timers

Synchronization of the second timer with the real-time clock
o Virtual watchdog timers

Periodic drive for real time kernels

o A fastcall execution thread

(Global initialization

Fourth College on Microprocessor based Real Time Systems in Physics 62
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

The virtual driver is called 1280 times per second by a clock interrupt. If
no real-time kernel, fastcall, or virtual watchdog is in use, the virtual driver
just updates the second, millisecond and tick timers.

If #£define RUNKERNEL 1 is included in a program that uses the
virtual driver, it will call the RTK or SRTK every 25 milliseconds.

9.15 Real-time Kernels In Micro Genius

The RTK and SRTK allow program to be divided into prioritized tasks.
Execution of these tasks is interleaved in time. An example of using SRTK
is given below:

#use vdriver.lib // or include VDRIVER.LIB and
#use srtk.lib // SRTK.LIB in LIB.DIR
#define RUNKERNEL 1 // use the kernel

int HCOUNT, LCOUNT;

main(){
HCOUNT=LCOUNT=0
vdInit(); // Need virtual driver
init_srtkernel(); // Initialize the SRTX
while{1}{ ... }

}

// This high priority task executes every 25 ms
srtk_hightask(){HCOUNT++;}

// This low priority task executes every 100 ms
srtk_lowtask(){
LCQUNT++;
costated{ // Print every 1/2 second
waitfor(DelayMs(500));
printf("%d %4\n", HCOUNT, LCOUNT);

}

costate{ // Reset when HCOUNT is large
waitfor (HCOUNT>=32000) ;
HCOUNT=0;
LCOUNT=0;

}

The costatements create two execution threads within the low priority
task. Background tasks can be placed in the while loop in main. To use
the RTK, three steps must be taken:

Fourth College on Microprocessor based Real Time Systems in Physics 63
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

e define an array of task pointers
¢ specify the number of tasks
¢ #define RUNKERNEL

An example using the RTK is shown below:

#tdefine NTASK 7
#tdefine RUNKERNEL 1
#use RTK.LIB

// Task prototypes
int heater(), pump(), sensor(}, backgnd(};

// Array of 4 task pointers

int (*Ftask[4])()={heater, // task 0
pump, // task 1
sensor, // task 2
backgnd}; // task 3

/*%%dkx YITH VIRTUAL DRIVER #**#¥%/

main(){
VdInit(); // initialize VD and RTK
run_every(0,5); // run task O every 5 ticks
run_svery(1,15); // run task 1 every 15 ticks
run_every(2,100); // run task 2 every 100 ticks
backgnd(); // run lowest priority task 3
¥

Kernel functions related to the RTK are

void run_at(int tasknum, voidtime)

s int comp48(void*timel, voidtime2)

s void gettimer(voidtime)

¢ void run_after(int tasknum, long delay)
¢ void run_every(int taksnum, int period)
e void request(uint tasknum)

¢ void run_cancel(int tasknum)

¢ void suspend(uint ticks)

Fourth College on Microprocessor based Real Time Systems in Physics 64
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

10 A Real-time Kernel for Embedded Sys-
tems - uC/0OS

10.1 Introduction

Jean J. Labrosse published an early version of uC/OS in Embedded Systems
Programming magazine in June 1992. It was written in C with the initial
goal for creating a small but powerful kernel for the 68HC11 microcontroller.
It has since been extended to a portable system suitable for use with any
microcontroller/microprocessor provided that it has a stack pointer and the
processor status can be stacked and unstacked.

Labrosse has subsequently written the book describing xC JOS:

e Jean J. Labrosse, u C/OSTheReal—TimeKernel, R & D Publications,
Lawrence, Kansas. ISBN 0-13-031352-1

The compiete source listing of £C/OS is available in the book. It is also
available in a companion disk.

The code is protected by copyright. However, you do not need a license
to use the code in your application if it is distributed in object format. You
should indicate in you document that you are using xC/OS.

10.2 Main Features of uC/0S

The main features of uC/OS are:

o Portable - It is written in C, with a small processor specific code in
assembly to create task, start multitasking and perform context switch-
ing. For 80186/80188 the assemble language code is less than 4 pages.

¢ ROMable - The size and design of the kernel is such that it is suitable
for storing in ROM or EPROM.

¢ Priority driven - It always runs the highest priority task that is ready.

¢ Pre-emptive - When a task makes a higher priority task ready to run,
the current task is pre-empted or suspended and the higher priority task
is immediately given control of the processor. Execution of the highest
priority task is deterministic.

¢ Multitasking - Up to 63 tasks may be set up.

Fourth College on Microprocessor based Real Time Systems in Physics 65
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

o Interrupt feature — Interrupts can suspend the execution of a task. If
a higher priority task is awakened as a result of the interrupt, the higher
priority task will run as soon as the interrupt completes. Interrupts can
be nested up to 255 levels deep.

10.3 uC/OS Tasks

A task is an infinite loop function or one that deletes itself when it is finished.
The infinite loop can be pre-empted by an interrupt that can cause a higher
priority task to run as mentioned above. A task can also call the following

1#C/OS services:

o OSTaskDel()

OSTimeDly()

OSSemPend()

OSMboxPend()

OSQPend()

FEach task has a unique priority, ranging form 0 to 62. The lower the
value the higher the task priority.

10.4 uC/OS Task States

There are altogether six possible states for a task as listed below:

e DORMANT -The state when a task has not been made available to
pC/OS.

o READY - When a task is created by calling OSTaskCreate(), it is in
the READY state. Tasks may be created before multitasking starts or
dynamically by a running task. If the created task has a higher priority
than its creator, the created task is immediately given the control of the
processor. A task can return itself or another task to the DORMANT
state by calling OSTaskDel().

e RUNNING - The highest priority task created is in the RUNNING
state when multitasking is started by calling OSStart().

Fourth College on Microprocessor based Real Time Systems in Physics 66
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chit Suan

* DELAYED -The running task may call OSTimeDly() and enters the
DELAYED state. The next highest priority task then runs. The de-
layed task is made ready to run by OSTimeTick() when the desired
delayed time expires.

® PENDING - The running may have to wait for an event by calling
OSSemPend(), OSMboxPend() or OSQPend(). It then enters
the PENDING state. The next highest priority task then runs. The
task is made ready when the event occurs. The occurrence of an event
may be signalled by another task or by an interrupt service routine

(ISR).

¢ INTERRUPTED - A task may be interrupted and enters the INTER-
RUPTED state. The ISR then runs. The ISR may make one or more
tasks ready to run. When all tasks are either waiting for events or
delayed, an idle task OSTaskIdle() is executed.

10.5 pC/OS Task State Transition Diagram

0SSemPend()
OSMboxPendy)

OSTaskDelf)

Fourth College on Microprocessor based Real Time Systems in Physics 67
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

10.6 Task Control Block

Each task has a task control block, OS_TCB, which is used by muC/OS to
maintain the state of the task when it is pre-empted. When the task regains

control the OS_TCB allows it to resume execution properly.
Each OS_TCB has the following field:

e OSTCBStkPtr - points to the top of stack.

e OSTCBStat - state of the task. 0 - ready to run

¢ OSTCBPrio - task priority. 0 - 63

¢ OSTCBDly - number of clock ticks the task is to wait for an event.

e OSTCBX, OSTCBY, OSTCBBItX, OSTCBBItY — used
for speeding up task handling by precomputing some parameters.

OSTCBX = priority & 0x07;
OSTCBBIitX = OSMapTle[priority & 0x07];
OSTCBY = priority >> 3;

OSTCBBIitY = OSMapTbl{Priority >>3];

o OSTCBNext, OSTCBPrev - to doubly link OS_TCBs. OS-
TimeTick() uses this link to update OSTCBDIly field for each task.

« OSTCBEventPtr — points to an event control block.

All OS_TCBs are placed in OSTCBTDbI[]. The maximum number of
task is declared in the user’s code. An extra OSTCB is allocated for the
idle task.

10.7 Creating a Task

Tasks are created by calling ©STaskCreate() which is target processor
specific. Tasks can either be created prior to the start of multitasking or by
another task at run time. A task cannot be created by an interrupt service
routine.

OSTaskCreate() has four arguments:

e task — points to the task code.

o data - points to a user definable data area that is used to pass argu-
ments to the task.

Fourth College on Microprocessor based Real Time Systems in Physics 68
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

® pstk — points to the task stack area for storing local variables and
register contents during an interrupt.

® p - task priority.

OSTaskCreate() calls OSTCBInit() which obtains an OS_TCB from
the list of free OS_TCBs. If all OS_TCBs have been used, an error code is
returned. If an OS_TCB is available, it is initialised.

A pointer the OS_TCB is placed in the OSTCBPrioTble[] using the
task priority as the index. The OS_TCB is then inserted in a doubly linked
list withOSTCBList pointing to the most recently created OS_TCB. The
task is then inserted in the ready list.

If a task is created by another task, the scheduler is called to determine
if the created task has a higher priority than its creator. If so, the new task
is executed immediately. Otherwise, control is returned to its caljer.

10.8 Deleting a Task

A task may return itself or another task to the DORMANT state by calling

OSTaskDel(). However, the idle task cannot be deleted. The steps taken
to removed a task is as follows:

¢ Removed from the ready list.
¢ OS_TCB is unlinked and returned to the list of free OS_TCRB.

o If OSTCBEventPtr field in nonzero, the task must be removed from
the event waiting list.

10.9 Task Scheduling

Task scheduling is done byOSSched() which determines which task has the
highest priority and thus will be the next to run. Each task has a unique
priority number between aud 63. Priority 63, the lowest, is assigned to the
idle task when xC/OS is initialised.

Fach task that is ready to run is placed in a ready list. The task scheduling
time is constant irrespective of the number of tasks created. OSSched()
looks for the highest priority task and verifies that it is not the current task
to prevent unnecessary context switch. A context switch is then carried out
byOS_TASK_SW ().

OSSched() runs in a critical section to prevent ISR from changing the
ready status of a task.

Fourth College on Microprocessor based Real Time Systems in Physics 69
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

10.10 Interrupt Processing

4 C/OS requires an interrupt service routine (ISR) written in assembly lan-
guage. Interrupts are enabled early in the ISR to allow other higher priority
interrupts to enter.

OSIntEnter() is called on entering and OSIntExit() on leaving the ISR
to keep track of the interrupt nesting level. There may be 255 levels.

11C/08’s worst case interrupt latency is 550 MPU clock cycles (80186/80188).
1 C/08’s worst case interrupt response time is 685 MPU clock cycles
(80186/80188).

10.11 Clock Tick

Time measurement in suspending execution and in waiting for an event is
provided by OSTimeTick(), which supplies the clock ticks or the heartbeats.
OSTimeTick() also decrements the OSTCBDIy field for each OS_TCB
that 1s not zero.

The time between tick interrupts is application specific and is typically
between 10 ms and 200 ms. OSTimeTick() increments a 32-bit variable
OSTime since power up. This provides a system time.

10.12 Communication and Synchronisation

1tC/OS supports message mailbozres and gqueues for communication. A task
can deposit, through a kernel service, a message (the pointer) into the mail-
box. Similarly, one or more tasks can received messages through a service
provided by the kernel. Both the sending and receiving task have to agree
as to what the pointer is pointing to.

A message queue is an array of mailboxes. pC /OS supports semaphore
(0-32767) for synchronisation and coordination.

The above services are events. Thus, a task can signal the occurrence of
an event (POST) or wait for an event to occur (PEND). However, the ISR
can POST an event but cannot PEND on an event.

When an event occurs, the highest priority task waiting for the event is
made ready to run.

10.13 Event Control Blocks

The state of an event consists of the event itself and a waiting list for tasks
waiting for the event to occur.

Fourth College on Microprocessor based Real Time Systems in Physics 70
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

Each event is assigned an Event Control Block which has the following
data structure:

e OSEventGrp

e OSEventGrp

e OSEventTbl[8]

e OSEventCnt for semaphore count

e OSEventPtr for mailbox or queue

10.14 Memory Requirements

The memory required for the program is less than 3150 for the 80186/80188
microcontroller. This can be reduced to if some of the services are not re-
quired. The RAM or data memory is as follows:

e 200
+ ((1 + OSMAX_TASK) * 16)

+ (OS_MAX_EVENTS * 13)
+ (OSMAX_QS * 13)

+ SUM(Storage requirements for each message queue)

+ SUM(Storage requirements for each task stack)

+ (OSIDLE_TASK STK SIZE)

Fourth College on Microprecessor based Real Time Systems in Physics 71
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1998

Embedded Systems

Ang, Chu Suan

10.15 Kernel Services

The kernel services are given in the following table:

SERVICE DESCRIPTION

| |OSInit(Initialise pC/OS

2 | 0SIntEnter() Signal ISR entry

3| OSIntExit(Signal ISR exit

4 |OSMboxCreate() Create a mailbox

5 |OSMboxPend() Pend for mrssage from mailbox
6 |OSMboxPost() post a message to mailbox

7 | 08QCreate() Create a queue

3 |0Sgpend Pend for message from queue
9 | 0SQPost() Post a message to queue

10 08SchedLock() Prevent rescheduling

{1 |08SchedUnlock(Allow rescheduling

12 | 0SSemCreate() Create a semaphore

13 |0SSemPend() Wait for a semaphore

14 | 0SSemPost() Signal a semaphore

15 |OSStart() Start multitasking

16 |0STaskChangePriol) Change a task’s priority

17 |0STaskCreate() Create a task

18 |OSTaskDel{ Delete a task

19 !O0STimeDly{) Delay a task for n system ticks
20 |OSTimeGet() Get current system time

21 | OSTimeSet() set systemn time

22 |0STimeTick() Process a system tick

Fourth College on Microprocessor based Real Time Systems in Physics
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

72

Embedded Systems Ang, Chu Suan

A HC11 Embedded System PCB Artwork

A.1 HC11 MCU Kernel Board

LEGEND
DESP 43 0:1
- — 780S
0 0 5ol

J3 1 J9Pt 4 ou
21O O
LUO“UOmE'

o= i
l q
JP?E ! MAX232 01 ©5u
DTE
Jre[1 xx Q 1M
JesL ! Qua
P4 UP3 =
[K¥
) Jz M v1
L_J 2 Ul a
z & z 8 MHz
LJ & O
¢
=
ggg W U0 U
at |
TG P . IBTLE,
£x¢ (ON> w «
BOOT &
W L
RESET M —

Q
NCEE]
Pl NORFiaL % IO @

(o]

Fourth College on Microprocessor based Real Time Systems in Physics 73
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems

Ang, Chu Suan
A.2 HCI11 MCU Kernel Board
COMPONENT LAYER
© : -l
(-] doocn @ -- ° o
ao .Y
oo 0O o foo>®
g00000080 ¢ lo o °
- g o alo
ol - -: ° 00
= | 23
% = | =8
[] o [] °
L - J L] o
(-] [- J
T o o f
ae) o 0
o0 - < 0
[-X-} - - 0
o0 < [- X-]
[. X]) o 0
- | I—o °o o ae
o0 o0 - =0
::4,.0—_—___7,—? e = -
b 35 s a | =
v oo © o0 o ea
[- 0
[N -]
OB
Fourth College on Microprocessor based Real Time Systems in Physics 74

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

A.3 HC11 MCU Kernel Board

#3YAd A3dJoe

Fourth College on Microprocessor based Real Time Systems in Physics 5
ICTP, Trieste, Italy. Oct 7- Nov 1, 1996

Embedded Systems Ang, Chu Suan

A.4 HC11 MCU Kernel Board

COMPONENT MARSK

|
® 0000 B S ®
. (Y Y X] .I. '.f
o o0 oo g 0 o
o ssessenn, $3_ o
- u - (1]
o® sesseen’ 3 833
oo ne = b4
b4 e o -
" gm ess o S8 000
¢ o S = 4
- o0 o =°
® - e o 4
se® - e o —
1] s o —
[T] o 00 - —
... o 60 - P
o0 lde o 00 .:
4 - ")
eege see o 41
0eg0 sse o a0 o
ee% 4
44 e o b o0
e o0 e *° @ - 44
o oo " o o SE®
P e @
® ®
® L0 o « ®
Fourth College on Microprocessor based Real Time Systems in Physics 76

1CTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

A.5 HC11 I/0 Board

COMPONENT MASK

® o 0000 00000000080
e @
u 9000000000
o0 @
e [(JJ I ITTIY] o080seeeee 0 O
]
° N000s00e0s gesesccces ° ®
® ® Hoeooo0o000
e ® 00000OMS ¢00080000S -
®
Heooease HooSROOGOS
[J
d ° ° °
.................
l:oooooo-ooooooo ®
L' ® ot o
Fourth College on Microprocessor based Real Time Systems in Physics 77

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems

Ang, Chu Suan

A.6 HC111/0 Board

0]

aNg

O

a3i-ms
(ND)ldr

ig

J3NUd 031
e

Au¥dY 7371

S3HILINS dIT
L93GhEZTD

1S9¥1NDD a7

 — [:::::::5“

[i [Sh2dHhe 1IN 41!‘! [€3d/ENY
ns-0 [} Edr
29d-10d %Sr\\omrmmﬂo
- gA415 BALS
Seladoloia oo 2ar de
o .1- Einla!m ngag W
~
o o g
O W T O W = o wlg ~ vV Fr o oo oo ko B
o (=] a a [=} = [=] o = (5] [S) [(&) (&) (&)) [[t - n
> o o o a. o —_ > o a. a o a o a o w o >
er
[}) wy ¥ [} o —_ [=] [«a ["2] = M ol — o (=1 - N o«
I <X I [+ 8 [ad I T a 2]] (2] m m [l 2] [Ll tad W
a a a o o [*% a Q. a [+8 a a o a [+ a o [1 % [+ [N
[
(04
T
gg a 2 ok
g r 1¥0d 113H
O 8 I 6L
N <
| o IRV
(]
hY
— O
~— e
O 8 2 92
0 er 130d 4131

¥4 [::}

{IN3931

Fourth College on Microprocessor based Real Time Systems in Physics
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

78

Embedded Systems

Ang, Chu Suan

A.7 HC11 I/O Board

COMPONENT LAYER

(o]

Bl

000000000000000000
000000000000000000

e o o
0000000000
o0
a Q0000000 e0ovoonoocf] o
ao |
° ©0000000 moocovocaof ®
- o 00000000
900coo0ve0e odocooscoey

Boocoeocooe ‘;-_uTo‘olo 0'

o

000000000000 COO
Q@ Hbocoococoocooeooos [

Fourth College on Microprocessor based Real Time Systems in Physics
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

79

ssssssssssssssssssssssssss

BBBBBBBBBBB

" "qqnim-

Fourth College on Microprocessor based Heal Time Systems in Physics

Embedded Systems Ang, Chu Suan

B Software Utilities

Appended below are programm listing in the most primitive level for HC11
development.

B.1 PRGHCS811 EEPROM Programmer

*****#******#*****#*********##***t*******************************t*************

* Program : 68HC811E2 FEPROM programmer *
* Filename : PRGHC811.ASM *
* Varsion : 1.00 on 12/9/90 *
* : 1.10 on 24/10/90 *
* Written by: K.A. Poh *
* *
* Binary image of this program is downloaded to the 68HCS11E2 in bootstrap *
* mode. *
* It then read in S19 file (application program) and program the EEPROM. *

#**#**#**##**************t**********t************************************
*

Ak Rk ok

* EQUATES

L L T F PR

RAMBS EQU $0000 start of ram

REGBS EQU $1000 start of registers

BOOTROM EQU $BF40 start of bootstrap ROM routines

*** Registers will be addressed with Ind,X mode **#*

BAUD EQU $2B sci baud reg

SCCR1 EQU $2¢ sci controll reg

SCCR2 EQUu $2D sci control2 reg

SCSR EQU $2E sci status reg

SCDR EQUu $2F sci data reg

BPROT EQU $35 EEPROM block protection reg
OPTION EQU $39 config option reg

PPROG EQU $3B eaprom prog reg

HPRIO EQU $3C highest priority reg

TEST1 EQU $3E test functions control reg
CONFIG EQU $3F config reg

TDRE EQu $80

RDRF EQU $20

MDA EQU $20

SMOD EQU $40

mS10 EQU 10000/3 10mS delay

Null EQu ©

R Rk Kok Kk

* RAM *

R P T T

Fourth College on Microprocessor based Real Time Systems in Physics 21

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

ORG RAMBS
EE_OPT RME 1
MASK RMB 1
TEMP RMB 1
LAST_BYTE RMB 1
PAGE

*#**t*******#*************#****t**

+ DPRGHCB811 PROGRAMS START HERE *
S0k R OR Kk e AR R R Ak R R ORR

ORG RAMBS
LDS #$FF init stack
LDX #REGB5
CLR SCCR1,% 8 data bits, 9600 baud
LDD #$300C
STAA BAUD,X
STAB SCCR2,X
Read_Opt STS EE_OPT default EE_OPT=0, MASK=$FF
BSR Read_C chk control byte
CMPE #'P’ program EEPROM ?
BEQ Load
CMPB #'V’ verify EEPROM 7

BNE Read_Opt
DEC EE_OPT

Load EQU *
BSR Read_ C
CMPB #’3’° wait until 51 or S9 received
BNE Load
BSR Read.C
CMPB #°1°
BEQ Laodl
CMPB #'9’
BNE Load
BSR Rd_Byte complete reading S9 record before ending
TBA
SUBA #2 no.of bytes to read including chksum
BSR Get_Addr get execution address in Y
Load9 BSR Rd_Byte discard remaining bytes
DECA
BNE Load9

BEQ Read_Opt

Laodl EQU *
BSR Rd_Byte read byte count of Si record into ACCB
TBA
SUBA #3 ninus load addr & chksum from count
BSR Get_Addr ge load addr into X
DEY

Fourth College on Microprocessor based Real Time Systems in Physics 22

ICTP, Trieste, Italy. Qct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

BRA Load1B

LoadiA LDAB EE_OPT
BMI Verify
Data_Poll LDAB Y
EORE LAST_BYTE
ANDB MASK
BNE Data_Poll
LoadiE DECA
BEQ Load
LoadiB BSR Rd_Byte read nx. byte
INY nx. load addr
TST EE_OPT
BMI LoadlD if verifying then don't program byte
BEQ Prog if internal EEPROM selected then program
LoadiD STAB LAST_BYTE save it for data polling
BRA Loadia

Verify LDAB ,Y
CMPB LAST_BYTE if programmad byte is correct then
BEQ LoadlE read nx byte
BSR Write_C else send bad byte back to host
BRA LoadiE before reading nx. byte

Read_C EQu * ACCA, X, Y regs unchanged by this routine
BRCLR SCSR,X RDRF #
LDAB SCDR,X
Write_C BRCLR SCSR,X TDRE *
STAB SCDR,X echo it back to host
RTS

Rd_Byte BSR Read_C read most significant nibble
BSR Hex_Bin
LSLB
LSLB
LSLB
LSLB
STAB TEMP
BSR Read_C
BSR Hex_Bin
ORAB TEMP
RTS

Get_Addr EQU =
PSHA save byte counte
BSR Rd_Byte read MSB of addr
TBA .
BSR Rd_Byte read LSB of addr
XGDY

Fourth College on Microprocessor based Real Time Systems in Physics 83
IC'TP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

PULA
RTS

Hex_Bin EQU *
CMPE #’9° it ACCB>9then assume it is A-F
BLS Hex_Num
ADDB #9
Hex_Num ANDB #$F
RTS

Prog EQU *
PSHA
CLR BPROT,X remove protection on EEPROM
CLR PPROG,X
CMPB ,Y
BEY Progh if same data then skip programming
LDAA #$16
Progh BSR Program erase byte
LDAA #2
BSR Program program byte
ProgB LDAA #1F
STAA BPROT,X
CPY #CONFIG+REGBS

BNE ProgX
LDAB .Y load ACCB with old value to prevent hangup
ProgX PULA

BRA Load1D

Program EQU *
STAA PPROG,X
STAB Y
INC PPROG,X enable programming voltage
PSHX
LDX #mS10 wait 10 mS
Wait DEX
BNE Wait
PULX
DEC PPROG,X disable programming voltage
CLR PPROG,X
RTS
PAGE
ok sk ok ok ko ok
* VECTORS *
Foddok kAo KRR
ORG RAMBS+$F7
VILLOP JMP BOOTROM
VCOP JMP BOOTROM
VCLM JMP BOOTROM
Fourth College on Microprocessor based Real Time Systems in Physics 84

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

B.2 HC11 Test Program

This is a simple program that tests or exercises all the I/O devices in the

HCLI 1/O board using the HC11 Kernel.

**********************t*#**************#*****#*************************#******

* Program : MC6BHC11 MCU Kernel and I/D Board Test Program
* Filename + HC11_TST.ASM
* Version : 2.00 on 9/96

Written by : K.A.Poh, C.5.Ang
Description:

This program tests the peripheral devices of the I/0 Beoard with the
following modes:
mode. Then it automatically enters the next mode.

2. LED test mode - A 1lit LED is rotated from right to left continuous.
LCD shows ’Rotating 1 bit. ’ message.

3. DIP switch mode - Status of DIP switch is shown on LED.
LCD shows °DIP switch mode.’ message.

4. ADC mode - Analogue o/p from pontentiometer is shown on LCD.
LCD test mode - Display character set, one character at a time on
LCD.
6. Counter mode - Pulse accumulator is tested by pressing PAI (B1)
~ button.

- Counter value is shown on LCD. Counter continuesg
— to count even in other modes.

Press STRA (B2) button to enter the next mode, except for mode 1.

LED lamp #10 (rightmost) shows 5V status.

LED lamp #9 (2nd from right) shows LCD/SW mode. Lit for LCD and off
for switches. The LCD/SW mode is controlled by STRB (with JP2 closed,

JP1 open) or manually using JP1 (with JP2 open) .

This program uses sequential flow in the main loop to switch mode. No
interrupts.

