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1. Introduction

In the past few years interest has grown in the structure of atoms in very
strong fields stimulated by experimental studies with intense lasers and

_ with highly excited atoms. There are two streams 1o this research;

presently they follow separate paths, although we can hope that they will
eventually merge. The first is the study of the dynamical effects of strong
laser light on matter in which non-linear phenomena such as multi-photon
ionization and photodissociation occur readily. Such non-linear processes
can play significant roles in laser plasma interactions. The second stream,
the subject of these lectures, is the study of the structure of atoms in
strong static or quasi-static fields. For the most part, interest in this
problem is essentially a matter of scientific curiosity. As we shall see,
even the most elementary atomic system can display unexpected and
sometimes dramatic phenomena in the presence of strong fields. The
subject is attractive because the theoretical problem is simple to pose - and
in some cases simple to solve - and because relatively elegant experimen-
tal pictures can be obtained. In principle a clear understanding of atoms
in strong static fields is needed to understand their behavior in intense
radiation fields. Someday we may have a single theory which covers the
whole range of phenomena. For the present, we must be satisfied with a
more restricted approach.
. These lectures draw their examples chicfly from research carried out at
Massachusetts Institute of Technology. This hardly does justice to the
considerable body of research underway elsewhere, but the lectures are
intended to be tutorial rather than serve as any sort of systematic review.
The presentation is divided into three sections. The structure of atoms
in strong electric fields is discussed in section 2, and in section 3 the
dynamics of field ionization is treated. Section 4 deals with the structure
of atoms in strong magnetic fields.

2. The structure of atoms in strong electric fields

The study of atom-field interactions has been revolutionized by the use
of highly excited atoms. As we shall see, by working with these atoms the
relative strength of the atomic field and the applied field can be varied at
will, opening many new avenues of research. As a starting point, lct us
consider the familiar Stark effect.
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2.1. Background: the second order Stark effect

The interaction of an atom with a uniform electric field F along the z-axis
is governed by the Hamiltonian

Hp = eF3z;. (2.1)
i
With the notable exception of hydrogen, atomic states of opposite parity
are normally non-degenerate. Since the operator in eq. (2.1) is odd, its
diagonal matrix elements vanish and we must invoke second order
perturbation theory. The energy shift of level a is

AE = olp2SV ;zab’2

p; % I -E (2.2)
where z = % ;2j» the index j ranging over all electrons. Our chief interest
is in atoms for which the contribution of a single electron dominates the
matrix element and we shall regard z as a single electron operator. As is
easily shown, z only connects states a and b for which Jy=J,J, % 1and
m,, = m, where J is the total angular momentum and m is the eigenvalue
of J,. Physically, the second order Stark shift results from the polariza-
tion of the atom by the electric field. It is natural to write

AE, = —ia, F?, (2.3)

where a, is the static polarizability of the atom. For calculational
purposes the polarizability is most conveniently written as a second rank
tensor [1], but for purposes here we can take

— 2 rab
a, = §ez§' %_l_Ea. (24)

Polarizability has the dimensions of volume; for the ground state of a
single electron atom « is roughly the volume of the atom. The polarizabil-
ity of the ground state of hydrogen, for example, is 4.5a3, where a, is the
Bohr radius. [The “volume” of the atom is (47/3)a} = 4.2a].] Polariza-
bilities of this magnitude are small in the sense that the Stark shift in a
laboratory field is small compared to the energy difference between
optical terms. If we take a = 1004} and F = 100 kV /cm, we obtain, in
spectroscopic units of em™!, AE = —4 X 10~* em™". By way of com-
parison, a typical optical transition is 2 X 10* em~" and its Doppler
width is 0.2 cm™'. The Stark shift would be unobservable.

®
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Opportunities for studying the Stark effect under controlled laboratory
conditions are not as dismal as this estimate suggests, however, for the
upper as well as the Jower state contributes to the shift. The polarizability
of an excited state is generally larger than that of the ground state,
particularly if there 15 a nearby level of opposite parity. For.instance,
singly ionized argon has a 3d level with a polarizability of —3 x 104
due to a 4p level which lies only 13 em™ ! below it. The Stark shift in a
100 kV /cm field is [2] 1.2 em ™!, which is easily observed. Nevertheless, it
is still small.

The fundarnental reason that optical Stark shifts are small is that the
static electric field we can apply will be small by atomic standards. A
field of 10° V /cm is large by conventional laboratory standards but is
feeble compared to the atomic unit of electric field, e/a2 = 5.14 x 10°
V /em. It is hardly surprising that small fields have small effects. Optical
Stark shifts can teach us about matrix elements and polarizability, but if
our aim is to seriously upset the atom, to fundamentally alter its structure
in order to understand atomic behavior in intense fields, we will have to
look elsewhere. ' '

2.2. Stark shifts in Rydberg states

Our equations will take the simplest form if we use atomic units. In this
system ¢ = i = m_ = 1; the unit of distance is the Bohr radius ¢, = 5.29
X 107° cm, the unit of energy is e?/ay = 27 eV, (In terms of cm ™', the
atomic unit of energy is 2R =2.19 X 10° cm™!; R is the Rydberg

constant.) Since ¢ /hc = @ = (137)7), ¢ = @~ ' = 137. In these units the
non-relativistic energy of hydrogen is :
E, = —=— | (2.5)
2n

where # is the principle quantum number, The “good” quantum numbers
are n, the angular momentum f and the z component of angular momen-
tum m. { takes the values 0,..., n — 1, and m takes the value —@,...., +[.
In nen-relativistic hydrogen, all states of a given » are degenerate. In
alkalis the [-degeneracy is broken and the energy can be written

1 1
E() = -3 ——,
! 2 (n— &)
where 4, is the quantum defect, a constant or a very slowly varying
function of n. The quantum defect is generally much less than one if { is
greater than two or three, depending on the particular alkali.

(2.6)



Atoms in very strong fields

The energy splitting due to the quantum defect can play an important
role in the behavior of atoms in strong fields. For highly excited states
the energy separation between the states (n,{) and (n,[") is approxi-
mately

ag, =2 2.7)
n
where & = 4, — ;. Such states have an anomalous polarizability for the
following reason: the radial matrix element between states of hydrogen
(n,0) and (n, &’ = €= 1) is roughly #%. (The mean radius of the Bohr
atom is approximately n°, and we can expect the matrix element to scale
as n? purely on dimensional grounds.) From eq. (2.4} we obtain
I 2

LA I
@~ 3F N /8. (2.8)

The n’ dependence of the polarizability means that the second order
Stark effect AE, can become gigantic [3]. In particular, if we ask what
field is required for AE, to equal the separation between levels, we have
(1/)a,F* = AE,, or

F ~ én~%; (2.9)

F diminishes very rapidly with n. For § = 0.1 and n = 30, F =20 V /cm.
Although 20 V/cm would not normally be regarded as large, for these
atoms it produces a Stark shift as big as the term separation, which
means that second order perturbation theory 1s inadequate. The atom is
not merely perturbed, it is grossly distorted. We can expect many of its
familiar properties to be radically altered.

According to eq. (2.8) the polarizability varies universely with 4. For
hydrogen & = 0 and the polarizability diverges. The Stark effect becomes
first order, and even a small electric field is very large in the sense that it
can totally distort the atom from the *“shape™ with which we are familiar.

2.3, The Stark structure of hydrogen

The Stark effect in hydrogen is often used as a textbook’s illustration of
degenerate perturbation theory, For n = 2, for example the matrix ele-
ment of z connects the states a = (2,0,0) and b = (2.1,0) where the
states are designated by (n, [, m). It is easily shown that z,, = 3 (atomic
units) and the first order energies are

AE, = +3F. (2.10)

©

(Relativistic effects and the Lamb shift play important roles at very low
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fields, but we shall ncglect them.) The eigenstates are

Y. = ‘/iz[(z,o,()) +(2,1,0)]. (2.11)
These states have mixed parity and they display electric dipole moments.
The dipole moments give rise Lo the linear Stark effect.

