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I. INTRODUCTICON
The hydrogen molecular ion, HE, and its iszotople relations
4% and D; have occupied an important position in the development
of molecular quantum mechanics since tne foundations of the
subject some sixty years ago. Many different approximations
and methods have been tested on H; as a model system and it
is, of course, the molecule for which the most accurate caleulations

can be perizrmed, essentially because of the absence of inter-
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electron interactions, H2 13, nowWwever, rather more amenable
to theoretical than to experimental investigation. There are
two main reasons for this, chemical and structural. The first

difficulty is that H; reacts exctremely rapidly with molecular
hydrogen to form the Hg ilon; electrical discharges in Hz, for
example, lead to extensive ionisation but unless the g£as pressure
is extremely low, HE 1s the predominant ionic species present.
This fact has been used recently to advantags by Cka [1] and
by Carrington, Buttenshaw and Kennedy (2] in their spectroscopic
investigations of H;. As we shall see, however, spectroscopic
studies of H; have necessarily made use of collision-free media.
Hg is then the predominant ion, but its low concentration requires
special techniques to permit its study by spectroscopy:

The second difficulty is that although H; has a stable
ground electronie state (D8:2.6507 eV) its first excited state
is entirely repulsive and does not, therefore, give rise to
a discrete electronic spectrum, Two excited electronic states

are predicted to be weakly bound, but they are more than 11 eV
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In section 1L we revisw tne Jdevelopment of the theory, from
the introductisn of the Schrodinger equation through to the present.
in secticn III we give a comprehensive description of the
theory as it is understood at present, and we draw attention
to areas which still deserve closer attention. In section IV
we describe photcelectron, pnotoicnisation and photodissocciation
studies and in section V review investigations of the radicofrequency
spectra, Finally in section VI we describe recent studies of
the vibration-rotation spectra of the HD' ion which have provided
acecurate data for the vibraticnal and rotational levels of the
ground electronic state, The baiance of the discussion in this
review is tilted strongly in the direction of the thecry; that is
but a reflection of the present position with regard to this,

the simplest of all molecules.

II. HISTORICAL SURVEY OF THE THEORY

A very large number of papers have been published on the
theory of the H; ion, and in this review we can only give an
outline of how the theory has developed. The emphasis will be
on work leading to the prediction or explanation of properties
which can be measured experimentally. A detailed mathematical
treatment is deferred to the next section; our historipal survey
of the develcopment of the theory will be essantially descriptive.

The hydrogen molecular ion was first detected in the
laboratory by J.J.Thomson in 1907 [3].  Attempts were made to
describe H;, treatad as two fixed protons and a moving electron,
within the framework of the old quantum thecry [4] (phase
integral quantisation of classical motion). But by 1926 the

deficiencies of the old quantum theory were apparent and Schrodinger
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pUCoesnd the wave aguatizn [%]. ihe equation was soon applied
to the provlem of two rixed protoas as = mevirz electron. By
using elliptical coerdinates (H,hJEJ the three-dimensional wave
equation separates into three one~-dimensional differentizal
equations [6]. The problem can therefore be solved exactly
by numerical integration methods, and the first successful
solution was obtained by Burrau (7] in 1927 who calculated the
electroniec energy of the icon in its ground state as a function
of internuclear distance. Alsc in 1927, Born and Oppenheimer
(8] gave their now famous Justification for treating the nuolei
as fixed as a first approximation in molecular quantum mechanios.
Approximate methods of obtaining the electronic energy for various
states by perturbation theory were investigated by a number of
authors [9-12], whilst others applied the variation methed [13,14].
These papers were the first to treat the excited states of HE.
Using these results Condon [15) was able to predict the behaviour
of hydrogen under electron impact ionisation by electrons with
different ernergies. Subsequent experimental work in 1930 [16,17]
confirmed the predictions, a major success for the quantum treatment
of H3.

Methods for solving the separated electronic equations
exactly by series expansion techniques were investigated in some
detail by Wilson in 1928 [18]. These methods were further
explored and applied by Hylleraas [19] and by Jaffe [20].
Specifically the gxpansions used by Hylleraas were:
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Pt(n) is an associated Legendre function,iﬁﬁx) is an associated
Laguerre functicn in x=29(§—1), and the definitions of the various

parameters are given in section III. This expansion is suggested

N
by considering the exact ztomic wavefunctions at the united atom
limit (He™).

The E expansion proposed by Jaffé;was:

L(R;?) = (§2-1)A”2(§+1)5exp(~p§) 5;0 gn(ﬁ)[(§-1)/(§+1J]“
The first three terms reduce the ? equaticn to a form which can
be solved by a rapidly convergent series in (§—1)I(§+1). They
also reproduce the united atom asymptotic behavicur at large ?.
An expansion in (F-T)/(§+l) is convenient since the f range
+1$§<ﬂ is mapped ontc Os[(?-l)/(?+1)3<1-

Both authors proceeded to obtain numerical solutions for
the energy of HE by truncating the } and n expansions. They
obtained relations between the energy, the separation constant
in the differential equations, and the internuclear separation.
Hylleraas calculated the energy at a number of internuclear
separations by this method. He located the minimum of the
internuclear potential energy curve close to 2.0 Bohr radii, with
an energy of -1.2053 Rydbhergs {relative to 2HY + 7). In erder
to obtain the zero point energy relative to this limit he fitted
his results to a Morse potential function [21], cbtaining 16.18
aeV. The zero point dissociation energy of Hz {to H" + H) is then
2.6 eV, a value subsequently confirmed by experiment [22].

The results of Jaffé's calculations agreed with those obtained
by Hylleraas. The properties of the series expansions were
reviewed in 1935 by Baber and Hassé [237. Further ca}culations
on HE using Jaffé's method were performed in 1935 by Sandeman [24],
who fitted the potential he obtained to a Dunham expansion [25].

A comparison between these theoretical results and the available
experimental estimates, obtained by the analysis of Rydberg spectra
of H2, can be found in a review by Richardscn [26].

By 1935 the mathematical problems involved in obtaining exact

electronic energies for Hz (within the Born-Cppenheimer approximation)
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had been solved, but it was not until the development of fast
computational methods that this work could be explored fully.
Extensive tabulations of the results of numerical solutions to
the problem appeared during the 1950's and early 1960's [27-30].
From the electronic wavefunctions which were obtained various
other physical properties were calculated. Bates caleculated the
electronic transition moment between the ground state and first
excited state as a function of the internuclear separaticn [31].
The nuclear hyperfine interactions were considered by Dalgarno,
Patterson and Somerville [32] and also by Stephen and Auffray [33].
Vibration-rotation energy levels were calcoulated by Cohen, Hiskes
and Riddell [34] and by Wind [35)] for H}. and by Dunn [36] ror D3.

During the 1960's the need to take the calculations beyond
the Born-Oppenheimer (clamped nuclei) limit became apparent,
espeelally after the important paper on a nonadiabatic theory for
diatomic molecules published by Kolos and Wolniewiez in 1963 [37].
Many years earlier Van Vleck [38] had pointed out that corrections
to the clamped nuclei calculations would be needed to obtain the
highest accuracy in calculations on diatomic molecules. The
diagonal {adiabatic) corrections to the energy due to nuclear
metion were calculated at variocus internuclear separations for
HE as early as 1941 [39]. The application of the Born-Oppenheimer
separation to three-particle systems was investigated in detail by
Hunter, Pritchard and Gray [40-42]. As part of this work they
performed adiabatic, and subsequently the first large scale
nonadiabatic calculations, on the hydrogen molecular ion. The
calculations were carried out by evaluating the nonadiabatic
coupling between the ground state and the first few excited
states of HE, HDY and DE; exact (within the Barn-Oppenheimer
limit) electronic wavefurctions ware dsed Tor oall states considerad.
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icn has been deveted to obtaining increasingly accurate vibration-
rotation energy levels. Reviews of such work have been given
by Xolos [43], and mcre recently by Bishop and Cheung [44], This
work has become increasingly important in view of recent measurements
of high resolution infrared spectra of HD* [45,46], which are
described in detail in a later section of this review. During the
early 1970's calculations to the adiabatic limit (inclusion of
the diagonal corrections to the internuclear potential due fo
nuclear motion) of the vibration-rotaticn levels of Hz and 1ts
isotopic medifications have been performed by various authors
[u7-52]. The paper by Hunter, Yau and Pritchard [49] gives a
complete tabulaticn of the vibration-rcotaticn energy levels for

+

HD", HT® and DT'. Bishop [51] gives a similar tabulation, whilst
Bishop and Wetmore [50) have listed the adiabatic corrections as
a funection of the internuclear separation. Adiabatie calculations
have also been performed for two of the excited states of HE [53].
More recently nonadiabatic calculations have been performed.
Estimates of the size and effects of nonadiabatic coupling on the
ground state vibration-rotation levels can be made by perturbation
theory [5C]. Performing complete and accurate nonadiabatic
calculations is, however, a daunting task since the electronic
and nuclear motions cannct be treated separately. Two methods
have been used to perform accurate nonadiabatic calculations. In
the first, due to Kolos [47] and pursued by Bishop [54y55]. a
variational solution t¢ the complete non-relativistie Hamiltonian
of the three-particle system i1s sought. By using a very large
expansion over products of functions to describe the electronic
and nuclear motiona {up to 515 functions were used) energies were
obtained for the first few non-rotating vibrational statea of

+ + + +

-1
Iy D2, HD , HT  ana DT with an estimated acouracy of Z0.002 cm” .