'I"l-*******************l**************
L]

L IR I I I B RS

1. Welcome message — ’'WELCOME TO ICTP.’ is displayed for 2 seconds in this*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

* * *

***********************************#*******#t********i************************

A ook ko ook ok o ok K

* Define Register Addresses #
Aok ok kR K ok ol ok ok

Fourth College on Microprocessor based Real Time Systems in Physics 85
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems

Ang, Chu Suan

RAMBS
REGBS
EEPROMBS

+ Registers
PIOC
PORTA
PORTB
PORTC
DDRC
PORTCL
PORTD
DDRD
PORTE
TMSK2
TFLG2
PACTL
PACNT
BAUD
SCCR1
SCCR2
SCSR
SCDR
ADCTL
ADR1
ADR2
ADR3
ADR4
OPTION
COPRST
PPROG
HPRIO
IRIT
CONFIG
CONFIG_REG

**xk User Defined Constants

ETX
=it0
bitt
bit2
bit3
bit4
bith
bité
bit7
t8
rdrf
tdre

EQU
EQU
EQU

will be addressed

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$0000
$1000
$FB0O

$02
$00
$04
$03
$o7
$086
$08
$09
$0A
$24
$25
$26
$27
$2B
$2¢
$2D
$2E
$2F
$30
$31
$32
$33
$34
$39
$3A
$3B
$3C
$3D
$3F
$FF

$03
$01
$02
$04
$08
$10
$20
$40
$80
bité
bitb
bit7

start of ram
start of registers
start of eeprom

in Ind,X mode %%
parallel i/o ctrl reg
port a

port b

port ¢

data direction reg c
alternate latched port €
port d

data direction reg d

port e

timer mask 2

timer interrupt flag reg 2
pulse accumulator ctrl reg
pulse accumulator counter reg
sci baud reg

sci controll reg

sci control2 reg

sci status reg

sci data reg

adc ctrl reg

adc result reg 1

adc result reg 2

adc result reg 3

adc result reg 4

option reg

cop reset reg

eeprom prog reg

highest priority reg

init reg

config reg

EEPROM at $F800-$FFFF, cop disable

End of text
define bit positions

T8 of SCCR1
RDRF of SCSR
TDRE of SCSR

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

86

Embedded Systems

Ang, Chu Suan

PAGE

kAR ARk kR koK

* DEFINE I/0 PINS

*

oo o e sk oo ok R R

*PORTB :

e EQU

™ EQU

rs EQU
PAGE

o 2 3 e o sk ok o ok o ok e o e kol ok R R

* DEFINE VARIABLES *
koo R ek ok ok

ORG
CHAR_CODE RME
A_REG RMB
CC_REG RMB
MSG_PTR RMB
LCD_PTR RME
BCD_BUF RMB
MSG_BUF RMB

PAGE

bit0
bitl
bit2

RAMBS

W NN R =

17

e ok A e 3l ok ok o ke o ok 3 ok e ok ok e ok ke s o o ook ok K

* DEFINE CONFIG REGISTER =*
Rk R R R ROk Rk Rk

CRG
FCB
PAGE

CONFIG+REGBS

CONFIG_REG

control E of LCD
control R/W of LCD
control RS of LCD

character code for LCD
tmp storage

tmp storage

message pointer

LCD pointer

00 00 00 - 99 99 99
16 character + ETX

oo ok o ok oo R K R o R o ok o ok sk ok o ook ok sk ok kK S R o o OR K kK

* BOOTSTRAP - Decide which test to perform *
o ke 3 a0 2 s 3 o ok 2ok ok ok ek ok s sk e o ol e e oKk ok ok e ek ok 3k ke ok 3 ke s e o ke o sk ok o ok e ofe o e e o e e e ol e ke o ok o ook ok ol ok kR oK ok Ok ok

ORG
EQU
LDS
JSR
EQU
LDY
STY
JSR
LDX
ISR
JSR
LDY
STY
JSR
JSR
LDY
STY
JSR
JSR

BOOTSTRAP

TEST_LOOP

EEPROMBS

*

#$FF
PWR_UP_INIT
*

#MSG_1
MSG_PTR
DPLY_MSG
#2000
DELAY_IN_MS
CLR_STAF
#MSG_3
MSG_PTR
DPLY_MSG
LED_TEST
#MSG_4
MSG_PTR
DPLY_MSG
DIP_SW

init stack
initialisation

load message 1

delay Z seconds

¢lear unintended STRA
load message 3

rotate 1 bit in LED
load message 4

testing DIP switches

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy, Oct 7 - Nov 1, 1996

87

Embedded Systems Ang, Chu Suan

JSR ADC_TEST read and display ADC
JSR LCD_TEST cycle character pattern
JSR PA_TEST pulse accumulator test
BRA TEST_LOOP

PAGE

****#*******#***************#******************#t***************#*******t***t*

* Messages *

*******t**#*#****#*****##**##*******#*****#********t*******************#*#****

MSG_1 FCC *WELCOME TO ICTP.’
FCB ETX

MSG_2 FCC * :
FCB ETX

MSG_3 FCC ‘Rotating 1 bit. ’
FCB ETX

MSG_4 FCC 'DIP switch mode.’
FCB ETX

MSG_ADC FCC 'ADC: 0.00 Volts '
FCB ETX

MSG_PA FCC *COUNTER(B1}: !
FCB ETX

k*****************************#**********#****************************#***

* LCD_MODE - Turn STRB high for LCD access *
ok AR Ak Rk Rk R R KRR R R R R kR Rk R R o R ok kR ok ok
LCD_MODE EQU «*

LDX #REGBS

PSHA save A

LDAA #%00010100 full-input handshake, STRB high

STAA PIOC,X write to ctrl reg

PULA

RTS

e ok ok o o o ok ok e ool ok o o o o sk ok ol o e ok o sk o ok ok ok ool o o ok o e koo o ok sk o Rk ook ok ok dkokokok ok ook ko ok ek ok Rk

* SW_MODE - Turn STRB low for switch/LED access *
e e e T T S TL ST STES T PRL PP ELL LR LSS LS DAL L ELLELE S
SW_MODE EQU *

LDX #REGBS

PSHA save A

LDAA #%00010101 full-input handshake, STRB low

STAA PIOC,X write to ctrl reg

PULA

RTS
********#***************#************************#*****************#**#***#***
* PWR_UP_INIT - Initialize control registers, I/0 and RAM. *

o 8 o oK o o ok o ok o A o ok o oo ot ok oo K e ok o ook s ok ol s s oK K OR R R R

PWR_UP_INIT EQU =*
LDX #REGBS

CLR PORTB,X led’s off, lcd disabled
CLR DDRC,X pert ¢ as input
Fourth College on Microprocessor based Real Time Systems in Physics 88

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

LDAA #}01000000 set pulse accu. ctrl reg

STAA PACTL,X

CLR PACNT,X clear pulse counter

JSR INIT_LCD init led

LDAA #$20 set space character

STAA CHAR_CODE for LCD test mode

CLI

RTS

) PAGE

FREAE A FRR BRI R IR AR AR b o A A AR K o ok ook ok ok
* INIT_LCD - Initialise LCD *
* - Refer to Samsung KS0066 LCD controller data sheet *
FRREEEREER AR RS R R RO R R AR R R R o ook o ook ook o
INIT_LCD EQU ¢

JSR LCD_MODE turn STRB high for LCD

LDX #50 wait for 50 ms

JSR DELAY_IN_MNS

CLC select instruction reg

LDAA #%00111000 set 8-bit function

JSR WRT_TD_LCD

LDX #5 wait for 5 ms

JSR DELAY_IN_MS

CLC select instruction reg
LDAA #%001110000 set 8-bit function

JSR WRT_TO_LCD

LDX #1 wait for 1 ms

JSR DELAY_IN_MS

CLC select instruction reg

LDAA #/00111000 gset 8-bit function

JSR WRT_TO_LCD above sequence recommended
* for init by supplier

CLC select instruction reg

LDAA #%00111000 set 8~bit interface

JSR WRT_TO_LCD 2 line LCD, 5x7 dots

CLC select instruction reg

LDAA #Y,00001000 display off

JSR WRT_TO_LCD

CLC select instruction reg
LDAA #1 display clear
JSR WRT_TO_LCD

CLC select instruction reg
LDAA #),00000110 set entry mode, cursor ->,
JSR WRT_TO_LCD display not shifted

Fourth College on Microprocessor based Real Time Systems in Physics 29

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan
CLC select instruction reg
LDAA #00001100 display on, cursor off,
JSR WRT_TO_LCD blink off
CLC select instruction reg
LDAA #%10000000 set display data RAM addr
JSR WRT_TO_LCD to O
RTS
PAGE

ek ok o o o o o o o KR o A K AR A ko ok K K o ROk o ek

* DELAY_IN_MS - On entry, X=Delay duration in ms *
a———e e TP TP TP T AL LT AL PR R RS AL LL S LSS L LS LA RS LE LA L

DELAY_IN_MS EQU =

* Loopl delay = 286x7x0.5 us = 1 ms

LOOP1 LDY #287
LOoOP2 DEY 4 cycles

BNE LOOP2 3 cycles

DEX

BNE LOOPt

RTS

PAGE
sk Aok ok ok A oo A kKR R R o kR AR R R Rk Rk ek ko
* ADC_TEST - Test ADC *
* - Read ADC and display hex value in LCD *
o oo o ool o o Ok o R e oo R e ks sk s OR B E R ROR R Ok ok
ADC_TEST EQU =

LDX #MSG_ADC got ROM message ptr

LDY #MSG_BUF get RAM message buffer ptr

JSR COPY_MSG copy

LDY #MSG_BUF point to message buffer

STY MSG_PTR
DO_ADC LDX #REGBS

LDAA #/10000000 ADPU=1 for ADC

STAA OPTIDON,X

LDAA #%00110000 continuous adc

STAR ADCTL,X set ADC ctrl reg
TST_EQC BRSET ADCTL,X bit7 DPLY_ADC finished conversion

JSR CHK_STRA check if STRA is pressed?

BCS XADC_TEST yes, get out

BRA TST_EOC wait for end-of-conversion
DPLY_ADC LDX #REGBS

CLRA clear high byte first

LDAR ADR4,X read adc result

ASLB x2 to get "5V full scale

BCC NO_C no carry

LDAA #1 otherwise, set high byte
NO_C JSR BIN_BCD convert to BCD

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Qct 7 - Nov 1, 1996

90

Embedded Systems Ang, Chu Suan

LDX #MSG_BUF

LDAA BCD_BUF+2 load 1ls digit
ANDA #30F mask high nibble
ORA #3$30 convert to ASCII
STAA 8,X put it at the right place
LDAA BCD_BUF+2 load ls digit
LSRA put it at the right place
LSRA
LSRA
LSRA
ORA #$30 convert to ASCII
STAA 7.,X put it at the right place
LDAA BCD_BUF+! load 1s digit
ANDA #30F mask high nibble
OR4 #%$30 convert to ASCII
STAA 5,X put it at the right place
LDY #MSG_BUF point to message buffer
STY MSG_PTR
JSR DPLY_MSG display it
BRA DO_ADC
XADC_TEST RTS
PAGE

*****##*#**********************#********#**#t************************t********

* COPY_MSG - Copy message from ROM to RAM buffer *
* - X=source, Y=destination *
* terminated by ETX in string *
* input string cannot have ETX as text *
o o A o s o A M oo R o koo AR A ok o ol ok o s oo oo o
COPY_MSG EQU =
NEXT_BYTE LDAA 0,X transfer loop starts

INX copy MSG_ADC to MSG_BUF

STAA 0,Y

INY

CMPA #ETX last byte

BNE NEXT_BYTE transfer loop ends

RTS

*********tt***************#***********t*********t##****t***t******************

* BIN_BCD - Binary to BCD conversion *
* - Input value in D, conversion in BCD_BUF, BCD_BUF+1, BCD_BUF+2 *
AR KA R AORSOR A R o o R R R KR ok ok o oo ok ook ok o ok ko o o o ook
BIN_BCD EQU *

CLR BCD_BUF ¢lear BCD buffers

CLR BCD_BUF+1
CLR BCD_BUF+2

STAA A_REG save high byte
TST_D LDAA A_REG recover high byte
Fourth College on Microprocessor based Real Time Systems in Physics 91

ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

SUBD #0 dumny to set Z flag
BEQ XBIN_BCD 0, get out
SUBD #1
STAA A_REG save A
LDAA BCD_BUF+2 increment 1sb
ADDA #1
DAA
STAR BCD_BUF+2
BCC TST_D
LDAA BCD_BUF+1 increment next byte
ADDA #1
DAA
STAA BCD_BUF+1
BCC TST_D
LDAA BCD_BUF increment msb
ADDA #1
DAA
STAA BCD_BUF
BCC TST.D
XBIN_BECD RTS
PAGE

******#*****t*****#****#******************#********#************#*************

* PA_TEST - Test Pulse Accumulator *
* - LCD shows number of times B1 (PAI) is pressed *
F———————————————r T ST TP DL LS S E LA L LL AL btttk
PA_TEST EQU =

LDX #MSG_PA get ROM message pointer

LDY #MSG_BUF get RAM message buffer ptr

JSR COPY_MSG
LDX #REGBS

CLRA
LDAB PACNT,X get count
JSR BIN_BCD convert to BCD
LDX #MSG_BUF
LDAA BCD_BUF+2 lcad 1s digit
ANDA #30F mask high nibble
ORA #8$30 convert t. ASCII
STAA 15,X% put it at the right place
LDAA BCD_BUF+2 load ls digit
LSRA put it at the right place
LSRA
LSRA
LSRA
DRA #$30 convert to ASCII
STAA 14,X put it at the right place
LDAA BCD_BUF+1 load 1ls digit
ANDA #3$0F mask high nibble
ORA #$30 convert to ASCIT
Fourth College on Microprocessor based Real Time Systems in Physics 92

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

STAA 13X put it at the right place
LDY #MSG_BUF point to message buffer
STY MSG_PTR

JSR DPLY_MSG display it

JSR CHK_STRA change mode?

BCC PA_TEST

RTS

PAGE

********************************#***t*************t********#******************

* DIP_SW - Test DIP switches *
* - Port C reads a 8-waw DIP switches and port B drives a LED array *
H Rk O AR R R K R AR OR A o o o oo o R ko ook koK o ko
DIP_SW EQU =

JSR SW_MCDE set switches/led mode

LDX #REGBS

LDAA PORTC,X read DIP sw status & disp

COMA on LED array: i=on, O=off

STAA PORTB,X
JSR CHK_STRA
BCC DIP_sSwW
RTS

PAGE

*********t**t*****#***##**t**#***#***********#****t********#*********#********

* LED_TEST - Test LED at port B by cycling 1 bit *
AR A AR AR RO AR R 30k AR AR A o R OR O ook o A ook ok o ok ok ok ok
LED_TEST EQu =

JSR SW_MODE turn STRE low for switches

CLC

LDAA #%10000000 set bit 7 to 1
ROTATE LDX #REGBS

STAA PORTB,X display in port B LED

STAA A_REG save A register

TPA

STAA CC_REG save CC register

JSR CHK_STRA
BCS XLED_TEST

LDAA CC_REG restore CC register
TAP
LDAA A_REG restore A register
LDX #100 delay 100 ms
JSR DELAY_IN_MS
RORA rotate bit pattern left
BRA ROTATE
XLED_TEST LDX #REGBS
CLR PORTE, X clear all LEDs
RTS
PAGE
Fourth College on Microprocessor based Real Time Systems in Physics 93

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems

Ang, Chu Suan

e L PP SRS R L L EL L L L b il

* DPLY_MSG - Diplay message on LCD
- Port C drives DBO-DB7 of LCD array and PBO-PB2 drive the control*

lines of LCD display.

*
*

Jok ko Rk oRkdk ok ook Rk Rk Rk R Rk ko ook kR kR ok

*

*

#***********t*******#**#******t***************#**1****#******#**#*******

DPLY_MSG

NX_CHAR

END_OF_MSG

WAIT_LCD_RDY
*Wait until LCD status indicates ready

EQU
JSR
CLC
LDAA
JSR
CLC
LDAA
JSR

LDY
STY

LDY
LDAA
INY
STY
CMPA
BEQ

PSHA

LDY
LDAA
INY
STY

ORAA
CLC
JSR

SEC
PULA
JSR
BRA
RTS

EQU

CLC
JSR

TSTA

BMI

*
LCD_MODE

#%10000000
WRT_TO_LCD

#%00001100
WRT_TO_LCD

#LCD_DD_RAM_ADR

LCD_PTR

MSG_PTR
o,Y

MSG_PTR

#ETX
END_OF_M5G

LCD_PTR
0,Y

LCD_PTR
#%10000000

WRT_TO_LCD

WRT_TO_LCD

NX_CHAR

*

READ_LCD

WAIT_LCD_RDY

select LCD mode by STRB=1
selact instruction reg
set display data addr
write to LCD

select instruction reg
turn display on

write to LCD

get pointer to display data
RAM

get pointer to message
get 1 byte of message
move pointer to next byte

get out if ETX is met

save it for later

get DD RAM addr, which is
disjoint between the 1st 8
and the last 8

form display data addr
select instruction reg
gset display data addr

select data reg

get the byte to write
write it to LCD
process next byte

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

94

Embedded Systems Ang, Chu Suan

RTS
LCD_DD_RAM_ADR FCB 0,1,2,3,4,5,6,7
FCB $40,%$41,$42,$43,$44,845,$48,$47

e e e o e e e e ke s e e ok o sk ok skl e o ke ok ok o ok ook ok o o bk sk e o ko o ok ok e o 0ok 3 o o o ol o o ok ok ok o ok ook sk ok e o o ok ok ok ook s o o ok

* LCD_TEST - Perform character set test on LCD *
* - All characters are shown, one at a time. *
Aok sk ko s oK oK R R R oK o e sk s o R R o ok ok o ok ok o o o o KR R ok ok ok R R koo ok ek ok ok
LCD_TEST EQU *
START_LINE LDAA CHAR_CODE fetch character code
LDAB #16 16 characters to write
LDX #MSG_BUF points to message buffer
NEXT_FILL STAA 0,X put it in buffer
INX prepare for next byte
DECB count down
BNE NEXT_FILL next character
LDAA #ETX terminator
STAA 0.X
LDY #MSG_BUF point to message buffer
STY MSG_PTR
JSR DPLY_MSG display it
LDX #500 .5 second per pattern
JSR DELAY_IN_MS
JSR CHK_STRA change mode?
BCS XLCD_TEST get out if yes
LDAA CHAR_CODE recover code
INCA next pattern
CMPA #$80 skip blanks ($B0O-$9F)
BEQ SKIP_80
CMPA #0 skip blanks ($00-$1F)
BEQ SKIP_20
BRA CONT_LINE
SKIP_20 LDAA #320
BRA CONT_LINE
SKIP_80 LDAA #$40
CONT_LINE STAA CHAR_CODE save code
BRA START_LINE repeat first character
XLCD_TEST RTS

#*****#***********************************#*******************t***#****

* WRT_TO_LCD -~ Write a byte to LCD panel *
* - A=data to write to LCD register *
* Carry(C)=LCD register select (RS) *
* C=1=RS selects data register *
* C=0=RS selects instruction register *

AR N A KRR AR o ook KR MR ok oo ok o Rk s o kR ok o ok o ok
WRT_TO_LCD EQU =

Fourth College on Microprocessor based Real Time Systems in Physics 95
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

LDX #REGBS
*Set RS
BCC SET_RS_LOW1
BSET PORTB,X rs
BRA SET_RW1
SET_RS_LOW1 BCLR PORTB,X rs

SET_RW1 BCLR PORTB,X rw set write mode
BSET PORTB,X e : enable LCD

*Set data
LDAB #$FF
STAB DDRC,X get port c as output
STAA PORTC,X write byte to LCD
BCLR PORTE,X e disable LCD
BSET PORTB,X rw set back to read mode
CLR DDRC,X set port c as imput again
LDX #2 delay 2 ms
JSR DELAY_IN_MS
RTS

READ_LCD EQU =*

* On entry, Carry=LCD register select (RS)
* On exit, A=data read from LCD register

LDX #REGBS
*Set RS.
BCC SET_RS_LOW2
BSET PORTB,X rs
BRA SET_RW2
SET_RS_LOW2 BCLR PORTB,X rs

SET_RW2 BSET PORTB,X rw set read mode
BSET PORTB,X e enable LCD
LDAA PORTC,X read LCD register
BCLR PORTB,X e disable LCD
LDs #2 delay 2 ms
JSR DELAY_IN_MS
RTS
PAGE

*********t**********************#**t****#******#**t****#***##**********#**#***

* CHK_STRA — Check for STRA tramsition *
* - On exit, C-flag=0, if no active transition of STRA *
* =1, if there is active transition *
* - On exit, STAF flag is cleared *
e o K oo o ok KR AR oo s R R A kO R AR Rk ok ok ko ok
CHK_STRA EQU *

LDX #REGBS

CLC ' assume ho traunsition

BRCLR PIOC,X bit7 EXIT_STRA exit if not set
Fourth College on Microprocessor based Real 'I'ime Systems in Physics a6

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Embedded Systems Ang, Chu Suan

DEBOUNCE JSR CLR_STAF to clear STAF in PIOC
LDX #20 debounce key
JSR DELAY_IN_MS
LDX #REGBS
BRSET PIOC,X bit7 DEBOUNCE exit if not set
SEC set transition flag
EXIT_STRA RTS

ook A AR AR AR AR IR IR H A R ORI R o Ok A ook o oA ok o
* CLR_STAF - Clear STAF or STRA flag *
* = Also used to clear previous unintended setting *
e L L R E B N T T Py
CLR_STAF EQU =+

LDX #REGBS

LDAA PIOC,X to clear STAF in PIOC

LDAA PORTCL,X need this as well

RTS

PAGE

*#****************#*t*******##*****#********#*********************************

* JRTI - Return from interrupt. *
**
JRTI RTI
PAGE
e e ol o e ok 3 3 ok ok 3 ok ok K
* VECTORS *
0 ok s o ook e o ke ok ok ok ok ok
DRG EEPROMBS+$07D85
VSCI FDB JRTI
VSPI FDB JRTI
VPAIE FDB JRTI
VPAO FDB JRTI
VTOF FEB JRTI
VTOCS FDB JRTI
VTGC4 FDB JRTI
VTOC3 FDB JRTI
VTOC2 FDB JRTI
VTOC1 FDB JRTI
VTIC3 FDB JRTI
VTIC2 FDB JRTI
VTIC1 FDB JRTI
VRTI FDB JRTI
VIRQ FDB JRTI
VXIRQ FDB JRTI
VSWI FDB JRTI
VILLOP FDB BOOTSTRAP
Vcop FDB BOOTSTRAP
VCLM FDB BOOTSTRAP
VRST FDB BOOTSTRAP
Fourth College on Microprocessor based Real Time Systems in Physies 97

ICTP, Trieste, [taly. Oct 7- Nov 1, 1996

Review of College Instrumentation

Fourth College on Microprocessor—based
Real-time Systems in Physics

Trieste, 7 Oct—1 Nov 1996

A.J. Wetherilt
Institute for Energy Systems and Environmental Research
Marmara Research Centre
Gebze
Turkey

email: jim@yunus.mam.tubitek.gov.ir

Abstract

Hardware developed for the Collegss on Microprocessor—based
Real—time systems in Physics is reviewed. An embedded system
based around an MC 6809 microprocessor is introduced together
with a real—time kernel developed to run on the board. The kernel
is designed to implement a small memory manager, a task scheduler,
software system calls and installable device drivers. The development
and use of these features is discussed.

Review of College Instrumentation Wetherilt, A.J.

1 Introduction

Since the start of the series of Colleges on Real-Time systems and Control,
several pieces of small but useful hardware items have been developed by
members of the instruction staff with the aim of furthering the effectiveness
of the material presented in the course lectures. Several such items are dis-
cussed in these notes from both their hardware, and where appropriate, their
software aspects. It is important to realise that although developed primarily
for teaching the principles of real time systems using personal computers and
embedded systems, several pieces of the hardware can be used for a much
wider class of applications than found in the teaching laboratory. Cards sim-
ilar in design to the MC6809 board described here have been used by the
author for many data acquisition applications such as temperature control,
transient digitisers and intelligent signal averagers. When equipped with the
IEEE 488 instrumentation interface, the de facto standard for small labo-
ratories, such instrumentation can perform significantly better than many
commercially obtainable pieces of equipment and at prices at least an order
of magnitude lower.

2 The GPI card

‘The General Purpose Interface card (GPI) was designed by Manuel Gonealves
in 1994 to provide a means of interfacing digital signals to the then recently
introduced PC systems running the Linux operating system. It is based
around a single Intel 8255 I/O chip with only three other chips to provide
address and I/O decoding and hence provides an extremely simple example
of the principles of PC interfacing. A schematic of the board js shown in
Figure 1. The 24 input/ output lines from the IC can be programmed in two
groups of 8 and two groups of 4 as either input or output. Two of these lines
(PCO and PC3) can provide interrupt capability when the Jumpers JP1 or
JP2 together with either JP6 or JP7 are selected. The interrupts selected in
this case are either IRQ5 or IRQ7 which are often free in many systems.
The data lines are buffered by a 7415245 tri-state driver to reduce loading
of the PC bus. This is generally necessary in PC interface designs as the bus
can drive a maximum of around 2 LSTTL loads per card. Address decoding
on address lines A3-A9 is achieved via a 741,682 digital comparator with
internal pull-up resistors and an 8 way DIP switch tied to ground. The AEN
line of the PC bus is also checked by the comparator to be low in order to
prevent spurious access during DMA cycles (when AEN is high). As the
card is to sit in the IO address space of the PC, the IOR and IOW lines are

Fourth College on Microprocessor based Real Time Systems in Physics 101
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Wetherilt, A.J.

Review of College Instrumentation

BEATEDUGD [ARUTH

o~

AN

idi _

940

i34
0
234
o Tar
Tod
Tod
odd
404
4.4 mm -unwm nmn < IO 7T -
p——————<""""
T8 »rg O, 4 £2
m oud -] HMP|| sty | — < TIZEED
Lod 24 yr|es &v _ — |
Do » 311 ¢80 &Y A, Y A
w.& g 58 3w I
rud ¥ 34 se 1l < T3N3
e i 8 g8 o
<IL__Tat ove oo & $rire Ty 53 gy 1
™ = =
S S— -]
ELLLY]
— f—L

102

Figure 1: Schematic Drawing of the GPI board

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Oct T - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

decoded directly by the 8255 programmable parailel interface. The default
address is 0x320 corresponding to the locations originally assigned by IBM
to the prototype card.

3 The Colombo board

The Colombo board is actually a complete system with provisions made for
a 6809 microprocessor, a 6821 programmable interface adapter, and RAM
and ROM situated on one half of the board (see Figure 2). Its other side
comprises a 4 digit, 8 segment LED display together with various switches
and devices that can be interfaced via a 26 pin connector to either the on-
board microprocessor or an external host machine. It is this latter feature
that has been used predominantly during the various colleges.

The 26 pin connector definitions are shown in Figure 3 and are to be
considered the standard connections for College instrumentation. Two sets
of data lines can be seen which reflect the characteristics of the 6821 PIA
around which the board was designed. The set of A lines (PAO - PA7) are
connected to the latch/drivers of the 4 LED displays and data latched in the
following manner (Figure 4): The hexadecimal digit to be written on a given
LED is placed on lines PA4 - PA7. The data is latched by first setting the E
pin of the specified digit low and then resetting it back high again. As each
digit has a separate line attached to it, digits that share the same data can
be latched individually. A clock that produces pulses at a selectable rate can
be attached to line CAl. When connected to a suitable input on the host
device an interrupt can be raised by these pulses. On some cards a bugzer is
connected to line CAZ2, on others the buzzer has been replaced by a LED. In
either case, setting CA2 high causes the attached device to function.

Connections to the B side are entirely inputs (Figure 4): On lines PB4-
PB7, a 16 position rotary switch is attached; on PB3 and PB2, are two toggle
switches; and on PB0 and PB1 are two push button switches, connected via a
74279 for debouncing. These push buttons can also be jumpered to line CB2
which, when connected as an input on the host machine, can raise interrupts.
Finally, a voltage to frequency converter is attached to line CB1. This device
converts an analogue voltage signal into a sequence of pulses at a frequency
determined by the magnitude of the signal. If the number of pulses arriving
per unit time is counted, the magnitude of the signal can be determined.

Fourth College on Microprocessor based Real Time Systems in Physics 103
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

-
T - = - TTTEI l-'l rT117 I.I 1 l’l LI l‘l TT 11 I.l -I
Il t !b 'é
- ! } 4
[:E‘Iﬁ'u:' 3
¢ Fr.O A" ut a
DR LR T el Bois
= nvSun W iy ,
| QR .
! g VA .
- *{r{ N i i
| e Tk nes 2
! g e e 2
| CETL 1 T
. T =
f e :L;G_'_j: 1 i 2
| e -0 :
1 o gew A S 5
1 e M B |
. g r:"1 R
lo®oied e — ol
7 R et A .
| I g Jaw . e i E
% e et I o d
| st
| s 0 [25 y
il *
_— ;5 1 EEEE _:J E‘
i #: .
: 1 |
: =js E, ' r'Fh‘; |
2 ET 5}\53 inf PEEED !
211117 ,
j;jﬁ;}f I3 5] sligaiddesad $4441 “"‘Lil.
it 11 s 4 o o
-~ Zdpdadsdd _sh - o ! ‘L
= ‘il'i" AFF =§ .
s P et TR T
S ESRGRLEEL B s:gsﬁ'gf.gg- & &
- : T,
2
T gl f
IRELHEER :
T
.
;I
.=-.";.l=.=".. o5 ==
Figure 2: Schematic Drawing of the Colombo Board
Fourth College on Microprocesser based Real Time Systems in Physics 104

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

+5V e 1 2 & +5V
CB2 e 3 4 «» <CB1
PB7 @ S ¢ & PFPBRBo6
rEs e 7 8 »« PRBa
rB3 = 9 10 »« PB2
PBl = 11 12 « PrBo
PA7 = 13 14 @ PAG
PAS e 15 16 @& PA4
PA3 e 17 18 = PAZ2
ral] e 19 20 @ PAO
CAl @ 21 22 = CAZ2
Ground e 23 24 - Ground
Timer 3 gate @& 25 26 ® Timer 3 output

Figure 3: Pin definitions of the standard ICTP, 26 pin strip connector

4 The LCD display board

Designed, by C.S. Ang, as a more up to date and modern replacement for
the Colombo board described previously, this card features a 16 digit ASCII
LCD display panel in addition to two push button switches, an 8 way DIP
switch and an 8 LED strip (Figure 5). A number of different connectors
allows several possibilities for the host machine. The first of these, is a 40
pin strip connector for direct interfacing to the 6811 card described next.
The standard ICTP 26 pin connector is also found on the card allowing
connections to be made to either the GPI card or the 6809 card described
later. Since the latter connector has fewer pins than the former, the card
functionality is also somewhat reduced when this connector is used. However,
it still allows a significantly better display capability than che Colombo board.
As the details of the card with reference to the 6811 interface are more than
adequately covered in the notes of C.S.Ang, only those aspects relevant to
the standard ICTP interface will be discussed here.