When we attempt to apply degenerate perturbation theory to higher
levels of hydrogen we find that the problem becomes awkward. The
number of degenerate levels in each term increases as n? and onc is
forced to solve ever larger secular equations. More seriously, off diagonal
matrix elements between the different terms plays increasingly larger
roles and one must include higher order perturbations. Fortunately, the
potential ¥ = —Z/r + Fz leads to a Hamiltonian which is separable in
parabolic coordinates and a complete solution is possible.

2.3.1. Solution in spherical and parabolic coordinates
The solution for hydrogen in parabolic coordinates bears some similari-
ties to the familiar solution in spherical coordinates. Both problems are
treated in the standard texts [4], but we shall need to refer to the results
later and it will be helpful 10 have them on hand.

In the absence of an applicd field Schrodinger’s equation for hydrogen
is

Au+2(E+%)u=0. (2.12)

Taking u = Y(#, ¢)R(r), we obtain the familiar angular solution
Y(4,8) = Y, (4, 9), (2.13)

where ¥, , (4, ¢) is a spherical harmonic. The radial equation becomes

f(e+1
R” + ER' + Z[E +£———( )]R = 0. (2.14)
r r 2!’2

As r > o, R~exp =/(—2Er). Letting ¢= {(—2E), and introduc-
ing the reduced coordinate p = 2er, we write R(p) = exp(—p/2)f(p),
where f(p) satisfies

o o2

p = f=0. (219

If we assume a power series solution in the form f{p) = p*L{p}, where
L(p) is a polynomial, we {ind that for proper behavior as p - 0,5 =1,
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L(p) satisfies
oL +[2(0+ 1) — p]L' + [Z/e—t—1]L = 0. (2.16)
If we write L(p) = 3,a,0’, then the recursion relation is:

g = j+€+1—-Z/£a
i+l (J+DG+2e+2) 7

(2.17)

For convergence the series must terminate which requires that Z /ebe an
integer, n. This gives the Bohr relation

22

2n?’
The function L(p) is a Laguerre polynomial Z2%,'(p). The number of
radial nodes is the order of the polynomial: n + ¢ ~ (2¢ + D=n—-[{—1

The long-range nature of the Coulomb potential gives the hydrogenic
functions a number of distinctive properties including an infinite number

of bound states and a very rapid increase of radius with ». It can be
shown [4] that the mean radius for state (n, [, m) is

(ry= %[3;12—9(8-%- D). (2.19)

For large n, (r) ranges between (3/2Z)n? and (1,/2Z)n? as the angular
momentum ranges from zero to its maximum value.
We turn now to the solution in parabolic coordinates. These coordi-
nates are defined by
£=r+z, y=r—1z ¢ = arctan(y/x). (2.20)

Schrodinger’s equation in zero field takes the form

4 dJ d dJ d 1 &
£+ﬂ(ﬂf(£3£) 677("6’77))“ n ag "
Z
This can be separated by multiplying by (£+ 7)/4 and writing
u({, 7, 9) = f,(£)g,(7)e'™®. We obtain

d{.d 1 :
d_f( —£) + (EE§+zlfz’—£)f, =0 (2.22)

where Z, is the separation constant. The equation for g, is ideatical in
form except that the separation constant is Z, = Z — Z,.

E= (2.18)

®
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Using the same arguments we employed in the solution of R(r), we

. conclude that f; must behave like

£, = e *2xm2E (%) (2.23)
where x = [(—2E) £ = &f. F\(x) satisfies '
z m|+ 1
xF{ + (Im| + 1~ x)F| + (T' - le—)ﬂ = 0. (2.24)
This is identical in form to eq. (2.16), and we have
F = L:I:,"1|—|m|(x) - (2.25)
where n, is a non-negative integer given by
Zz 1 '
n, = 7‘—5(;m+1). . (2.26)
The corresponding solution for g,(7) yields
A 1 ’
n, = Tz - 5(|m| +1). _ (2.27)

Imposing the constraint Z, + Z, = Z then gives
ZZ

E= (2.28
2n? )

as before, where the integer n is now given by
mtn,+|mj+l=n (2.29)

The parabolic functions are the products of polynomials having n,

"nodes along the &axis and n, nodes along the z-axis. The “center of

charge” can be shown to be at’
()= in(n, — ny), (2.30)

which means that the parabolic states have permanent dipole moments.

2.3.2. The “shape” of hydrogen

We have obtained exact analytic solutions for the states of hydrogen in
both spherical and parabolic representations. The existence of such
solutions means that many properties of the atom can be calculated
exactly in closed form, but the solutions do not necessarily provide much
insight into the structure of the atom. It is not easy to visualize the
producis of polynomials in three dimensions. Fortunately, the computer

can be of assistance here. Figures 1 and 2 show the charge distribution in
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the n =8, m = states of hydrogen in the spherical and parabolic
representations, respectively. The plots represent the charge density |¢/|*
in a “slice” through the atom along the z-axis. The charge density has
been multiplied by r* to make the features more visible. The actual
charge densities have azimuthal symmetry around the z-axis. The dipole
moments and parabolic nodal lines are clearly visible in fig. 2.

2.3.3. Solution in an electric field
If an electric field term + Fz = + F(& - 5)/2 i1s added to the Hamilto-
nian, eq. (2.22) becomes

d (44 ! g _

df( d_f) - (2E$+Zl 4¢ 256 =0 (2.31)
The companion equation for # is

d dg, 1 m 1, _

d—”(n d?]) + (2517+ Z, ye +4F1; g, = 0. (2.32)

These equations can be solved exactly by perturbation theory in the sense
that if we write

E= 2 E, (2.33)

/

where E, is a term in a power series expansion in the field
E = a,F, (2.34)

then the coefficients a,(n, n|, n,,| m|) can be found exactly. The proce-
dure is to treat eq. (2.32) as an eigenvalue equation for the separation
constant. Z, {(E, n,,,|m|, F) is found by perturbation theory to the
desired order in the field, and then the coupling equation Z, + Z, = Z is
used to derive F as a function of F. Through second order the results are
(taking Z = 1)

1 3
EO = —?;i.’ El = E"("‘ — nz)F, (2353,[))
Ey == —1%”4(17”2 = 3(m — "2)2 = 9m? + 19)1:2' (2.35¢)

Because the Stark interaction + £z is invariant under rotation about the
z-axis, the degeneracy between states with azimuthal quantum numbers
m and —m remains in the presence of an electric field. Thus E, is
independent of m, while E, depends on m?.

D. Kleppner

Fig. 1. The charge distribution for hydrogen in a plane containing the z-axis. The charge
density has been multiplied by #* to aid visibility. The states are n = 8, m = 0, = 07,
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D. Kleppner

Fig. 2. The charge distribution for hydrogen, displayed as in fig. 1, for the “parabolic”

representation. The states are n =8, m=0, k= ~7 > T (k=n, — n3). The dipele mo-

Fig. 1 continued. ments which give rise to the first order Stark effect are conspicuous. Note that the nodal
‘ lines form families of parabolas. '
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Energy
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Fig. 3. Energy level for n = 4 states of hydrogen in an electric field (above) and a magnetic
field (below).

To understand the major features of the Stark structure we must
use a result which will be explained later: for a sufficiently large field,
atoms start 1o ionize and the bound state solutions no longer apply.
A characteristic size is F, = 1/(16n*). If we compare the maximum
value of E, and E, at F, we find | E,/E,|= }(n*F,) = 4%. Thus the
first order energy dominates the level structure diagram. The Stark
interaction separates every term »n into a series of manifolds la-
beled by |m|=0,1,...,n — 1. Each manifold is split by E, into a
series of sublevels whose energy can be written £, = 3nF(n, — n,) =
3nFk, where the parabolic quantum numbers take the values k =
n—|m|—1n—|mi-—3,...,~n+|m|+] The levels for n = 4 are
sketched in fig. 3. For comparison, we also show the states in a
low magnetic field B where the Hamiltohian is, neglecting spin, H
= gyl - B = g u,Bm. The Stark structure for m = 0 states of hydro-
gen in the range n == 4-6 is shown in fig. 4. An important feature, which
we shall discuss further, is that the energy levels from different terms
cross without any apparent repulsion.