H
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of an approximate formula [56].
Wolniewicz and Poll [57,58] have devised a different methed
for performing nonadiabatic caleulations which appears to be more

elegant and efficlent. They treated the nonadiabatic coupling

between the ground and excited states as a perturbation to the

adiabatic solution. The first-order perturbation to the adiabatie

wavefunction was obtained variationally using expansions of the
same form as the exact wavefunctions for the excited states which
can couple directly to the ground state. Using this modified
wavefunction they then obtained the nonadiabatie correction to

the adiabatic vibration-rotaticn energy as the second-order enargy
correction. They tabulated the nonadiabatic enarglies obtained
for HDT with v=0 to 21 and N:=0 to S5, with an anticipated accuracy

1

of 0.001 em™ ' [58]. These calculations represent the present

state of the art, and are probably the most accurate calculations
yet carried out for any molecule.

Other methods have been proposed for performing nonadiabatic
caleculations; for example, the generator coordinate methed has
received scme attenticn [59], although numerical results have yet
to be obtained.

In obtaining the most accurate vibration-rotation energies
possible there are a number of other small effects te be considered,
particularly relativistic and radiative corrections. The relativistie
corrections allow for the fact that the Schrodinger equation is
used rather than the Dirac equation. These corrections have been
investigated in 1369 by Luke 2t al [69] and more recently by
Gonsalves and Moss [61]; accurate calculations of the corrections
were made by Bishop in 1977 [62]. The radiative corrections
arise from the interaction of the electron with the zero point

electromagnetic field. The Lamb shift due to this interaction
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was first calculated for Hg by Gersten [63], whilst Bishop and
Cheung have performed further calculations for Hg [64], and more
recently for HD' [65]. Both the relativistic and radiative
corrections were included in the nonadiabatic calculations of
Bishop and Cheung [55] and of Wolniewiez and Poll [58].

Other work during the 1970's was concerned with the evaluation
of properties of the hydrogen molecular ion which can be investigated
experimentally. These calculations have generally used the exact
Bern-Oppenheimer electronic wavefunctions and adiabatic nuclear
wavefunctions [50]. Examples include the study of hyperfine
interactions by McEachran, Veenstra and Cohen {66] for Hg,
Both groups cbtained

and

+
2

excellent agreement with the available experimertal data [68,45]

by Ray and Certain [67] for HY and HDY,

which will be discussed in detail later. The photedisscciation

of H; and its isotopic modifications has also received ccnsiderable
attention, starting with the work of Dunn in 1968 [69,70]. More
recently Tadjeddine and Parlant [71] studied HD*, and their results
may be compared with the experimental work of van Asselt, Maas and
Los [72] described in section IV. Photodissociation by infrared
lasers has been considered theoretically by Fournier gt al [73]
and observed in the experiments described by Carrington and
Buttenshaw [46]. Transition dipole moments for a number of

infrared transitions of HDY, HT* and DT* have been estimated [7u,56].
Matrix elementa of a number of other operators, averaged over
vibrational state, have been given by Bishop and Cheung [75].
Hotationally-quasibound levels have been considered by Peek, Maas

and Los [76], and Peek (77] has alsoc drawn attention to the
impartance of long-range forces in H; and their effects on the
potential curve for the first excited electronic state.

Despite the large amount of theoretical work on the hydrogen

melecular icn which has been described, important problems still
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of Welniswicz and Poll [S58] to the expected level of zccurasy, so
thzt furtner refinemsat of the caleulations is required. Hyperfine
constants for the nigh vibraticnal levels of HDY studied by
Carrington and Bgttenshaw [46] have not yet been caleulated even
within the adiabatic approximation. Improvements id.thé rangé
and quality of experimental measurements are likely, and could

‘lead to improved values of certain fundamental constants provided"”

the molecular quantum mecharics is sufficiently accurate.

IIT, PRESENT STATE OF THE THEORY

In the previocus section we reviewed bhé historiéal_development
of the theory of the hydrogen molecular ion. In this section
we will give a mathematical treatment of the theory, leading up
to the'present best calculations, those of Wolniewicz and Poll [58]
on HD™. Although most of this material ecan b2 found elsewherse
[37,u1,u3,47,50,5u,57,583 we feel that a complete summary of the
Lheory in one place is now required, and we hope that this section
will satisfy this need.

(i} The complete non-relativistie Hamiltonian.

For a system of point charges interacting electrostatically

and moving through field-free space the complete non-relativistic

Hamilteonian can be written in the form

* =Z—ﬁ2V§ I ziz.e2

: - J
L TEm AL TRE T (1
where all the symbols have their usual meanings, In order to

obtain a convenient form of this Hamiltonian far the hydrogen
molecular ion, we separate out the motion of the centre of mass

of all particles by applying the transformation

~CH

where M:m1+m2+me

figure 1. r,, r, and r, are the position vectors of the three

The coordinate systems are illustrated in

particles relative to an arbitrary space-fixed origin. The new
basis vectors are the internuclear vector E (:Ea—g]), the pesition

of the centre of mass of the system relative to the space-fixed

'origih B'm, and .the position of the slectron relative to the
c

geometric centre of the nuclei fg' The separétion can be achiéved
by other transfermations [40], but that described here is the one
most commonly applied to the hydrogen molecular ion. Applying

the transformation (2) to the kinetie energy operatorsrin the

Hamiltonian (1) we obtain

2 2 . 2 =2 = 2 - YRERY 2
A Z Vi = -# ( V'g . VR . Y#S_ . \jg'yﬁ . vcm (1)
’ 8 2 2
2!‘(!:.L Eme 2& r Fa )
where lfr =(1/m1)+(1!m2) and 1!ré=(1/m])—(1/m2). Note that
1/Fa:0 for the homonuclezar case, my=my,. The electrostalic

potential, V, is unchanged by the transformation:

V=...efil_;,_1_) (4)
ur.’éan

because it depends on the relative positions of the particles.
The translational motion can now be separated out of the Schrodinger
equation (%),
22 2 2 2 - T
-h v ¢ v.v. ¥ .
J F§..+ R, &8 ,8~R  Cenm * VN Por T Beotlhor (B0
L Lem 2p B 2p, 2M

We use the form .%tot(ﬁcm'ﬁ'gg) = A (R ¥not

(R,rg) in order to

achieve the separation, which is

202 2 2 v
IR ) V.-
L, B L8, R Ly %ﬁol = Eint*mol (6)

2m, 2p BP 2p,
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Figure 1

nucleus 2

L fom Aem = (e B Man
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Eguation (7} is simply the time-independent Schrodinger squation
for a body of mass M freely translating through space with kinetic

energy (Etot_Eint}'

In summary, the non-relativistic Hamiltonian, in atomic

units, for the internal motion of the hydrogen molecular iagn is

g2 o2 a2 v . }

%int = Vg - VR - Vg - Yé'yﬁ o ! : (8
r Il fa i rIe U2

(ii) Seolution of the Schrodinger eguation.