The LCD display is an Agena AA16102 module capable of displaying up
to 16, 5x7 pixel alphanumeric characters. With CA2 heid high, data are
placed on lines PB0O-PB7. The line PA1 is set low for a write operation and
PAZ is set according to whether the operation is a write data (high) or a
write instruction (low). The line PAO is then strobed from low to high to low

Fourth College on Microprocessor based Real Time Systems in Physics 105
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation

Wetherilt, A.J.

/O Section Port A

HO1133 HD1133 HD}133 WD1138
L) L)
vy Fooea Foose Fooss
N DCHAE DCBA DCBAE DCBA

I/O Section Port B

+5V
Buzzer
#0200
200 Hi
cat S8 ST an
5Ti2, 100HT |m4a
ST\SD__ﬂ__Qm
cp
ETOMWHH:

&V
[1‘] SW1 {18-poaioon rotary)
P87 O3
PB6 o
PBS b1
PB4 4 0 0
lrzi
SW2 (toggle)
PB3 I &
PB2 o
SW3 tloggle)
T v
- g
T4278
PBO|- —*—QJ—_&—‘
Y o
L 77
sTig STS, _STu4
cB2 s o I ¥
sV ,
. ST8 Q VIF analogue
vB o Converter in
LM334

Figure 4: Simplified details of the Colombo Board Showing the A and B

Sides

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Oct 7 - Nov i, 1996

106

Wetherilt, A.J.

Review of College Instrumentation

dllI

M & A —
oy

L

o

- 55-ca4

%] $-0e
g

Dy

Mutty

Al
he-Brdl ITETVoN

BT
[2ab]
iy 035 — -n
A0
L e

oW 3o 5301 YR

hol YR -se SuMD M Jew SHO)SISTY TR

342345 ISIMUIML0 S5IBN
SILoM

B\
BEUZZEA:
E

LR

SROIINE o102

CEGECRER

HHHY

]

w L 11
Ty tus
r 28d
e
1-“.[|1l; L Sd
ey 7y
..“.I-Il.[nl Cid
.Hl.lllllul s
LA - 1
T o4
130 1 uef 2 4y
M M 20730 ud
13 L0 e 20 v
’ A L20-n20-hay
' 120530 Td
T

M 2w

€Il

o

ASLETL NIESS MOk

Er

T3 A

hr

-
UKEJ
ne

ng -
1501403707

Figure 5: Schematic Drawing of the LCD Display Board

107

ystems in Physics

Fourth College on Microprocessor based Real Time 5

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, AJ.

for the data to be latched. For full details of all possible operations, please
refer to the manufacturer’s data sheet.

If line CA2 is set low, writing to the LCD is disabled and the DIP switch
and LED strip become accessible by reading from and writing to, the lines
PBO0-7 and PAO-7 respectively. In both modes a push button is connected to
CA1l to allow interrupt capability. Neither the second push button, nor the
analogue voltage are connected when using the ICTP connector.

5 The M68HC11 board

This board was also designed by C.S.Ang for this College and provides a
complete but minimal system with but three IC components (Figure 6). The
board’s designer discusses its details in his notes elsewhere and the reader is
referred to these for further information

6 The MC6809 board

6.1 Introduction

This board was also designed by the author for the present College to provide
better coverage of embedded systems programming. In contrast to the 6811
board, the 6809 board implements a large number of functions at the price
of complexity: Some 24 integrated circuits are used in its construction (see
Figure 7). It comprises:

e 2 serial communications ports

1 parallel port

3 timer channels

2 channels of 12 bit ADC input

2 channels of 12 bit DAC output

16k EPROM

8k base RAM

e 128k RAM arranged in 4 pages, each of 32k

Fourth College on Microprocessor based Real Time Systems in Physics 108
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Wetherilt, A.J.

Review of College Instrumentation

T 301 18805 9eél d3s *Q

B4 G W | 2830150

ECERNIEEE

Tl q
avy oz

TINAI BN TIDHES

438 M- 110H .RE_L

37703 1L WIN g

BOOUT 5 5| D IFAS

d131

er

005 dn-9272

bR

mn
cu-231T183HB9

i

AP W 3r: S¥OLIZED TR
o~ fhel %G -s+ CSWHE WD Ay SADLSISIM TN
Inzz|l £l Th a&x U310 205 ISIMRIHLO SSIWO T
L o 53108
b ee3e
= o] 223
T a1 IWE- 134
Tt 7r e
b — A ; | S5-sts
" —— 5 T _M”nmmu (O 6D
IV Ik h
LA —t & | 08I-E0d %ul
b, —— 0%1-10d 2n aa
a1 &h
v a.00d — %
" # SESXUW 5F 2
T aNg
_ ot T 12 o2
—h—— g ¢ f 1 0tk ﬂl ax1
e — — .WM_L 02y memﬁl & 3 2
b AA—— c3d 3 ol It L]
[n - —————— Twu -] = ¢
O e —— R ¥
brn—— | 7 24
—n—— 5o 134 a
o e T 03¢ W _
0t 3 t]
w:a b
i e I a— = o 7
58 2dr wiLs ha
E . e
g S 7
HIO% "
i 28d -
& e
12 58 e
€ HEd
T3 £Ed — er
2 N B Pl
€2 1€g
153 tRe
) HSORE T
1383 g
b —— 10/ 19d- 28a
M 130-200/988 1
€005k, -
: mTmo T S
Z 10-sa0etes T PITLI [| Sl v
+A—— b 5 eawd s - e ek a1
— " —— 201rlog £2 T 107 e . s
Y M m £01¢0u4 o T3 T * m\,r\i.m —
n " an BRn " — T n2l %
i s CHIEINED aun
1 L oeirneey
cogn-an it

Schematic Drawing of the M6811 board

Figure 6

109

Fourth College on Microprocessor based Real Time Systems in Physics

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation

Wetherilt, A.J.

e T

Figure 7: Schematic Drawing of the MC6809 board

¥

kb

i

HH

i

HH4

A

HH b

b]

I 3

HH +HH

FHIE i

tH HH b

HENF u

HH 1

X ¥

HH HH

i i !

HH HH

R i
i i

b1 }

Fourth College on Microprocessor based Real Time Systems in Physics
ICTP, Trieste, Italy. Oct 7 - Nov L, 1996

110

Wetheriit, A.J.

Review of College Instrumentation

SHANA G IDIAIa

TANY=ZIM
DAV ® Ova ovov
ZEVIDYT otOovw S3IDIATQA
LVYIDY oZzovw
HIawi OlLOvw AVHIHAINEHIAA
Yid [ols]e) 4
SNVHDSOWA

eqe) abBeg

NOILvDIlddv

S|qey
A1owewu UOLItO Dy

YVIHY MHOAM HOLINOW

|eoJe MIfoAm puwe
SlUBISLIOD Ioulody

dVIN AHdOWI3awn

EEEE]

000A

NOHJIS3

000D F
falsle)- g fﬁ

Wy
a3xAvvd
QoLZ
o00Z
00A1L
wvwvyg
[slsle] 8 _
0000

Figure 8: Memory Map of the M6809 under RInOS

ystems in Physics 111

Fourth College on Microprocessor based Real Time S

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

The memory map of the system is shown in Figure 8.

In order to facilitate programming, the ASSIST09 monitor provided by
Motorola has been modified to reflect the structure of the board and re-
sides in the EPROM at address 0xF000. The monitor allows full debugging
and downloading facilities including the setting of breakpoints and tracing
through instructions. A real time kernel, RInOS (or Real time INtegrated
Operating System) has been written that provides the basic functions of a
real time multitasking environment such as context switching, semaphores,
message passing between tasks, priority changing, hardware interrupt han-
dling and device drivers etc. As these services are provided in the form of
system calls, the user is unaware of the details of the kernel and has only
to supply a means of using the system calls from the programming language
of his choice. For C running under LINUX, the GCC compiler modified to
produce absolute code for the 6809 can make use of libraries encapsulating
the assembler commands. Simple memory management is provided so that
a process can be allocated memory as and when it is needed and return the
memory to the heap when finished. Processes can be loaded and relocated
by the memory manager. Alternatively, absolute code can be used as long
as certain well defined steps are followed.

6.2 Hardware description

The board is based around a MC6809 processor running at a clock speed of
1 MHz. Although the 6309 is now an old microprocessor, its use in a piece
of hardware intended mainly for teaching purposes can be justified on the
grounds of its superior instruction set and clarity of use. The 6809 arguably,
still has the best instruction set of any 8 bit microprocessor or micro controller
and is ideally suited for the current purpose. Development tools are widely
and freely available at many sites on the Internet which is a great advantage
for any device.

Throughout the design stage, stress has always been laid on those areas
that will allow the various aspects of microprocessor teaching to be empha-
sised. For this reason two identical serial communications ports have been
provided. These allow communications drivers to be debugged easily using
one port connected via the monitor to the host machine and the second to the
hardware application. For both ports, the baud rate can be set by changing
jumper JP2. If faster rates are required, the ACIAs at 0xA020 and 0xA030
(Figure 7) must be configured so that the clock is divided by 1 rather than 16
and the jumpers adjusted accordingly. Communication uses only the TxD,
RxD and ground return lines of the RS 232 9 pin ports. For interconnection
between the board and a host PC, null modem cables must be used.

Fourth College on Microprocessor based Real Time Systems in Physics 112
ICTP, Trieste, ltaly. Oct 7 - Nov 1, 1996

Review of College Instrumentation Waetheriit, A.J.

JP 1
L R ACIA2
- - FIRO
= _Tlen IRQ
:' ACIA1
- - FIRGQ
IR NI MONITOR
e e IRQ :l
™M
- - FIROQ
el IRQ :l
PLA
- - FIRO
JP 2 Baud Rate
e e 4800
- - 2400
- - 1200
- - 500

Dashed line indicates default jumper settings.

Figure 9: Jumpers settings for the M6809 Board

The 6840 PTM provides 3 timer channels. The first is attached to the
NMI line and is used by the monitor for tracing through code, and the second
is used for the system clock by the kernel. It issues a clock interrupt on the
IRQ line at 10 ms intervals. The third clock is available to a user and has
both gate and output on the onboard standard ICTP 26 pin strip connector.
To ensure these and other interrupt signals are processed, the jumpers must
be set correctly on jumper JP1. Under RInOS, all interrupts except the
MON signal from timer channel 1 which is jumpered to the NMI line, must
be jumpered to the IRQ line. Jumpering to the FIRQ line without special
provision will cause unpredictable results and generally will hang the system.
Refer to Figure 9 for a description of the jumper settings.

Random access memory is used to provide (i) a common area for system
and application programme use and (ii) an area in which large processes
can be loaded. These are supplied by a 2764 equivalent 8k RAM at 0x0000 -
0x1FFF and a 581000 128k RAM at 0x2000-0x9FFF. Since the entire address
space of the 6809 is only 64k, the 128k of the 581000 is divided into 4 pages
each of 32k in size by decoding the upper two address lines of the 581000
with an address latch. Writing the values 0-3 to the latch will cause the
appropriate page to be set. It is advised that application processes do not
interfere with this register when the kernel is running.

Fourth College on Microprocessor based Real Time Systems in Physies 113
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Two channels each of ADC and DAC are provided. No interrupt ca-
pability is provided for the ADC channels as at a clock rate of one MHz,
conversion takes less than approximately 25 ps, which is only barely more
than the time required to handle a straight forward interrupt request. For
times longer than this, timer channel 3 can be used.

6.3 The ASSIST09 Monitor

The ASSIST09 monitor is made available by Motorola to provide a full range
of debugging tools for the 6809. This version has been adapted and extended
to fulfil the requirements of the paged memory and kernel. The commands
given in Table 1 are supported. All commands are lower case and must end
with a carriage return.

Table 1: Commands supported by the ASSIST09 Monitor

1 Load absolute

1 size [, priority] [argl arg2 ...] | Load relocatable module of
length size priority

priority with argument

list argl, arg2, ...

Go from current address

g

g [p:]addr Execute from address p:addr

X Start kernel execution.

b Display breakpoint list

b {p:]addr Add address p:addr to breakpoint list
b -[p:]addr Remove address p:addr

from breakpoint list
Trace a single instruction

r Display /modify registers
d addr size Display size bytes of memory
starting at eddr
m addr Modify memory location addr
smp p Set memory page to p
rmp Get memory current memory page
pid Get pid of current task
sp p pid Set priority of task
with pid pid to p
rp [pid] Get priority of task pid or
current task if no argument
tn Trace n instructions
ctrl x Cancel current instruction
Fourth College on Microprocessor based Real Time Systems in Physics 114

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Note

i that segmented memory addresses refer to paged memory. If a page is not specified,
it defaults to the current page

ii The go and x instructions only return control to the monitor if a breakpoint is
encountered. Otherwise, the monitor effectively is killed as a process

iii Breakpoints are allowed only in RAM.

6.4 The RInOS kernel

This first version of the kernel is written entirely in 6809 assembler rather
than a high level language such as C. The design criteria were that the system
should :

(i) Use software interrupt system calls to an EPROM based kernel to in-
terface to an applications programme rather than be linked in with it
at compile time and subsequently downloaded to RAM.

(ii) Allow a variable number of applications to be downloaded to RAM
where they could be run concurrently when the kernel was started.

(iii) Provide a set of functions that would allow the efficient coexistence of,
and communications between, a number of processes.

(iv) Provide a means of installing device drivers that could be changed after
the start of the kernel and without having to re-assemble the system
code.

Several real time kernels were examined for their suitability for use in
an embedded system such as the 6809 board. Initially, the p/COS real
time kernel was considered as a possible candidate but was rejected because
criterion (i) above was difficult to fulfil. Another alternative was to modify
the MCX11 Real Time Executive provided for the 6811 by Motorola. The
dispatcher of this kernel was particularly suitable for use with the 6809 and
was used as a model for the RInOS scheduler. The remainder of the code
was, however, written completely afresh to fulfil the various criteria.

6.4.1 Context switching under RInOS

At the heart of any kernel is the process scheduler or dispatcher. This func-
tion determines which task will run and for how long. RInOS uses a simple
technique to determine whether the current task is to continue running or
will yield to another, by assigning to each task a priority level between 1 and

Fourth College on Microprocessor based Real Time Systems in Physics 115
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J1.

255. The priority level 0 is reserved for the null task which always is in a
runnable state but only runs when no other task is available. The priority
level is used to determine the position where the task can be inserted into
a linked list of tasks starting with the highest priority task and ending with
the null task. The system variable hipri always points at this list. A task
can change its priority by unlinking and inserting itself into its new level.
During a context switch the linked list of tasks is searched until one is found
that is in a runnable state. This and all other information needed by the
system to describe each task is found in a structure called a task control
block or TCB which is given in Table 2. The STATUS field of this structure
indicates whether or not a task is runnable or is asleep. When a runnable
task is found, the following sequence of events occurs:

(i) All interrupts are switched off

(ii) The system variable taskptr is set to point at the new task. This
always indicates the address of the current task

(iii) The system variable intlvl is decremented. This variable indicates the
level of interrupt nesting. If after decrementing, it is zero, the system
was not interrupted and it is safe to return to the application task
that was either running at the time the interrupt was issued in the
case of a hardware interrupt or issued the system call in the case of a
software interrupt. Non zero values indicate that the system itself was
interrupted and it is not safe to perform a context switch at this time.
In the latter case, a simple return from interrupt is issued and control
flows to the point of interruption. In the former case the sequence
continues with the value saved in the STACK_POINTER field of the
TCB being transferred to the stack pointer register of the processor.

(iv) A return from interrupt is now issued with the new stack pointer. This
causes the machine registers to be filled with the values found on the
stack. The final register to be pulled from the stack is the programme
counter which causes a jump to the new value just pulled from the
stack and hence a transfer of code execution to a new task.

Fourth College on Microprocessor based Real Time Systems in Physics 116
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Table 2: Task Control Block structure fields

void * | PRIORITY POINTER, | Link to next highest priority task

char* | PID Unique task identifier
char PRIORITY Priority level
char STATUS Current status of the task.
Possible values are:
READY
WAITING
NO_TASK
void* | CODE_LENTRY Initial entry point of task
void* [CODE_START The start of the code in memory.

This is written by

the memory manager after loading
void* | STACK_ POINTER Used to save the current context
of a task during a system call

or hardware interrupt

char PAGE The page of memory allocated
to the task
void* [MAILBOX Pointer to the task mailbox

void* | SEMAPHORE.LIST A link to the next task

waiting on a semaphore

int TIMER_COUNT Used to indicate how many clock
ticks a sleeping task has to wait
before being woken

void* | ENVIRONMENT A pointer to the optional argument
list passed when the task was
downloaded

This sequence is illustrated in Figure 10. During the issuing of a system
call, the reverse process occurs:

(i) The register set is pushed onto the stack and interrupts are switched
off

(if) The variable intlvl is incremented

(iii) If intlvl was zero before being incremented, the value of the stack is
saved in the STACK_POINTER field of the TCB pointed at by taskptr
and the value of the system stack is placed in the stack pointer. Oth-
erwise the system stack is already in use and is not therefore reset.

(iv) The function call number is examined and a jump is made to the par-
ticular call requested

(v) Interrupts are switched back on again. In general, interrupts are off
only during sections where interruption would cause problems and

Fourth College on Microprocessor based Real Time Systems in Physics . 117
LCTP, Trieste, Italy. Oct 7 - Noy 1, 1996

Review of College Instrumentation Wetherilt, A.J.

hipri taskptr
List of TCBs in
system Memory
PRIORITY_PONTER
PID=3
TASK #3
MEMORY OWNED BY TASK #2
STACK_POINTER
PRIORITY_POINTER
PID=2
TASK #2 \
hY
A
STACK_PONTER Y
PRIORITY_POINTER \‘
PID=1t \
i
i
\
NULL TASK .
1
STACK_POINTER :
]
NULL !
CCR]
A !
B !
oP N
X 7
]
Y /
u /!
PC L by
ogramae
- Counter Polnts
Processor stack pointer here
after the context switch

Figure 10: The steps involved in a context switch. Task #3 was running when
an event occured that made task #2 runnable. Task # 3 is thus prempted
and taskptr is changed to point at task #2. The STACK_POINTER field
of the TCB belonging the task #2 points at the set of registers pushed onto
the stack when task #2 was last interrupted or preempted. These registers
are pulled from the stack individually ending with the Programme Counter.
When this register is finally pulled, the context switch is complete and task
2 resumes running.

Fourth College on Microprocessor based Real Time Systems in Physics 118
ICTP, Trieste, Italy. Oct 7 - Nov L, 1996

Review of College Instrumentation Wetherilt, A.J.

switched back on again as soon as possible. Application programines
should not change the interrupt status as this could interfere with the
functioning of the kernel.

When a task is first created, it is given a new TCB and a unique process
identifier or pid stored in the PID field of the TCB. The area reserved for
the task’s stack is placed into the STACK_POINTER field and the various
register values are initialised on the stack. The value of the CODE_ENTRY
field is placed on the stack so that it will be pulled off into the programme
counter during a context switch. In order to start multitasking, the kernel
will simply find the highest priority task in the linked list and perform a
context switch to that task.

6.4.2 Hardware interrupt handling and device drivers

In contrast to the handling of system calls via software interrupts which
occur in an orderly and predictable manner, hardware interrupts by their
very nature are asynchronous and can occur at any time. On the 6809 and
many other processors, a hardware interrupt is handled by reading a location
specially reserved for the interrupt and Jumping to the address found in that
location. The actual mechanisms may vary from processor to processor, but
in general the actions are similar. On the 6809 board, the interrupt vectors
are found in the EPROM at the addresses between 0xFFFQ to OxF FFF. This
means that the interrupt vectors themselves can not be changed and must
always point to the same handler. To circumvent this problem, the monitor
maintains a second set of interrupt vectors in RAM which can be altered
at will and, during installation, the kernel writes the value of its own set of
interrupt handlers to these vectors. The interrupt sequence then becomes:

(i) The processor stacks the register set in the same order as for a software
interrupt

(if} A jump is made to the location found in the IRQ vector at address
O0xFFF8

(iii) A second indirect jump is made to the location in the monitor vector
table

(iii) The kernel interrupt handler processes the interrupt.

This sequence adds about 9 cycles to the time required to service the in-
terrupt and may be undesirable in a very time critical application. However,
when demonstrating the principles of real time techniques, the versatility

Fourth College on Microprocessor based Real Time Systems in Physics 119
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996)

Review of College Insirumentation Wetherilt, A.J.

gained by being able to replace the interrupt handler has a number of ad-
vantages.

The RInOS kernel uses a system of device drivers to form an interface
between applications programmes and the system hardware. An application
programme should never manipulate the hardware directly in a multitasking
environment as this could interfere with the operation of another task which
also requires the use of the hardware. The kernel maintains a list of the six
devices available on the board, namely: ACIA1, ACIA2, PIA, ADC, DAC
and TIMER3. The system clock is treated separately. Each entry in the
device table contains the structure shown in Table 3.

Table 3.: Device table structure fields

void* | INTERRUPT_SERVICE | Address of the interrupt
handler for the device

void* | DEVICE_DRIVER Address of the device driver
void* | HARDWARE Address of the hardware
void* | DATA_AREA Address of an area reserved

for use by the device driver in
which it can store information
it needs

char | INSTALLED A flag to indicate whether or
not the particular device is
installed. 0 indicates it is not

The table is completed by the kernel during system initialisation with
values for the default device drivers. TIMERS3 at present has no default
driver, therefore one must be supplied if this device is to be used by an
application programme. Since the table is in RAM, it is possible to replace an
entry with the parameters of a new driver. The system call OSInstallDriver
should be used for this purpose. Appendix 1 gives a full description of this
and all other system calls avail:®le to an applications programme Note that
the particular structure of the device table allows ACIA1 and ACIA2 to
share the same device driver software but to have different DATA_AREA
and HARDWARE fields.

During a hardware interrupt, the device table is examined to find the
device causing the interrupt. Each device capable of raising an interrupt has
a status register that indicates whether or not it requires service. If a device
is found to require service the service routine at the address found in the
INTERRUPT_SERVICE field is called. Otherwise the next device in the list
is examined. If no other devices are found to have issued an interrupt, the

Fourth College on Microprocessor based Real Time Systems in Physics 120
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

system clock on PTM channel 2 is examined. and appropriate action taken.
If no device is found to have requested service, a serious system fault could
occur if the spurious interrupt does not clear itself, as on return to the point
of interruption, an uncleared interrupt will immediately reassert itself and
cause an loop of interrupts that will effectively hang the system.

A complete list of the functions and modes for the device drivers is given
in Appendix 2.

6.4.3 Memory management

Memory management under RInOS distinguishes between two types of avail-
able memory. The first 8k of memory starting at 0x0000 is available to both
processes and system alike. The paged memory is only available, however, to
processes on the same page; processes on separate pages cannot share data
in this area but must use the common area starting at 0x0000. Separate
memory allocation and deallocation system calls exist, therefore, for these
two distinct regions of memory(see Appendix 1 for full details). In each
case, however, RInOs uses similar constructs to handle their managerment.
The first 256 bytes of each area (at 0x0000-0x00FF and at 0x2000-0x20FF on
each page) contain a page table for the relevant block of memory. Memory
is allocated in blocks of 32 bytes each for the common memory and in blocks
of 128 bytes each for paged memory. After system initialisation, each unused
block is marked by 0xFF and each used block contains the pid number of
the task owning it or zero if the system owns it. If a block of IMemory is re-
quested, the relevant table is scanned to find a vacant area of sufficient size.
The first such area found is marked as belonging to the requesting task and
a pointer to the start of the area returned to the caller. If paged memory is
requested and no space can be found on the first page, successive pages are
searched until a block is found. No hardware protection is provided to pre-
vent one process from using the memory of another: it is expected that such
antagonistic actions can be guarded against by the application programme
designer.

6.4.4 Semaphores

Perhaps the single most important programming construct of real time pro-
gramming is the semaphore. A semaphore is basically a lock that permits
a given number of users to access a system resource of some description.
When a task claims the semaphore by performing a DOWN operation, it ef-
fectively locks out other users from the resource until the task again releases
the semaphore. Alternatively, a semaphore can be used to signal that an

Fourth College on Microprocessor based Real Time Systems in Physics 121
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

event which one or more tasks have been waiting for has occurred. RInOS
uses three types of semaphore: the binary semaphore or mutex; the counting
semaphore; and the event semaphore.

The structure of the semaphore is given in Table 4

Table 4: Semaphore structure fields

char | SEMA_TYPE The type of the semaphore

0 = Mutex
1 = Counting
4 = Event

char | SEMA_VALUE The value of the semaphore
void * | SEMA_POINTER | A pointer to the first task
in a linked list of tasks
waiting on the semaphore

A mutex can have but two values: 0 or 1. A task can claim the mutex
if its value is 1, which will immediately cause the value to change to 0.
Any other task trying to claim the mutex will be blocked at this stage. On
receiving such a request, the kernel rather than decrementing the value of
the semaphore in the SEMA_VALUE field, links the task into a list of tasks
already waiting on the semaphore. The first task in the list is pointed to
by the field SEMA_POINTER. If this field is null, then no tasks are waiting
on the semaphore yet. A mutex places the task in the list according to the
priority of the task and sets the SEMAPHORE_LIST field of the TCB to
point at the next task in the list. When an UP operation is performed on
the mutex, it first attempts to wake the highest priority task i.e. the first task
in the linked list, and to remove the task from the list. If this fails because
no task is waiting, it increments the semaphore value to 1 (see Figure 11).

Counting semaphores are implemented in a similar manner, but can take
any positive value up to 255. They are typically used in situations where
there is a limited number of resources such as slots in a buffer which can
be allocated to users. In this case they would be initialised to the number
of usable resources. A DOWN operation would decrement the semaphore
value until 0 is reached at which stage the task issuing the DOWN would be
attached to the linked list. A difference between the implementation of mutex
and counting semaphores is that whereas the mutex links in order of priority
so that the highest priority task is woken first, the counting semaphore links
in the strict order of arrival.

The third type of semaphores are used to synchronise events. The is
always initialised to 0 and any task issuing a DOWN on it automatically is

Fourth College on Microprocessor based Real Time Systems in Physics 122
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J,

A PRIORITY POINTER
SEMAPHORE TASK #4
SEMAPHORE POINTER
PRIORITY POINTER
VAL=0 QRTY PO
SEMA_POINTER TASK#3
= SEMAPHORE POINTER

PRIORITY POINTER
This taek performs a
down operaiion oa
TASK #2
’/—‘ SEMAPHORE POINTER the semaphore
NULL
B PRIORITY POINTER
SEMAPHORE TASK #4
— SEMAPHORE POINTER
PRIORITY POINTER
VAL =D
TASK #23
SEMA_POINTER
SEMAPHORE POINTER
PRIQRITY POINTER Task # 2 it ow linked
into the list of tasks
witing oa the semaphore
P —— TASK #2
SEMAPHORE POINTER
| SEMAPHORE POINTER |
NULL
C PRIORITY POINTER
SEMAPHORE TASK #4
] SEMAPHORE POINTER
PRIORITY POINTER | |
VAL =4
T
SEMA_POINTER / ASK #3
SEMAPHORE POINTER
PRIORITY POINTER | |
| PRIORITY POINTER |
TASY #2
SEMAPHORE POINTER
)/‘] The task hoiding the semaphore o refeases
NULL it by performing an op operation. This makes

task 2 runable again. It unlinks itself froo the list
ond sets its SEMAPHORE_POINTER ficld
o NULL.