2.3.4. High order contributions to the Stark effect

The procedure for calculating the energy can be carried out to higher
order, but the calculations are so cumbersome that until recently E, was
the highest term known. In an important advance, Silverstone [5] devel-
oped a general method for obtaining the perturbation coefficient to any
order so that now as many terms as desired can be employed.

Fig. 2 continued.
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Energy

——

Fieid

Fig. 4. Energy levels for hydrogen in an electric field in the region of n = 4—6, for m = 0
states. Note that the levels cross sharply.

In spite of having this general solution, several difficulties remain in
our understanding of single electron atoms in strong electric fields. The
first is that perturbative power series solutions are only asymptotically
convergent. Thus as more terms are added in eq. (2.33), the solution
eventually gets worse. This is rather dramatically demonstrated in a
comparison of theory with a measurement of the Stark energy of several
levels of hydrogen in an experiment by Koch [6], using precision laser
spectroscopy. Figure 5 shows the theoretical result as an increasing
number of terms are kept.

3
o 3| .
L3
i .
@)
= 2}
B L ]
a
@ L .
LS .
. . :
¢ s o @ experiment
O L ] L] - //
- ‘. -
_1- L ]
.
_2._
.
Lo v d v a o gy by atby
o] 5 1C 15 20
Order N

Fig. 5. Energy for hydrogen in an electric field as given by pertubation theory carried out to
successively higher order (dots) compared 1o the experimental value (solid line). The state is
n =25 k=19, |m]|= 1, and the field is 2514(3) V/cm. (From Koch, ref. [6].)
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Fortunately, various techniques are available for treating asymptotic
series. Padé approximants are one such method, and these have been
successfully applied to the hydrogen Stark problem by Silverstone and
Koch [7]. '

A more troublesome problem is that at high fields, ionization processes
become important. Stationary state solutions inherently fail and dif{erent
approaches are needed. We shall return to this problem later.

Another problem is that our solution for hydrogen has ncglected
relativistic effects, electron spin and other perturbations. As we shall see,

'small perturbations sometimes have major consequences. For one-electron

atoms other than hydrogen, these perturbations can play dominant roles.

‘We turn now to the problem of the Stark structure of simple non-

hydrogenic atoms,
2.4. Stark structure of the alkali-metal atoms

2.4.1. A digression on quantum defects:
Rydberg’s quantum defect formula, eq. (2.7), was discovered empirically,
but the formula can be motivated by simple physical arguments. It is
helpful to understand these, for we shall frequently use quantum defects
to parameterize departures of the potential from the Coulomb potential.
For a single electron in a neutral atom moving around a core of closed
shell electrons, the potential at large distances is —1/r. At short dis-
tances the potential is much stronger, dropping to —Z/r near the
nucleus. The potential departs from —1/r rather abruptly as r ap-
proaches the radius of the core, typically a few atomic units, For highly
excited states, however, the electron spends most of its time outside the

core, and the core can be treated as a perturbation. it should be pointed

out, however, that the perturbation does not vanish as the principle
quantum number increases; its effect is constant and the electron’s state
never becomes hydrogenic.

We can make the argument quantitative by employing a WKB solution
to the radial equation R(r). If we let U(r) = rR(r), Schrodinger's
equation for hydrogen is, in atomic units,

E{e+ 1 ’
U+ 2 E+l——(—)—)U=0. (2.36)
¥ 2,2

The cigenstates for U(r) can be obtained from the phase integrai
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equation,
b 1

[kar = (p + i)ff. (2.37)

d
where p is an integer and

24 172
I P N (R
k.= |2E+ ;T (2.38)

The limits of the integral are the zeros of the integrand. In &, we have
made the semiclassical correspondence {(f + 1) — (£ + 1)*. Evaluation
of the integral yields,

P
D R 1 — &r 1 — 1“(B+%)2/f
k.r e [2 A ]ﬁf—l-} sin (2——A-——

a

=(p+i)m, (2.39)

where e = —2Fand A = 2(1 + 2E(¢+ 1)?)/2 The resultis #/¢ — (£ +
Dr=(p+ Hror E= —(1/2n*) wheren =p + ( + 1.

We can apply the argument to an alkali by modifying eq. (2.38). Since
the potential is approximately ~1/r outside of the core, we have

‘= [[2E+2V(r)*(E’+%)2/r2]]/2, r<r,

2.40
kc‘ r>rc. ( )

Equation (2.37) becomes
fbkdr = (p+)m, (2.41)
Py ,
where a’ is the new inner turning point. This can be rewritten
e 7o b . 1
(Lkdr j;kcdr) +j;kcdr- (p+-i}7r. (2.42)
The integrals within the brackets are restricted to the core region where

| V(r)| and | 1/r| are both much greater than | £|. If we simply neglect
E, the bracketed term is a constant phase, ¢,. We have

bedr=(p,-241
f;kcdr—-(p 7r+2)f: | (2.43)

)
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which is similar to eq. (2.37) and has the solution

g _L_ b | (2.44)

where 8, = ¢,/7. The quantum defect is a measure of the phase shift
arising from the non-Coulombic potential. (It can be shown that ¢, is also
the scattering phase shift for a low energy electron incident on the ionic
core.) The accuracy of the approximation obviously depends on the ratio
of E to ¥ near the core. | Ej~ in?, and | V|> 1/r., so that the ratio is
less than r,/2n?. Since r, is a few atomic units, the approximation is very

.good for large n. If higher accuracy is needed, it is a simple matter to

expand the phase integral in this ratio. In this case the quantum defect

.becomes a slowly varying power series in the energy.

It is apparent that amy short range perturbation of the Coulomb
potential can be characterized by a set of quantum defects, which is why
they make such a useful set of parameters for studying electronic
structure in non-Coulombic fields. In general, the quantum defects are
very small once the angular momentum is large enough for the centri-
fugal barrier to exclude classically the electron from the perturbed region.
For the alkalis, the quantum defects are large for f less than or equal to
the maximum angular momentum of the core, and then rapidly drop with
increasing f. Some representative values are given in table 1.

The natural unit of energy for highly excited atoms is the separation
between adjacent terms:

1 1 )

-1 .41 (2.45)

AE, = —
—e 2n? 2(n+l)2 n?

In terms of this unit the displacement of a level from the hydrogenic
value is

AE(S) = ——— — — =~ 2 = QAE (2.46)
0- .

2(n - 6‘)2 2n? n’

Table 1

Alkali E=0 1 -2 3

Lithium 0.4 005 < 0.0} < 0.01

Sodium 1.35 0.85 0.014 < (.01

Potassium 218 1.7 027 <00!I.

Rubidium 314 2.65 L3 ?

Cesivm 4.1 36 2.5 6.03
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2.4.2. Stark structure of the alkalis

The single electron Hamiltonian containing a central potential plus the
Stark interaction + Fz permits Schridinger’s equation to be separated
only if the central potential is exactly —1/r. Although the vast body of
theoretical effort on atoms in strong fields has been on the hydrogen
atom, it turns out that the hydrogen problem is in many ways unique. As
mentioned previously, the static and dynamical properties of a one-
electron atom can be dramatically altered by a small departure from a
pure Coulomb potential. The alkali metal atoms provide excellent theo-
retical and experimental testing grounds for studying these effects.

The structure of alkalis in strong fields must be analyzed by perturba-
tion theory or some other approximation method. Numerical methods
based on solving the secular equation have been employed with consider-
able success [8). The natural basis set is the spherical (angular momen-
turn) representation

Y n*, 0, m) = R{(n*, 1)Y"(4, ¢), (2.47)

where n* = n — 4, is the effective quantum number and ¥/™(4, ¢) is a
spherical harmonic. Radial matrix elements of the electric field operator
Fz = Frcos # can be calculated by power series methods or by numerical
integration of the radial equation. The angular part gives the dipole
selection rules AL = *1, Am = (. The matrix representing the Hamilto-
nian is diagonalized by computer to yield the eigenenergies at each
desired field.