The non-relativistic Hamiltonian (8) contains terms which
couple the electronic and nuclear motions; this makes it impossible
to obtain exact eigenfunctions and eigenvalues, However by
making certain approximations it it possible to reduce the problem
to one which can be sclved exactly. In order to see how this may
be achieved we follow the method suggested by Born [78], and

expand the complete molecular wavefunction as the series
Pror(Bizg) = L F(Rp(Riry) (9;
t

where the Pt(R,gg) are the exact solutions of what we will eall
the electronic Born-Oppenheimer equation for the hydrogen molecular
ion:

(' e - oo 1)?,3(1?,; )= E R R ) (10)

Z e Poe R g K

The methods for sclving this equation are well established [41]
and we will describe them later. Substituting the Born expans’.on
(9) into the complete non-relativistic Schrodinger equation (8)
we obtain a set of coupled differential equations for the functicns
Ft(ﬁ):

ﬁint%Ft(EJ¢t(R-,{'g) = EintgFt(Ejﬁt(R’sg) {113

The equation is simplified by premultiplying by ¢;(R,gs) and
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integrating over the electronic coordinates r_ te obtain

i =2 2
Es(R)Fs(B) * j?s(R'Eg)["Vﬁ - vg - Vé Yh}Fs(E)FL(R’Eg)dEg

F o5 TR
* 2 ~2 -

* g;; ht(ﬂ’sg)[-gﬁ - - F;J;]Ft(ﬁ)ﬁt(R’Eg)dgg = 1nt s(R) (12)

* fa

Since in the electronic Born-Oppenheimer equation {10) the nuclei

Sl

are implicitly treated as fixed point charges, the funections
¢t(R,EE) must be either symmetric or antisymmetric with respect

to exchange of nuclei and electron inversion through the geometric
centre of the nuclei. The operator yﬁ is antisymmetric with
respect to nuclear permutation, whilst f is antisymmetriec under

electron inversion. Consequently by symmetry we have

J?(Rr}\’é(ﬁr)dp =0
J?s(g'fs)gg .és(ﬁ’fs) g =00
J?;(R,:g)fg.yHPs(R,gg) d;g = 0 {13)

so that equation (12) becomes:

L3
{ES(R) -2 -Hs(a,gg)[vg . Vg] L (Rup)dr F_(R)

g “~g
5 P ¥
" 5
> tisﬂ (Rl -V - V2 - Fg&];étta,pg)dr
Fo TR
+ J S(R.EE){ -Vq Yg ?Pt(R,EEJdr VR} Fo(R) = B F(R) (1)
%

An exact sclution of this set of coupled differential equations
18 not feasible since the couplings between the infinite set of
functions Ft(ﬁ)pt(ﬁ‘ﬁg) would have to be considered. In practice
it is necessary to neglect some of the couplings in order to make

the problem tractable, or to seek an alternative method of

solving the problem.

-44_
(iii) The electronic Born-Oppenheimer equation.

Before proceeding to describe the approximations that
can be made to simplify equation (14) we return to the electronic
Born-Oppenhelimer equation (10). Historically this equation was
the starting point of the modern quantum theory of the hydrogen
molecuiar ion [19,20]. The problem is to solve for the motion
of a aingle electron about two fixed nuclear charge centres. By
using prolate spheroidal cocrdinates the three-dimensional
equation (10) separates intc three one-dimensicnal equations.

Figure 2 shows the cartesian coordinate system; the prolate

spheroidal coordinates are:

§': (rig+rs) with 1g§<u P o= (PigTpg) with -1€q<T {15)
R R
and x, rectation of the electron about the z axis (0gk<2w). In

this coordinate system we have
V = 0 i o« dd o+ ¢ Kk
Yy

I

T
[P

X z

= 2[(F2-1)(1-1q )13 ﬁoosx 7 - qcos‘x ¢ - sinX(§°-1 )g
n(\~ - § i §°-1)(1->

+ [?sinx_i_ ﬂSi”XJL - cosX(E2 n2) 3
% “ (gz (=90

[- -1)53+ ):a] k}
IR i ad T (18

The Laplacian operator in the new coordinates is

\Tg B L] }ji(?a—i)_a‘ + _8_(1-1!2)_‘1_}_ + (EE_‘ILZ) f_

RE(§5-n°) “1) 1=y

and the veolume element is

arg = ﬂi_g_i_iglvlﬂ (18)

The electron-nuclear electrostatic attraction aperator may also

ce zransfermed 1uvo vthaw (£, %) zcordinate system, with the result

i
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_ 2 2
-tirgg = Vry, = -u§/R(§ -} (19)
Consequently in prolate spheroidal coordinates the electronic
Born-Oppenheimer equation becomes

A YR+ 310D ) . ¥
l 2 {J;E ngﬁmn Y —1—5—2—@ e ax‘}

- ub +l];ﬂt(n,§,q,)6) = B (R (R, (20)
RZ-n9 R s

which may be written in the more compact form

[Eg_nidu-q)‘b[ 1, +2pr(} 'ljﬂc”‘?‘z’?‘

¥ o MoLETn T g )J‘l‘
= 0 (21

where 0% = - (e, (R)-(1/R) IR% /2.

The separaticon into three one-dimensional equations is now easily

achieved by making the substitution

BB = LR PMR, N (22)

We then obtain the three separated eguations:

i
[-—-—;- + AZJN = Q
axF

[.)(f.unb va- A +2R§-p2§2JL =0

I 21
[_3_ -1 )Ta_-a_ A +p2112JM = 0 (23)
¥ M -1

where A? and A are the separation constants.

The X eguation can be solved analytically, with the result
N = exp(id ) whera A=0,21,%Z2 ... (24)
-’
(212

Certain aspects of the symmetry of the problenm are evident
frem equations (23). A appears as A? in the ? and n equaticna,
so that the eigenvalues have a twofold degeneracy for A#0, due
to the cylindrical symmetry of the system. The n equation is
invariant to the operation n# ‘q, 3¢ that the equation possesses
separate even and odd solutions for each value of A, caused by

the nuclear permutation symmetry of the system.
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1
where §=(R/p)-A-1. Supstitutica ui this expansion into (23) leads

Lo a recursion relaticn between ths coefficiznts gn(HJ,

gr+][(n+1)(n+Aﬁ1)] + gn[A-p2+2pd+(f+AJ(A+1)+2nff-29)-2n2]

+ gn_1[(n—{—1)(n-{—Ar1}] = 0 (26)
We further require gn=0 for n<U, and for numerieal calculations
We tLrincate the series so that gn:O for n>nmax (the series converges
rapidly). The set of recursion relations (25) may then be written
a3 3 Tatrix eigenvalue equation [41],

g:§ = -ig (27)

Where gq

and the non-zero elements of the tridiagonal matrix g are
]

Gpoq o = (Reget)(n-gepn1)
G, . = ~pZe2ple(f+A) (Ae1)e2n(F-2p)-2n (28)
Gn+1’: = (n+1){n+A+1)

Other 2xpansions, rotably that due to Hylleraas [19], have been
used ©o solve the ? equation; they also lead to recursion relations
which rzay be expressed as matrix eigenvalue equations.

The q equation may be solved by using an expansion over

associnted Legendrebfunotions,
:

MR b2 R)PL
,q} = ;;O fs( )Eh+s(n) (23)
Because of the symmetry of the 1 equation only odd or even terms
will zppear in the expansion for a given state. Substituting

the expansion (29) into (23) and using the known properties of

A
the functions R&+s(n):

iy

A ’ A . Los) A ( -0
‘S*‘)?a+s+¥(ﬂﬁ - (2A¢2s+i)qEA+s(q) + (2. SIB e q) =

we obtain a recursion relation between tne ccoefficients fs(ﬁ),

Fs_z -p2(5—1)5 ]+ fs[(ﬂ+s)(ﬁ+s+l)-
(2A+25-3)(2M4258-1}

p2(2As)s
(2Me28-1)(2A+2541)

- p%(2Arseldisel) o+ %[ + fs+2{-p2(2ﬂ¢s+1)(2A»3+2)] = 0 (31)
(2A+25+ 1) (2A425+3) (24+25+3){2A+25+5)
As in the case of the F equation this set ¢f recursion relations

may be expressed as a matrix eigenvalue equation [41],

F.f = Af (32)
'k p
where _fO /fl !
[, 1 £y
f = . ) or g = .
Fan Loy’

for even (g symmetry) or odd (u syemetry) states respectively. The
non-zeéro elements ¢f the matrix € are then given by

F = p2(5—1)3
(2A+25=3)(24+25-1)

2

F s —(A+s)(A+s+1) +  p f(2av5)s (2A+s+1)(s+1)} (33)
(2h+25+1) ] (2Ae25-1)  (2he23+3)

Fs+2,s = p2(2A+s+1)(2A¢S+2)
(8A+23+43) (2A+25+5)

The solution of the electronic Born-Oppenheimer cquation (10),
determining £(R), g{(R) and Et(R) for a given state at a particular
R value, i3 achieved by requiring that A simultaneocusly salisfies
equatinns (27) and (32). Numerical methods have been outlined
by Hunter and Pritchard [41]; the problem is particularly simple
for the hydrogen molecular ion because both g and g are tridiagonal
matrices. The results of such calculations can be found in many

places; see, for example, the paper by Peek [30].
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(iv} Levels of approximation.
ta}) The Born-Oppenheimer approximation.
At this level of approximation all terms coupling the
electronic and nuclear motions are neglected.

Equation (14}

then reduces to the Born-Uppenheimer equation for nuclear motion:

- 2
BO BO _BO
{ES(R; - Z;]-Fs (R) = Efp Fol(R) (34)

The advantage of this approximation is the great szimplification
we achieve over equation {(14}. However this simplification is
achieved at the expense of a considerable loss of accuracy in any
calculations.