Figure 11: Steps involved as a task waits on a semaphore. (A) task #2
performs a down operation and is blocked. (B) Task #2 is linked into the
list of tasks waiting on the semaphore. (C) The semaphore is released alowing
task #2 become unblocked and to resume running.

Fourth College on Microprocessor based Real Time Systems in Physics 123
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

put into the linked list to sleep. When the event that the tasks have been
waiting for arrives (by performing the UP operation on the semaphore) ALL
tasks waiting on the semaphore are woken. This does not mean that all tasks
run at the same time, but that all are put into a state where they can run
when given the opportunity. -

RInOS offers a number of functions to create, free, perform UP and per-
form DOWN on the three types of semaphore. Up to 128 semaphores can be
created and be in use at the same time.

6.4.5 Loading and running tasks and interprocess communication

The RInOS loader resides in the monitor and allows two types of process to
be downloaded to the on-board RAM. RInOs was designed to accept position
independent code that could be loaded at any suitable address found vacant
by the memory manager. Under this scheme, the code is compiled or assem-
bled using an origin of zero (the default certainly in many assemblers) to a
Motorola S19 format file and sent to the board via a terminal emulator over
a serial line to ACIAL. The size including all code, data and stack require-
ments is specified on the command line together with an optional priority
and argument list. The memory manager reserves the required memory at a
suitable location and loads the file into this area. It then calls OSCreate to
create a new TCB for the process, sets the STACK_POINTER field in the
TCB to 12 bytes before the end of the reserved area and fills in the remaining
12 bytes with the default values of the registers in readiness for running the
process when the kernel starts multitasking. The final location on the stack,
from where the programme counter will be pulled is loaded with the value
in the CODE_ENTRY field of the TCB which in turn was obtained from the
S9 record of the downloaded file. Many compilers, however, do not produce
position independent code, but rather produce absolute code that has to re-
side at a specific address. GCC is currently in this category, and although
other compilers exist that produce relocatable code (for instance the MCC
compiler) these are not yet sufficiently reliable for current use. RInOS can
accept absolute code using the unmodified ASSIST09 loader. However, at
present, a file loaded by this scheme neither has memory reserved for it nor
does it have a TCB created, and therefore cannot run when the kernel is
started. These operations have to be performed manually from within the
user process. During the linking process, the module crt0 is included into
the final code. This file contains a jump to the OSInstall system call which
performs all the necessary actions to create the task and to reserve memory
for it. Its final action is to start the kernel and wait for control to be trans-
ferred back to the address following this jump. By default, all absolute code

Fourth College on Microprocessor based Real Time Systems in Physics 124
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J,

will start at address 0x2200 on page 0 of the paged RAM, and in order to
run the kernel the user should issue the command

g 2200

followed by a carriage return.

Each of these two distinct types of code has its own advantages and
disadvantages. For relocatable code, as many separate tasks as needed (up
to the system limit of 31) can be loaded individually. When loaded, each
of these processes has absolutely no information concerning the details such
as pid, semaphore numbers etc. of any other task. A task can examine its
own details by issuing the OSTask system call and getting a pointer to its
own TCB, but has no access to information belonging to any other task. To
circumvent this problem, a task with priority lower than any other except the
null task can, as one of its first actions, reserve a block of shared memory and
place relevant information in this memory. The format of this information
and its meaning must be agreed between the various processes but otherwise
is arbitrary. The process will then issue the OSSignal system call and
communicate the address of the block of memory to all other processes that
require this information. These processes being of higher priority will have
already had an opportunity of running before the signal is sent. These tasks
should issue the system call OSWaitSignal as one of their first actions and
sleep pending receipt of the signal. On waking, each process can fill the fields
of the block with any of its own information that is required by the other
tasks. In this manner shared memory can be established. If necessary, a
semaphore can be created to ensure access by only one task at a time, but
this is dictated only by the requirements of the applications.

For absolute code, only one file can be downloaded at a given time. Thus,
the file should contain all the tasks that will run as separate threads within
the process. The starting process should create a child task for each thread it
wishes to run prior to going to sleep indefinitely. Since the tasks created under
this scheme all come from a common file, they can share data naturally and
without problems. Care should i.wever be exercised to ersure that critical
data can be accessed only by one task at a time.

In addition to the numbered signals discussed above, RInOS also offers
the possibility of sending messages between tasks using the OSSend and
OSReceive pair of system calls. These functions send messages to and
examine the contents of a task’s mailbox. A mailbox has the structure shown
in Table 5. and is basically a linked list attached to the MAILBOX field of
the task’s TCB. A task sending a message sends a pointer to a block that
can be used as memory shared between both the sender and the receiver.
The receiver can examine its mailbox at any time and act on the contents of

Fourth College on Microprocessor based Real Time Systems in Physics 125
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

the message. Alternatively, if a task chooses not to look at its mailbox, the
messages will go unprocessed. An optional semaphore can be set using the
OSReply system call that puts the sender to sleep until a reply is received.
This should obviously be used with a certain amount of caution.

Table 5: Message structure fields

char | SENDER PID of sending task
void* | NEXT_MESSAGE Pointer to next message in list
char | MSG.SEMAPHORE | Semaphore number if reply is expected

6.4.6 The system clock

When the PTM is jumpered to the IRQ line, the system clock provides a
periodic interrupt every 10 ms. Tasks wishing to sleep for an integral number
of clock ticks can use the OSSleep system call to perform this operation. On
receipt on this call, RInOS attaches the TCB of the calling task to a linked
list of tasks waiting on the timer starting with the system variable clktsk
and continuing with the SEMA_POINTER field of the TCB. The number of
clock periods to sleep is entered in the TIMER.COUNT field of the TCB.
Finally the calling task is put to sleep to await expiry of its timer. At each
clock interrupt, all tasks in the linked list have their TIMER_COUNT fields
decremented and any reaching zero are woken and removed from the list.
A call to OSSleep with an argument of zero results in the task not being
placed in the linked list but nonetheless put to sleep. This means that the
task will never wake.

7 Bibliography
1. Modern Operating Systems. Andrew Tannebaum
2. The MCX11 Real Time Executive. Motorola
3. The ASSIST09 Monitor, Motorola
4. The p/COS Real Time Kernel, Jean Lebrosse
5. Specifications for the AA16107-LY, Agena Industries Co.

Fourth College on Microprocessor based Real Time Systems in Physics 126
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

8 Appendix 1.
System calls available under RInOS
These system calls are at the level of assembler language. The equivalent C

function is also given. All system calls are issued by loading the registers
with the specified values and raising a software interrupt. For example:

ldx #23 Sleep for 230 ms
swi
fcb 0SSleep

or in C
sleep(23); /* sleep for 230 ms */

Any values returned by the system calls will be found in the specified
registers The following are used to denote the 6809 registers:

X : X register

Y Y register

A : A register

B B register

CCR : Condition Code register
Function # 1
OSSleep
Description:

Put a task to sleep for a specified no of clock ticks If the tick count is
zero then the task sleeps indefinitely or until woken by another task

Called with:

X = Number of clock ticks to sleep
Returned with:

All registers unchanged

Equivalent C function: void sleep(int nticks)
Function # 2
OSWake

Description

Wake up a sleeping task.

Fourth College on Microprocessor based Real Time Systems in Physics 127
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Called with:

A = pid of sleeping task
Returned with:

Nothing

Equivalent C function: void wake(int pid)

Function # 3
OSSetPriority
Description

Change the priority of a specified task

On entry:

A = new task priority

B = pid of task (0 = current task)
On return:

A contains pid

Equivalent C function: int set_priority(int priority,int pid)

Function # 4
0OSSemCreate
Description

Create a new semaphore

Called with:
A = Type: MUTEX, COUNTING, EVENT, SINGLE EVENT

B = Initial value of semaphore
Returned with:
A = semaphore number

Equivalent C function: void sem.create(int sem.type, int init_value)

Function # 5
OS¥FreeSem
Description

Release a previously allocated semaphore

Called with:
A = Semaphore number

Fourth College on Microprocessor based Real Time Systems in Physics 128
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Returned with:
Nothing

Equivalent C function: void free.sem(int sem_num)

Function # 6
OSDownSem
Deseription

Perform DOWN operation on semaphore. If semaphore blocks add calling
task to list and put task to sleep

Called with:

A = semaphore no
Returned with:

A = value of semaphore

Equivalent C function: int down_sem{int sem_num)

Function # 7
OSUpSem
Description

Perform UP operation on semaphore. If semaphore is zero and a task or
tasks are waiting on it, wake the task:

(a) with highest priority if the semaphore is a MUTEX type

(b) which is first in the linked semaphore list if the semaphore is a COUNT-
ING type

(c) allif the semaphore is an EVENT type An EVENT semaphore will be
freed if bit 7 is set in the semaphore type

Called with:
A = semaphore no Returned with:
Nothing

Equivalent C function int up_sem{int sem_num)
Function # 8
OSResetSem

Description

Reset an EVENT semaphore. This must be used with extreme caution.

Fourth College on Microprocessor based Real Time Systems in Physics 129
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

On entry
A = semaphore number

On exit
The carry bit will be set in
the CCR if an error has occurred

Equivalent C function: int reset_sem(int sem num)

Function # 9
OSSend
Description

Send a message to the mailbox of another task

Called with:
A = Task number of the receiver
X = Message address

Returned with:
All registers unchanged

Equivalent C function: void send(int pid, void * message)

Function # 10
OSReply
Description

Send a message and wait for a reply. This function is the same as the
0OSSend. function except that it puts the sender into a WAIT state until
the task receiving the message signals the semaphore to indicate that it is
finished.

A = Task number of the receiver
X = Message address

Returned with:
All registers are unchanged

Equivalent C function: veid reply(int pid, void * message)

Fourth College on Microprocessor based Real Time Systems in Physics 130
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J).

Function # 11
OSReceive
Description

Receive a message from another task. Either a specific task, or all tasks
can be selected.

Called with:
A = pid of the preferred task
or 0 if any message will do
Returned with:
X = Address of the received message
All other registers unchanged

Equivalent C function: void* receive(int pid)

Function # 12
OSSignal
Description

Send a numbered signal to all tasks waiting for this signal. Both sender
and receiver must agree on meaning of the signal. An optional pointer to
any structure can be passed. This is used so that diverse tasks can agree on
a set of common parameters

On entry

A = signal number

X = optional pointer to signal parameters
Returned with

Nothing

Equivalent C function: int signal(int sig num, int* params)

Function # 13
OSWaitSignal
Description

Wait for a numbered signal from another task. Again both sender and
receiver must agree on the meaning of the signal and the data block

On entry

A = the number of the signal to wait for
Returned with

X = pointer to signal data block

Fourth College on Microprocessor based Real Time Systems in Physics 131
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Equivalent C function: void* wait_signal(int sig num)

Function # 14
OSlInstallDriver
Description

Install or replace a device driver with a new one

On entry:
A = device # of driver to replace
X = pointer to a structure containing
the new set of driver parameters with the
following structure
void* ISR Interrupt service handler
void* DRIVER Device driver address
void* HBASE. Hardware base address
void* SCRATCH. Device scratch data area
char INSTALLED. Specifies whether a device
is installed (ff) or not(0)
Returns :

Nothing

Equivalent C function:
void install_driver(int device_num, struct* params)

Function # 15
OSStart
Description

Start the kernel. The kernel can be started either from the monitor or
by the use of this function call from a user task. The function takes no
parameters and does not return.

Equivalent C function: void start(void)

Function # 16
OSInstall
Description

Create a task and allocate memory for it. This function is used retro-
spectively to

(1) Create a tcb

Fourth College on Microprocessor based Real Time Systems in Physics 132
ICTP, Trieste, Italy. Oct T - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

(2) Allocate memory for a block of code that has been loaded at an absolute
address and hence has bypassed the usual loading sequence

Called with
X = Pointer to a creation block with the following structure
char PSEG Page register
void* CSEG Start of module
void* SSEG Stack pointer
void* CSTART Code entry point
void* ENVBLK Address of environment
(Should be NULL)
void* TPRIO Priority of task
char TPID PID of process
(will be filled in by call)
int TMEM Size of memory required
Returned with
A = PID of new task

Equivalent C function: int install (struct * params)

Function # 17
OSCreate
Description

Create a task and put it into a runnable state

On entry A = Task priority
X = Pointer to task creation
structure (See OSInstall)
Returned with
X = Pointer to new task TCB

Equivalent C function:

void* create(int priority,struct* params)

Function # 18
OSCAllocMem
Description

Allocate a block of shared memory. Each block is 32 bytes in size.

Fourth College on Microprocessor based Real Time Systems in Physics 133
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

On entry

A = PID of task requesting memory

X = Size of memory requested
Returned with

X = Pointer to allocated memory block

Equivalent C function: void* calloc_mem(int pid, int mem_size)

Function # 19
OSCFreeMem
Description

Free blocks of shared memory previously allocated using OSCAllocMem

On entry
D = Number of blocks to free
X = Address of first block
Returned with
Nothing

Equivalent C function: void cfree_mem(int size, void* addr)

Function # 20
OSPAllocMem
Description

Allocate a block of shared memory. Each block is 32 bytes in size.

On entry
A = PID of task requesting memory
X = Size of memory requested
Returned with
A = Page number of allocated memory
X = Pointer to allocated memory block
Y = Size of memory actually allocated

Equivalent C function:
void* pallocmem(int pid, int mem_size, int* page, int* alloc_size)

Fourth College on Microprocessor based Real Time Systems in Physics 134
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Function # 21
OSPFreeMem
Description

Free blocks of paged memory previously allocated using OSPAllocMem

On entry
D = Number of blocks to free
X = Address of first block
Returned with
Nothing

Equivalent C function: void pfree_mem(int size, void* addr)

Function # 22
OSTaskInfo
Description

Obtain a pointer to the calling task’s TCB

On entry
No registers used
Returned with
X points at the TCB of the task

Equivalent C function: void* task_info (void)

Fourth College on Microprocessor based Real Time Systems in Physics 135
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

9 Appendix 2.
Device drivers under RInOS

Default device drivers exist for the following hardware items:

ACIAl device # 0 Byte Input/Output
ACIA?2 device # 1 Byte Input/Output

PIA device # 2 Byte Input/Output
DAC device # 3 Word Output
ADC device # 4 Word Input

TIMER device # 5

Driver requests

On error all drivers return the carry bit set in the CCR, otherwise this
bit is cleared.

Request # 1
Read Channel 1
Description

Read a single byte or word from channel 1 of the device

Called with
A=20

Returned with
B = byte input (Byte devices)
D = Word input (Word devices)

Request # 2
Write Channel 1
Description

Write a single byte or word to channel 1 of the device

Called with
A=1
B = Data to write (Byte devices)
X = Data to write (Word devices)
Returned with
Nothing

Fourth College on Microprocessor based Real Time Systems in Physics 136
ICTP, Trieste, [taly. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Request # 3
Read a string from Channel 1
Description

Read a string from the device. For the ACIA driver, on receipt of a
carriage return, a null character is appended to the string.

Called with
A=2
X = Pointer to location
where string is to be placed
Returned with
Nothing

Request # 4
Write string to Channel 1
Description

Write a null terminated string to the device. For the ACTA, when the
null character is encountered in the output stream, carriage return - line feed
characters are substituted.

Called with
A=3
X = pointer to first character
of the string to be sent
Returned with
Nothing

Request # 5
I0CTL
Description

This function allows the registers of the device to be manipulated directly

Called with

A=4

B = Control byte
Returned with

A = status byte

Fourth College on Microprocessor based Real Time Systems in Physics 137
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

Request # 6
Initialise device
Description

Before a device can be used it must be initialised. The default drivers
for the ACIA2, ADC, DAC and PIA in mode 0 are initialised by the system
during start up. The ACIAL driver must be initialised by an application
programme prior to use. If the PIA is to be used in any mode other than
mode 0, it also must be initialised to this mode before use. The PIA modes
are:

PIA_STD.MODE Mode # 0 Configure A/B sides of the
PIA using a bit mask in X

PIA_HNDSHK_MODE Mode # $10 Configure for automatic
handshaking

PIA ICTP_DISPLAY MODE Mode # $20 Configure for use with the
ICTP display card. Read
switches and write to LED.
Interrupt on push button

Mode # $21 Configure for use with the
ICTP display card. Write
to LCD display. Interrupt
on push button

PIA_COLOMBO_MODE Mode # 30 Not yet implemented

Called with

A=35

B = Mode (for PIA only)

X = Bit mask (for PIA mode 0 only)
Returned with

Nothing

Request # 7
Set Input lock
Description

Lock the input stream by the use of a semaphore. Any task requiring the
use of the device should first call this function to check that the device is free,
if it is not free the task will sleep pending release of the semaphore. Note that
this works only on a voluntary basis as any task not using the semaphore

Fourth College on Microprocessor based Real Time Systems in Physics 138
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.

can make use of the stream and interfere with other tasks co-operating in
the use of the semaphore.

Called with
A=6
Returned with
Nothing

Request # 8
Release Input lock
Description

Release the semaphore to the input stream set by a previous call to Set
Input Lock. The highest priority task waiting on the input semaphore will
be woken.

Called with

A=7
Returned with
Nothing

Request # 9 Set Output lock
Description

Set a semaphore lock on the output stream. Refer to Set Input lock
request for further details

Called with

A=38
Returned with
Nothing

Request # 10
Release Output lock
Description

Release a lock set on the output stream by a previous call to Set Qutput
lock

Called with
A=9g
Returned with
Nothing

Fourth College on Microprocessor based Real Time Systems in Physics 139
ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

Review of College Instrumentation Wetherilt, A.J.
Request # 11
Read Channel 2
Description
Read a single byte or word from channel 2 of the device
Called with
A=0
Returned with
B = byte input (Byte devices)
D = Word input (Word devices)
Request # 12
Write Channel 2
Description
Write a single byte or word to channel 1 of the device
Called with
A=1
B = Data to write (Byte devices)
X = Data to write (Word devices)
Returned with
Nothing
Fourth College on Microprocessor based Real Time Systems in Physics 140

ICTP, Trieste, Italy. Oct 7 - Nov 1, 1996

X Windows Programming

Fourth College on Microprocessor-based
Real-time Systems in Physics

Trieste, 7 Oct—1 Nov 1996

Ulrich Raich
CERN - European Organisation for Nuclear Research
P.S. Division
CH-1211 Geneva
Switzerland.

email: Ulrich. Raich@cern.ch

Abstract

These lecture notes are intended to give an insight into Graphical
User Interface {GUI) Programming using the X-Windows system. It
explains the different layers of X11 and gives a short introduction to
XLib. Motif, the widget set supplied by the Open Software Foundation
(OSF) is used to demonstrate building of more sophisticated GUILs.
Even though only very few routines of the Motif libraries are explained
these notes are sufficient to build a Motif program driving the ICTP
Colombo Board which is proposed as an exercise.

1

Intfroduction to X-Windows

X started its life in 1984 at the Massachusetts Institute of Technology (MIT) with the
project Athena. At MIT several hundreds of workstations were scattered on the
campus. They were intended for the use by students and were rather heterogenous
(severeal different manufacturers, different operating systems). On the other hand
most of them had:

¢ apowerful 32 bit CPU

» large address space

* a high resolution bitmapped display
* amouse on some of them

» anetwork connection.

The idea was therefore to provide a window system allowing to write vendor
independent applications, that could run on any of these stations. In addition, it
should be possible to access applications on any of the workstations from any other
workstation using the network. Of course performance was another keyword in the
design.

Since the lecture time for X-Windows programming is fairly limited (there are some
16 books of 700 pages each explaining the X-Windows system!!!) we prepared this
little booklet, which should contain an explication of some basic features of the system
and also all the calis you will need for the exercises.

In the course of the lectures you will build a little X-Windows application simulating
the Colombo board on the screen and interact with it.

Infroduction to X-Windows 1-1

2

The Client-Server Model

In order to write device independent applications, the details of device access must be
hidden in some sort of driver. In X this is a program called the X-Server. It provides
all the basic windowing mechanisms by handling connections from X-applications,
demultiplexing graphics requests and multiplexing input from keyboard, mouse etc.
back to the application. This program is usually provided by the hardware vendor.

An application connects to the X-Server through an interprocess communication
(IPC)path either through shared memory or through a network protocol like TCP.
Such a IPC path is called the X-Client. Since most applications open only a single
connection we often call the application itself the X-Client. However: an application
having several IPC paths open is considered as several clients.

The communication protocol between an X-Client and an X-Server is called the
X-Protocol.

One of the main design objectives of this protocol was to minimize the network traffic,
because the network must be considered the slowest system component. Therefore an
asynchronous protocol has been chosen. In order to bring windows up on the screen
the application simply sends off requests without waiting for an acknowledgement.
This can be done because of the reliability of the underlying network protocol. The
application also does not poll for events like key presses and mouse button presses. It
registers interest in certain events with the X-Server, which will then send only
relevant events back to the application. Both the output requests and input events are
buffered.

The X-Protocol is the fundamental layer onto which other tools can be build. It is user
interface policy free. This means that only rectangular windows are handled but no
buttons, menus and the like. These so-called widgets are implemented in a toolkit
sitting on top of the protocol.

The XLib contains routines that allow access to the X-Protocol. It provides the
following functionality:

+ display management (open, close displays)

« window management (create/destroy windows and change their visual aspect)
e two dimensional graphics (draw lines, circles, rectangles, text)

« color management (color map and its access routines}

« event management (registration of interest in events and event reception)

This gives us an overview over the next few chapters.

The Client-Server Model 2-1

In fig 2-1 we see 3 X-Clients running on 3 different machines (AB,C) and
communicating with a single X-Server (on system C). For the clients on A and B the
X-Protocol runs over the network, while for the text editor a shared memory [PC path
is used.

Figure 2-1 The Client-Server Model

System A System B
Beam CAD Program
Simulation
XLib / XLib /

Server Queue Server Queue

Text Editor

XLib

Server Queue

System C

Screen

Keyboard

2-2 The Client-Server Model

3

Display Mcnagemeht

In order to create windows on the screen and to receive events a connection to the
display must be established. In X terminology the display consists of :

e OnE Or More SCreens
+ asingle keyboard

» an (optional) pointing device

« the X-Server.
This connection can be built through the XLib call:
Display XOpenDisplay(display_name)

char *display_name

If display_name = NULL the display_name defaults to the value stored in the
environment variable DISPLAY. If you want to open the server on your neighbor's
workstation, he will first have to allow you aceess to it (xhost name_of_your_station},
then you may define display_name as his_station:server_number.screen_number
{usually 0.0).

The return value from this call must be saved, because it will be passed into all
subsequent calls. In case of an error a NULL display is returned.

There are several Macros giving information about screen properties like:

» DisplayHeight(display, screen_number)
Display display;
int screen_number;

« DisplayWidth(display, screen_number)
giving the width and the height (in pixels) of the screen.

Display Management 3-1

4

Window Hierarchies

Once the Client-Server connection is established, we can generate our first windows:

Window = XCreateSimpIeWindow(display,parent,x,y,width,height,
border_width,border_color,background_colorJ;

Display *display

Window parent;

int Xy, /* position with respect to the upper left corner */
/* of the parent window */

unsigned int width, height, border_width;

unsigned long border_color;

unsigned long background_color;

x,y,width,height and border_width do not need any explanation. background_color
specifies the background color. Since colors will only be explained later we will put
this to:

unsigned long WhitePixel(display,Defau]tScreen(display))

where WhitePixel and DefaultScreen are Macros returning the pixel value for "white"
and the default screen number respectively. The border_color parameter specifies the
color for the window border and is set to:

unsigned long BlackPixel(display, DefaultScreen(display)).

The parent parameter will need some more explanation: All windows are inserted into
a window hierarchy, where each window has a parent window. The great-grandfather
of all windows is the root window who's id can be obtained by:

Window RootWindow(display,DefaultScreen(display)).
The root window

* covers the screen completely

¢ cannot be moved or resized

* is the parent of all other windows

¢ has all window attributes like background color, patterns etc.

You can draw onto the root window as on to all other windows

The return value from XCreateSimpleWindow is used to build up the window
hierarchy. In fig. 4-1 a complete hierarchy is shown. Since all windows are clipped to
the boundaries of their parents some of the windows may be completely invisible.

Window Hierarchies 4-1

Figure 4-1 Window Hierarchies

Root Window
A Main Window B Main Window C Main Window

VRN

D Child Window E Child Window

Root Window

0 7

i

Legend: clipped

root window

N
Ik

visible part of window

4-2 Window Hierarchies

After the XCreateSimpleWindow all the data structures needed for the management
of the window will be created; however the window will still not be visible.

XMapWindow (display,window _id)
Display display;
Window window_id;

will map the window and all of its subwindows, for which the XMapWindow routine
has been called. Once the window is mapped, there are several XLib calls to change its
layout:

. XMoveWindow(disp]ay,window_id,xgoffset,y_offset)

. XResizeWindow(dispIay,window_id,width,height)

. XNIoveResizeWindow(display,window_id,x_oﬁ"set,yﬁoffset,width,height)
. XSetWindowBorderWidth(display,window_id,border_width)

. XSetWindowBackground(display,window#id,background_pixel}

. XChangeWindowAttributes(disp]ay,windowﬁid,valuefmask,attributes}

and many more,

The last call allows to change any of the window attributes in a single call.
“attributes” is a XSetWindowAttributes structure, having a certain number of fields,
The value_mask tells the system, which of the attribute fields are to be taken into
account. Only these values will be changed. It is a bitwise inclusive OR of the valid
attribute mask bits (see fig. 4-2).

Using this mechanism windows can also be created with:

XCreateWindow(display,parent,x,y,width,height,border_width,depth,class,visual,
valuemask,attributes)

If in the situation of fig 4.1 we would call
XUnmapWindow(display,B_main_window)
the window B and all of its subwindows (D and E) would disappear.

Figure 4-2 Structure and Value Mask

‘Structure

anything

valid

1 e . valid
0 : : anything
0 . anything

1 valid

Window Hierarchies 4-3

drag
corner

drag side

drag
corner

Fig 4-3 shows the results of such a Map call for a single main window.

It has been explained before, that a window simply consists of a rectangle. Here on the
contrary many more items like the three buttons on top of the window, the stars, the
triangles on each corner etc. can be seen. The layout and the functionality depend on
the look and feel (the policy) of the window system. It is another X-Client, the
window manager, which is responsible for the decoration of the main window (child
of root window). Tt allows to change the stacking order of windows, displace and resize
windows, iconize them and even killing them (and the application).

The XLib provides calls to communicate easily with the window manager in order to
modify the decorations like

XStoreName(display,window_id,title_bar_text);

This call will communicate the title to be put into the title bar to the window manager.
The communication is dene through the Inter Client Communication Convention
(ICCCM, M=menual) using so called window properties, which are data that can be
attached to windows. We will not be able to go into any detail because of lack of time.

Figure 4-3 A Main Window

drag top
drag
corner
iconize
standard title bar button
option maximize
menu button
drag
side
drag
corner

drag bottom

4-4 Window Hierarchies

5

Drawing, the Graphics Context

Let us consider the simplest possible drawing instruction: drawing a line between 2
points. This is done with the call

XDrawLine(display,drawable,graphics_context,x1,y1,x2,y2)

Display display;

GC graphics_context;

int x1,y1,x2,y2;

The meaning of all parameters except "drawable" and "graphics_context" should be
obvious. The "drawable" tells the system where to draw. In fact there are 2
possibilities. Either we draw into a window on the screen or into a window simulated
in memory, called a pixmap (Details on pixmaps are found in chapter 6). Remember
that the root window is treated like any other window, so it is possible to generate
background pictures by drawing onto the root window.

Coming back to our draw line primitive: When drawing the line, several questions
remain open:

¢ what is the line width?

+ what color?

+ straight line or dashed, dotted ... and what are the distances between dashes?
+ how to join lines.

and there are many more drawing attributes.