The results for one such computation are shown in fig. 6. The atom is
lithium, and the |m| = 1 states are shown in the vicinity of » = 15, This
is a particularly simple case because only the p state has a significant
quantum defect, &, = 0.05. For {>1 the quantum defects are, for
purposes here, negligible. The effect of 8, is visible at zero field: the
15p state is noticeably depressed below the degenerate manifold of states
n=15|m|=1,0=2,...,14. At low electric fields the p state displays a
second order Stark shift while the degenerate manifold shows a first
order splitting. Above 500 V /cm the Stark interaction is so large that the
p state has a first order Stark effect and the diagram appears to be
hydrogenic,

The m = 0 states provide an interesting contrast to the | m|= 1 states.
The s-state quantum defect is 0.4, which means that the s levels lie almost
midway between the manifolds of adjacent terms (n,m =0, 0=
1,2, ...). Because the s levels are repelted almost equally by the p states
above and below, they display extremely weak second order Stark effect
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Fig, 6. Stark structure of lithium, | m|= 1, in the vicinity of n = 15. (From ref. [8].)

at low fields. As fig. 7 shows, however, the s states dramatically alter the
Stark structure of all the states. All the Stark levels repel strongly and at
high fietds the slopes of the levels, which are proportional to t.he effective
dipole moment, bear essentially no relation to the low field sloples.
Occasional degeneracies (apparent level crossings) appear to occur with
no particular order. - .

1t is striking that a single quantum defect can so radically alter the
Stark structure of an atom. The physical explanation lies in the fact that
if one regards the hydrogenic Stark states as a linear superposition of
spherical states, then a great deal of cancellation of wavefunctio.ns occurs
to produce the dipole charge distributions that are shown in fig. 2.
Removing a single spherical state from the manifold upsets the delicate
balance, and causes a major redistribution of charge.

The Stark structure of the heavier alkalis can be even more compl;x,
particularly when fine structure is important enough to be included.
Nevertheless, it can be understood in detail by following the approach we
have used for lithium [8].

2.4.3. Experimental observation of the Stark structure of the alkalis

The Stark structures of the alkali Rydberg states have been studied
experimentally with a combination of atomic beam and tunable 1asF:r
techniques. By using atomic beams, the atoms can be observed in



Atoms in very strong fields

440 LllliLLlilll\lLl\\I[Illll\\illlllllllllllklll\III[III\I_LLl—:-

450 — 165

460 \

m

Fa)

[va)

o)

|
””|lI”i””l“”l””{”“I””{””I””}—””

240 \l\l!llT:|HH‘!IIIFIHll\\r\l!I:WTIHI(HTTTlllll||||l|rr
0 1000 2000 3000 4000 5000 68000
FIELD (V&m)

Fig. 7. Stark structure of lithium, m = 0, in the vicinity of n = 15. The large quantum
defect of the s state radically alters the level structure (cf. fig. 6). (From ref. [8).)

isolation or in well controlled applied fields. The tunable lasers allow the
atom to be prepared in well resolved states. Figure 8 shows a typical
experimental setup. The atomic beam and laser beams intersect in a small
interaction volume. Generally two or three optical photons are
needed to excite an atom to a high-n level. In lithium, for instance, three
lasers are used. The lasers are pulsed; 5 ns pulse length is typical. If the
lasers are all on resonance thousands of atoms are left in a Rydberg state
at the end of the pulse. Rydberg states are relatively long lived against
spontaneous radiative decay, typically several microseconds or longer,
and for many purposes they can be regarded as stable, The atom can be
most eastly detected with a strong electric field which ionizes them by a
process we shall discuss in the next lecture, The ionizing field is provided
by a high voltage pulse applied to two field plates on either side of the
interaction region. The ionizing pulse is applied roughly 1-3 us following
the laser pulses. The emitted electrons or ions pass through a grid in the
field plate and are detected by an electron multiplier or other charge-
sensitive device. For studying the Stark structure, a DC electric field is
applied to the field plates. A record of the integrated ionization current is
stored by computer as the laser is swept across the energy region of
interest. The process is repeated at successively higher electric fields. The
spectra can then be displayed in an array with each plot located at its
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Fig. 8. Experimental setup for observing Stark structure of Rydberg atoms: A, atomic beam
source; B, electric field plates; C, pulsed laser beams; D, electron multiplier.

electric field value. The result is an experimental map of the energy levels
in an applied field. An example is shown in fig. 9. (The energy levels are
most conspicuous when viewed with the eye close to the planq of the
paper to the right or the left.) For quantitative study,‘lhe Fhe.oretlcai ar!d
experimental plots are superposed; the agreement is within the laser
resolution. ' ;
Experimentat Stark plots for the m = § states of lithium are sho‘wn m
fig. 10. The intensity variations are due lo variations in the oscillator
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Fig. 9. Experimental map of the Stark structure of lithium, | m|= | {cf. fig. 6). (From ref.
18)
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Fig. 10. Experimental map of the Stark structure of lithium, |m| = 0. The variations in
oscillator strength are not shown in the theoretical plot {fig. 7), but they are in good
agreement with the calculated values. (From ref. [8].)

strength. The laser excites the transition 35s—np, and the intensity of the
excitation signal depends on the amount of p-state in each Stark level.
Calculating the eigenvectors and eigenvalues for the Stark states are
similar problems, and both agree with the experiment within the experi-
mental resolution.

2.4.4. Level anti-crossings

Because Stark levels cross for the non-relativistic case in hydrogen, the
size of the anti-crossings provides a sensitive test of our understanding of
the Stark structure of quasi-hydrogenic atoms, Interaction between levels
arc smallest for states which have little overlap, which means states with
opposite Stark slopes. They are also smallest for systems with small
quantum defects. Figure 11 shows the calculated and measured level
separation for the uppermost member of the n = 18, | m|= 1 manifold of
lithium, and the second lowest member of the n = 19, | m|= | manifold.
The largest quantum defect is 8, = 0.05 (a cw laser was used here to
improve the experimental resolution). Theory and experiment agree to
within 0.01 cm™', which is the estimated limit of numerical accuracy. An
interesting feature is the disappearance of one level at the anticrossing.
This is because the eigenstates at the anti-crossings are symmetric and
antisymmetric combinations of the two unperturbed states. (The per-
turbation is the core:potential.) The ‘matrix elements between the 3s and
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Fig. 11. An experimental plot of a level anti-crossing in lithitm. The levels are n = 18,
k=16,|m|=1and n =19, k= —15, ] m|= |. The solid kines are the calculated energy
levels. Disappearance of one level at the anti-crossing is due to destructive interfercnce
between- the matrix elements. In the other level the interference is constructive and the
intensity is augmented. (From ref. [8].) :

these Rydberg states add for one level and subtract for the other, with
the result that the oscillator strength is transferred almost entirely to a
single level.

2.4.5. Summary B

We have shown that the Stark structure of one-electron atoms can be
found from knowledge of the zero-field energies. If one or more of the
quantum defects is large, typically large compared to 0.05, the Stark
structure bears little resemblance to that of hydrogen. Nevertheless, we
can calculate the structure reliably, an important step toward understand-

ing the dynamical properties. Measurements of the structure give us

confidence that the calculations are realistic. The ability to observe
individual levels permits us to study further properties of atoms in strong
electric fields with a clear understanding of just what states we are
examining.

3. Ionization processes in a static electric field
3.1, Classical considerations
Classical arguments based on energy consideration can provide some

useful insights into field ionization. As our starting point we will consider
an overly simplistic classical model which turns out to be very helpful; in
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many applications the model gives more useful results than elaborate
quantum mechanical treatments!

The potential for a single electron in a Coulomb field and an applied
field F along the negative z-axis is

Vel(r) = *% + Fz. (3.1)

Vr has a maximum on the z-axis at z = — 1YF . This maximum is actually

a saddlepoint since ¥ increases off the z-axis. The saddlepoint potential
is

V, = —2/F.. | : (32)
For a state to be bound, its-energy must be below the Vsp, or
E < —2/F. (3.3)

According to this picture, if the electric field applied to a Rydberg atom
is slowly increased, the atom will ionize at a critical value
E2
F; = T . (34)

For a crude estimate of the critical field, we can neglect the Stark effect

and take E = ~1/(2n?). This yields

1
* =

E 16n*" (33)
In laboratory unmits, F* = 3.2 X 10%/n* V/cm: for n = 30, F* = 400
V¥ /cm. In many cases, ionization actually occurs at a field close to 7
For instance, if a Rydberg state is populated and an electric field pulse is
then applied, the atoms often start to ionize abruptly when the pulse
amplitude reaches a field close to F*. An example of this threshold
behavior is shown in fig. 12, and a plot of the measured threshold field
for a number of s-states in sodium is shown in fig, 13. For an alkali in an
s-state we might expect to replace the principal quantum number by the
effective principal quantum number n* = n — §,, so that eq. (3.5) be-
comes F* = 1/(16n*). The data show the predicted 1 /n** dependence.
The displacement between the experimental and theoretical plots is not
surprising in view of the fact that we have neglected the shift in energy
due to the Stark effect.