(b) The adiabatic approximation.

The adiaSatic appraoximation has been extensively reviewed
by XKolos (43]. At this level of approximation we retain the terms
coupling the electreonic and nuclear motions which are diagonal in

the electronic state; equation (1U4) reduces to

- * 22 f, 72 2] ap
{ES(R) - jps(ﬂ’sg)aﬁ ¢5(R’rg)drg - ’bs(R’ig)gg?ﬁs(R’rg)drg'?B—}Fs (E)

r&
- 20 FA0eq) (35)

int s
The effect of the approximation is that the ruclear motion is now

governed by an effective potential
. -
E_(R) - j’ﬁs(ﬁ,gg)vg f (R,pg)dz, J}ﬁ (Rir, R 95 (Ropddr, (36)

obtained by averaging the complete Hamlltonian (8) over the
Born-Oppenheimer electronic wavefunction ?s(R,gg). The effective
adiabatic potential {(36) is isctope dependent, bhecause of its
dependence on P. The Born-Oppenheimer potential ES(R) is isotope
independent. Working at this level of approximation we retain the
basic simplicity of the Born-Oppenheimer equation for nuclear
motion, equation {(34), because the slectronic and nuclear motions

are effectively separated. Bubt because we have included the

diagonal corrections, calculations made within the adiabatic

_2@_
approxlmation will be more accurate. The adiabatic approximation
is particularly successful when there are nc close-lying states
which are non-adiabatically coupled to the state of interest,

This is the case for the ground electronic state of l-{2 and D2,

but for the heteronuclear system HD" the gg.vﬂfzrh term in equation
(14 (1/Ph=0 for homonuclear systems) couples the ground (Zs) and
first excited (Eu) electronic states, In order to obtain accurate
results for HDY it will be necessary to perform nonadiabatic
caleculations, particularly for the high vibrational levels. The
problem can be illustrated by considering the behaviour of the
adiabatic potentials for these states at large R. Within the
adiabatic treatment they are identical at very large R, yet in
reality the dissociation limits H™ + D(1S) and H(1S) + D" are

separated by 29.8 cm-].

This degeneracy is lifted by nonadiabatic
coupling.
Hunter, Yau and Pritchard [49] have given an extensive tabulation

of the results of adiabatic calculations of vibration-rotation
levels of the ground electronic state of HE, DE and HD™. Bishop
and Wetmore [50] have provided values for the adiabatie corrections
to the potential, j,& (R,r g)(72/81u,3r1 Rurgldr, and

f? (R,r )(VZIEF)P (R,r )d; Figure 3 is a plot of the Born-
Oppenheimer potential ES(R), and the adiabatic corrections, which
are both pesitive, for the ground electronic state of H;

The adiabatic approximaticn is widely used for calculating
cther properties of the hydrogen mclecular ion, bacausé of the
convenient separation it allows of the electronie and nuclear
motions through the use of an effective potential. Evaluation
of properties for a given vibration-rotation state is achieved by
averaging electronic matrix elements obtained from the #S(R,Es)

over the adiabatic vibration-rotation wavefunction F:D(E). A good

example is the calculation of nuclear hyperfine constants [67].
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(e) Nenadiabatic calculations.

The exact solution of the nonadiabatie problem as expressed
by (14) is impossible, as it requires the solution of an infinite
set of coupled differential equations. Following the approximations
déscribed above we could reduce the problem by considering the
coupling with only a limited number of other states, and hope that
the Born expansion (9) converges rapidly. This apprcach was
followed by Hunter and Pritchard [4%2] for the four lowest vibrational
states of Hz, HD* and DE, by investigating the convergence of
the energy levels as progressively higher states pt(ﬁ,rg) were
included in the expansion {(9)}. Initial rapid convergence was
found for these low vibrational levels. In order to improve the
accuracy of these calculations and extend them to higher vibrational
levels, much longer Born expansions will be required. To perform
efficient and accurate nonadiabatic calculations, alternative
formulations of the problem are desirable, and two techniques have
been investigated, which we now describe. -

1. Variational approach.

In this method, investigated by Bishop [54] and by Bishop
and Cheung {551, the eigenenergies of the complete Hamiltonian
(8) are sought by variational adjustment of a trial wavefunction.
Only a few low-lying non-rotating vibrational levels of tha ground
electronic state were considered, for various isotopic modifications

of the hydrogen mclecular ilon. The trial wavefunction used was
- i k

n =m m
V3" 3" 18 copbinEm

i

i, k
D A cukfijk(}‘,«l,n) (37)
i=0 Jj=1,3 k=0

where the basis functions of the expansion were

¢ijk(§,1,a) : exp(-x})cosh(ﬁq)?ian'3’2exp[%(-x2)]Hk(x) (38)
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The Hk(x) are Hermite polynomials, x:X(R-S), and d,ﬁ I gare
ad justable parameters chosen to minimise the energy; with large
expansicns the values are not very critical. This basis was
selected because the integrals required for a variational solution
are easily evaluated [54], Even and odd states are only mixed by
the gg'yﬁlth term in the Hamiltonian, s¢ that the second triple
summation in the expansion only appears for heteronuclear systems
tike HDY. The convergence of the variaticnally-calculated energies
with respect to basis set size was investigated very carefully.
The final results, obtained with an expansion of up to 515 terms,
should be accurate to 20.001 cm_1, after the inclusion of radiative
and relativistic corrections [55]. Energies of the rotating
states were also calculated by means of an approximate formula

for the change in nonadiabatiec energy correction with rotational

quantum number [56].
1

Infrared transition frequencies accurate
to 20.002 em”™' could then be obtained for HD+, and compared with
the results of Wing et al [u5].

2. Variation-Perturbation approcach.

By using the variational appreoach, the problem of having to
consider explicitly the couplings between the adiabatic states,
described by (14), is avoided. However this method makes no use
of the exact adiabatic eigenvalues and wavefunations whieh can
be readily obtained for the hydrogen molecular ion. As we have
discussed, the adiabatic approximation is usually quite accurate,

3o that a method which makes use of the adiabatic scluﬁions as a
atarting point for ncnadiabatic calculations would appear to offer
greater efficiency and elegance than the fully variational approach.

Wolniewicz and Poll [57,58] have developed such an alternative
formulation of the problem, in which the nonadiapatic effects are
treated as a perturbation to the adiabatic approximation. They
ﬁAD

define an adiabatic Hamiltonian by the =sguaticon

AD AD;y JAD JAD

B0 - ZsR 0> YR (39)

such that its eigenvalues are the adiabatic molecular energy levels

EﬁD. and its eigenfunctions are the adiabatic states of the molecule,

AD _ 4BO AD i

yno = fa (Bp ) EPE) (40)

which can be obtained exactly from (10) and (35). This abstract

definition allows the complete non-relativistic Hamiltonian (8)

to be decomposed into an adiabatie part, and a nonadiabatic term,

B = HAD . yN.AD (51)
The methods of perturbation theory may now be used to calculate
. . ; AD
nonadiabatic corrections to the adiabatic energies En y

Wi tAD AD | jAD
Klgp"> =y ¥, 2
Since from (35) we have
AD i ,AD AD
y = 4
<:+n lﬁlfn :> By (43)
the first order nonadiabatic energy correction is zero:

<¢2D’H‘N.AD"K;D> . o (44

The variation-perturbation method of Wolniewic¢z and Poll is to

hrN-ADiflgD> (42)

obtain the second order nonadiabatic energy corrections from the

first order correction to the wavefunction,

. _ gAD . 4
Vo =¥a + # (45)
The first order correction Wé satisfies
AD AD. ., 'N.AD, AD
S e A Y. | . (46)
where we have used (44). *A is obtained by solving this equation

variationally. The nonadiabatic energy correction to second order

in perturbation theory is then
w  _ /b IH'N-AD| yAD ' 4
=g [ HINAR R0 (a7
Equation (46) from which the Wé are to be obtained can be simplified
by separating out those parts of the wavefunctions which describe

their angular momentum:

AD AD A J
u}/‘ U nw\, (u8)