Since it is the X-Client who generates these graphic requests and it is the X-Server
who executes them, all attributes must be sent to the server. This could be done on a
per primitive basis, however network traffic would be strongly increased and the
performance would suffer. For this reason graphics contexts containing all these
attributes can be prepared on the server. In the drawing call the identifier of the
graphics context resident on the server is specified.

GC XCreateGC(display,drawable,values,value _mask)

Display display;
Drawable drawable;
XGCValuesvalues;

unsigned long value_mask;

creates a graphics context for us.

Drawing, the Graphics Context 5-1

The value structure of type XGCValues has over 20 entries. In the following table
some of the entries and their corresponding value_mask bit names are given.

Entry value_mask bit usage and possible values
values.line_width | GCLineWidth
value line_style GCLineStyle LineSolid draw full line
LineDoubleDash odd lines fill differently
from even lines
LineOnOffDash only even dashes are
drawn
values.cap_style GCCapStyle How to draw the end point:
CapButt line square at the end
point
CapNotLast as CapButt, but the last point
is not drawn
CapProjecting as CapButt, but the line is
longer half the projection
CapRound round end points
values join_style GCJoinStyle how to join fat lines
JoinMiter outer edges extend to meet at
an angle
JoinBevel corner is cut off
JoinRound round off edges
values fill style GCFillStyle FillSolid uses foreground color for
filling
FillTiled uses a colored tile pattern
FiliStippled same as FillSolid but uses a

stipple pattern bitmap as mask
FillOpaqueStippled same as FiliTiled but uses a
stipple pattern as mask in

addition
values.function GCFunction logical operation for drawing
possible values see later
values.foreground | GCForeground foreground color
values.background | GCBackground guess what!
values.tile GCTile tile pixmap
values.stipple GCStipple stipple bitmap
values.clip_mask | GCClipMask clip mask
values.ts_x_origin | GCTileStipXOrigin shifting the tile of stipple pattern origins
same for y
values.font GCFont font for text drawing

In order to create a graphics context that allows drawing of a dashed line of width 4
the following code segment would do the job:

XGCValues values;

unsigned long value_mask;

GC graphics_context;

value_mask = GCLineStyle | GCLineWidth; /* setup the value mask */
values.line_style = LineOnOffDash; /* define the fields indicated in mask*/

values.line_width = 4;
graphics_context = XCreateGC(display,main_window,values,value_mask);

All other GC values will be defaulted.

5-2 Drawing, the Graphics Context

Another way is to generate a default GC using
DefaultGC(display,screen_number)

and then use
XChangeGC(display,graphics_context,value,value_mask)

to do the necessary changes.

There are also lots of convenience functions changing a single entry in the value
structure:

L]

XSetForeground(display,graphics_context,foreground)

XSetBackground(dispIay,graphicsﬁcontext,background)

XSetLineAttributes(display,graphicsﬁcontext,linefwidth,linefstyle,

cap_style,join_style)

XSetDashes(display,,graphicswcontext,dshAoffset,dashklist,n)

XSetFillStyle(display, graphics_context,fill_style)

XSetTile(display, graphics_context,tile)

XSetStipple(display,,g'raphics_context,stipple}

XSetClipMask(display,graphisc_context,clip_mask)

XSetFont(display,graphics_context,font)

and many more. Fig 5-1 shows the result of these graphics context manipulations.

Last but not least there is an entry value.function, which sets the binary function that
is applied to the existing pixel value when drawing onto the screen (src is the pixels to
be drawn newly, dest is the actual pixel value}

GXClear
GXand
GXandReverse
GXcopy
GXnoop

GXxor

GXnor
GXequiv
GXinvert
GXorReverse
GXcopylnverted
GXorlnverted
GXnand

GXset

0

src and dest

src and (not dest)

src (this is the default of course!)
dest

sre xor dest

(not src) and (not dest)
(not src) xor dst

not dst

sre or (not dest)

not sre

{not src} or dst

{(not src) or (not dest)

1

Crawing, the Graphics Context 5-3

raphics context demo

e o a

o oNa

S

.

G)y)
Pl el

M Tl e
Ll Ll

OMOOSOMIT NS

i el
OMIDSSOMID O

EXZNZN

R
EEORREEEE

B EEREENELE

a. default line a FillTiled
CapNotL:ast, last point is not b. Changed the tile origin
drawn (difficult to see!}
c. line width set to 8, CapButt . fill stippled
d CapProjecting d. use a clip mask
. CapRound use XOR graphic function
f. LineDoubleDash £ filled text

g LineOnOffDash {(would need fill
patterns to see the difference)

h. different dash lengths
i JoinBevel

3. JoinRound

5-4 Drawing, the Graphics Context

6

Bitmaps and Pixmaps

In the previous chapter we were talking about pixmaps as drawables for drawing
primitives. Therefore the questions: What exactly is a pixmap? What is the difference
between a bitmap and a pixmap? and how can we generate pixmaps?

As already explained before a pixmap is a sort of a simulated window in memory. As
long as we work on a black and white workstation we need 1 bit for each pixel to be
displayed. An array, describing such a pixelplane is called a bitmap. Once we use a
color display several bitplanes are needed depending on the number of colors, that can
be displayed. This collection of bitmaps with a certain depth is called a pixmap.

An empty pixmap can be allocated with the call:
Pixmap XCreatePixmap(display,drawable,width,height,depth)

Display display;

Drawable drawable; /* needed to determine which screen the pixmap is stored on */
unsigned int width height;

unsigned int depth;

The pixmap will be stored on the X-Server, which is the reason for the drawable
parameter. Just specify the id of your main window. Once you allocate the pixmap you
can use it as drawable in any of the drawing primitives. In order to visualize your
pixmap you must copy its contents onto a window:

XCopyArea(display,source_drawable,dest_drawable,gc,sre_x,sre_y,
copy_width,copy_height,dest_x dest_y);

If you have a bitmap which you want to convert to a pixmap or simply visualize on a
color display you use:

XCopyPlane(display,source_drawable,dest drawable,ge sre_x,sre Y,
copy_width,copy_height,dest_x,dest_y,plane};

with plane =1 (bitmap).

Of course it might be rather difficult to build up bitmaps using only drawing
primitives. For this reason X provides a utility, the bitmap editor.

Bitmaps and Pixmaps 6-1

The command "bitmap" will bring up the application shown in fig. 6-1
Figure 6-1

Bitmap Editor a

[T Clear Al __|
; Set Al |
[Invert Al |

B [Clear Area |
[Set Area |
“[invert Area |

[Copy Area |
[Move Area |
COverlay Area |

[Line B
[Gircle |
[Filled Gircle |

[Flood Fill |

[Set Hot Spot |
[Clear Hot Spot|

[Write Output |
[Quit]

6-2 Bitmaps and Pixmaps

The result of the editor is a C source file which can be included into you application:

tdefine smiley_width 11

#define smiley height 11

static char smiley_bits[] = ({
Ox£8, 0x00C, 0Ox04, 0x01, 0x02, 0x02Z,
0xd9, 0x04, 0Oxd9, 0x04, 0xCl, 0x04,
O0x21, 0x04, 0Ox89, 0x04, 0x72, 0x02,
0x04, 0x01, Oxf8, 0x00});

This code can be used to create a pixmap:

Pixmap XCreatePixmapFromBitmapData(display,drawable,smiley_bits,
smiley_width,smiley height foreground, background,
DefaultDepth(display,screen_number));

Here the macro DefaultDepth is used to find the number of bitplanes used for the
display. The same result can be obtained by reading in the bitmap file directly.

int XReadBitmap¥File(display,drawable bitmap file name,&width,&height,
&bitmap,&hot_x,&hot_y);

(hot_x, hot_y give the coordinates of the "hot spot” used for cursors). Now the bitmap

can be converted to a pixmap with the XCopyPlane call.

There is also a freely distributable library and a pixmap editor which can be used to
generate pixmaps (in color) directly. (Try "pixmap" on your machine!)

Pixmaps are used for cursors, tiles, stipples, icons ete. They can also be used to restore
pictures which have been destroyed by overlapping windows (see chapter on events).

Bitmaps and Pixmaps 6-3

7

Drawing Primitives

X-Windows is NOT a graphics system! This can be easily seen by the limited number

of graphics primitives and by their simplicity:

There are a few functions to clear out an area to be drawn in

¢ XClearArea(display,window_id,x,y,width,height exposures)

* XClearWindow(display,window_id)

. XFillRectangle(display,drawable,graphics_context,x,y,width,height)

While most graphics primitives work on a drawable, XClearWindow and XClearArea

work only on windows.
Here are the primitives which actually draw graphic objects:

XDrawPoint(display,drawable,x,y}
XDrawPoints(display,drawable,points,npeints,mode)
where points is an array of type

typedef struct {
short X.Y;
} XPoint;

npoints, the number of XPoint entries in the array "points”
and mode = CoordModeOrigin (x,y is given in absolute pixel coordinates)
or mode = CoordModePrevious (x,y are the relative distances to the last point)

XDrawLine(display,drawable,gc,x1,y1,x2,y2)
XDrawLines(display,drawable,gc,points,npoints,mode)
XDrawRectangle(display,drawable,ge,x,y, width,height);
XDrawRectangles(display,drawable,ge,rectangies,nrectangles)
where rectangles is an array of type

typedef struct {
short X,¥;
unsigned short width,height;
| XRectangle;

XFillRectangle(display,drawable,gc,x,y,width,height);
XFillRectangles(display,drawable,gc,rectangles,nrectangles)

and there are some more for drawing arcs, segments etc.

Drawing Primitives 7-1

For text drawing lots of different fonts are available. The command xlsfont prints the
names of all available fonts. If you want to know how the font looks like, try xfd

(x font display).
The font names are standardized as follows:

-ADOBE-Helvetica-Bold-R-Normal--12-120-75-75-P-70-1S08855-1

Average
. width

Spacing
M-Mono
P=Proportional

—— Y-Resolution (dpi)

—— X Resolution (dpi)

— Point size (x10)

-—— Pixel Size

— Slant: R=Regular, O = Oblique

—— Weight: Medium or Bold

L— font type

First the font must be loaded with
Font XLoadFont(display,font_name)

then the font must be specified in the graphics context and last but not least we can
draw our text using XDrawString(display,drawable,gc,x,y,string,length).

It is also possible to fill an array of text items:

tvpedef struct {
char *chars;
int nchars;
int delta; /* distance between strings, is added to horizontal origin */
Font font;
| XTextltem.

and use XDrawText{display,drawable,gc,x,y,item_array, nitems)
which allows drawing of multiple font text strings.

7-2 Drawing Primitives

8

The Color Model

The hardware for color displays varies very widely depending on the needed graphics
performance of the system. Since X is supposed to be hardware independent, there
must be a common color model that can be converted for the different devices. X
knows of the following hardware types, referred to as visuals:

« Pseudo color
This is the most common type of device (and probably the one you have in your
PC!) The image is described through a pixel array, where each pixel is interpreted
as an index into a color table, containing the r,g,b values sent to the screen.

Figure 8-1 The Pseudo Color Display

1 \
\ de@\(normaﬂy 8 => 256 possible colors)

N
N

RN

Pixel: 5
Colormap
r g b 0
- L index into the colomap
to ’ﬁ'ﬂf-‘__————'——-”—_ ——e—]
display .
hardware color map is read/write
7

The Color Model 8-1

8-2 The Color Model

* Static color
Like pseudo color, except that the values in the color map are read only

+ Direct color
The pixel is composed of 3 bit fields, each of which is used as an index into one of 3
R.G,B color maps. The values in the three color maps can be changed

* True color
Like direct color, but uses three linear readonly color maps

¢ (rey scale
Like pseudo color. There are still 3 color maps but only 1 of them is used

« Static grey
Like grey scale, but color map is readonly and linear

An X application can install its own color map, but it will then disturb other
applications running on the same screen, because their colors will be wrong. The color
maps are switched depending on input focus.

So normally a single default color map is used. We can get an identifier to it by
Colormap DefaultColormap(display,screen number)

This colormap (when the visual depth is 8) usually contails 6%6*6 preprogrammed
coiors and 40 freely programmable color cells.

In order to allocate color cells in the color map there a 2 possible methods:

* allocating readonly color cells
These cells are shared between applications and are allocated by color name
XA]locNamedColor(display,DefauItColormap(display,screen_number,
"dark olive green”,&closest_color,&exact_color):

» allocating read/write color cells:
XAllocColorCeIls(disp]ay,DefaultColormap(display,screenﬁnumber,
contig flag, &planemmasks,nplanes,&pixels,npixels);
We can then use
XStoreColor(display,DefauItColormap(display,screen_number,my_color) to store
a color into the default colormap.

The structure

typedef struct {
unsigned long pixel;
unsigned short red,green,blue;
char flags; /*DoRed | DoGreen { DoBlue */
char pad;
} XColor;

describes a color. The red,green,blue values are always in the range of 0-65535 and
are scaled to the number of bits actually in use by the display hardware. Flags allow
to use only the red,blue,or green component (or any combination thereof).

Most graphics routines ask for a pixel value. When allocating readonly color cells, a
color structure is returned (closest_color) and the pixel entry in this structure
(closest_color.pixel) can be used. In XAllocColorCells, the pixel values are returned
directly.

Fig 8-2 shows part of the rgb database file:
Figure 8-2 The RGE database

255 250 250 snow

248 248 255 ghost white
248 248 255 GhostWhite
245 245 245 white smoke
245 245 245 WhiteSmoke
220 220 220 gainsboro

255 250 240 floral white
255 250 240 FloralWhite
253 245 230 old lace

253 245 230 CldLace

250 240 230 linen

250 235 215 antique white
250 235 215 AntigqueWhite
255 239 213 papaya whip
255 239 213 Papayawhip
255 235 2Q5 blanched almond
255 235 205 BlanchedAlmond
255 228 196 bisque

255 218 185 peach puff
255 218 185 PeachPuff

255 222 173 navajo white
255 222 173 NavajoWhite
255 228 181 moccasin

255 248 220 cornsilk

255 255 240 ivory

255 250 205 lemon chiffon
255 250 205 LemonChiffon
255 245 238 geashell

240 255 240 honeydew

245 255 250 mint cream
245 255 250 MintCream

The Color Model

8-3

9

/
Eveats in the client — server medel W

Event Handling

Once the client-server connection is opened the X-Client sends requests for bringing
up windows, changing them, drawing things into them etc. but the X-Server can also
inform the X-Client of certain events like exposure of a window, mapping of a window
or user initiated, asynchronous events like mouse clicks or keyboard button presses.

Due to the enormous amount of possible events (think of mouse movement only!) and
the relatively small number of events the X-Client is actually interested in, it is much
more efficient to filter the events on the server side. Before treating any events the
X-Client must therefore register interest in a certain type of event on a per window
basis.

Figure 9-1 The event chain

. A
o
oo = aaa7 button press
LT LT LT LT L AT LT LT
=y r--y-r-y-r-3 eve
keyboard expose
events

events

event maskj

> 4
X-Protacol DT

Event Handling 9-1

The general layout of an X-Client is therefore given by the diagram below:

Figure 9-2 Flow of control in an X-Client

Initialize
connect to
X-Server

l

Create and
map
windows

l

register
interest in
events

!

MainLoop

/ O\

Service
event 1

Service Service Service
event 2 event 3 event 4

9-2 Ebvent Handling

While in the "usual' programming style the program asks for user input at the
moment it is needed and convenient (the program controls the user!) in X-Windows
programs the user can change the flow of control in any manner choosing functions
provided by the program in a completely random manner.

There are 2 possible ways for the X-Client to register interest in events:

s at the moment of window creation we can set the entry "event_mask" and the
corresponding bit "CWEVENTMASK" in the value mask to the event types we are
interested in

» XSelectInput(display,window_id,event_mask)

If one of the selected events arrives at the XServer {say a mouse click) it sends this
event into the XClients event buffer. There the main loop can pick it up and analyse
it.

The call
XNextEvent(display,&event)

Display display
XEvent event

retrieves the next event from the event queue and blocks if no events are available.

The XNextEvent returns an XEvent structure of the following form:

typedef struct {

int type;

unsigned long serial;

Bool send_event;

Display *display;

Window window;

} XAnyEvent;

typedef union {

int type;

XAnyEvent xXany;

XButtonEvent xbutton; ... many more ...
XExposeEvent XexXpose; ... many more ...
XKeyEvent xkey;

XMapEvent Xxmap; .. many more ...,
} XEvent;

From the event.type we can find out which sort of event has happened. The following
table gives a few examples. The event mask enabling reception of the event type and
the symbol for the event type are given.

Event Mask Event Type Event Structure
KeyPressMask KeyPress XKeyPressedEvent
KeyReleaseMask KeyRelease XKeyReieasedEvent
ButtonPressMask ButtonPress XButtonPressedEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent
PointerMotionMask MotionNotify XPointerMovedEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent
EnterWindowMask EnterNotify XEnterWindowEvent
ExposureMask Expose XExposeEvent

The event loop in an X-Client therefore has the following structure: (see also fig 9.3)
/* before the loop: */

for (i=0;i<MAX _DIGIT:i++)
XSeIectInput(display,dig'itkids[i],ExposureMask);
for (i=0;i<MAX_UP_BUTTON d+) |
XSelectInput(disp]ay,up_buttonkids[i],ExposureMask | ButtonPressMask);
}
/* and now the event loop */
for (;;) 4
XNextEvent(display,&event);
switch (event.type) {
case (Expose);
if (event.xany. window == digit_ids[0]
/* redraw first digit ... */
break:

case (ButtonPress):
/* check from which window it comes and treat it */

if (event.xany.window == exit_button_id)
exit(0);

Event Handling 9-3

Figure 9-3 Events and Event Masks

Colombo Board Simulator

N
sisfiliats
U S

In the above example Expose events need to be enabled for each of the subwindows
and ButtonPress events must be enabled for the up/down arrows and the exit button.

When drawing into a window using the X drawing primitives, the window must
already be mapped onto the screen and all window properties like position, size, id ...
must be known. Since the visualization is done by the X-Server there is a problem of
synchronization. Therefore we usually create and map the windows to be drawn in
during the program initialization. Interest in Expose events are declared as well. As
soon as the X-Server has mapped the window (all information on the window is
available} an expose event in generated. The drawing is then down in the expose event

handler.

The XExposeEvent structure has the following form:

typedef struct {
int type;
unsigned long gerial;
Bool send_event;
Display *display;
Window window;
int XY,
int width,height;
int count;

} XExposeEvent;

9-4 EvenfHandling

The x,y,width,height parameters in the structure describe a rectangle of pixels which
must be redrawn. As can be seen in fig 9.4 redrawing of several rectangles may be
needed. The count entry indicates how many more such expose events are going to
follow. The easiest method to treat these events discards all expose events with
nonzero count and redraws the full window on the last {count=0} expose event.

If the window size does not change, we can put our drawing into a pixmap of same size

as the window and on expose events copy the pixmap onto the window using
XCopyArea.

Figure 9-4 Expose Evenis

O O O O
«h € € O ©
) ab € €&
D € & O

exampie_4

xclock)
width

1

height

width —

xcalc

This diagram shows the rectangles to be updated if the calculator is brought
into foreground.

Event Handliing 9-5

10

The Motif Widgets

Up to now we only used XLib calls . We managed with some difficulties to implement
a "button', treating mouse button elicks within the up/down windows and a sort of
label containing the digits. It seems to be a good idea however to standardize on how
such a button should react and on how it should look like (contain some text or
bitmap, be activated when mouse buttonl is pushed and released within its window}.
This is the so called "look and feel" which is implemented in libraries lying above the
XLib. A window together with an input/output semantic is called a widget. Typical
examples are:

+ labels

» push buttons and toggle buttons

¢ pulldown and popup menus

e boxes and forms containing other widgeis
» text input widgets and many more.

For us widgets are simply user interface objects which are the building blocks for our
applications. There are several widget sets available on the market. The most common
ones are.

e Motif
¢ OpenLook
s the Athena Widgets

Fig 10-1 shows some of the Motif widgets.

The most commonly used widget set is Motif, a commercial software package
distributed by the Upen Software Foundaticn (O5F). For approximately 2 years now a
group of people from the free software community has set out to provide a free Motif
clone, which they call LessTif. This package is supposed to be entirely compatible
with Motif 1.2 once finished. The problem is that the package is still in alpha stage,
several parts of Motif are still missing (mainly UIL the User Interface Language) and
there are still quite a few bugs left. Still, the exercises needed for the course can be
implemented without too much hassle and we decided to teach LessTif because of the
widespread use of its commercial counterpart Motif.

The Athena widget set was intended as a testbed for the X Toolkit Intrinsics (Xt), a
library providing routines for building and accessing widgets. It is rather small and
simplistic but quite a few applications have been implemented with it. During the last
courses we used the Athena set because LessTif was too unstable.

In this chapter we will learn how to write the Colembo example with the help of Motif
widgets.

The Moftif Widgets 10-1

Figure 10-1

The Motif Widgets

‘:’:":’:’:’\':’:’:’:’:’:’:’:’:‘:J\':’: :’: :’:’:":": :r:':,:r:‘:‘.:‘.:‘.:f:':‘

% _‘:s"\'\’\"\."\’\'\.f-.':s_':-\."-\,’-.'\’\"\“\"\:\:\:\:\.}:\:‘:\ R IERtOLoy

D G R AN AT

N RN

o A T Lt A A e
N kA

’5’\’\'\’\(\’\":‘. 3 :":':':':’:‘:‘:J:“:“:’:‘:’:’:‘:‘:‘:}:’:‘
b The W et Set DA AR ARII TR
CRNRXR AT
R AN B e e Ay
] NSRS
RSN A e i e e
Ry Y TT T v 77 AN A,
O B e e
"\‘\"f\f‘f‘J"'."n"n"n"f‘f‘f‘f‘J“"""P‘f‘f"\",‘f‘f‘f\f\’\’k’ LA I~i"J\t\.‘.'J\J\J\'\f\l\J\f‘f‘f‘l‘!"‘\f‘}‘l‘l‘}‘l‘ o, ‘-"-’.‘fq'fq'l'«'l‘ o
N NN XN XXX A A A N RN

The X toolkit (Xt)

support lib to build widget sets

XLIB gives access to the X protocol (lowest level)

X Protocol

10-2 The Motif Widgets

Instead of building the window hierarchies the application now builds up widget
instance hierarchies. Again we have a "root widget" called the TopLevelShell. This
widget communicates with the window manager to set up the decoration of its
window. The child of the TopLevelShell is usually a XmMainWindow widget, which
contains an area for

+ Menu bar with pulldown menus

« a container widget used as workarea and containing other widgets
» optional scroll bars for the work area

« acommand area {(which we will not use!)

+ and a message area, which may display error messages

As for the windows in XLib the windows of the widgets are clipped to their parent
widget window boundaries.

Even though most applications use a XmMainWindow as their base window it is
perfectly possible to use a container widget or even a simple widget (see the "hello
world" example) for that purpose. In Motif we have essentially 2 types of different
container widgets, the XmBulletinBoard, where the positions of the children (widgets
within the container) are specified as absolute values and the XmForm, where all
positions are relative to the container or relative to other widgets within the
container.

The widgets provide a data structure containing so called resources, which describe
them fully. When creating a widget instance all resources are defaunlted to reasonable
values but they can be changed at creation or later during runtime.

The widgets we will be using for our Colombo Board Simulator are the following:
« XmMainWindow

+ XmForm

+ XmLabel (for the digits)

+ XmArrowButton for the up and down buttons

+» XmCascadeButton and XmRowColumn for the pulldown menu

+« XmToggleButton for the horn

In additon we will use XmScale for a more simple exercise at the beginning.

Before using any widget the X toolkit must be initialized and the TopLevelShell must
be created. This can be done with the call:

Widget
XtVaApplInitialize(app_context,applicatienclass,options,num_options,arge,argv,
resource_name,resource_value ... NULL)

XtAppContext *app_context; /* opaque type containing app specific data®/

char *application_class; /* should be "ICTP_examples" */

XrmOptionDescRec options(]; /¥ You may specify X specific options in the */
/* command line. The command line parser */
/* will pick out all these options and leave */
/* the non X specific ones. Put NULL here ¥/

Cardinal num_options; /¥ we don’t treat special X options, put 0 */
Cardinal *argc;
char *argvl(l;

a NULL terminated list of resource/value pairs.

This initializes the toolkit, opens the display and creates the TopLevel Shell whos
identifier is returned and which is the great-grandfather of all other widgets. The
TopLevelShell communicates with the window manager and gets its decoration.

The Moiif Widgets 10-3

Now we can start to build the widget instance hierarchy. For each type of widget an
include file containing widget specific definitions is provided. In order to create a
widget call

Widget XtVaCreateManagedWidget(widget_name,widget_class,parent,
resource_name,resource_value ,... NULL)

String widget_name, /* give it the name you like */
WidgetClass widget_class; /* defined in the include file */
Widget parent; /* used to build the hierarchy */

a NULL terminated list of resource/value pairs.

The following tables show the widget names, their class name and the corresponding
include file name for the widgets we will be using:

Widget Type Widget Class Name include file
XmMainWindow xmMainWindowWidgetClass | «<Xm/MainW h>
XmBulletinBoard | xmBulletinBoardWidgetClass | <Xm/BulletinB.h>
XmFrame xmFrameWidgetClass <Xm/Frame.h>
XmPushButton xmPushButtonWidgetClass <Xm/PushB.h>
XmArrowButton xmArrowButtonWidgetClass | <Xm/ArrowB.h>
XmLabel xmLahelWidgetClass <Xm/Label .h
XmToggleButton xmToggleButtonWidgetClass | <Xm/ToggleB.h>
XmCascadeButton |xmCascadeButtonWidgetClass | <Xm/CascadeB.h>
XmRowColumn xmRowColumnWidgetClass <Xm/RowColumn.h>

As¢ an example we show how to create an XmMainWindow and an XmForm widget
with defanlt resources:

#include <Xm/Form.h>
#include <Xm/MainW . h>

Widget toplevel,main_window,form;
main{arge,argvy
toplevel = XtAppValnitialize(...

main_window = (Widget) XtVaCreateManagedWidget(,"main_window",
xmMainWindowWidgetClass,toplevel, NULL);

form = (Widget) XtCreateManagedWidget("form",
xmFormWidgetClass,main_window NULL);

A widget tree (widget instance hierarchy) can easily be built using several of these
XtCreateManagedWidget calls. In order to bring the windows corresponding to these
widgets onto the screen we must "realize” the root of the tree. The command:

XtRealizeWidget(toplevel)

does this for us. Contrary to our window examples the widgets already contain code
for treatment of the X events. However the programmer must be notified of certain
sequences of events like ButtonPress followed by ButtonRelease within the window of
a command widget, which corresponds to "pressing the pushbutton” on the screen.

10-4 The Motif Widgets

This can be done with callbacks: Almost all widgets allow the user to connect
callback routines to certain actions. Use the routine:

XtAddCallback(widget_id, callback_name, callback, client data);

Widget widget_id;

String callback_name; /* In our case: XtNcallback */
XtCallbackProc callback; /* address of callback proc #/
caddr_t client data; /* address of data to be passed */

XtCallbackProc is defined as:

typedef void (*XtCallbackProc) (widget_id, client_data, call_data);
Widget widget_id,

caddr_t client_data; /* specified in XtAddCallback #/

caddr_t call_data; /* call specific data, depends on the
widget */

For the exit button in our example programs we will therefore construct a callback

procedure:

void exit_callback{w,client_data,call _data)

Widget w;

caddr_t client_data,call_data);

{ /* cleanup if needed */

exit(0);

]

After creation of the exit button

exit_button = XtVaCreateManagedWidget("exit_button",
XmPushButtonWidgetClass,
main_widget, NULLY);

(creation of a command widget) we connect this routine as "activate callback” to the
widget:

XtAddCallback{exit_button,XmNactivateCallback,exit_callback, NULL).
Once this widget tree is complete and all callbacks are connected, control is given back

to the window system, which will call the registered callback routines as soon as the
corresponding event sequence has happened. The call

XtAppMainLoop(theApp);

does this.