The data in fig. 13 show that, in this case at least, field ionization
obeys a simple weli-defined scaling law. In fact, the threshold field is so
well-defined that by measuring it one can often determine the state of the
atom. The ability to analyze an atom’s state from its ionization properties
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Fig. 12. Icnization signal vs. amplitude of clectric field for pulsed ionization of the 3s state
of sodium.

has made field ionization an extremely important tool in the study of
Rydberg atoms. 7 ‘

Field ionization has a number of other features which make it expen-
mentally attractive for detecting Rydberg atoms. It is extremely efficient;
above the critical field essentially every Rydberg atom is ionized, and the
electron or ion can be detected with an electron multiplier or other
charge sensitive device with close to 100% efficiency. Field ionization is
highly selective; atoms in low-lying states have effectively zero probabil-
ity of being ionized. Thus a very small number of Ryberg atoms can be
detected in the presence of a large background population. Experiments
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Fig. ik Tamshold ficld vs. effective quantum number for a sequence of sodium s states.
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i which single atoms are detected are not uncommon. Finally, field
ionization detectors are relatively inexpensive and simple to construct.
In deriving the criterion for stability we neglected the atom’s angular
momentum. We can, however, include angular momentum into our
classical model by a simple argument [9]. Although total angular
momentum is not a constant of motion due to the non-central field F, J,
the component of angular momentum about the z axis, s conserved,
Denoting the magnitude of J, by m, we have an effective potential

1 2
Vet = ‘?*FZ‘P%‘, (3.6)

where o = x> + y?. The effect of the last term, the centrifugal potential,
is to displace the saddlepoint from the z-axis and to raise it. The result is
a slight correction to eq. (3.3), which becomes

E < —2/F + | m| F3¥* + &m?F. (3.7)

For low | m | states, the last two terms represent a small correction which
shifts the threshold field by a few percent at most.

These ideas have been demonstrated experimentally by panoramic
studies of field ionization in lithium [10]. Rydberg states were excited
using the methods described earlier. A de field was applied to exhibit the
Stark structure. To show the onset of spontaneous field lonization, the
high voltage pulse was delayed a few microseconds and a timing gate was
used to reject signals which appeared prior to that delay. With this
scheme, stable Rydberg atoms produced signals, but atoms which sponta-
neously ionized during the delay period did not. When the signals were
plotted so as to produce a Stark structure map, the levels simply vanished
at the critical field. An example is shown in fig. 14. The states are
| m|== 1 levels of lithium in the vicinity of # = 19. The dotted line is the
locus given by eq. (3.7). The agreement of experiment with the predicted
value for the threshold field is striking and there seems no reason to
doubt that the simple classical model is, in some sense, realistic. Never-
theless, as we shall see, serious difficulties remain.

It should be pointed out that one can do a far more rigorous classical
analysis .than the above. The two-dimensional Kepler problem in an
applied field has been solved to yield values for the critical ficld at which
the motion becomes unbound [11}. The results disagree markedly with
those of our simple one-dimensional treatment, and so do the quantum
mechanical resulis, which we now consider.
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Disappearance of the signal occurs when the ionization rate exceeds 3 X 107 5™ The
dotted line is the locus of stability given by eq. (3.17). (From ref. {10].)

3.2, Tunneling and field ionization

It is convenient to rewrite Schridinger’s equations for hydrogen iq an
applied ficld by letling f, (&) = ‘/E (&) gy = yn g(n). Equations
(2.23) become

" E Z 1-m F PN
f7+ 5 + : + e y) )f
E Zz 1 - mz F .
" D4+ 2 + = = { (388.,b) .
g ¥ (2 - ar 278
If we let
o B4 1om F | 3.9
2 E Z, 1—m? F
= = + — + =7, 3.9b
(kom) =5+ + P 77 (3.9b)
then egs. (3.8) become: :
k()1 =0, g"+(k(n)g=0 (3.10a,b)
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Fig. 15. Sketches of the effective ¢nergy function in an applied electric field for the

parabolic functions f1(£) and fy{x). The allowed regions are shaded. The zero field values
are shown dashed.

These equations describe one-dimensional motion with energy k2/2.
Figure 15 shows the behavior of &} and k2. The allowed region is shaded.
The ¢ motion is confined to the region £, < £< ¢,: the » motion is
allowed in the region 7, < 7 < g, and also » > 5, where 7_is an outer
turning point due to the field. It is evident that a system initially in the
inner allowed region of # will eventually escape by tunneling through the
forbidden region , < 7 < p,.

For high quantum numbers, this problem naturally lends itself to a
WKB treatment. Let us assume for the moment that the tunneling rate is

low and that the energy of the system is known. The WKB solution for
the &motion is

f:bkt(f)dp = (n. +%)fr (3.11)

where the integer n, has the same meaning as in eq. (2.27). Equation
(3.11) can be treated as an eigenvalue problem for Z,, whose solution
consequently fixes the value Z, = 1 — Z,. (For the case of nuclear charge
Z, this relation becomes Z, = Z — Z,.) Thus the &, solution also leads to
a solution for &k, which will satisfy

fﬂbkz(ﬂ)dﬂ = ("z + %)w (3.12)

T

€

provided that the energy is correct. The barrier penetration factor is
7e ' :
exp( 2" I ka(n) |41 (3.13)
fr.a

and the ionization rate is

r= exp(—-Zj;:Ikz(r}qu)/ (4_[:}%) (3.14)

The denominator is the classical pcriod' of a particle trapped in the
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~ potential well.

The complication in carrying out such a calculation is that in general
the energy is not known a priori, so that eqs. (3.11) and (3.12) have to be
treated as a pair of coupled eigenvalue equations. The separation para-
meter, energy and ionization rate must all be obtained by some self-
consistent procedure. Rice and Good {12] solved this problem using a
WKB technique, and a compilation of tunneling rates using their method
has been prepared by Bailey et al. [13]. Some typical results for n = 14
are shown in fig. 16. The curves are labeled by the quantum riumbers
(n, n,, ny,[m|). The most striking feature of these curves is their steep-
ness: the ionization rate increases by almost 10° as the field increases by
20%. This rapid rise is suggestive of an abrupt threshold for the onset of
ionization, but this idea must be treated with some caution.

The experimental points in fig. 16 were obtained by measuring the
distribution in time for the appearance of a single ion after excitation of
an atom in a strong electric field [14]. Sodium rather than hydrogen was
used, but for m = 2 states the non-hydrogenic perturbations were found
to be negligible. The slope of the experimental data agrees well with the
calculation; the slight displacement in field is within the uncertainty in
the absolute calibration of the field.

Damburg and Kolosov [15] obtained an analytical expression for the
field ionization rate from an asymptotic treatment of eq. (3.8b). Solutions
in the two allowed regions were asymptoticaily joined within the forbid-
den region. Joining the solutions required varying the energy about the
bound state solution, that is, by introducing an energy width into the
state; the lifetime was then obtained from the energy width. The result is

(4R) e
"~ nPny (ny +m)!
chp[—~_%R — 1n*F(34n,(ny + m)
+46n2 + Tm? + 23m + %1)], (3.15)

where R = (¥ 2EY/*/F. E is the energy calculated through 4th order in
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! ' Fig. 17. “Classical” ficld ionization vs. tunneling for n = 14 levels of hydrogen. The field
where the ionization rate due to tunneling equals the radiative decay rate is indicated by a
dot. Level broadening due to ionization becomes conspicuous shortly above this value. The

classical threshold field is indicated by the dashed line.