< J
and ‘/" :?c UAﬂMA (49)
where the R;Aare the e

igenfunctions of a symmetrie top, and the
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prawyltiptving nj,ial_anc innteraning aver tpe angular varizplax,
VBB bucomes
oo B P ama) - EAD}UA_ = - (JMM»'N'“DEJMAO> yhp (507
Appropriate differential forms of the operators HAD and
ﬁ‘N‘AD are cbtained as follows. From equation (42) we have
RINGAD o gAD | (51

whilst, as indicated in the Born development of the theory, the

adiabatic Hamiltonian ﬁAD, given by

AD a2 2 2
i ==Vg +1- 1 - 1 -V3._.Vg (52)
R n, T, By

contains all the non-zero dizgonal terms. This form is acceptable

for calculating the first ordar correction ?‘. Zquation (46)
finally becomes:
{(JMA]J%ADJJM;Q - EAD[’U_,L + - Lamaln -eRP g AP (53)
Explicit forms of the sperators appearing in {53) are given
later. In particular it is shown that the only nen-zero matrix
elements of the complete Hamiltornian (8) are between states which
satisfy the conditions
J'L:JLO,-A—O:‘F (54)
and for the ‘homonuelear systems there is the further selection rule,
ey, g —g, . utrg (55)
For the ground electronic state of HD+(Eg), on which Wolniewiog
and Poll have performed their most detailed calculations [58],
the only states which are directly coupled nonadiabatically are

states of symmetry ng:c), Fuumn, “/gu\:h) and Hu(.t:i’n. Each

of these is coupled in by a separate term cof the complete Hamiltonian

80 that the second order energy correcticon may te written as a sum:

E" = Ea g * ES + 2E

where we have used the fact that

u :1.8 + 2E:1,u (56)

Elf - E

g and E" = B

L Yiu (57)

s
-1,u
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orothe U0 by corparison
T BY

with (25) and (29) for use in (53), as follows:

g, = r75/2 Ef; gijt§,q)lij(a) (58)
In this expansion, ;or Zé(j even) and Zh(j o?d) we have
gij(?'*{) = exp(—pjp(§+1}F[("f'-1)/(‘§+1J]L P(J).('q) (59}
. -
whilst for Ng(j odd) and Iu(j even} wWe have .
gy 5o = (?2—1)%exp(—sf)(§+7)F[(g-?)!(E+T)1LP;(Q) (60)
The ™22 term serves to simplify the explicit form of (53). The

F and ] are adjustable parameters, determined variaticnally; with
reasonably large expansions (58) the nonadiabatie energy corrections
{56) are relatively insensitive to ﬁ and I and to additional
terms in the expansion for QA. The numerical implementation of
this approach is described fully by Wolniewicz and Poll [57,58].
For HDY (58] they present nonadiabatic calculations of the energy
levels for all bound vibrational states (v=0 to 21) with N=20 to 5,
with an estimated accuracy of tne order of 0.001 cm-]. Relativistic
and radiative corrections were included in these calculations.
The results agree well with the available experimental data [uU5,45],
but there do appear to be significant deviations, particularly at
higher rotational quantum numbers (see Table 1).

A number of refinements of the calculations could be envisaged.
In calculating the nonadiabatie corrections Wolniewicz ard Poll
neglected the possible effects of the vibration-rotation interaction.
The 2 corrections, which are otherwise N independent, were only
caleulated for N=0; the ﬂ corrections, which are proportional to
N(N+1), were only calculated for N=1. Corrections for other N
values were obtained by using these results. Wolniewicz and Poll
encountered some problems in evaluating the z correction, related

to the difficulty of constructing %{ES) to be exactly orthogonal
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LA r .
to ¥° lfjj [58]. The use <f zecond o ... ‘n theory may
&
be inappropriate for considering Lne ZL correction, particulariy

far high vibrasional levels.

This is becauss, as wmentioned earlier,
the adiabatie potentials for the ground state and first excited
state (Zu) became identical at very large separatiocns.

{(d) Relativistic and radiative carrections.

A4 detailed trzatment of thes origin and calculation of these
swall corrections lies beyond the scope of this review [60-65].
However the carrections are significant and must be included to
abtain the most accurate energy levels, The important corrections
only involve the mation of the electron and they are diagonal in

the adiabatic stdtes, so that they may be introduced as additional

terms,

DET(R) = <5DBOIH‘“(R,5g)!,ﬂBO> (61

£¢ be added to the adiabatic potential {(36). The corrections
to the adlabatle ernergy levels are found by obtaining the vibration-
rotation eigenvalues for this modified potential. These corrections
were included In the nonadiabatic calculations of Bishop and Cheung
{55], and of Welni=zwicz and Poll [58]. As we seek to perform still
more accurate calculations it may be necessary to consider otner
small ecrrections, such as the effects of finite nuclear size.

In order to give an indication of the relative sizes of the

various correcticns we tabulate them for the v=1, N=1 level of #D"

in Table 2.

In concluding this section we note that the vidration-rotation
transition frequencies for HDY are sufficiently sensitive to allow
a re-determination of the electron/proton mass ratio if the accuracy

of both theory and experiment can be improved by an order-of-magnitude

[45].

_gg_
{v) Matrix elements o0 the Hamiltonian. °

In order to apply the formal Hamiltonian (8) to the hydrogen
molecular ion we require explicit forms for the operators in terms
of the internal coordinates of the system. This is achieved by
first separating out the angular motion of the nuclei. and then
expressing the resulting matrix elements in terms of the intermal
coordinates (R,g.n) This has been described previously for the
two electron systems oy Kolos and Wolniewicz [37]. but an explicit
derivation fer the cne electron hydrogen molecular ion does not
appear to have been glven. Attempts to write down the one alectron
matrix slements [rom the two a2lactron formulae in [37] appear to
have led to scme errors in published formulae.

We separate the argular motion of the nuclei by transforming
from the space-fixed axes system (X.Y.Z) to a set of rotating
molecule-fixed axes. The transformation is defined by two Euler
rotations

(i} P about the initial Z axis (O<ﬁ 2n}

(ii) f about the resultant y axis RO<D<:U
Following the usual rignt-handed converntions we obtain the results.
sjn;cosa -sind / X \

yl=] sin} cos¢ 0 Y ;i (62)

X ’cos?cose

z! \cosPsinB siufsinﬁ cost VZ/
The coordinates R.U and § are sufficient to describe the motion of
i
the nuclei.

Applying this transformation. the operator E becomes:

By foospoted ) - conoost 3) - ging ) ]
[minpunbl) e singeost D) e oy 3 o

+ [cosB QE) - 31n9 ] {63)

3
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where E. g, 5 are unit vectors along the space-fixed axes X, Y, Z
respectively. The partial differentials in the above operator

are to be performed with the electron cocrdinates in the space-fixed
axis system held constant, denoted by the subscript s. The

nucliear Laplacian operator becomes:
V‘E = 1 _'L) {Re i) }+ 1
EE dris JR/s E?

Use of this form for v; in (34) and (35) aliows the rotational

motion %o be separated: the equations wmay then be solved numerically
as shown. for example. by Cooley [79].
Since the moticn of the electron is goverred by a molecule-
fixed potential.
—7/r1e - Wfrae 165}
it is physically more reasonable Lo transform the cperators to
a molecule-fixed electron coordirate system, referred to the

geometric centre of the internuclear vector. Partial differentials

in this coordinate system are deroted by the subsecript m. Thus:
i) : L) +,=>1) & w‘_y) a_) cdzy 4
3? s 9 /m Wis Ix/e /s tyim of /s dz/n
= & - icoslL_ isinaL
— z X
uﬂ}
Q) _L} - L,
i2s J
b= 3 (66)
BR)s JH)m '
The Fg operator may now be written as
Vs E j: } « 2 3) + 1 'JL) + cotd J ) + 1 iﬁ |
aﬁz m R JR/m ;21 114 it/ m sin“8 Jp:m
N __%{Lz -LYLT - cotzﬂLi - 2icoth L, 3_) }
R sin8 i)
+ 3 . o
+_l;2_{_ .g__) +1__‘_-Q + CCEBLZ]_‘»-EZ{A) + i _é_) +COEBLZ}
R W ia sinf Opm bR m  sind 3 /m J

'1_)_){sin9_3_)}+ ; i)] (64)
sind 873 als sin2f 8¢*/a

30-
: +
where L :Lx —1Ly, and Lx' Ly and Lz are the components of the
electron angular momentum in the rotating coordinate system.
The operater yg‘yﬂ is treated similarly:

3 cosPeoos - sin + 'si J
E_) os} ﬁﬁ%) s ﬁg%)m cosd nesz)m

S%) sinﬁcosﬁs%)m + cosﬁ 5) + sin¢sin9_&}m

Iy iz

jL) = -sinﬂ:i) + sinﬁjl)
Yefs Jx'm dz/m (68)
leading to:
g 1Pd)+i_(P*L -PTLY) . ip* i) - 1_.}__) —cotl}Lz}
iRlm  2r b siny f/m
o=y . . '
+ 1P {f¥ L S B cotiL } (69)
2R Lbip sing Jo.m
+
- +
where 4 _Px-le, and Px’ Py and Pz are the comporents of the
electren's impulse operator B = —iyg in the molecule-fixed
coordinate system. The operators
- W1 -
V§=_9_) 1-3) +_a_
axz ayz m Jz% m
= 1 -
v r'_'l-r‘; (70)
le 2e

are both now independent of the Euler angles ﬁand 3

The forms derived for the cperators in the Hamiltonian (87,
which can also be found in Kolos and Wolniewicz (37], allew the
rotational motion of the molecule to be separated.
by expanding the total wavefunction as,

¢ - Eﬂﬂ UG RRY (T

where the functions Ui depend only on the relative positions of
the particles, apd the Ila .A(G.f,X) are the normalised symmetrie
top eigenfunctions ’

né N :%exp(iMJ?)eXD(mxd;J‘l(g) (12)

i is the total angular momentum in the space-fixed system, MJ ig

This is achieved



its component along the space-fixed Z axis, and A its component
along the molecule-fixed z axis.