Sometimes it is desired to map non X events to callback routines. You may for
example want to execute a callback when a certain time has elapsed or when a device
driver has data to be read. This can be accomplished with:

XtIntervalld XtAppAddTimeOut(app_context, interval, timer_proc, client_data)
where interval is in msec and XtIntervalld is an identifier which allows you to
distinguish the timer events in case you use more than one. The corresponding
callback routine must be defined as:

XtTimerCallbackProe timer_proc(XtPointer interval id, XtPointer client data);

Similar routines are available for the driver case. Here we would use

XtInputld XtAppAddInput{app_context, source, input_proc, client_data)

The Motif Widgets 10-5

The flow of contrel in an application program using widgets has therefore the
following form:

Figure 10-3 Typical flow of control in a Molif application

Initialize
Toolkit

Create Widget Instance
Hierarchy

l

Attach Callbacks

l

Realize Root of

Widget Tree
4
XtAppMainLoop
callbacks on
event sequence
Callback 1 Callback 2 Callback 3

The Widget Class Hierarchy

Widgets are built using ohject oriented programming techniques. This means, that
there are some "basic" widgets (hasic data structures and access routines, so called

10-6 The Motif Widgets

When the programmer calls XtVaCreateManagedWidget a widget instance of the
specified class is created. This instance contains the individual values for the label
string, the colors etc. while the class provides some additional data fields valid for all
instances and all the access routines. This is why we always insist on talking about
the widget instance hierarchy and not just the widget hierarchy!

Figure 10-4 The Motif Class Hierarchy

TransientShell

Core —| ArrowButtonGadget CascadeButtonGadget
Object Gadget -
— LabelGadet PushBultonGadget

RectObject

WindowObj L_| SeparatorGadget ToggleButtonGadget
ArrowButton

CascadeBution
Label —
Primitive —
List DrawButton
Scrolibar PushButton
Separator
ToggleButton
Text
TextField
— Form
- FileSelectionBox
BulletinBoard SelectionBox “;
Constraint | Manager Y Command
fawingAred MessageBox
Composite PanedWindow
RowColumn
Scale
ScrolledWindow
— OverrideShell — MenuShell
Shell — ToplevelShell|— ApplicationShell
WMShell ——| VendorShelI‘—l

DialogShell

Tne Motif Widgets 10-7

In order to change the default layout of a widget we must access its resources. These
changes can be performed during widget creation or using the Xt routine
XtVaSetValues at runtime.

XiVaSetValues(widget id,namel,valuel name2,value2 NULL)
Widget, widget_id;

String namel;

XtArgVal wvaluel; etc.

Its counterpart for fixed length argument lists (resource name - resource value pairs)
is XtSetValues. As you may expect, similar routines for toolkit initialization
(XtApplnitialize) are also available. Before using these routines we must fill an
argument list, where each element is of the following type:

typedef struct {
String name; /* name of resource to by modified */
XtArgVal value;

} Arg, *ArgList;

A Macro has been defined to accomplish this:

XtSetArg (arg,resource_name,value)

Arg arg; /% argument to be set */
String resource_name; #* e.g. XtNwidth, XtNheight ... */
XtArgVal value, /* value of the resource */

This argument list and the number of entries may be specified in the widget instance
creation routine or in XtSetValues:

void XtSetValues(widget_id,args,num_args);
Widget widget_id;

Arglist arg;

Cardinal num_args;

Imagine we want to set the string "Quit" in the exit button and set its width and
height to fixed values:

Arg argsi5];

XtSetArg(args[0], XtNlabel,"Quit");

XtSetArglargs[1], XtNwidth,100);

XtSetArg(args[2], XtNheight,50);

XtSetValues(exit_button,args,3); /* will set these 3 resources at runtime *)

In the same manner it is possible to read back resources from a widget:

XtSetArgs(arg[0] XtNlabel,&return_string};
XtGetValues(exit_button,args,1);

will return the label string into return_string. Of course the variable length
counterpart XtVaGetValues is also available.

The next step is to give you a compilation of resources that you will need for
development of the exercises on widgets. This list is of course far from being complete.
We therefore encourage you to have a look into the LessTif Manual, which you have
online. You can access it from the root window pulldown menu.

10-8 The Motif Widgets

The compound string (Xm$tring)

Pixmaps

You would expect that putting text onto the widgets should be one of the simplest
things you can do. Well, you are wrong! In fact the Athena widgets set uses simple
text strings (char *) for its labels, titles etc. Motif however goes a step further.
Imagine you want to intermix greek and latin characters, you want to write a text in
German (having those strange umlauts) or in french (with it accents) or you want to
intermix cyrillic and latin text. All this is possible with the Motif compound string
concept. So you can have labels like "¢ = 25 n mm mrad" (used very often in
accelerator physics!) very easily.

For our course we will restrict ourselves to simple english text but of course you are
encouraged to play and try things out. These are the calls that wiil be enough for you:

+ XmString XmStringCreateLtoR(text tag)
char *text;
char *tag
In our case text will be the character string we want to convert into a XmString
and tag will be set to XmSTRING_DEFAULT_CHARSET. The call will also treat
embedded "\n’ correctly.

+ XmString XmStringCreatelLocalized(text)
char *text.
Here text must be a NULL terminated string without embedded '\n’.

The normal use of XmStrings can be demonstrated by setting a new text within a
label:

XmString new_string;

Widget label;

some code initializing label...

new_string =XmStringCreateLocalized("My new String");

XtVaSetValues(label, XmNlabelString,new_string, NULL);
XmStringFree(new_string).

The last line is needed because the calls creating XmStrings allocate the memory
space they need for the XmString. The deallocation however is left to the user of the
call.

As you can see from the table of resources later, an XmLabel not only can display text
strings in all variations, it is also possible to show Pixmaps. The easiest way to build
bitmaps is the bitmap editor (see chapter on X Pixmaps) which stores bitmaps in an X
specific way onto disk. Motif provides a series of calls allowing someone to read these
files and convert them into Pixmap structures that can be used in labels, pushbuttons
ete.

We need this feature when we want to generate labels which ressemble the seven
segment displays closely.

Pixmap XmGetPixmap(screen,image_name,foreground,background)

Screen screen; /* try XtScreen(widget) */

char *image name (the bitmap filename);)

Pixel foreground; /* BlackPixel(XtDisplay(widget), SCREEN *#/
Pixel background; /* WhitePixel(XtDisplay(widget) SCREEN) #/

If things go wrong the result will be XmUNSPECIFIED_PIXMAP. If the call finds out
that the same pixmap had been loaded before, it will not need to go onto disk, but it
can pick up the pixmap from the pixmap cache.

The Motif Widgets 10-¢

A typical sequence to show Pixmaps is:

#define SCREEN 0

Display *display;

Screen *screen;

display = XtDisplay(widget);
screen = XtScreen(widget)
my_pixmap = XmGetPixmap(screen,"eight.bm",

BlackPixel(display, SCREEN)

if (my_pixmap == XmUNSPECIFIED_PIXMAP) {
alert ("pixmap no good \n");

J

return ERROR;

XtVaSetValues(label,XleabeIType,XmPIXMAP,
XmLabelPixmap(m Y_pixmap,NULL);

The Core Widget

As we have seen in the Motif Class hierarchy,
For this reason all widgets inherit the resourc
resources into the table that you will definitel

»»WhitePixel(display SCREEN));

all widgets have Core as a superclass.
es defined in Core. We only put those
y need for the solution to the exercises

but many more are available, Please have a look at the LessTif docs.

Resource Name Type Defauit Desciption j

XmNx Position 0 X positon relative to the origin]
of the parent

XmNy Position 0 x positon relative to the origin

L of the parent

XmNwidth Dimension dynamic width of the widget. By default
the geometry management
decides which width is needed

XmNheight Dimension dynamie height of the widget. Some

comments as for width

10-10 The Motif Widgets

The XmMainWindow

Here are a few resources for the XimMainWindow. Again the list is far from being
exhaustive. So please have a look at the LessTif documentation. There you will find
different sets of resources: Firstly the specific resources for the widget and secondly
all the resources of its super classes. You will find back the widget class hierarchy
explained previously (The XmLabel will have its own resources, then the resources of
its superclass XmLabel, then the resources of XmPrimitive and so on (see figure

10-4)).

Resource Name

Type

Default

Desciption

XmNworkWindow

Widget

NULL

Container widget that
constitues the work area. Most
of the different user widgets
will be put here.

XmNmenuBar

Widget

NULL

The menu bar containg
pulldown menus. Usually there
are at least 3 of them:

the File menu

the Edit menu

the Help menu

XmNshow Separator

Boolean

False

Use XmSeparators to separate
the different XmMainWindow
areas.

The XmBulletinBoard

Sorry, there is no description of this widget within this script. For the exercises we
only use resources inherited from the Core Widget namely:

+« XmNx
+« XmNy
¢ XmNwidth

¢ XmNheight

e XmNbackground

The Mctif Widgets 10-11

The XmForm

The XmForm widget is a container widget performing geometry management on its
children. The children of a form may specify their position relative to each other or
relative to their parent. When a widget is child of a form it has the following

additional resources;

Rescurce Name

Type

Detault

Desciption

XmNtopAttachment unsigned char XmATTACHMENT _NONE |describes where to attach the
widget. Some possibilies:
XmATTACH_FORM
XmATTACH_WIDGET
XmATTACH OPPOSITE_WIDGET

_ XmATTACH_POSITION

XmNbottomAttachment unsigned char |XmATTACHMENT_NONE |sece above

XmNleftAttachment unsigned chat | XmATTACHMENT NONE |see above

XmNrightAttachment unsigned char | XmATTACHMENT NONE |see ahove

XmNtopWidget Window NULL widget onto which we hook on

same for bottom, left, right

XmNtopOffset int 0 Offset for the attachment

same for bottom, left, right

XmNfractionBase int 100 used for relative positioning

see the LessTif docs

and there are many more

The XmScale

The XmScale widget is going to be used in an introductory (and therefore simpler)
example where we use it as a linear indicator for an analog value. We want the scale
to be vertical with the maximum value on top. The actual value should also be printed
as a number. The range of values is defined to be 0 - 5000,, which may stand for 0 mV
to 5000 mV, the digital values we get from Angs 10 board.

The XmScale widget also has so-called convenience routines which ease the reading
and writing of scale values;

* XmScaleGetValue(Widget w, int *value return) and

¢ XmScaleSetValue(Widget w, int value)

do what you would expect.

It is also possible to give the position in percentage of the total XmForm width and
height:

The is done with the resource XmNfractionBase
¢ Set the attachment type to XmATTACH POSITION
*+ Set XmNfractionBase to say 100

* Now if you set XmNtopOffset to 30 then the widget will be placed ad 30% of the
XmForm height

10-12 The Motif widgets

Resource Name Type Default Desciption

XmNshowValue Boolean False show not only the analog value
| by setting the position of the

i scale, but also its numerical

value
XmNtitleString XmString NULL the title
XmNorientation unsigned char [XmVERTICAL XmVERTICAL or

XmHORIZONTAL
XmNprocessingDirection |unsigned char |dynamic XmMAX_ON_TOP

XmMAX_ON_BOTTOM
XmMAX ON_LEFT
XmMAX ON_RIGHT

The XmLabel

Labels have two different visual aspects: They may either display text or pictures in
form of pixmaps. Since we will use both in the Colombo exercise here are the resources
to be changed:

Resource Name |Type Detfault Description

XmNlabelString | XmString label name String to be displayed in label

XmNlabelPixmap | Pixmap nene Bitmap to be displayed instead

of text string
XmNiabelType unsigned char XmSTRING How to justify the label

The Motif Widgets 10-13

The XmArrowButton

The XmPushButton widget, being a subclass of the XmLabel widget, has got all the
tabel widgets resources with the possibility to connect an activation ealiback in
addition.

The XmArrowButton reacts like a XmPushButton but already provides arrows as
labels. The arrow direction can be specified by means of resources:

’?esource Name Type Befault Description
XmNarrowDirection unsigned char XmARROW _UP direction of Arrow:
XmARROW UP

XmARROW_DOWN
XmARROW_LEFT
XmARROW_RIGHT

Pulldown Menus

Still missing is the way to construct menus. As explained above the children in the
widget instance hierarchy are always clipped to their parent windows. When creating
menus this is not acceptable and we must therefore create another shell widget, which
will contain the menu. On the other hand we don’t want decoration of the window
coming up when we activate the menu. This can be accomplished by creating a "Popup
shell".

Luckily enough Motif provides a "convenience routine” which does all the work for us:

file_menu = XmCreatePulldownMenu(parentmwidget,widget_name,

args,no_of args)
Widget parent_widget;
char *widget_name;
Arg *args;
int no_of_args;
creates the pulldown menu. However the menu as vet has no entry in it and is
neither hooked onto a button which wili pop it up , nor placed into a menu bar. Even
worse, it will not appear on the screen because it is not managed. Managing a widget
15 somehow similar to mapping a window in XLib, It can be accomplished hy

XtManageChild(widget_id);

In order to get rid of the other problems we first create a pushbutton and place it into
the pulldown menu:

label string = XmStringCreateLocalized("Quit“);

quit_button = XtVaCreateManagedWidget("quit_button”,
xmPushButtonWidgetClass,
file_menu,
XleabelString,labelﬁstring,NULL);

XmStringFree(label_string);

then we create the menu bar with another convenience routine:

menu_bar = XmCreateMenuBar(main_window,”menu_bar",args,(Cardinal)N ULL);

10-14 The Motif Widgets

Dialog Boxes

and finally the button that pops up the menu:

label_string = XmStringCreateLocalized("File");

file button = XtVaCreateManagedWidget("file_button”,xmCascadeWidgetClass,
menu_bar,
XmNlabelString,label_string,
XmNsubMenuld, file_menu NULL);

XmStringFree(label_string);

The resource XmNsubMenuld teils the CascadeButton, which menu to pop up once it
is activated. :

Of course the menu_bar must be placed into the main window which can be
accomplished with

¥tVaSetValues(main_window, XmNmenuBar,menu_bar).

Now

» menu_bar is the standard menu bar ¢ .»e XmMainWIndow that forms the base
of our application

¢ it contains a pulldown menu named file menu

e this file_menu contains a single button (that can be activated once we attach a
callback procedure to it) namely the quit button

e the file menu is visible and can be popped up through a XmCascadeButton named
file_button

I know this looks pretty complex, but even though pulldown menus are extremely
common in GUIs they are amongst the most complex structure you can have in user
interface programming.

Up to now all widgets came up onto the screen once the toplevel widget has been
realized. Very often however we want a box with an error or warning message to pop
up only if an error condition has been encountered. This can be done with a
XmMessageBoxDialog widget.

We create it with

XmCreateErrorBox("error_box",parent,args,no_of_args) and we manage it only once
the error has happened. This box contains several buttons, one of which will
automatically unmanage the box and thus make it disappear.

Resource Name Type Default Description

XmNmessageString | XmString error message

Connections of widgets to XLib

For several widgets a bitmap id can be used in order to display pictures in buttons,
labels etc. When creating a bitmap however we need the identifier of the opened
server connection {display variable) or a window id. In order to get this information for
a specific widget (which window corresponds to the main_widget for example) several
calls are available:

Display XtDisplay(widget_id) returns the id of the server connection
Window XtWindow(widget_id) returns the widgets window id.
Screen XtScreen{widget_id) returns the widgets screen structure

Using these calls you may now happily intermix Xm, Xt and Xlib calls.

The Motif Widgets 10-15

Now that we know everything needed to build the GUI for the Colombe example, here
is a picture of the widget classes needed for the program:

Figure 10-5 Widget Classes for the Colombo exampie:

(Ei Connands) (Tree:)

Hidget Tree for client xntest3{ICTP_exanples),

HnSeparatorGadgetl

JHnSeparatorGadgetl

!KnSeparatorEadgetl

KnﬂrrouButton|

XnﬂrrouButtun‘

XnﬂrrouButtonI

[ICTP_exanples || XnHainHindow | :

KnﬂeruButtonW

HnﬂrruuButtnnl

KnHrrouButtonl

XnfirrowBut ton |

XnﬂrrouButton[

KnToggleButtoﬁ1

XnRowlolunn HntascadeButtonl
.KnﬂenuShell ¥nRowColunn XnPushButton

10-16 The Motif Widgets

11

Resources and the Widget Creation
Library

In the last chapter we have seen that each widget has associated with it a large
number of resources (XmNwidth, XmNlabelString, XmNbackground, XmN....} which
describe it. These resources can be initialized during the creation procedure of the
widget and modified by the running program. Many of the resources need only
initialization (or even keep their default values) and are untouched during run time,
Think of the label string on a label widget for example.

The Xt library allows another very elegant way to modify resources: The resource file.
This file contains resourcename-resource value pairs and it is ready during program
startup. A typical resource file is $HOME/. Xdefaults, which you should have a look at.

Now the question is: How do we specify a widget and its resources. The resource
names are the same as the names used within XtSetValues, with the leading "XmN"
taken away (XmNwidth -> width, XmNlabelString -> labelString etc.)

The widget is specified by giving its path through the widget tree: The digit_label 0
would then be called: colombo.mainwindow.frame.digit label 0.width: 45

main_ window
—

frame

N

digit_label _0

digit_label 0

digit_label_0

digit_label _0

Resources and the Widget Creation Library 11-1

Like with filenames in Unix wildcards are allowed. The * stands for "any widget" and
“.digit_label_0.width: 50 would most probably have the same effect as the full
specification above. Now vou also understand why we always give names to the
widgets (the string in the widget creation routine XtCreateManagedWidget). These
names are used for widget identification in the resource file.

In order to go even one step further we can also specify widget classes instead of
widget instances: *{mLabel stand for any XmLabel widget within any application
and there are usually many more XmLabel widgets than there are widget of name
digit_label_0 within an application.

In the toolkit initialization you can also give a classname to your program. With this
you could for example. group all editors into a common class Editor or {as we have
done) group all solutions to the college exercises into a class ICTP_examples.

You may immediately spot interesting possibilities by applying the concept of a
resource file:

« Have language dependent resource files. You can then modify the text in an
application for a given language by just creating a language dependent resource
file. This allows you to change the language for different users without touching a
single line of program code.

* Colors are a matter of taste. Is your taste different from a program authors
taste? No problem, create a resource file and change the colors.

Here is part of your Xdefaults file:

t

VICTP examples
'ITCP _examples*bitmapFilePath: /usr/loca]/include/Xll/bitmaps
ICTP_examples*font: *times-bold-i-*-140-*

ICTP_exampIes*main_widget*form.background: dark olive green
ICTP_examples*main_widget*Labe].foreground: red

[0simulator*background: grey75 I0simulator*XmText*bhackground: ivory
I0simulator*XmText*fontList:-adobe-*_*_p-*.*=-04_*_%_*_*_x_x

For those who want to observe the effect of changing resources before putting them
into the resource file a very neat program has been written: editres. You find it under
"System Management" on the root window menu. This program shows the complete
widget instance hierarchy and gives you access to any resource for any widget within
your application. The figures 11-1 and 11.2 show typical screen dumps for our
Colombo program

11-2 Resources and the Widget Creation Library

Figure 11-1 The widgets instance hierarchy for the Colombo example

CEI Eunnands:) (:EI Tre@

Hidget Tree for client nntest3{ICTP_exanples),

Separatorl

Separator2

]Separatnr3

digit |

digit

digit

digit

Buttonl

buttonlp

nain_window

buttonllp

buttonlp

buttonloun

Buttonl

Buttonl

Buttonl

horn_toggle

nenu_bar ——— filé_button |

popup_file_nenu file_nenu quit_button

Rasources and the Widget Creation Library 11-3

Figure 11-2 The resources for the XmMainWindow

xmtest3.main mndow.background

- L sntest3 | - rain_uindow -

ICTP _exanples
Any Hidget
Any Hidget Chain

XnHainHindou
Any Hidget
Any Hidget Chain

Normal Resources: mb2 gets a value

{ accelerators
;ancestorSensitiue
‘| background

{ backgroundPixnap

{ borderColor
éhorderPixnap

1 borderHidth
fhuttonShadoqulor
{ bottonShadowPixnap
i children

i clipMindow

1 colornap

4 connandHindow

{ connandHindoulocation
§ depth

i destroyCallback

g foreground

1 height
EhelpCallhack

{ highlightColor

{ highlightPixnap

{ horizontalScrollBar
{ initialFocus

] insertPosition

{ nainNindovMargindidth
{ nappedihentanaged
i nenuBar

{ nainHindowlarginHeight

nessagelindouw
navigationType
nunChildren
screen

scrollBarDisplayPolicy
scrollBarPlacenent
scrolledHindowtarginHeight
scrolledlindoularginHidth

scrollingPolicy
sensitive
shadowThickness
shouSeparator
spacing
stringDirection
topShadouwColor
topShadowPixnap
translations
traversalOn

traverselObscuredCallback

unitType

userData
verticalScrollBar
visualPolicy
width

workHindou

X

Y

§ Enter Resource Yalue:

prlg]LSaue and RApply

LSet Saue File

..

11-4 Resources and the Widget Creation Liorary

Since we can specify all details of a widget including callbacks with resources it seems
logical to also describe the widget instance hierarchy in the resource file. This feature
however is mot provided in the standard system. (Motif privides a very simple
specialized language to accomplish this: the User Interface Language UIL. Unluckily
this is not yet working correctly in LessTif and we must renounce from using it
during this college)

The Widget Creation Library (Wcl) provides these extensions to the resource
description and a few additional routines which react on them. Through registration
routines widget classes and creation procedures can be made known to Wel making
the system widget set independent. Another library (Xmp) contains routines which do
the job of registration of all the Motif widget creation routines for you.

An application then consists of
» aresource file

— containing the widget instance hierarchy and all resource specs
— attaching the associated user defined callbacks
— attaching standard callback routines provided by Wel

¢+ aC program
— registering the widget set to be used
— registering all callback routines
— creating the widget instance hierarchy from the resource specs

— executing the cailbacks.

Within the Wel distribution you find a C source file which acts like a frame for your
own application. There is one such program for each of the Wel supported widget sets:

e Mri the Motif resource interpreter
= Ari the Athena resource interpreter

* Ori the OpenLook resource interpreter.

These are the simplest possible application programs working with Wel. They simply
bring up the widget instance tree defined in a resource file and then fall into
XtAppMainLoop doing nothing. Still these programs (Mri for our case) are very useful.
They allow the programmer to test the resource file by visualizing it.

The steps for creating an application with Wl are:
* creation of the resource file

e test with Mri

¢ copy Mri.c to your own application.c

+ add the callbacks needed.

Resources and the Widget Creation Library 11-5

The following shows the Mri code-:

#include <xX11/Wec/COPY.h>

¥ 5CCS_data: %Z% ¥M% %T% %EY 20U%
* Motif Resource Interpreter - Mri.c

* Mri.c implements a Motif Resource Interpreter which allows protoe
* type Motif interfaces to be built from resocurce files.
* The Widget Creation library is used.

*
*'k****‘k********'***************************t***********************

*
/

#include <Xm, Xm.h> /* Motif and Xt Intrinsics */
#include <X11/Wc/WeCreate.hs /* Widget Creation Library */
#2nclude <X11/Xmp/Xmp.h> /* Motif Public widgets etc. */

ft***t**

** Private Data
w********************t***************i*****t*********************/

/* All Wecl applications should provide at least these Wcl options:

* 7

static XrmOptionDescRec options([] = {
WCL_XRM_OPTIONS

/'***t********************‘k**

o Private Functions
*t************i***********************i************i********t****/

/*ARGSUSED™* /
static void DeleteWindowCB | w, clientData, callData)

Widget w;
XtPointer clientData;
XtPointer callData;

/* This callback is invoked when the user seleckts ‘Close’ from
** the mwm frame menu on the upper left of the window border.
“* Do whatever is appropriate.

*/

printf("Closed by window manager.\n"};

/*ARGSUSED™* /
static void RegisterApplication { app)
XtAppContext app:

4

-~ Useful shorthand for registering thirigs with the wel library

*
/

#define RCP({ name, class) WeRegisterClassPrr (app, name, class }:
#define RCO(name, constr) WecRegisterConstructor | app, name, con-
str) ;

tdefine RAC(name, func) WcRegisterAction | app, name, func).

-6 Resources and the Widget Creation Library

#define RCB{ name, func } WcRegisterCallback{ app, name, func,

NULL };
/* -- register widget classes and constructors */
/* -- Register application specific actions */
/* -- Register application specific callbacks */

/*************'k'k**

* MAIN function

‘A‘*****i*‘ir**/

#if defined{XtSpecificationRelease) && XtSpecificaticnRelease == 4
#tdefine CARDINAL{argc) {(Cardinal*} (&argc)
#else
#define CARDINAL{argc) (&argc)
#endif
main { argc, argv)
int argc;

String argvl[];
{

/*
-- Intialize Toolkit creating the application shell
*/
Widget appShell = XtInitialize {
WcAppName (arge, argv), /* application shell name */
WeAppClass(arge, argv), /* class name is 1st
resource file name */
options, XtNumber{cptions),/* resources which can be
set from argv */
CARDINAL{argc), argv
}i
XtAppContext app = XtWidgetToApplicationContext (appShell);
/t

-- Register all application specific callbacks and widget classes
* /
RegisterApplication { app);

/*
-- Register all Motif classes, constructors, and Xmp CBs & ACTs
*/

XmpRegisterAll ' app };:
/*
-- Create widget tree below toplevel shell using Xrm database
*/

if { WeWidgetCreation { appShell)

exit(1l);

/’*
-- Realize the widget tree
*/

XtRealizeWidget (appShell);

Resources and the Widget Creqgtion Library 11-7

* -- Optional, but freguently desired:

*~ Provide a callback which gets invoked when the user selects
** Close’ fromthe mwm frame menu on the top level shell. A real
** application will need to provide its own callback instead of
"7 DeleteWindowCB, and probably client data too. MUST be done
** after shell widget is REALIZED! Hence,

"* this CANNOT be done using weCallback (in a creation time call
** hack} .

XmpAddMwmCloseCallback(appShell, DeleteWindowCE, NULL }:

-- and finally, enter the main application locop

XtMainLoop {);

Our own Celombo program written in Wel will look pretty much like Mri.c except that
some code must be added:

Firstly we must register our own callbacks using the Macro RCB defined in Mri.c:
RCB("ICTP_incrProc" ICTP_incrProc)

This tells Wel that the string "ICTP_incrProc” which stands for the callback procedure
in the resource file must be mapped onto the address ICTP_incrProc, which is the
starting address of the callback procedure.

Secondly we must read the bitmap files as we did in the standard C examples.

Of course WcWidgetCreation() is not the only routine available in Wel but there are
some 50 routines which help you in designing your application. All these routines are
described in the Wel man page.

The only missing part is the widget instance hierarchy description in the resource file.
We start off with the simplest possible examples, the world famous "hello world"
program (now even simplified as compared to the C example);

Mri.wcChildren: pushbutten
*pushbutton.weCreate XmPushButton
*pushbutten.labelString: Hello wWorld!
*pushButton.activateCallback: WeExitCallback

Running this program with Mri will bring up a pushbutton with the text "Hello
World!" and pushing the button will exit the application.

Again many more Wel specific resources are available but we leave it to the interested
reader to have a look at the Wel man page.

Just one more resource necds further explication:

In the standard C example we assigned pixmaps to the digit labels. Pixmaps are cre-
ated at runtime however and their addresses are not known before their creation. It is
therefore impossible to define them in the resource file, What can we do about this?
Wel supplies the resource weCallback allowing us to attach a callcack procedure which
is called after the creation of the digit label. Within this callback we would add the
pixmap resource to the digit labels using the standard toolkit XtVaSetValues routine,

11-8 Resources and the Widget Creation Library

12

The ICTP device driver

This chapter has nothing to do with X-Windows programming. It has been attached
for reference and it is needed to complete the exercise on the Colombo board.

A sample device driver for the ICTP board has been developed. The following gives a
summary of its functions.

The ictp driver expects an I/O board using an Intel 8255 chip at /O adress 0x300. The
connections to the ICTP board must be made as follows:

Port A: ICTP displays
Port A is therefore programmed as output port.
Port B: ICTP switches

Port B is therefore programmed as input port.