! !
J ) We have shown experimental data which supports each description and
so il'is natural to expect that the two descriptions are consistent, the
' classical being a limiting result of the quantum mechanical treatment.
Matters, as it turns out, are more complicated. .
Figure 17 shows several hydrogenic energy levels of the # = 19 mani-
fold. Spontaneous field ionization shortens the life of each state and
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Fig. 16. Experimental ionization rates for a hydrogen-like state of sodium vs. applied
electric field. The state is n =14, n; =0, n, =11, |m|= 2. The dashed lines are the

theoretical values of Rice and Good (ref. [12]); the solid line is interpolated from their
results, (From ref. [14].)
the field F. The rates at low fields are in good agreement with results

from numerical solutions to egs. (3.8).

At high ionization rates, all approximation methods break down. The
problem of calculating the complex energy of hydrogen in a strong field
continues to attract wide attention, but rather than to discuss more
elegant theoretical methods let us turn to some rather fundamental

problems in understanding how real atoms ionize.

causes an energy broadening

E =T.
The level widths AE, are shown; they increase so rapidly with field that
the levels rather abruptly disappear. The classical threshold, eq. (3.7), is
shown on the same plot. It has little to do with the disappearance of
levels due to tunneling. Note, for instance, that tunneling causes the
levels to ionize with increasing field in order of increasing energy,
whereas the classical threshold predicts the reverse behavior. For the
upper levels the threshold field and tunneling field differ by factors of

greater than two!
3.4. Resolution of the discrepant views

The “saddlepoint” model provides a simple answer to the question “at
what field is ionization energetically possible?” It has essentially nothing

3.3. Discrepant views of field ionization
1o say about the ionization rate, though the data in fig. 14, as well as a

We have discussed field ionization from the simplest considerations of
energy and from the elementary ideas of quantum mechanical tunneling.
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great many other observations, show that the rate grows very rapidly at
the threshold field. These observations are generally on alkali metals or
other simple atoms; the fact that the atoms are not exactly hydrogenic is
crucial.

Let us consider the broadening of a particular Stark level of hydrogen,
A, as shown in fig. 18. Note that many levels from higher terms cross 4,
and that these levels may be extremely broad due to field ionization,
Thus in the presence of an electric field, each Stark level is actually
embedded in a “sea” of higher lying levels, both discrete and continuous,

The degenerate “sea” of levels has no effect on the dynamics of
hydrogen because the states possess definite symmetry. This is a dynami-
cal symmetry [16] inherent in the electric field problem with a Coulomb
potential. The separability of Schrédinger’s equation in parabolic coordi-
nates is another consequence of the symmetry. The symmetry is only
exact, however, for a pure Coulomb potential. Any perturbation to the
potential, for instance the core interaction in an alkali metal atom, will
upset the symmetry and cause the hydrogenic Stark levels to mix. One
consequence of such a perturbation is the anti-crossing displayed by
alkali atom Stark levels, as shown in fig. 8. A second consequence is the
mixing of a stable state with a decaying state, causing the former also to
decay. This is the underlying mechanism of field ionization for fields
above the classical threshold value but below the value for which tunnel-
ing is important.

We can make these ideas quantitative by considering a simple example
of a two level system. The energies, W, and W,, respectively depend on
the field, and in the absence of any perturbation levels are degenerate at
some value of the field, F,. We shall assume that level a decays by
ionization at rate I, (which can also depend on the field), but that the

Energy

Field —= Field —

Fig. 18. Sketch of Stark levels of hydrogen in strong electric fields (left), and of an alkali
metal atom (right). Hydrogenic Stark levels do not interact; in an alkali the levels can mix,
causing an otherwise stable level to decay. The level widths indicate the decay rates.
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decay rate of state b is negligible. The states are coupled by a perturba-
tion, V. . _

If we treat the energies as complex quantities then the eigenvalue
equation is

= - v .

Wo=ilo/2= W = 0. (3.17)
V* W,—-w

For simplicity, consider the solution at the level crossing, where W, = W,

= W, for the case [, » V. The energies are, approximately

W= W,—il,/2, W,= W,—2|VI}}/T,. (3.18)

a

The real paris of the energy are equal, showing a violation of the
“no-crossing” theorem. Such behavior was first pointed out by Lamb [17]
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Fig. 19, Field ionization at a level crossing, as observed in sodium. Dots are cxperimenza‘
points, solid lines are calculated vatues. (From ref. [14].)
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in his discussion of the effect of radiative damping on the fine structure
of hydrogen. More importantly, state b has an imaginary part. The
damping rate T} = 4F?/T, is small compared to T,. but in many
experimental situations it can be significant.

The situation is, in general, more complicated than this model suggests
due to the simultaneous interaction of many levels. Nevertheiess, in one
case where only a few levels are important, the analysis gives good
agreement with observation, as shown in fig. 19,

There is a close analogy between field ionization in the “classical”
region and autoionization in a multi-electron atom. In each case degener-
ate stable and continuum levels are coupled by a perturbation which
mixes some of the continuum character into the stable state. If the
perturbation is known the decay rate can be calculated.

The basic principle of field ionization appears to be well understood,
but a general theory for calculating the ionization rates for one-electron
atoms is lacking. Although major features of field ionization can often be
predicted with confidence, many applications require a detailed under-
standing of the ionization rates, frequently for adjacent levels. In such
cases there is at present no alternative to careful experimental observa-
tions. There is a clear need for new theoretical approaches.

4. Atoms in strong magnetic fields
4.1. Background

Magnetic fields have played a useful and occasionally very important role
throughout the history of atomic physics. The Zeeman effect, for exam-
ple, provided the first direct evidence of the clectromagnetic origin of
light, while the Stern-Gerlach experiment proved the reality of spatial
quantization. Over the years, studies of atom-field interactions have
provided important keys to understanding angular momentum coupling
schemes and various spin-dependent interactions in atoms. The magnetic
interaction in these studies was generally feeble, however, because the
Zeeman effect is intrinsically tiny compared to the electrostatic interac-
tion. There are two reasons for this. First, laboratory-size magnetic fields
are small. The atomic unit of field is e/a3 = 1.7 X 10* T (1 tesla = 104
gauss), whereas useful laboratory fields are generally less than 30 T.
Second, the coupling constant for atoms with the magnetic field, the
Bohr magneton, g, is also small (#y = a/2 atomic units). In contrast,
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electric dipole matrix elements tend to grow as n%. Thus, even though the
Zeeman effect is first order while the Stark effect is second order, the
latter can be much larger due to the possibility of giant polarizability.

At very high magnetic fields, however, the diamagnetic interaction,
which increases quadratically with ficld, is important. For highly excited
atoms the diamagnetic susceptibility actually becomes gigantic, offering
the opportunity of studying atomic structure experimentally under very
strong field conditions. Part of the attractiveness of these experiments is
that the problem has no general solution. In fact, our theoretical under-
standing is so poor even qualitative insight is lacking. It can be argued
that the non-relativistic problem of hydrogen in a magnetic field of
arbitrary strength is the principal remaining unsolved problem in the
elementary quantum mechanics of a one-electron atom. In such a situa-
tion, one can expect that new experiments will lead to new theoretical
insights. As we shall see, this is exactly the case.

4.2. The basic Hamiltonian

The interaction of a charged particle ¢ with a magnetic field B = v X A4,
where 4 is the vector potential, is governed by the canonical momentum

p = mv+-g-A, (4.1)
so that the classical Hamiltonian is
-1 ( _q )’
H=>-(p 94" (4.2)

If we consider an electron of charge —e under the combined influence
of an applied field and a central potential V(r), then the Hamiltonian in
atomic units is, neglecting clectron spin

H=1(p+ad) + v(r). (4.3)
The most convenient gauge for treating a uniform field is the Coulomb
gauge in which .
v-4=0 (4.4)
In this gauge, the Hamiltonian becomes

. 2
H= % + V(r) + ap - A + $a?42, (4.5)
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For a uniform field along the z-axis A = (B X r)/2, and we have
H = H,+ %L B+ %alﬂzrzsinzﬁ. (4.6)

The first term is the Hamiltonian for the free atom, the second term is
the orbital paramagnetic interaction and the last term is the diamagnetic
interaction, H,. Our major concern will be the structure in fields where
the diamagnetic'interaction plays a principle role, but for completeness
we shall write the Hamiltonian with the major spin-dependent terms
explicitly displayed:

H=H,+H +H;+H + H, (4'7)
where
=2 = a 2,22
H,=>(L+gS)-B,  Hy=-gB'risnd, (4.8a,b)
H =¢(r)L - 8§, H,=a(l-J) +%g;I-B. (4.8¢,d)

g. and g are the electronic and nuclear g factors, respectively, while §
and I are their respective spins. &r) is the radial spin orbit operator, and
a is the hyperfine constant.