The motion of the electron

about the z axis is described by the angle X,

L= -1 %{_ (73)
The functions d; Afﬂ) satisfy the following relations:
J°
. 2 1
{i + coth 0+ oM dcosd - MprA J(J+1)}dé A= 0
it B sind  sin<f J!
M J 5 .d
{j_ - Acott +_§_}dMJ!A= [(J+.A.+1)(J—A)}£er|A+,=
55 sinf -
M J - 1 .Jd
{-L ~Aconh + Mg }dMJ,A= [Or-ty G-y Ry g (74)
it sint

Substitutirg this form for ¢ ints the Schrodinger eguation (6)
leads to trne elimination of the Euler angles # and 5, and eventually
A also. Because the Hamiltoniar is diagonal in J and MJ we adopt
the following designation for its matrix elements:

LY ,JMJJL>: Al (75)
From the expressions derived in (67}, (69) and (70) for the operators
in the Hamiltorian, it is apparent that the orly ron-zero matrix
elements of‘R are those which satisfy the A selection rule,

A = AL AT (76)

Specifically the non-vanishing matrix elements are as follows: -

ALY = - %<Al\?§l!t> o Cajula) - s’:"f’qu'” - %ﬁ<ifvﬁlh>—?;€</{|gg‘_v'ﬁm>

(77)
<j\_'|V§lA> BN ) unless A.| = A (78)
(J\.;|VM-> = 0 unless J\.l=f\- (79)
2 : :
CIHIDIE _o_’z 20 {K(KH)-A(AH)} - AU
4R R (R 2 i
(MN?IJQ 2o 1 [em (I-ae 1R AT AD
rZ
<A+'|V§M> RN R R IC RS ER @ EIIRI VS (80)

R2

39-
<Alvg.§'R§A> = iiPza_ + ‘E_<JLIP+L_-P_L+M.>}
i JR 2R
<1‘flyg-YRi'ﬂ>= TR PIVIYE IR LI S W)
2R
i D) (- TE AT [AD (81
2R

so that we cbtain the results,

<;&}%]J\:> - %<?Jv2lﬁ;> + V- éF<)4v§1A;)

<ét+'lyg-YR|fL>):

"

B T fK(K+1J~_.L(JL+W)+<J‘.IL+L']A)J}-
Flwe TR P
-1 PoY o+ 1 \’_:L|P*L'-P‘L*M.>}
Eme TR R ’
i_\h.,;!ﬂ;;.m,\. E [(J+.L)(J-.m+1)]2} 1 \’_L-J'L_;.L’\, + i \_L-IIP_L\.>}
L 2uR uFaR
. . . _A1E HaN Caalp
\J\_r;[ﬁf,\)- L(d+as1)0d A)]{ i \A_HIL |L> i \JL4|P ,l,\_)} (521
2@2 4R

We have now eliminated the Euler angles ? and ¢ from the Hamiltonian
by separating the rotational motion of the nuclei. The final
stage 1s to express the above matrix elements in terms of the
internal coordinates (R,?,q,\) of the aystem, This will lead to
the elimiration of the coordinate \. We first define some useful
operator abbreviations:

X = 1

(207 U3 oo ERRNCENL:
Y = 1 '( 2-1)3 - "(1-h2)3

g 5 g
7 = 1 '-( 4. (1-*12)_&_}

(,fz_qz){’l? H E “
i = 2

(F°-n%)

5= L0 ) -
—}—2—2—{15%' %“

[t -1)(1-*@)]%{;% - ,MB_}
E*-n }

(83)
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The partial dertvativn J/BR apopeal - e tecogalae (82) above
is performed with the molecule-fixed cartesian coordinates {(x,y,2)
lield constant,

With the wore useful set of coordinates (f,q,ﬁ)

held constant we obtain,

R A (84)
IR/ xyz JR)EQK R

Us;ng the results given in the treatment of the Born-Oppenheimer

electronic equation, nawely (16), (17) and (19), we can write the

resylts:
AV - w x ' (85)
Jalvlad oo o 4% (86)
R n(gz-f)
L* = exp(i\){s . 1§79 i}
[G§S-1)(1-92)1%
ALY - B Frd _ (87)
-1 (15 1F
L™ = exp(-i})t—ﬂ + 1?1 Jl.}
[(§ -11-y £))2
ALY = B - §r (88)
[(?z-wm-ﬁfg
P* - 2exp( 1 {—lA + JL}
LG 1F W

LanlPlAYy - {A A } (89
R E(§ ) (1-9)12

- Zexp -Lm!-m - ; s}
Tl i 2T v
[(§ =131y 11% éX
7 ,
SAHETIAD - 2—;{ A A } (50)
Tl .. 2.aT

[§ -1 019532
Pz - -2 Z (91
R
With these results we can obtain, after some straightforward
manipulations, the matrix elements of the operators appearing in

the Hamiltcnian (8). They are as follows:-

Y
Ll Y N i , {92)
<,\_!-‘\V ,‘.3)+"f|4‘t., = ~dXA_ = 4 ]
. £ —
' e R kgL-i?j
<,Aj-(\?§f8#){ﬂ~> _— XJL!2'|;;,H2 {93)
. 2 S _ 2 ) 2 w2 1,
VYRUVEMIED _—1_{1 _,]_(H _a)-gl'__ﬁ+(f )%,
<. B r 2p 82 iR\ IR/ %2 IR R
- J(Je1) . 2:1.2} (94}
R iy
(AT Yeraplads - [_u_ E(UJ (95)
K purth ]
The elements off-diagonal im A are:
QA -(V f&.;}.L) = [(J«—.L)RJ—.\H)]’l’{' -5 - Eql }
2uR [(f *11'1—1 )17
, : (96
Aril=(Tgr2wld > < [iuenen) (s-ny 1} { B - Fad }
2pR [(f -1/\1—1
e ¢|‘ ’2# = [{Je) (- ‘L+1)]‘[A . , }
2u, RS E(f —n(l—'[ 112
L {97)
{f;\,r:[-('i’g.vnfzga)i.ms = [(I+As D (I-A)]7 0 oa A }
~ -~ J . 2 i T
2}uan ) [(= 5 -1)(1-1 )12

There is an additiocnal symmetry selection rule on the above matrix
elements. The diagonal operator (94) is even in n and so there
is the rule,

g =g, u—ru, but u.og (98)
whilst for the odd operator (95) the selaction rule is,

g;—fag, Uwr=u, but u«rg {9G)
For the operators off-diagonal in A, (96) ard {977, tﬁe matrix
elements of the even operator {97} satisfy (99), whilst those of
the odd operator (96) obey (98), For the specific case of the
ground (fg) state of the hydrogen molecular ion, the matrix element

of the adiabatie Hamiltonian, defined by eguation (52) is given by

the result,



s =
ISENNEY
.. i 1
* l[1 - 4 ] - 1 d(ﬁe JJ—:I g . (§2+qajxo _J{J+1)f
- L .
R (%“WEJ 242 (IRY IR iR
! (100)
Finally the matrix elements of the full Hamiltonian (8} are
as follows:-
’ AD
Q =
oy 14*%10,>
2K 18 y Cy RS : L2, \
~2y o+ 101 - - 1V RS G210 R (ESeTing - 00w
— l ) 2{ \ )
re RY (% - ) 24R7 00 R ‘R
5 f (101)
Cothlo N oo o Epwd
\Ou&“ logf _i.? 52Ti R TWKO’ (102}
w RS R !
ia .
1 di0 ) =t :
NRAPE S == [J(J+1)1% B (103)
24R
N 1
Q-?uJMOE/\ = * [JJ+1)1% 4 (104)
2u.aR

i

Matrix elements {(101) to {104} are those reguired for
performing nonadiabatic calculations, such as those deseribed

by Wolniewicz and Poll [58].