If you open minor device , the port B of the 8255 will be set to mode 0 (non
strobed input, allowing to read directly the state of the switches. Port A is set to
mode 1 (strobed 1/O).

When opening minor device 1 the 8255 chip is initialized such that both, port A
and port B are set to mode 1 (strobed 1/0). This allows interrupts for both ports.

In mode 1, with port A output, the bits 4 and 5 of port C may be used as normal
I/0 pins, while the other bits are used as handshake signais or interrupt lines.
Bit 4 of port C must be connected to CA2 (the ICTP buzzer}.

Bit 2 and Bit 6 of port C are strobe lines which must be connected to one of the
interrupt generating line CA1,CA2 or CB1.

The driver functions:
Read calls:

The driver uses major number 31 and 3 minor numbers:

read on minor number 0: read the switches
read on minor number 1: returns the number of interrupts arrived since
the last read call.

read on minor number 2: same as above for interrupt 2

Reads for interrupts exist in 2 flavors:

non blocking: The number of interrupts since the last read is immediately
returned, even if it is zero.

blocking: If the number of interrupts is zero, it blocks the calling process until
the next interrupt (or other signat like ~C) arrives.

The ICTP device driver 12-1

Write calls:

W

riting works on any of the four minor devices. There are 3 different write modes

which may be set up by ioctl calls (see later).

ICTP_MODE_RAW: in this mode the data coming from the user are
sent untreated to the I/O port. In order to make the displays work correctly, the
user must select the suitable data/chipselect sequences {(cs high + data, cs low +
data, cs high + data for all digits). 12 data bytes are expected and the driver will
return EINVAL if the count is wrong

ICTP_MODE_SINGLE_DIGIT: a single data byte is accepted. The high nibble
contains the digit number (0-3) and the low nibble contains the data.

ICTP_MODE_FULL_NUMBER: a short is ex

the digits.

ioctl calls:

ICTP_SET_WRITE_MODE:

— ICTP_MODE_RAW

— ICTP_MODE_SINGLE_DIGIT:
— ICTP_MODE_FULL_NUMBER:
ICTP_SET_READ_MODE:

— ICTP_MODE_BLOCKING:

— ICTP_MODE NON_BLOCKING:

ICTP_GET_WRITE_MODE:
ICTP_GET_READ_MODE:
ICTP_SET_BUZZER:

— ICTP_BUZZER_ON

-— ICTP _BUZZER_OFF
ICTP_GET_BUZZER:

12-2 The ICTP device driver

pected. This number will be put onto

sets up the writing mode. The
following values are accepted:

12 data bytes expected but anything
allowed

only 1 data byte allowed
a short needed;
set the read mode

if count = zero, block process until
interrupt arrives

return current count immediately
return the current write mode
return the current read mode

controls the buzzer. Valid args are:

guess, what they are doing!

read the current buzzer state,

Collected Adventures of Writing a Linux
Device Driver

Fourth College on Microprocessor-based
Real-time Systems in Physics

Trieste, 7 Oct—1 Nov 1996

Ulrich Raich
CERN - European Organisation for Nuclear Research
P.S. Division
CH-1211 Geneva
Switzerland.

email: Ulrich. Raich@cern.ch

Collected Adventures of Writing a
Linux Device Driver

1 Introduction
[t may be best to tell you right from the beginning:

Device Driver Writing is a tricky business!

This in fact was the first thing I had to learn myself when preparing this series
of lectures. T was very proud when I was attributed the course on device driver
writing by ICTP because this subject has the reputation of being rather difficult.
So I was thinking of a course explaining

e all the complicated data structures needed order to hook up the device
driver with the kernel

¢ the context switch from user to supervisor mode with all its details

¢ lots of computer science theory of why device drivers are Important

¢ and of course all the detajls of interrupt and DMA driven device drivers
¢ connection of file system with block device drivers etc,

1 think you see what I mean. ™ The Theory of Device Driver Writing” might
have been the right title. Then I had the splendid idea that it might be good
to actually write a driver myself before trying to explain how to do it. That
was the moment when everything started to go wrong! I started the project
some 3 months before the course started and 2 weeks before I had to give my
lectures the driver still did not work! (and of course the transparencies were
not prepared either!). The goals of my lectures became much more modest and
I'ended up with a course that tells you about all the mischieves I encountered
when trying to implement my device driver. No theory! No block device drivers
and file systems. Just the story of how [finally managed to get my device driver
going. Nevertheless (or perhaps just because the course is now much simpler!)
I hope that you will get some iusight of

¢ what a device driver is
e how it works

¢ and how it is connected to the operating system.

And the best thing of all:
¢ You get the full source code of the driver
® vOU can use it

¢ and you may modify it as ever you like (taking the risk of crashing the
systetn)

2 Generalities

What exactly is a device driver?” You can say, a device driver is a software
maodule that manages some hardware device. The operating system then consists
of the scheduler (which may be considered a very special device driver managing
rhe CPU), memory management, file system access and a collection of device
drivers which are controlled by the operating system kernel.

Due to the different device categories
o block oriented devices like disks

» character oriented devices like ADCs, DACs etc (Terminals are somewhat
special, because their driver must implement lots of control functions for
the different types of terminals)

¢ high speed serial devices (networks)
we also distinguish different types of device drivers:

¢ block device drivers, devices that are accessed only in fixed blocks. Access
to these devices pass through buffers in memory (buffer cache). Block
device drivers als have hooks for the file system.

» character device drivers providing sequential access. This type is the eas-
iest to implement and it is the only category we will have a closer look
to.

¢ network device drivers are a special character device drivers which must
provide very higl access speed. Networks transfer their data in packets.
For efficiency reasons these drivers have a different programmer interface
(vou won't find /dev/net or /dev/ethO (see later)}.

From now on we will forget about the more complicated types of devices
drivers and have a look exclusively at character oriented drivers. Before going
into medias res some more general remarks:

One of the most important commandments of software engineering is:

Before coding you should think !

This is particularly true for writing system level software. So hefore sitting in
front of your computer and calling the editor you should carefully plan your
driver. The following questions must be answered before writing the first line
of code:

* What functions do you want to implement
* How does the equipment work? (the ICTP board)

* How do you interface it 7 (the I/O board and the ICTP / 1/0 board
interface and the cabling)

* What is the speed needed? (In our case we don’t want to miss pulses on
the 100 Hz clock)

» Do you need interrupts or even DMA?

* Do vou have all the documentation needed? (equipment and interface
software. description of the library calls that may be used within system
level software)

¢ How does the application programmer use your driver?

e With all that: Write a software specification document (which may later
on become the final driver documentation)

S0 lets start to work through the above list: Getting the hardware documents
I5 not an easy business because companies selling the hardware are usually very
sparse in distributing documentation. However 1 found in my documents at
least a list on IO addresses with the interfaces connected.

When accessing any type of hardware several problems arise:

¢ Firstly there are many people who understand often rather complex elec-
tronics that make up computer interfaces and there are many people who
write splendid software. Finding somebody who understands the operat-
ing system writes nicely structured and very robust code (software) and
who is capable to read circuit diagrams, understands tinudng signals and
van read datasheets of electronic chips is already a different business. It
15 therefore reasonable to isolate the code that needs to know all about
the intricacies of the hardware and which in addition must be extremely
robust (a small bug can bring the whole system down!) into a separate
module. Think of a disk driver for example. This module is written and
thoroughly tested once and can then be used by everybody.

e In a multi tasking system several concurrent tasks may want to use the
same resource, e.g. a line printer and generate a mess!

¢ As already mentionned above, hardware access should only be given to
trusted users since an error may easily blow the whole system. This is
particularly true for multi user systems.

e Access to fixed memory locations is needed e.g. registers or memory in an
interface or even specialized I/O instructions. When a device is capable
of generating interrupts or of performing DMA then the story becomes
even more complex: For interrupts the program context is changed: A
new stack frame is in use and the CPU running mode is changed from
user mode to supervisor mode. Therefore device drivers must very tightly
cooperate with the operation system kernel.

3 Testing the Hardware

Going through the problems one by one [decided that understanding the hard-
ware was first priority. So, what hardware should I use for my demo device
driver? At ICTP the only easily available hardware was the Colombo board,
which has been designed for the course 82 in Colombo {Sri Lanka}. This board
actually consists of 2 parts: a processor/memory/interface part (which in our
ease will be permanently disabled and which I will describe any further) and a
part simulating some sort of external process to be controlled. This I/O part
consists of

o 4 hex seven segment displays (BCD displays in the original version)

toggle buttons

2 pushbutton switches

a rotary switch with 16 positions

a voltage to frequency converter, allowing to simulate a simple ADC

3 fixed frequencies

e a huzzer

The pushbuttons, the voltage to frequency converter and th~ fixed frequencies
may be used to generate interrupts.

This board was designed to be hooked up to a PIA (Motorola M6821, Paraltel
Tutertace Adapter) in a M6809 development system with the processor part dis-
abled, Development of programs could then be easily done on the development
svsfem using its assembler/linker /loader /debugger. Once everthing worked fine
a Tow addresses needed to be changed and the program was blown into EPROM

address switches

a9 a8 a7 ab a5 ad a3 a2 aen

Address Comparator

cst

Figure 1: Address Selection

and installed on the Colombo board. Enabling the processor part allowed to
run the system in "standalone”.

As [said before, from now on we are only interested in the I/O part of the
Colombo board. In order to use it for the device driver [still needed an interface
fov it ou the PC (PIA equivalent). I therefore tried to use the lineprinter interface
availabie on most PCs and T a . ~7ed io get the displays going. However the
number of 1/0 lines especially for input were simply not sufficient and also
demenstration of interrupts turned out to be impossible. At the same time I
learned that a parallel I/O board had been developped at LIP in Portugal

The [/O board consists of an Intel 8255 parallel input/output port, known
under the name Programmable Peripheral Interface (PPI) and some interface
topic connecting the 8255 to the PC bus. An 7518682 comparator chip is used

[y

[A0 [A1l Function]

0 0 Port A
0 1 Port B
1 0 Port C
1 1 | (write only Control Register ’

Table 1: Addressing the 8255 chip

for 1/0 address selection in conjunction with 8 dual inline switches (chip U3 in
the circuit diagram)

The 8255 has got 2 general purpose 8 bit ports which may be configured as
iuput or output port (Ports A and B). In addition there are 8 more 1/0 lines
which may take over the function of additional input or output bits (4 bit ports)
or may be used as handshake lines, depending on the (software) configuration
of the chip. From the programmers point of you these ports are presented as
1 registers whose address layout are shown in the following table:

Before communicating with the outside world (the Colombo board in our
case) we must configure the 8255 telling it, which port will be used for output
and wich port for input. In addition we need to specify the type of transfer
(latched or not). This is done by programming the control register.

Mode 0: Basic I/0 mode (non latched). No interrupts

Model: Strobed I/0Q mode. Here some lines of port C will be used
as handshake (strobe) lines and may be used to generate interrupts

Mode 2: Bidirectional mode

How does this map to our equipment hardware? Firstly we need 8 output lines
in order to drive the displays. 4 lines are used for the data while the other 4
flines will generate the chip select signals for the registers holding the data of
cach display.

Then we need & input lines for reading of the rotary switch and the toggle and
pushbutton switches. 1 ended up having: The hardware was complete and
testing could start. I collected all information I was given with my PC and I
found a table of hardware addresses, telling me that the address reserved for
I[pt2: was free.

I therefore set the address switches to ... I opened my PC (for the first time!)
1 hroke out the metal protection for the I/O slot and I inserted the 1/O card

Colombo Board

1996

Parallel 1O Adapter
| Interface Board

() rr L L

Rotary Toggle Push
Switch Buttons Buttons
Figure 2: The hardware setup
[1/O Addresses | Device]
000-01F0 DMA Controller 1
020-03F Interrupt Controller 1
040-05F Timer
060-06F Keyboard
070-07F Realtime Clock
some left out
1FO-1F0 Fixed Disk
278-2FF Parallel Printer Port 2
205-2FF Serial Port 2
300-31F Protytype Card
378-3FF Parallel Printer Port 1
3F0-3F7 Floppy Disk Controller

. Table 2: 1/0O Addresses on the PC Bus

into the slot T had selected. I hooked up the cables and the decisive moment
has come! I felt quite nervous! Another serious check and...

[switched the PC on !

Oufff. there was no smoke coming out of the PC and the thing booted normally.
However 1 quickly found out that the floppy did not work any more. Did 1
finaliv kiil the floppy interface?. I re-opened the PC (and decided to leave it
open until everything would work or I had to take the PC to the repair shop)
taok the I/O card out and tried booting again. The floppy worked fine again.
50 there must have been an address ciash between the floppy and the I/ O board.
(I still don't really know how this comes about!) Looking through the addresses
again I selected 0x300 (which turned out to confict with the ethernet card in
Trieste, were we finally selected 0x310) which was marked "prototype board”.
[re-inserted the board and rebooted. This time the machine booted fine again
and also the floppy worked normally. Real progress! However I was still unable
to talk to the 1I/0 board.

Having a look at the xclock program told me that midnight had passed again!
and this was not the first time during the last week. My wife would be angry
with me and | tried to find an excuse knowing I would have a hard time with
that. The problem was, that she was somehow right but there was so little time
left before the course and I absolutely wanted to get the thing going before.
Still it was a wise decision to stop at that moment. The next night (I did
all this after working hours) I had another look at the addressing on the I/0
board. I cantrolled the address switches again and they seemed all ok. The only
possible source of error was the enable line (en) which was marked without a

" meaning: active high signal. Mostly enable lines are active low however,
so | decided that this must have been simply a misprint and I switched the
cotparator input to active low. It turned out, that I was right. The PC
hooted. the floppy worked and I was able to talk to the [/O board.

This was ot the end of the adventure but clearly the end of the first chapter of
this novel. We need to hecome a little more technical now. You may have asked
vourself: What do T mean by "talking to the board”. How do I know if [was
able to access the board or not. Which calls are provided within Linux to access
external hardware? The main problem of checking the interface for the first
time is to disentangle hardware and software problems. It is therefore important
te get an indication that "something workes”. I tried to find a register that 1
could just read for the first step e.g. a status register on the I/O card. Finding
& reasonable” bit combination could be a first indication of successful board
aceess. After that T tried to find a read/write register which T could write with
4 known bit pattern and read back. Typical bit patterns are : 0x35 and Oxaa

{Why")
working,

is given below,

"Ity to write the numbers in

/**/
/* Try to run the colombo board from the parallel

/* interface
/* U. Raich 14.3.94

/**/

#include "/usr/include/stdio.h"
#include "/usr/include/fcntl.h"
#include <asm/io.h>
#inciude <asm/segment.h>
#include <asm/system.h>
#define ICTP_A 0x300
#define ICTPB 0x301
#define ICTP_C 0x302
#define ICTP S 0x303
/*
* defines for 8255 control port
¥ base + 2
* accessed with LP_C(minor)
*/
#define ICTP_MODE_SELECT 0x80

#define ICTP_A_MODE O 0x00
#define ICTP_A_MODE_1 0x20
#define ICTP_A_MODE_2 0x40
#define ICTP_B_MODE_O 0x00
#define ICTP_B_MODE_1 Ox04
#define ICTP_INPUT.A 0x10
#define ICTP_QUTPUT.A 0x00
#define ICTP_INPUT.B 0x02
#define ICTP_OUTPUT.B 0x00

#define ICTP_INPUT_C_LOW 0x01
#define ICTP_OUTPUT_C_LOW 0x00
#define ICTP_INPUT.C_HIGH Cx04
#define ICTP_DUTPUT.C_HIGH 0x00
int ioperm();

unsigned int sleep();

void main()

it 0 for 0x55 and bit 1 for Oxaa.

! Comparing written to read values gives you a fair idea if things are
at least if you are successful. Of course checking out the hardware also
tmeans writing of very small and simple programs. After having checked read
and write access to the interface I wrote a little program that gives a visible
mdication of something happening on the connected hardware, which was a

routine lighting the seven segment displays with known numbers. The program

binary. You will see that every other bit is set starting from

unsigned char command;
unsigned char test_val;
int i;

/*

get permission to access the I/0 port

=/

if (ioperm{(ICTPA,4,1)) {
printf ("ICTP cannot get permission \n");
exit(-1);

}
command = ICTP_MODE SELECT | ICTP.A MODE.1 |

TCTP BMODE_1 | ICTP_INPUT.B;
/* reset value */
outb{command, (unsigned shert)ICTP.S);

/*

write to the displays

*/
outb{(char)0x3f, (unsigned short)ICTPA);
outb((char}0x3e, (unsigned short}ICTPA);
outb{(char)0x3f, (unsigned short}ICTPA);
outb{(char)0x2f, (unsigned short)}ICTP.A4);
outb{(char)0x2d, (unsigned short)}ICTP4);
outb({(char)0x2f, (unsigned short)ICTP.A4);

outb({char)0x1f, (unsigned short)ICTP.A);
outb({char)0x1b, (unsigned short)ICTP.A);
outb({char)0x1f, (unsigned short)ICTP 4);

outb((char)0x0f, (unsigned short)ICTP.A);
outb((char)0x07, (unsigned short)ICTPA);
outb({char)0x0f, (unsigned short)ICTP.A};
exit(0);

It. consists of two parts: Firstly permission is asked for reading and writing
to/from absolute 1/ O addresses (the addresses of the parallel interface registers).
As vou might expect in a muititasking and multiugser system accoss to absolute
addresses must be restricted {and they are restricted to the super user only) in
order to guarantee system integrity. (A super user is supposed to know what
he is doing!) After successful execution of io_perm{) we have access to our I/O
inrerface registers

The sequence therefore is:

ioperm({base_address,range permission);

10

value = inb(IO.PortAddress};
outb(I0_Port Address,value);

A similar sequence is available for memory access, e.g. if you want to write into
the video memory of a video card directly. Here we would:

open(/dev/mem);

allocate a certain number of memory pages

and map this memory onto the absolute address of the video memory
USing mmap.

inb,outh ete. are Macros, which are defined in /usr/include /linuz/asm/fio.h
(please have a look at this file 1) together with similar ones like inw, inl ete.
Siuce these are “builtin macros” you must use the gee option -02 in order to
get them included into your code.

gce -02 -o iotest iotest.c

Forgetting -O2 results in unresolved references at link time. After having
vhecked output to the displays we should also check the input connections by
reading from the switches:

/*
the #defines are the same as in the writing program

*/

int ioperm{);

void main()

11

unsigned char command;
unsigned char value;

if (ioperm(ICTPA,4,1)) {
printf ("ICTP cannot get permission \n");
exit(-1);

}

command = ICTP_MODEO | ICTP.MDDE_SELECT |
ICTP_INPUT B;

for (;;) {
value = inb{ICTPB);
printf("Value read: %x\n",value};
sleep(1);

}

exit(0);

4 Accessing a device driver

You may think, since we now have access to our I/Q card, we can read and
write data form/to it, well ..., that’s it, we have finished! Unfortunately this is
not the case. As said before: Any program making use of ioperm, inb, outb or
mmap will only run in super user mode.We want to give access to our board
to the ordinary user however. In addition there is no resource protection (the
hoard may be written to by several tasks in any wild sequence) and treatment
of interrupts or even DMA are excluded. Only the device driver will give you
aceess to these possibilities.

What exactly is a device driver then? and how may an ordinary user access
it? \We want to slowly approach this question by first looking at the drivers
software interface, or said differently: the way a programmer would use the
driver.

You have already written piograms make use of files. Yo have seen the
ealls:

e Open
e ¢lose
o read

* write

12

s [seek ete,

Accessing a device driver is exactly the same. You may think of a device as a
special file (which is actually the technical term for it). The device is accessed
through inodes defined in /dev using the same calls as normal file access. On
order to open the device of our Colombo board we would write:

fd = open("‘/dev/ictpO”,O_RDWR);

i order to write to the board we would fill a buffer and write it to the board:

buf[G] = 0x3f; /* fll the buffer */

buf[1] = 0x3e;

buf[2] = 0x3f;

write(fd, buf, 3); /* write to the board */

What exactly happens when we access the driver? The “calls” open, read,
write are so-called system calls and differ from normal subroutine calls. System
calls generate software interrupts and doing so change the running mode from
(normal) user mode to supervisor mode. After that a subroutine within the
system kernel is called and executed in supervisor mode {compare to flg.) You
now immediately see that our driver routines are actually executed on the same
level as the kernel, they are integral part of the kernel. This also tmeans that
errors within the kernel routines are usually unrecoverable (there is no such
things as “segmentaion fault, core dumped”) and will crash the entire system.

The following listing gives an example of access to the ictp driver.

/*******t**/

/* Access the ictp device driver */
/* This example writes the displays in RAW mode */
/* U. Raich 14.3.94 */

/****************’K***********************************/
#include "/usr/include/stdio.h"

#include "/usr/include/fcntl.h"

#include <sys/ioctl.h>

#include "ictp.h"

void main()

{

int fd,i,retkcode;
unsigned long mode:
unsigned char buffer[12]:
short full number ;

/*

open the device driver for writing

13

*/
fd = open("/dev/ictp0",0 WRONLY);
if (fd < O {
perror ("Could not open ictp port:");
exit(-1);
}
else
printf{"ictp port successfully opened for
writing!\n");

/*
try out raw mode
we must code data and chip select signals ourselves

buf (0) buf(l) buf(2) 4 least significant bits

*/

buffer[0]=0x1T; /* 1 -> data lines; strobes all
high */

buffer[1]=0x17; /¥ 1 -> data lines:; strobe 1
active low */

bufferf2]=0x1f; /* 1 -> data lines; strobes all
high */

buffer [31=0x2f; /* same for displays 2-4 */

buffer[4]=0x2b;
buffer[6]=0x2f;
buffer[6]=0x3f;
buffer[7]=0x3d;
buffer[8]=0x3f;
buffer[9]=0x4f;
buffer[10]=0x4e;
buffer[11]=0x4f;

if (write(fd,buffer,12) 1= 12)
perror ("after write ");

close(fd);

14

syxkern caltb

User Made . superr s nuxie
T lgally)ing
inleriupt
L.xer Liteney
Froprain
13g1EnT :
_'.' clove _"'""'_'_'_-'
reuc] :)
wrile ... : Dnisy
hunlware
sulLveare doce

11{9flll6

1
olobibo Bonrd

Figure 3: Accessing the Device Driver

5 Representation of the device driver in the sys-
tem

Having seen how to access the driver from an application we must now figure
out how the kernel finds its way into the driver. Trying:

Is -1 /deu/ictp*

will produce the following ocutput:
crw-rw-rw- 1 root root 31, 0Jun 5 22:21 /dev/ictp0
crw-rw-rw- 1 root root 31, 1Jun 5 22:21 /dev/ictpl
crw-rw-rw- 1 root root 31, 2 Jun 5 22:21 /dev/ictp2
where ¢ teils us that the file is actually a character device driver , rw are the
nsual read and write permission bits and 31 is the major and 0,1,2 the minor

device numbers. These numbers are unique in the system. By the way: the
device special files are not created by and editor but by the command:

mknod /fdev/ictpl ¢ 31 0

mknod /deuv/drivername device type major number minor number

The major number defines the I/O device, the minor number usually indi-
cates a channel number (a serial 1/0 device may have 4 UARTSs representing 4
serial 1/0 channels, which a driven by a single software module)

As explained before, the driver is an integral part of the operation system and
is usually linked into the kernel during system generation. However a software
package has been developped for Linux, allowing us to install and de-install
device drivers (or other “modules” like file systems etc) into a running kernel.

This modules package provides the following basic programs:

o insmod: install a module into the kernel

s lsmod @ list all installed modules

e rmmod remove a modules from the kernel
o ksyms: list exported kernel symbols

and the newer versions hay 1 addition:

e modprobe: same as insmod but a standard path is searched for the modules
while insmod needs the full pathname of the module to be installed

s genksyms

o kerneld kernel daemon, ailows demand loading of modules.

16

The system you are currently using has all its loadable modules installed
m /lib/modules/current. This is a symbolic link to /lib/modules/linux-version
{2.0.20), which is created at boot time. Some modules may be installed in
/lib/modules/current /boot and will be automatically loaded and permanently
insralled at boot time. When you try to access a module (e.g. the ictp driver)
that i not installed in the system, the kernel will ask kerneld to load the module.
kerneld will look at strategic places (possibly defined in /etc/conf/ modules) and
if the corresponding module can be located it will try to load it. If loading is
siecessful, the calling program will simply continue.

6 Implementing the Device Driver, first steps
A device driver always consists of at least 2 files:

¢ The driver include file (ictp.h in our case)

e and the driver code itself

The include file contains the definitions of hardware addresses, register names,
and names for each and every bit used within the IO chip registers. In addition
it contains definitions for error codes, names for driver operating modes, ioctl
request names and thelike. It is used by the driver itself, but is is usually also
inclided by any program using the driver.

The following listing shows the include file provided for the ictp driver:

/*******w*****************w****w*************w***/
/* Definitions of 8255 addresses and control bits */
/* U, Raich 31.8.94 x/
/*********:«*******t*t**t**w«********x****w***********/

#include <sys/ioctl.h>

#define ICTP_MAJOR 31
#define ICTP.NG 3
/*

* defines for 8255 ports

*/

#define ICTP_A 0x300
#define ICTPB 0x301
#define ICTP.C 0x302
#define ICTP_S 0x303

17

/*
* defines ICTP status and control register bits

*/

#define ICTP _MODE _SELECT 0x80

#define ICTP.A_MODEOQ 0x00
#define ICTP_A_MODE.1 0x20
#define ICTP_A_MODE_ 2 0x40
#define ICTP_B.MODEO 0x00
#define ICTP B MODE_1 0x04
#define ICTP_MODE BLOCKING 0

#define ICTP _MODENON_BLOCKING 1

#define ICTP_INPUT. A 0x10
#define ICTP_QUTPUTA 0x00
#define ICTP_INPUT.B 0x02
#define ICTP.OUTPUT B 0x00

#define ICTP_INPUT C_LOW 0x01
#define ICTP OUTPUTCLOW 0x00
#define ICTP_INPUT.CHIGH 0x08
#define ICTP OUTPUTCHIGH 0x00

#define ICTP_AVAILABLE 1

#define ICTP NOT_AVAILABLE O©

#define ICTP_SILENCE 0x09
#define ICTP NOISE 0x08
#define ICTP BUZZER BIT 0x10
#define ICTP_BUZZER_ON 1
#tdefine ICTP_BUZZER_OFF 0
#define ICTP_MODE_RAW 0

#define ICTP MODE SINGLEDIGIT 1
#define ICTP MODE FULL_NUMBER 2

#define ICTP BUSY 1
#define ICTP_FREE

#define ICTP_READ SWITCHES
#define ICTP_READ_IRQ5_COUNT
#define ICTP_READ._IRQ7.COUNT 2

= o

#define ICTP.ENABLE_IRQ5 0xb
#define ICTP_DISABLE_IRQS Oxd

18

#tdefine
#define

#define
#define
Ve

ICTP_ENABLE_IRQ7
ICTP DISABLE_IRQ7

ICTP_IBF B
ICTP DUMMY

the icctl codes:

=/

#define
#define
#define
#define
#define
#define
#define
#define

/*

ICTP SET_WRITE MODE
ICTP_GET WRITE MODE

Oxd
Oxc

0x2
Oxtf

I0C.IN | 0x0001
I0C_QUT | 0x0001

ICTP _SET.READ_MODE IOC_IN | 0x0002
ICTP.GET_READ_MODE IOC_OUT | 0x0002
ICTP_SET BUZZER IOC_IN | 0x0003
ICTP_GET BUZZER I0C.OUT | 0x0004
ICTP _ENABLE_INTERRUPT 0x0005
ICTP DISABLE_INTERRUPT 0x0006

for checking if the board is there

*/
#define
#define

ICTP_TSTBIT
ICTP SET_TSTBIT

#define ICTP.RESET_TSTBIT

#define ICTP_MAX DIGIT
#define ICTP_MAX BUFFER

0x20
Oxb
Oxa

3
12

Before a user program can access the driver it must be included into the
operating system. As already mentionned above this can be done by either
linking it to the kernel at system creation time or we register the driver with
the operating system once the module containing the driver gets installed with
tsinegd. Therefore we must write 2 routines

* init-module, which is called by insmod and which will check if the parallel
IO card can be accessed before asking the kernel to register the ictp device

driver.