4.3. Low field solution

At low magnetic fields the spin orbit interaction couples L and § to form
total electron angular momentum J, and the hyperfine interaction cou-
ples J and I to form F. As the field increases the electron-field interaction
H, exceeds the hyperfine interaction H, and, at a much higher field,
eventual]y exceeds the spin-orbit interaction H, (Paschen—Back effect).
The electronic energy is not significantly altered by any of these interac-
tions, and analyzing their effects is chiefly a matter of properly recou-
pling the angular momentum [2]. Such problems have ben extensively
studied, and since our goal is to understand high field behavior where
these interactions are unimportant, let us simply neglect all effects of
electronic and nuclear spin, and deal with a hypothetical hydrogen atom
governed by the Hamiltonian
2 1

=P __ .92, . L)
H 5 r+2L B+8a28rsmﬂ. (4.9)
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If we neglect the last term and treat the third as a perturbation, we obtain

E(n,t,m) = ~~21? + %mB. | | (4.10)
£ remains a good quantum number, and each manifold (n, ) is separated
into 2£ -+ 1 sublevels split by the lincar Zeeman encrgy (a/2)B.

The diamagnetic interaction #, = o?B?r?sin’4/8 couples states with
Af=0, =2, and An unrestricted. The only good quantum numbers are
m, and parity. The diagonal matrix element for m = 0 orm = =1 is {20]

(n,t,m| Hy|nt,m)

2B (st 1 -3t + D]+ =1+ m?) @1
B e+ 32— 1) - @1

If we consider the 4p, m = 1, states of hydrogen, the diamagnetic and
paramagnetic terms are equal at B = 2 X 107 gauss, which sets the scale
for what we might call “strong diamagnetism.” (The H, line (n = 4 ~ 2)
has actually been observed at 2 X 10* T in the spectrum from a white
dwarf star [18}) 2 X 10* T cannot really be considered a strong field as
far as n = 4 states are concerned, however, for the diamagnetic interac-
tion remains small compared to the electronic interaction. For true strong
field behavior, the diamagnetic energy must be comparable to the
Coulomb energy.

At low fields n is an approximate quantum number because the
n-mixing perturbations are second order. The off-diagonal elements of Hy
mix all members of each term having the same parity and the same value
of m,. For hydrogen, where all the states within a a term are degenerate,
Hj can be diagonalized by some operator which transforms the spherical
representation into what we shall call the magnetic representation. The
situation is reminiscent of the transformation from the spherical to the
parabolic representation, except that the properties of the latter are
known (the transformation coefficients are Clebsch-Gordon coefficients
[19]), whereas the properties of the former are not, Nevertheless, the
transformation can be carried out numerically. The result of such a
computation is shown in fig. 20, which shows the charge density for the
n =28 m=0 “magnetic states”. We can label the states within the
manifold (n, m) by a quantum number 4 which has the values ||,
{m+1],...,(n — 1).-Since parity is also a good quantum number, the
submamfold is further split into two groups with d even or odd. The
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diamagnetic energy for these states is sketched in fig. 21. If we write the
diamagnetic energy as

(Hy)= k(d)B? (4.12)

then it can be seen that k{d) has a maximum value for the state most
spread out in the x—y plane, and a minimum value for the state localized
to the z-axis. These are respectively labeled by d = 0 and d = 7 in fig. 20.
Physically, the d = 0 state has the largest diamagnetic susceptibility in
the n = 8 manifold since (x* + y?) is a maximum, whereas the ¢ = 7
state has the smallest. The low f states have the largest values of (r?).
Consequently, they have the largest diamagnetic energy, so that they tend
to be correlated with the low 4 states. Similarly, high £ states tend to be
correlated with high d states. As we shall see, this correlation can play an
important role in the appearance of diamagnetic spectra. Nevertheless, it
must be kept in mind that { is completely mixed by the diamagnetic
interaction, and that each state is composed of all possible value of
having the same parity and same value of m,.

4.3.1. Solution at slightly higher field
As the magnetic field is increased, (H,) starts to become significant
compared to the term separation. When this occurs, matrix elements of
H, which are off-diagonal in n become important. Again, lacking an
analytical solution for the eigenstates and energies, we can resort to
numerical computation by expanding the basis set to include adjacent
terms with the same parity and m,. The result for one such computation
is shown In fig. 22. (The states are even parity, m = ). When the terms
overlap the levels appear to repel strongly, and the regularities are lost.
Somewhat unexpectedly, the picture looks simple at higher values of n.
Figure 23 shqws the level structure in the vicinity of # = 28 for even
parity, m = 1 states. The diamagnetic interaction appears to be essen-
tially linear in B* even where the terms overlap. The experimental spectra
overlayed on the plot are of Na [21]. The excitation was a p-d transition
so that the intensity of each level is proportional to the amount of d state
in the level. For the reasons explained above, the intensity is strongest for
the highest level.

4.4. Very high field solution

In very high magnetic fields it is natural to regard the Coulomb interac-
tion as a perturbation and take the free electron problem as the starting

D. Kieppner

Fig. 20. Plots of charge density for n = 8, | m|=
drawn as in fig. 1. The index d serves to label the
known operator.

0 states of hydrogen in a magnetic field,
states but it is not the eigenvalue of any
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Fig. 20 continued.

&
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Energy

Fig. 21. Sketch of the diamagnetic energy vs. the square of the magnetic field for n = 8,
m = 0 levels of hydrogen. Even parity levels are solid; odd parity levels are dashed.

point. The theory for a free electron in a magnetic field was initially
worked out by Landau, and the details are available in many quantum
mechanics texts. The Hamiltonian is '

H, = i(p+ ad)’. (4.13)
For a uniform field along the 7 axis the energy can be written
E=E +E, , (4.14)

o

-

3]

n=6

Energy (10%¢m™)

[N

i X } L I 1

2 3 4
B3 tesla)

Fig. 22. Energy levels of even parity | m]= 0 states of hydrogen in the vicinity of n = 6,
plotted on a scale quadratic in B. Note the strong repulsions between many levels. (From
ref. [25]) -
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Fig. 23. Calcuiated and observed diamagnetic structure of even parity [ m|= 2 states of
sedium vs. field (plotted on a squared scale). (From ref. [21].,)

where

E, = (n.+$)ha, = (n, +1)aB: (4.15)

n. 1s an integer and «, is the cyclotron frequency eB/mc (= aB atomic
units). E, = k2/2 is the energy of free motion along the field. The
propagation vector k is unrestricted.

The wave function is, in cylindrical coordinates,

o m k) = NS, . (p)eimteit:, {4.16)

where m is the magnetic quantum number, N is for normalization, and

] 2
Sim() = plmle 2 /ARLIm (2 /2R2), (4.17)
R=1{(eB/hc)" "2 = (aB) /2 is the cyclotron radius, n,=n + (m +
|mf)/2. _
If we attempt to treat the Coulomb interaction as a perturbation by
writing
i

@D

we are immediately faced with the problem that the magnetic interaction
vanishes along the field whereas the Coulomb interaction does not, sa
that a perturbative treatment is fundamentally inadequate. To makd
matters worse, the Hamiltonian eq. (4.18),
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2
H= %+%L-B+%a282pz*"“—l——~. (4.19)
_ ]/pz_’_zz

is inseparable and we lack any sort of general solution,

One promising approach to the problem is the so-called adiabatic
approximation [22] which rests on the assumption that frequency of the
transverse motion is high compared to the frequency of longitudinal
motion. The z motion takes place in an effective potential which is

- evaluated by averaging the longitudinal Coulomb interaction over many

cycles of the cyclotron frequency. The method works well for states
which have low longitudinal momentum, that is, states which are local-
ized in the x—y plane, but it has not yet been extended to states of
arbitrary z-momentum. - :

4.5. The quasi-Landau resonances

In 1969 Garton and Tomkins [23] discovered a periodic modulation in
the absorption spectrum of barium in a field of 2.5 T. The modulation
extended well above the zero field ionization limit of the atom and had a
period of close to 1.5, at the limit, (@, is the cyclotron frequency). At
higher energy the period approached «,, as one might expect for a free
electron. The modulation was successfully explained by Edmonds [24]
and Starace {22] using a semiclassical approach. Their analysis shows
both the power and the limitations of the adiabatic approximation.