Iv. PHOTOELECTRON, PHOTCIONISATION AND PHOTODISSOCIATION
SPECTROSCOPY

Prior to 1976 most of the experimental data for the
hydrogen molecular ion had been obtained by photoelectron, photo-
ionisation or pheotodissociation spectroscopy. Other important
information was obtained from studies of the Rydberg spectra of
H2 by Takezawa [82] and by Herzberg and Jungen (83], from numerous
studies of the electron impact dissociation of H2 {see, for example,
Dunn and Van Zyl [84]), and from investigations of the collision-

+

induced [85] or unimolecular disscciation [86] of H2 and its

isotopic modifications. We shall confine our review to experiments

3

involving photon impact; even so, the techniques discussed in
this section are not purely spectroscopic, in that they do not
involve direct measurements of the energies of absorbed or emitted
photons.

The most extensive information about the vibrational levels
of the hydrogen molecular ion has come from photoelectron spectroscopy.
In this method a target neutral gas {(for example, H2) is subjected
to impact by vacuum=-ultraviolet photons, which cause ionisation
to produce the molecular ion (HE) in different electronic and
vibrational states. The kinetiec energies of tre ejected electrons
are measured ard, corbined with knowledge of the initial photon
energy, provide relative values of the energies of the internal
states of the ion. The photoelectron spectrum »f molecular hydrogen
has been studied by several authnors, notably Ksbrink (871, but the
most complete and best resolved spectrum has been described recently
by Pollard, Trevor, Reutt, Lee and Shirley [88]. The photon source
was a helium Ia resonance lamp with an output at 584 ﬁ, and by
using a supersonic molecular beam source of n-HE, p-HE, HD or DZ’
they were able to remove the Doppler broadening. Variation of
the molecular beam nozzle stagnation temperature and pressure
provided control of the rotational level populations. At a nozzle
temperature of 77 K and pressure of 200 torr, the neutral molecules
are essentially in the lowest rotational level only; rotational
broadening is therefore removed and the vibrational structure of
the ionsz very cleanly resolved, as shown in figure 4. The main
results are summarised in Table 3, in which the observed vibrational
intervals 4G{v+}) are listed and compared with the best available

theoretical values. For HE and DY the comparison is with the

2
adiabatic calculaticns of Hunter, Yau and Pritchard [49], whilst

for HD* the compariscn is with the nonadiabatic calculations of
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Wolniewicz and Poll [58]. Agreement between experiment and theory
is generally very good, but for the highest vibrational levels of
HE and HDY the discrepancy seems to be outside the range of
experimental error. It remains an cpen question, therefore, as
to whether the nonadiabatic galculations [58], which are excellent
for HDY in vz O to 18, remain good for the final levels, v=13, 20
and 21.

The earlier photoionisation studies of H2 have now been
superceded by the results deseribed above, but they were important
at the time of their publication. Fellowing the initial work
of Chupka and Berkowitz [89], Peatman [90] described a threshold
electron photoionisation study of H2 in which measurements of the
rotational energy levels for v=0 to 7 were obtained. In these
experiments (which are closely related to photoelectron spectrosacopy)
the wavelength of the ionising photons was scanned, but only photo-
electrons which had threshold energies of 0 to 3 meV were detected.
Consequently the appearance of HE in different vibraticn-rotation
levels was detected as a function of the photon energy.

Photodissociation studies of HE, DE and HD™ have been described
by many authors. Following the initial theoretical and experimental
work by Dunn {69] and by von Busch and Dunn [70], most investigators
have used an accelerated beam of Hg (ED", DE) ions, crossed the
ion beam with a suitablé photon beam, and used a mass filter to
separate and collect the photofragment H* or DT iens. The molecular
ions are formed by electron impact on the neutral gas.‘ Because
the potential energy curve for the ion is both shallow and displaced
to larger internuclear separation, relative to that of the neutral
molecule, electron impact lonisation of H2 in its v=0 level leads
to production of H; in all possible vibrational levels. Franck-

Condon factors for the ilonising transitions from the ground states
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of H2 and D2 to all vibrational levels of the ground electronic
states of the respective molecular ions have been calculated by
a number or workers [36,91,92]. Similar calculations for the

producticon of HD" from HD have been described by Tad jeddine and

Parlant [71] and, by way of illustration, Table 4 lists the Franck-

Condon factors [71] for the production of HDY in the lowest rotational

level. The vibrational populations should be proportional to
these Franck-Condon factors and the use of a collision-free
environment, such as ah accelerated lon veam, enables the vibkrational
populations to be conserved. Von Busch and Dunn [70] measured
the total photodissociation cross-sections of HE and DE,

HI(1s8,) + hy =2 HI(2p5) —> H{is) + o7
as a function of photon wavelength, usinrg a white light scurce and
a moncchromator. In more recent experiments the white light sourcé
has been replaced by an argon ion laser operating in the visible.
Van Asselt, Maas and Los have described experiments on Hz [72] and
HDY [93) in which the momentum spectrum of the photofragment H'
or DY ions is recorded. Tne principles of the experiment are
illustrated in Figure 5. The photofragment lons possSess excess
cantre-of-mass kinetic energy, the magnitude ¢f which depends
upen the photon energy and the energy of the vibrational level
of the molecular ion, relative to the dissociation energy, from
which execitation occocurs. By using a magnetic analyser to separate
the fragment ions from the parent ions, the momentum spectrum of
the fragments is obtained. This spectrum yields the relative
energies of several different vibrational levels, although the
accuracy is rather poor. Of more interest, however, are the
fragment ilon intensities which depend upon the Franck-Condon factors
For ionisation, as discussed above, and also the photodissociation

cross-sections for different vibrational levels of the molecular ion.

Lo

released k.e

. H'+ H

internuclear separation

Figure 5
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V. RESIOFHEQUENCY SPECTRCSCOPY
A must ingenious method for obtaining the radicfreguenny
spectrum of Hz nas been desgribed by Dehmelt, Richardson and
Jerferts [94,95,96,687, The method is, in principle, applicable
to other ions but it has not yel been extended beyond H;. Before

considering the principles and techniques it is helpful to examine

qualitatively the hyperfine structure of Hg. Figure 6 illustrates ’
. !
. s
the main features. For ortho—Hg the N:l.level,‘for example, is =312 K - J=F=5;2
’ —
split into a .doublet by the spin-rotation interaction; each leval ! e :
' i l N

is then furtner split by nuclear hyperfine interaction as shown. ) — F=1/2 :

: 1]

.The-quantum aumber J is -cbtained by adding N and 3,
. ’
Jo= N+ 5§, T = NeS, MeBe1, L L JN-s) - 3/2 or 1/2
- -~ ~ b [
and the tstal angular momentum F is formed by addition of the total f
]

nuclear spin I,
N=1 '
F=ds+1, F = J+I, N 5 5r2, 3/2, 172

~

For parauHE tne net nuclear spin I is zero so that the substructure ’
L]
\

for Nz=2 is simpler, as shown. Figure 6 is not necessarily to \ ]

F=1/2 v

scale, ard we do not wish to presuppose the relative magnitudes of \ "

the spin-rotation and nuclear hyperfine interactions. ,
_— !

Dehmelt and Jeffarts: experiment is based ubon the fact that .
* F=32

the photodissociation rates of ions in the ground electronic state

are dependent upon F and MF when the sample is ililuminated by

linearly polarised light. This is Because the bhotodissociating
*
para-H,

transition oteys the nermal electria dipole selection ryles. ortfﬁo-'Fr
2

Consequently a sample of H; lons held in a collision-free environment

and subjected to polarised white light irradiation will develop
net spatial alignment because the photodissociation rate is Figure 6
preporticnal to MS. If, however, transitions between tWwo States
F,MF and F',MF, are saturated with radiation at the appropriate

resonance frequency {which, typically, will be in the radiofrequency




region), the populaticrns boonms cguallsed, Tt tne
tendency towards spatial aligrment induced by the pnotodizssz:
process, Consequently the radiofrequency transitions aar

detected by monltoring the nev photodissociation rate as z fur

of the radiofrequency.

In the experiments of Dehmelt and Jefferts the HE icrs ar

formed in an ri quadrupole ion trap by pulsed electron imgpazt

-3

H2 at a pressure of 10 torr. Photodissociation is irnduz=23

an intense linearly pelarised white light beam providing ar

dissoclation lifetime of about 30 ms for those ions which =zr

dissocliated by tne light. The characteristics of %rna iaon

ot
N

allow simultareous trapping of the H; and photolfragrmant H™ iz

and at the end of a suitable irradiation pericd (for examp.=.
the HE and H' ions are extracted, counted, and the ratio H™ .=
stored in a multichannel digital memory. The freguency =8 s
radiofrequency magnetic field is slowly swept and thne trarnsziz:

+

detected as changes in the H+fH2 ratio. The spectroscopliz r=

is extremely high because the Doppler width at radi=frequear:is

is small, and the residence time of the ions in the radiati-r

field is long; line widths in the range 200 to 750 Hz are szz=;

Figure 7 shows a bloeck diagram of the apparatus used by Jeffan:

[96]1; a small static magnetic field (10 to 30 mG) is used = r
the MF spatial degeneracy.