* cleanup module, which is called by rmmod and which cleanly removes the
driver from the system.

Since the driver it an integral part of the operating system and works in su-
pervisor mode, it has no access to the normal C library functions. It cannot be
debugged with the normal debugger neither (the debugger has no access to su-
pervisor memory!). However a few calls are available to the device driver writer,

one of which is printk which is the kernel equivalent {though less powerful

prondf,

19

) of

For debugging purposes I therefore put a few statements at strategic places
in order to be able to follow the execution of my code.

When registering the device driver with a system the address of the fops
tabie is passed as a parameter. This table contains the the addresses of the
driver routines needed for execution of the

e open
e close
e read
e write
e Jseek
e ioctl

and a few more system calls. If a call is not implemented, the table gets a
NULL entry. Here is the fops table of our ictp driver:

static struct file operations ictpfops = {
NULL, /* seek */
ictp_read,
ictpwrite,
NULL, /* readdir */
NULL, /* select =/
ictp-ioctl,
NULL, /* mmap */
ictp.open,
ictprelease

s

The code for init_module is also given below:

/*

* And now the modules code and kernel interface.
*/

int

init_module(void) {

unsigned char testvalue = 0;
#ifdef ICTP_DEBUG

printk (KERN_DEBUG "ictp: init module
called\n");

20

#endif

/*
initialize the chip
*/
ictpreset();
testvalue = inb(ICTPB);
/*

set bit 5 of port C and read back. This bit is
unused

*/

outb(ICTP SET_TSTBIT,ICTP.S):
testvalue = inb(ICTP.C);
#ifdef ICTP.DEBUG
printk (KERN DEBUG "ictp: port C after set bit 5
%x\n",testvalue);
#endif
if ((testvalue & ICTP.TSTBIT) == 0) {
printk(KERN.ERR "ictp: board not found!\n");
return -ENODEV;
}
outb (ICTP RESET.TSTBIT, ICTP.S) ;
testvalue = inb(ICTP.C);
#ifdef ICTP DEBUG
printk (KERN DEBUG "ictp: port C after reset bit
5 Y%x\n",testvalue);

#endif
if ((testvalue & ICTP_TSTBIT) '= 0) {
printk(KERNERR "ictp: board not foundi\n");
return -ENODEV;
}
/%

register the device driver with the system
*/
if {(register _chrdev(HWMAJOR, "ictp",
kictp_fops)) |
printk (KERN ERR "register chrdev failed:
goodbye world :-(\n");
return -EIQ;

}

21

#1fdef ICTP_DEBUG
else
printk (KERNDEBUG "ictp: driver
registered!\n");
#endif

}

The first. version of the driver registered a fops table with NULL entries
anly. This version clearly cannot do anything, however it should be possible to
test installation and deinstallation into the system using insmod and lsmod. 1
expected to find the printk output on the xconsole and lsmod should allow be
to check proper installation.

What did I find? Well, it was the worst possible options: lsmod told me it
had fould the module:

return 0;

Module: #pages: Used by:
ictp 1 0

hut I had no trace whatsoever of my printk statements. I was not really sure
who was right: Ismod or the missing output from printk. After several hours of
research and some poking around on the network I found the email address of
a4 guru who had written a device driver before. He told be I could check where
to find the system console by trying the command:

date > /dev/console

When I tried this, I found the output of date on the xconsole as expected.
Still 1 did not know where the printk output has gone. The only other test [
could find was to recompile the kernel and link my device driver into the system.
When booting the newly constructed system I saw the very first printk output
o the svstem console but not the following ones. Of course I then checked the
svstem log (/var/log/messages) in order to figure out what had happened and
there I found all the output I had expected on the system console. The printk
outpur had been written to the system log file! After having added the lines

Send debug messages to the console
*.=debug /dev/console

1o fete/syslog.conf I finally got the debugging messages where | wanted them
o wn. namely on the system console (the zeonsole window).

7 The Driver Routines

Sihce we now

s understand the hardware

22

* know how to unstall the device driver into the system
* have the frame of our driver ready
¢ are able to produce debugging messages

we can actually start to implement the first driver routines that do the real
work. The first routines to be implemented are of course the open and the close
routines. When opening the device driver we initialize the 8255 chip writing the
hecessary bits into the command register.

In order to make sure that only one process at a time can access the device
driver a busy flag is set when the driver is opened for the first time. All sub-
sequent open requests will be refused (giving back the error -EBUSY) until the
driver is closed again.

static int
ictp open{struct inode # inode, struct file = file)

unsigned char cotmmand ;
int ret._code;
if (ictp.busy == ICTP_BUSY)

return -EBUSY;

ictp_busy = ICTP_BUSY;
ictp writemode = ICTP_MODE RAW;

command = ICTP_MODE_SELECT | ICTP_A_MODE_Q |
ICTP B MODE_O
| ICTP_INPUT.B;
outb(command, ICTP S) ; /¥ setup to non
interrupt */

#ifdef ICTP_DEBUG
printk(KERN DEBUG "ictp: opened for switch
reading\n"};
#endif
return Q;
}

The above code is a simplified version of the code actually in service for
the ictp driver, In the real open routine we also switch off the buzzer and.
‘lepending on the selected minor mode (ictp0, ictpl or ictp2}, we also register
Imrerrupt service routines with the system,

In order to implement the write part of the driver we should first have a
look ot the library routines accessible to the device driver writer. Some of these
routines we have already seen before, namely:

23

o register.chrdev(unsigned int major, const char *name, struct file_operations
*fops)

o unregister_chrdev({unsigned int major, const char *name)
¢ printf(fmt)

There are also 2 macros that allow us to find out the current major and
ninor numbers:

e MAJOR(inode -> irdev) and
e MINOR(inode -> irdev)

As we have seen in the example code above, inode is & structure that is passed
into the driver routines. In order to implement the read and write routines we
need additional calls that allow us to transfer a data bufler from user space into
supervisory space and back. This feature is provided by:

e char get_user(char *address)
¢ void put_user{char, char *address)
Their use is demonstrated by the (incomplete} ictp write routine:

/*

* Write requests on the ictp device.

*/

static int

ictpwrite(struct inode * inode, struct file * file,
const char * buf, int count)

{

char c;
const char *temp=buf;
unsigned char ctemp, digit;

switch (ictpwrite mode) {
case ICTP_MODE RAW:
temp = buf;
if (count>>ICTP MAX BUFFER)
return ~EINVAL;
while (count > 0) {
¢ = get_user(temp);
outb{c,ICTPA);
count--,
temp++;

}

return temp-buf;
break;

24

We have now seen the open,close,write routines (the read is very similar to
the write once get_user has been replaced by put_user). The only missing code
is the soctl

As a typical example we will have a look at the code that drives the buzzer.
The buzzer is connected to the PC-4 line of the 8255 and can be programmed
by specifying the bit number in bits 1-3 of the 8255 command register with bit 7
set to O and bit 0 defining on (bit 0 = 1) or off (bit 0 = 0). The ioctl call as seen
from the driver users point of view has got 3 parameter: the file descriptior,
A command code (defined in ictp.h: #define ICTP_SET BUZZER I0C.QUT {
0x0004).

ioctl (ictp_'fd , ICTP_SET_BUZZER, ICTP_NOISE)
will switch the buzzer on while
ioctl{(i ctp_fd,ICTP_SET_RUZZER , ICTP_SILENCE)

will switch it off again.
The command parameter in the driver code receives the ioct] command code
while in arg the corresponding argument (buzzer on or off) is passed.

/*
* Handle ioctl c¢alis
*/

static int
ictp ioctl(struct inode = inode, struct file = file,
unsigned int cmd, unsigned long arg)

unsigned int minor = MINOR(inode->i_rdev);

unsigned char port.C_status:

unsigned short dummy;

switch (emd) {

case ICTP SET BUZZER:
#ifdef ICTP_DEBUG

printk (KERN_DEBUG "ictp: ioctl set buzzer function

entered!\n"};

25

#endif
if (arg == ICTP.BUZZERON) {
outb(ICTP NOISE,ICTP.S);
return 0;

}

else if (arg == ICTP.BUZZEROFF) {
outb(ICTP_SILENCE,ICTP.S);
return 0;

}

else
return -EINVAL;
break;

case ICTP_GET BUZZER:
#ifdef ICTP DEBUG
printk (KERN.DEBUG "ictp: ioctl get buzzer function
entered!\n");
#endif
port C_status = inb(ICTP.C);
if (port.C_status & ICTP_BUZZERBIT)
return ICTP_BUZZEROFF;
else
return ICTP_BUZZERON;
break;

defanlt: return -EINVAL;

}
}

The driver allows users to choose a write mode forcing subsequent write calls
o be interpreted in different ways.

+ ICTP_MODE_RAW will send the data transfered in the write’s databuffer
as is to the hardware. In this mode the driver user is responsible to set
up the data and chip-select lines correctly.

¢ ICTP MODE.SINGLE_DIGIT will write a single digit. Here a single byte
containing the digit number in the high nibble and the data value in the
low nibble

e [CTP.MODE_FULL.NUMBER takes a short contaning the number to
be displayed on all four digits.

The full ioctl driver code permits the user to set the write mode using the
ICTP SET_WRITE_MODE ioctl command. Several other commands are im-

plemented for

» Enabling/disabling interrupts

26

* Setting the interrupt type (blocking or non blocking)
¢ Reading the buzzer state
* Reading the write mode

This terminates our excursion into the world of systems programmers, The
Appendices contain the cireyit diagram of the parallel 10 card, a “user manual”
atd the full driver code.

8 Appendix
9 The User Manual

This section describes the functionality the driver supplies to its users.

The ICTP device driver expects an I/0 board using an Intel 8255 chip at 1/0
Address 0x300 (can be changed in the code) connected to the ICTP Colembo
board. The connections to the Colombo board must be made as follows:

* Port A: ICTP displays. Port A is therefore programmed as an output port.
* PortB: ICTP switches. Port B is therefore programmed as an mput port,

If vou open minor device 0, the port B of the 8255 wil be set to mode 0 (non
strobed input) allowing to read directly the state of the switches. Port A is set

to mode 1 (strobed I/0).
When openinn minor device 1 the 8255 chip is initialized such, that port A
and Port B are set to mode 1 (strobed I/0). This allows interrupts for both

ports.
[mode 1, with port A output, the bits 4 and 5 of port C may be used

A5 normal programmed I/0 pins, while the other bits are used as handshake

signals or interrupt lines. Bit 4 of port C must be connected to the Colombeo

board buzzer.
Bit 2 and bit 6 of port C are strobe lines which must be connected to one

of the interrupe generating lines CAl. CA2, CBI of the Colombao board.
The driver functions:

9.1 Read Calls
The driver uses major number 31 and 3 minor devices:
¢ read on minor number 0: read the switches

® read on minor number 1: read the number of interrupts on IRQ 5 since
the last read call

¢ read on minor number 2: read the number of interrupts on IRQ7 since the
last read call

27

An ioctl call allows the user to switch between blocking and non blocking
calls for reads from minor number 1 and 2.

9.2 Write Calls

Writings works on any of the minor devices. There are 3 different write modes
which may be set up by icct] calls:

o [CTP_MODE_RAW: In this mode the data coming from the user are sim-
ply passed on to the hardware without any modification. In order to make
the displays work the user must send 12 data bytes containing data and
¢hip select information (data: high nibble, chip select: low nibble] in the
sequence: data + cs high, data + cs low, data + ¢s high for each digit.

¢ ICTP.MODESINGLE _DIGIT: a single data byte is expected. This byte
must contain the digit number in the high nibble and the data to be
written to that digit in th low nibble.

¢ ICTP_FULL_NUMBER. a short (16 bits) is expected. This number will
he written to the 4 digits.

3.3 IOCTL Calls

e ICTPSET_WRITE_MODE: sets up the mode for future writing to the dis-
plays (see above) . The possibilities are [CTP_MODE RAW, ICTP MODE_SINGLE DIGIT

and ICTP_MODE FULL_NUMBER.
ICTP.GET_WRITE_MODE: returns the current write mode

ICTP_ENABLE_INTERRUPT enables an interrupt. Possible parameters
are ICTP _ENABLE IRQ5 and ICTP_ENABLE TRQ7

ICTP_DISABLE INTERRUPTS you guess

ICTP SET BUZZER switches the buzzer on or off. Possible parameters
are ICTP NOISE or ICTP SILENCE

ICTP_GET BUZZER gets the current buzzer state.

28

10 The Driver Code

/*
* Implements the ICTP character device driver.

* Create the device with:

*

* mknod /dev/ictp ¢ 31 0

*

* - U. Raich

* 13.3.94 : First version working with PC parallel
printer port

*

* Modifications:
* 30.08.94 : U.R. complete rewrite for Manuel's beard

* 09.10.96 : U.r, adapted to new Linux version
(2.0.20)

* implemented check for MAXDIGIT and
MAX BUFFER in order

* to make the driver more secure

*/

/* Kernel includes */
#include <linux/module.h>

#include <linux/mm.h>
#include <linux/errnc.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/malloc.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/delay.h>

#include <asm/io.h>
#include <asm/segment.h>
#include <asm/system.h>

#include “"ictp.h"

#define HW_MAJOR 31 /* nice and high */
#define ICTP_DEBUG 1

29

/x

some globals:

*/

unsigned long ictpwritemode = ICTP_MODE RAW;
unsigned long ictp read mode =

ICTP MODE_NGN_BLOCKING;

int ictp_busy = ICTP_FREE;
int irgb = 5, irg7 = 7;

unsigned char irg5.count = 0, irg7_count = 0;

struct wait.queue *ictp_wait_q;

/*
* The driver.
*/

static void
out_digit (unsigned char digit, unsigned char number)

{_

unsigned char mask,c;

mask 1 << digit;
mask = “mask;
#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: mask %x\n",mask);
#endif
¢ = (number << 4) | 0xf;
cutb{(c,ICTPA);
¢ &= mask;
cutb{c,ICTP_A);
c |= Oxf;
outb(c,ICTPA);

7 *
first the tough part: the interrupt code
*/

static void
ictp.irq7_interrupt(int irq)

30

outb(ICTP_DUMMY,ICTP_A); /* this just clears
the interrupt */

irq?-count++;
if (ictp_read mode == ICTP_MODE BLOCKING)
wake_ up(&ictpwait.q);

static void
ictp_irqS_interrupt (int irqg)

unsigned char dummy;
dummy = inb(ICTPB); /* this just clears the
interrupt */

if (ictp_read mode == ICTP MUDE_BLOCKING)
wake up(&ictp wait_q);
irg5_count++;

static void
ictp_reset(void)

/*=s=s=scz=moec =%/
/¥

initializes the 8255 chip
*/
{

unsigned char command ;

/*

sets port A to output
pPort A is connected to the ICTP module displays
high order nibble: data
low order nibble: chip selects

mode 1: stobed I/D
allows use of interrupts
CAl: on interrups
CA2: (Buzzer) on PC4

31

x/
command = ICTP_MODE_SELECT | ICTP_A_MODEO |
ICTP B_MODE_O
| ICTP_INPUTB;

cutb(command, ICTP.S);
/*
kill the buzzer
first setup port C to bit set (bit set/reset mode with
set bit on! 3

*/
outb(ICTP SILENCE,ICTP.S);
return ;

}

/*

* Handle ioctl calls

*/

static int

ictp.ioctl(struct inode * inode, struct file x* file,
unsigned int cmd, unsigned long arg)

{

unsigned int minor = MINOR(inode->1i.rdev);
unsigned char port (_status;
unsigned short dummy;
switch (cmd) {
case ICTP_SET WRITE MODE:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG
"ictp: ioctl write function entered! cmd:
4x, arg: ‘4lx\n",
cmd, arg);
#endif
if (arg > ICTP_MODE_FULL NUMBER)
return -EINVAL;
else {
ictpwritemode = arg;
return 0;
}
break;
case ICTP_GET WRITEMODE:
#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: ioctl read function
entered! cmd: Y%x\n",cmd};

32

#endif

return ictp_writeJmode;
break:

case ICTP_SET.READ_MODE:
#ifdef ICTP_DEBUG

printk{KERN DEBYG
"ictp: ioctl write function entered! cpd:
ax, arg: %lx\n",

cmd, arg);
#endif
if (arg > ICTP_MDDE_NON_BLDCKING)
return -EINVAL:
else {
ictp.read mode = arg;
return 0;
}
break;
case ICTP_GET_READ.MQODE:
#ifdef ICTP_DEBRUG
printk (KERN DEBUG "ictp:
entered! cmd: Ax\n",cmd) ;
#endif

return ictp_readJmode;
break;

ioctl read function

case ICTP SET BUZZER:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp:
entered!\n");
#endif

if (arg == ICTP_BUZZER.ON) {
outb(ICTP_NUISE, ICTP.S);
return (;

}

else if (arg == ICTP_BUZZER_GFF) {
outb(ICTPSILENCE,ICTRS);
return Q;

}

else

return ~EINVAL;
break;

loctl set buzzer function

case ICTP GET_BUZZER:

33

#ifdef ICTP.DEBUG
printk (KERN.DEBUG "ictp: ioctl get buzzer function
entered!\n");
#endif
port_C_status = inb(ICTP.C);
if (port.C.status & ICTPBUZZERBIT)
return ICTP BUZZER_OFF;
else
return ICTP_BUZZER.ON;
break;

case ICTP_ENABLE INTERRUPT:
#ifdef ICTP_DEBUG
printk (KERN.DEBUG "ictp: enabling interrupts on
8255\n");
#endif
if (minor == ICTP_READ_IRQ7_CQUNT) {
dummy = Oxff;
outb{dummy, ICTPA) ; /* reset int
flag */
outb(ICTP_ENABLE_IRQ7,ICTP.S);

irq7_count = 0;
dummy = inb{ICTPC};
#ifdef ICTP DEBUG
printk (KERNDEBUG "ictp: port C after enable int
7. Chx\n",dummy);
#endif
return 0;
}
else if (minor == ICTP_READ_IRQ5.COUNT) {
outb(ICTP_ENABLE_IRQ5, ICTP.S);
dummy = inb(ICTPB)}; /* now
interrupts should come in */

irg5_count = Q;

dummy = inb(ICTP.C);
#ifdef ICTP_DEBUG

printk (KERNDEBUG "ictp: port C after enable int
5: fx\n",dummy);

34

#endif
return Q;
t
else
return -EINVAL;
break;

case ICTP DISABLE_INTERRUPT:
#ifdef ICTP_DEBUG
printk (KERN DEBUG “ictp: disabling interrupts on
8255\n") ;
#endif
if (minor == ICTP READ_IRQ7 _COUNT) {
outb(ICTP.ENABLE_IRQ7,ICTP_S);
return (;
}
else if (minor == ICTP READ_IRQ5_COUNT) {
outb(ICTP_ENABLE_IRQS,ICTP_S);

return 0;
}
else

return -EINVAL;
break;

default: return -EINVAL;

}

/x
* Read the status of the ICTP board sWwitches
*/

static int
ictpread(struct inode * inode, struct file » file,
char » buf, int count)

unsigned int minor = MINDR(inode->j_rdev);
unsigned char testvalue;

if (count t= 1) return -EINVAL;

sWitch (minor) {
case ICTP READ SWITCHES:

testvalye = inb(ICTPR); /* read the
switches »/

#ifdef ICTP_DEBUG
printk (KERN DEBUG
"ictp: switch value read from port:
%x\n",testvalue);
#endif
put _user (testvalue,buf);
return 1;
break;
case ICTP_READ_IRQ7_COUNT:
#ifdef ICTP_DEBUG
printk (KERN.DEBUG "ictp: irg7_count:
%d\n",irq7_count);
#endif
if (ictpreadmode == ICTP_MODE BLOCKING) {
if (irq7_count == 0) {
#ifdef ICTP_DEBUG
printk (KERN.DEBUG "ictp: Going to sleep
ATt
#endif
interruptible sleep on(&ictpwait qj;
}
#ifdef ICTP.DEBUG
printk (KERN DEBUG "ictp: returned from
sleep\n");
#endif
put _user {irq7_count,buf);
irq7_count = 0;
}
else {
put_user (irq7_count,buf);
irq7_count = 0;
}
testvalue = inb{(ICTP C);
#ifdef ICTP_DEBUG
printk (KERNDEBUG “ictp: Port C data:
%x\n",testvalue);
#endif
return 1;
case ICTP_READ_TRQ5_COUNT:
#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: irgb.count:
%d\n",irq5.count);
#endif
if (ictp_read mode == ICTP_MODE_BLOCKING){
if (irg5_count == 0) {

36

#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: Going to sleep
.oAR");
#endif
interruptible_sleep_on(&ictp_wait_q);
}
#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: returned from

sleep\n");
#endif
Put user(irq5 count,buf);
irq5_count = Q;
t
else {

put_user (irq5_count,buf);
irq5_count = Q;
}
testvalue = inb(ICTPC);
#ifdef ICTP.DEBUG
printk (KERNDEBUG "ictp: Port C data:
Ax\n",testvalue);

#endif
return 1;
default:
return -EINVAL;
'
'
/*
* Write requests on the ictp device.
*/

static int
ictpuwrite(struct inode x inode, struct file #* file,
const char * buf, int count)

37

char c;
const char *temp=buf;
unsigned char ctemp, digit;

switch (ictpwrite mode) {
case ICTP_MODE RAW:
temp = buf;
if (count>ICTP MAX.BUFFER)
return -EINVAL;
while (count > 0) {
¢ = get_user(temp);
outb{c,ICTP4);
count--;
temp++;

}

return temp-buf;
break;
case ICTP.MODE SINGLE DIGIT:
if (count 1= 1)
return -EINVAL;
¢ = get_user(temp);
digit = ¢ >> 4;
if (digit > ICTPMAXDIGIT)
return -EINVAL;
ctemp = ¢ & Oxf;
out digit{digit,ctemp);
return 1;
break;
case ICTP MODE.FULL_NUMBER:
if (count != 2)
return -EINVAL;
temp = buf;
¢ = getuser(temp);
#ifdef ICTP_DEBUG
printk (KERN DEBUG "write, mode 2,
first byte: 4x\n",c);
#endif
ctemp = ¢ & Oxf;
out_digit(0,ctemp);
ctemp = ¢ >> 4;
out digit(l,ctemp);

¢ = get_user(temp+1);

38

#ifdef ICTP_DEBUG
printk("vwrite, mode 2, second byte:

%x\n",c);

#endif
ctemp = ¢ & QOxf;
out digit(2,ctemp);
Ctemp = ¢ >> 4;
out digit(3,ctemp);

/*®

get first nibble

*/
return 2;
break;

default:
return 1;
break;
}
}

static int
ictp open(struct inode * inode, struct file * file)

{

unsigned int minor = MINUR(inode~>i_rdev);
unsigned char command ;
int ret_code;

if (minor >= ICTPND)
return ~ENODEV;

if (ictp.busy == ICTP_BUSY)
return -EBUSY;

ictp_busy = ICTPBUSY;
ictpwrite mode = ICTP MODE_RAW:

switch (minor) {

/*
this allows interrupts on the push buttou

39

*/
case ICTP_READ_IRQG7_COUNT:
ret code = request_irq(irq7, (void
*)ictp-irg7_interrupt,

SA_INTERRUPT, "ictp" ,NULL);
if (ret_code) {
printk (KERN WARNING "ictp: unable to use
interupt 7\n");
return ret_code;
}
else {
#ifdef ICTP_DEBUG
printk (KERN.DEBUG "ictp: irq7
registered\n");
#endif
command = TCTP.MODE.SELECT | ICTP_A MODE_1 |
ICTP_B_MODE_O
| ICTP_INPUT.B;
outb{command, ICTP.S) ; /* strobed
output */
/*
kill the buzzer
first setup port C to bit set (bit set/reset mode with
set bit on! }

40

outb (ICTP_SILENCE,ICTPS);

}

break;
case ICTP_READ_IRQ5._COUNT:

ret_code = request_irq(irgs5, (void
*)ictp.irq5_interrupt,

SA_INTERRUPT,"ictp",NULL);
if (ret_code) {
printk (KERN.WARNING "ictp: unable to use
interupt 5\n");
return ret_code;
}

else {
command = ICTP_MODE_SELECT | ICTP_A_MODE.O |
ICTP_B_MODE 1
f
ICTP_INPUT B;
outb(command, ICTP.S) ; /* strobed
input */
1L
kill the buzzer
first setup port C to bit set (bit set/reset mode with
set bit on!)
*/
outb (ICTP_SILENCE, ICTP.S) ;
#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: interrupt 5
registered\n");
#endif
}

break;

case ICTP_READ SWITCHES:
command = ICTP_MODE_SELECT | ICTP_A_MODE_O |
ICTP B_MODE_0
t ICTP_INPUTB;
outb(command, ICTP.S) ; /* setup to
non interrupt */
/*
kill the buzzer
first setup port C to bit set (bit set/reset mode with
set bit on!)

41

*/
outb (ICTP_SILENCE, ICTP.S);
#ifdef ICTP_DEBUG
printk (KERN DEBUG "ictp: opened for switch
readingin") ;
#endif
break;

default:
return -EINVAL;

}

return 0O;

f

static void
ictp.release(struct inode * inode, struct file * file)

{
unsigned int minor = MINOR(inode->>i.rdev);
/*
free the interrupt
*/

switch (minor) {
case ICTP_READ_IRQ7_COUNT:
free_irq(irq7 ,NULL);
#ifdef ICTP.DEBUG
printk (KERN DEBUG "ictp: interrupt 7
free’d\n");
#endif
break;
case ICTP_READ_IRQ5_COUNT:
free_irq{irqb,NULL};
#ifdef ICTP_DEBUG
printk(KERN DEBUG "ictp: interrupt 5
free’d\n");
#endif
break;
default: ;

}

ictp_busy = ICTP_FREE;

42

static struct file operations ictpfops = {
NULL, /#* seek */
ictpread,
ictpwrite,

NULL, /* readdir =/
NULL, /* select «/
ictp ioctl,

NULL, /* mmap */
ictp_open,

ictprelease

¥
VES

* And now the modules code and kernel interface.

*/

int
init_module{ void) {

unsigned char testvalye = 0;
#ifdef ICTP_DEBUG

printk (KERNDEBUG "ictp: init_module
called\n");

#endif
/*x
initialize the chip
®/
ictpreset();
testvalue = inb(ICTPB);
/*

set bit 5 of port C and read back. This bit is
unused

./

outb(ICTP_SETJTSTBIT,ICTP_S);

testvalue = inb(ICTP.C);
#ifdef ICTP_DEBUG

printk (KERN DEBUG "ictp: port C after set bit &
hx\n", testvalue);

43

#endif
if {(testvalue & ICTP.TSTBIT) == 0) {
printk(KERN ERR "ictp: board not found!\n");
return -ENODEV;
}
outb (ICTP_RESET_TSTBIT,ICTP.S);
testvalue = inb(ICTP.C);
#ifdef ICTP.DEBUG
printk (KERN.DEBUG "ictp: port C after reset bit
5 ¥%x\n",testvalue);

#endif
if ((testvalue & ICTP_TSTBIT) != 0) {
printk (KERN ERR "ictp: board not found!\n");
return —-ENQODEV;
}
/*

register the device driver with the system
*/
if (register_chrdev(HWMAJOR, "ictp",
kictp.fops)) {
printk (KERN_ERR "register _chrdev failed:
goodbye world :-(\n");
return -EID;
}
#ifdef ICTP_DEBUG
else
printk (KERN DEBUG "ictp: driver
registered!\n");
#endif

}

return 0;

vold
cleanupmodule{ void) {

#ifdef ICTP_DEBUG
printk (KERN DERUG "ictp: cleanup medule called\n");
#endif
if (ictp-busy)
printk (KERN WARNING "ictp: device busy, remove
delayed\n");

if (unregister chrdev(HWMAJDR, "ictp") !'= 0) {

printk("cleanup module failed\n");

}

44

#ifdef ICTP_DERUG
else

printk (KERN DEBUG "¢leanup module succeeded\n");
#endif

}

45