An important clue to the nature of the quasi-Landau resonances is that
they are observed in the ¢ spectrum (Amy= =1) but not in the #
spectrum (Am, = 0). The o lines arise from states which tend to be
localized in the x—y plane, whereas the # line comes from a state with a
node in the x-y plane. Edmonds and ‘Starace argued that a reasonable -
approximation for the o states is to neglect the z motion and treat the
problem as two dimensional. The effective potential is

1, m?~}

— a 1 2,2
. + . 4.2
V(p) + _ — + sz 3 ?B%p (4.20)
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The energy levels can then be found from a WKB argument
fpz(ZE—-ZV(p))l/zdp = (n+%)w, (4.21)
Pt

where p, and p, are the inner and outer turning points, respectively. The
separation between levels can be found by evaluating

dE . T

dn fp’[zE —2w(p)]*dp

(4.22)

At E = 0 the result is dE/dn = 1.5 «,. Numerical evaluation for other
energies shows that the spacing slowly decreases as the energy becomes
higher.

The quasi-Landau resonances have attracted wide attention because
they demonstrate dramatically that motion in the strong mixing region
(the region where electric and magnetic forces are comparable) can be
understood by simple dynamical arguments. Nonetheless, the WKB
explanation is by no means complete. It cannot be used to predict line
intensities and it fails to show how the states relate to low field states.

More seriously, it deals with only a small subset of the possible states and

fails to deal with the general problem of atomic structure in a strong
magnetic field. Fortunately, a combination of recent experimental and
computational advances suggest that the general problem may be more
tractable than anyone thought.

4.6. Intermediate field behavior

One reason for the prominence of the quasi-Landau resonances in
absorption spectra is that Stark-mixing of levels due to the motional
electric field tends to average together nearby lines, thereby revealing
general patterns in line strength. Nonetheless, the resonance can still be
observed in fully resolved spectra. Figure 24, for instance, shows spectra
for even parity m,= —2 states of sodium. Lines have been drawn
through the uppermost levet of each manifold starting at low field. These
levels evolve into the quasi-Landau resonances. In fig. 25 a single sweep
is displayed magnified; the dominant levels show an energy separation
approaching 1.5 «, at £ = 0. Under conditions of low resolution the
spectrum would show smooth periodic fluctuations, the signature of
quasi-Landau resonance.
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Fig. 24. Experimental excitation curves for even parity, m, = —12 states of sodium vs. field
(plotied on a squared scale). Solid lines indicate the evolution of the highest level for scveral "
1 manifolds. The dashed and dash—dot lines show the second and third highest levels of the
n = 40 manifold, respectively. The evolution is most clearly scen by sighting along the
drawn lines.
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Fig. 25. Quasi-Landau spectrum, takeh from data in fig. 24. The arrows indicate the
quasi-Landau levels. The numbers between the arrows give the level separation in units of
ke, The spacing increases with binding energy from the value of 1.5 at E =41, in
agreement with a WKB analysis. (From rel. {26}.)
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Close inspection of fig. 24 shows how the quasi-Landau resonances
originate. They arise by a transfer of oscillator strength from among all
of the levels in each n-manifold to the highest level of the manifold. The
transfer is not complete, however, for the second highest level is also
visible (dashed line). Other intermediate levels are also visibie, but at low
intensity.

In fig. 26 we show even parity m, = 1 states of sodium. These states
have a node in the xy plane, and are not expected to show the
quasi-Landau resonances. Instead, we observe a multitude of lines of
approximately equal intensity. Under low resolution conditions the
spectrum would be featureless, but under high resolution some rather
startling facts emerge. The first unexpected observation is that the levels
evolve smoothly with no apparent level repulsions. Thus each state
preserves its low field character into the strong mixing regime, exactly as
in the case of the Stark structure of hydrogen. The second unexpected
feature is that corresponding members of each manifold (highest, second
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Fig. 26. Same as fig. 24, except that the states are even parity m; = —1, and the energy
range is displaced. The dashed lines are drawn to indicate the evolution of the highest level
for ‘several n manifolds. Note that the corresponding levels of adjacent # manifolds are
equally spaced. The levels are most conspicuaus when viewed ‘close io the.plane of drawing,
along the dashed lines. . T : '
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highest, etc.) all show the same periodicity. Thus the quasi-Landau
structure appears to be a general property of aff states of the atom. not
merely those localized in the x—y plane. Structure in the strong mixing
regime appears to be characterized by simple regularities, a rather
unexpected finding in view of the theoretical complexity of the probiem.

4.7. The possibility for a complete solution

_There is something of a paradox in the data of fig. 26: the levels appear

to cross each other in defiance of the “no-crossing” theorem. There are
two possible explanations. Either the levels actually repel, but at a scale
too small to see, or there is some hidden symmetry in the problem,
analogous to the dynamic symmetry of the Stark problem, which allows
degeneracies to occur freely. As we shall see, the true expianation
probably combines both. of these possibilities,

We have investigated level-crossing behavior by numerically diagonal-
izing the Hamiltonian using procedures similar to those of the Stark
problem. Results for some low-lying terms have already been shown, fig,
22. Most of the levels repel as expected, though there are some apparent
crossings. (One apparent crossing is encircled.) More careful studies of
these crossings show that they are actually weak anti-crossings [26]. At
high values of n, as in fig. 27, there are no conspicuous anticrossings. The.
levels display the simple non-interactive structure we observed in the data

Energy (10%¢m™")

L 1 -

04 8 .1'2 16 20
B {1Q1testo)

Fig. 27. Energy of hydrogen as a function of magnetic field (plotted on a squared scale) for
terms in the range n = 10— 14. (From ref. [25])
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Fig. 28. Calculated anti-crossing separation as a function of #, the geometric mean of the
principal quantum number of adjacent manifolds. Solid line: lowest energy state of # + |
and highest state of #. Dashed line: lowest energy state of n + | and the “middle” energy
state of n. (From ref. [25])

of fig. 26. Of course, such diagrams cannot be used to determine whether
or not levels cross, for numerical computations have finite resolution,
Nevertheless, if we study how the level repulsions vary with », we find a
striking decrease: the separations decrease exponentially with n, or even
faster! Figure 28 shows the n-dependence of some calculated level
repulsions. What we can conclude is that although the levels may never
truly cross, the repulsions become so small that they effectively cross.
Thus, if one writes the Hamiltonian as H = H,, + V, where H, contains
some symmetry which allows the levels to cross, and V' mixes the
eigenstates of H,, and causes the levels to anti-cross, ¥ has such a small
effect at high # that it can be safely neglected. (For example, the effect of
V will be small compared to the width of levels due to spontaneous
radiation, which decreases only as # ) This identification is a tantaliz-
ing prospect, for H,,, which is inherently separable, should have an exact
solution. For the present, the problem is unsolved. Nevertheless, our
“existence proof”, if one can so dignify arguments based essentiaily on
numerical computation, gives hope that the last elementary problem in

&9
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the quantum mechanics of the one-electron atom may be nearing a
solution.

Much of the research reported here was carried out by students and former students
working with me at M.LT. Major contributions were made by Michael G. Littman, Myron
L. Zimmerman, Michael M. Kash and Jarbas C. Castro. William P. Spencer generated the
charge density plots of Rydberg atoms. Michael Kash was most helpful in preparation of
this manuscript. The work at M.LT. was funded by the National Science Foundation, the
Joint Services Electronics Program and the Department of Energy.
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