The effective Hamiltonian used by Jefferts to interprez
observations was,

Bope = BL.§ + eI S + {34 - LY

We shall discuss the form of this Hamiltcnian in more detail in

the next section. For ions in the v=U4 level, for example, o=

values of the ¢onstants were found to be
b = 804.065 MHz, ¢ = 98.034, r: 32.636, f = 0.033

Measurements have been made for levels of HE with v=4 to 8 and

atinn

i
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and interpreted by Ray and Certain [67] using the adiabatic
potential of Bishop and Wetmore [50]; agreement between theory
and experiment is generally very gcod. Experiments on higher
vibraticnal levels would be desirable, since the nuclear hyperfine

and spin-rotation parameters provide excellent tests of the gquality

of the caleulated wavefunctions.

VI, 1ION BEAM SPECTROSCOPY.

The first infrared spectrum of a gaseous molecular ion was
reported in 1976 by Wing, Ruff, Lamb and Spezeski [45] who used
the interaction of an infrared CO laser with a beam of HDV ions.
Subsequently further lines of HD* have been observed by the same
group [97]. In a related series of experiments Carrington and
Buttenshaw [46] and Carrington, Buttenshaw and Kennedy [81] have
also cbserved infrared spectra of HDp*. The transitions observed
by Wing et al involve the low vibrational levels, while Carrington
et al have observed levels close to the dissociation limits; the
experimental methods used by the two groups are different but
complementary. The éeneral prineciple of both methods is that a
high velocity, well collimated beam of ions interacts c¢olinearly
with cne or two infrared laser beams. Changes in tne accelerating
poetential of the ion beam enable vibr;tion—rotation transitions
af the ion to be tuned inte rescnance with a suitable laser line,
by means of the Doppler shift, Indirect methods are gsed to detect
population transfer at rescnance.

The ions are generally produced by electron impact ionisation
of neutral HD, although plasma discharge sources may also be used.
The HDY ions are extracted by applying a 1 to 10 kV positive
potential te the source and are collimated into a narrow beam by

a series of electrostatic lenses. The resulting beam possesses a
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number of properties offering considerable advantages for spectroscopia

study, which we now discuss [98].

{a) Icns present in the beam enjoy a collision-free environment;
hence the internal energy distribution of the ions in the
peam will reflect directly the energétics of the formation
processes in the source. The Franck-Cendon factors for
ionisation of HD+, listed in Table 4, show that ions with
high vibrational excitation are present in the beam, and this
aspect is central to the tecnniques used by Carrington and his
colleagues.

{p) A high degree of spatial econ=rol of the ilon beam is possible
using collimating and d2fle~ting lenses, enabling very efficient
interaction with the lassr %=sam to ocour.

(e¢) Unambiguous identificatisn >f the ions in the beam can be made
through use of the now standard techniques of mass spectrometry.
In addition ions of diffarent charge-to-mass ratio can be
separated from each otner, ion beam intensity measurements
are straightforward, and even very weak beams of only a few
ions per second can be Zetected by means 2f high-gain electron
multipliers.

(d) The individual ions in tne bsam travel at velocities which are

5 1

typically in the range 107 to !Ob ms~ , depending upon the

beam potential and mass of the ion. The effective laser
frequency observed Dy an ion moving at velocity v parallel or
antiparallel to the laser beam is given by the relativistic

Doppler-shift formula,

y

(B3

{1 (v/c)} :
11 ¥ (vie)

where the upper and lower sigrs refer to antiparallel and

V

laser x

effective

parallel corientations respectively, and ¢ 13 the velocity

of light. By sweeping the socurce potential, freguency



e
scanning may be achieved with a fixed-frequency laser line.

(e) Sub-Doppler rescolution is cbtainable as a result of an effect
known as kinematic compression or velccity bunching. This
effect may be understcod [99] by considering two different
icns, a and b, of the same mass and which have velocity
compeonents in the beam propogation direction,

v, o= (EKT!m)%

b
After acceleration through a potential difference V the lons

v :0,

have fFinal velocity components:

vy o= (2eV/m)?

2
_ 2 P 2 2.F _ v
vy ® [vb + {2ev/m}]E = (vD v, yE o= vi+ b
2v!
a
Hernce
1
( - _ . - 1 o
vy vé)/(vb Ja) = 3{kT/eV)e = R

For T=2000 K and V=10 kV the value of R is 2.1x10_3; consequently

the velocity difference and therefore Doppler shift between

the different ions is greatly reduced. In practice the
resolution is improved by factors of 10 to 100 over normal
Doppler-limited spectra as a result of this velocity bunching
effect.

Instantaneous ion densities in typical molecular ion beams
are estimated to be in the range 104 to 106 ions/cm3, which is too
low for infrared spectroscopy to bé carried out with conventional
light scurces. Even with the use of high-powered CW lasers it is
necessary tc use indirect methods to detect the absorption of
radiation. Wing and his colleagues have used charge transfer
reactions, allowing the HDY peam to be partly neutralised with an
appropriate target gas after interaction with the laser beam has
ocaeurred. The cross-section for charge exchange is dependent

upon the vibrational state of the HDY ion and therefore the population

transfer between vibraticonal states at resonance with the laser can
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be detected by a corresponding change in the degree of charge
neutralisation, and hence HDY peam intensity.

Carrington and his cclleagues have used photodisscciation
methods, allowing the HD' ions to interact with two infrared photons.
The first photon is rescnant with a vibration-rotation transition
through the Doppler effect, whilst the second has sufficient energy
to photodissociate the upper level, but insufficient to photodissociate
directly the lower level. Resonant population transfer is thus
detected as an increase in the number of photofragment " or DT ions.
It is noteworthy that the resonant signal will be comparable with
the background signal in the photodisscociation metncd, whereas in
the charge exchange metnod tne change in parent ion beam current
after partial neutralisation is relatively small at rescnance.
The photodissociation method is therefore much the more sensitive,
but can conly be used to study levels near te the dissociation limit.

The apparatus used by Wing and his group is illustrated in
Figure 3. The electron bombardment type scurce 1s found to be
superior to a plasma discharge saurcé in that it forms icns with
iess vibrational excitation. Consequently the off-resonance
population differences between the initial and final states are
greater., enhancing the signal-to-ncise ratioe. Although the
vibrational populaticens for HD" are determined by the Franck-Condon
factors for ionisation (Table 4), the rotational distribution is
essentially Boltzmann at 320 K. HD' ion beam currents of 3%1077 &
are produced by admitting a mixture of H2 and D2 through a hot
palladium leak into the source. After focussing. the ion beam
enters a constant potential interaction region, maintained at a
pressure of 10'6 torr, in which it is crossed at an angle of 11 mrad
by an infrared laser beam. The continuous wave CO laser employed

is capable of producing 150 lines in the 5.2 to 6.2 fm region.

Single line selection is achieved using a diffraction grating and
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powers of a few mW to 1 W are obtained per lire. The source
potential is swept by & microcomputer, usually in 0.7 V.steps
with an integration time of 8 sec per step, in order to Doppler-
tune transitions into coincidence with a single selected laser line.
After the interaction regicn, crossed electric and magnetic flelds
are used to mass-select the HD™ ions; subseguently the ion current
is attenuated by passing the beam through a gas target such as
N2, Ar or H2, and the remaining ion current is measured at a Faraday
cup. The current alters by a few p.p.m. at rescnance; hernce the
laser beam is chopped at 1 ¥XHz and the a.c. Faraday cup signal
synchronously aetected.

Twenty-five vibration-rotation transitions of HD+, involving
v=0 to 5 and N=0 to 5 have now been cbserved. All the transitions
obey the harmconic oscillater selecticn rule Av::1, and the measured

1,_the main limitations

frequencies are accurate to 20,0007 em”
being voltage calibration and uncertainty in the laser frequencies.
The observed linewidths are in the regicn 7 to 25 MHz, and become
smaller at higher source potentials because of increased kinematic
compression effects., The experimental results are listed 1in Table
1; we have already commented on the excellent agreement Detween
experiment and the nonadiabatic calculation [58] for the low
vibration-rotation levels. Hyperfine and spin-rotation structure
is observed for each line with two or three strong components and
cne to four weaker components; the splittings range from 12 to
45 MHz, and a satisfactory interpretation has been provided by
Ray and Certain [67].

The apparatus employed by Carrington and his colleagues for
photodissociation detection of infrared transitions in HD® is shown
in Figure 9. In essence a tandem mass spectrometer has been

adapted for spectroscopic purposes. Ions are formed by electron
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impact or plasma discharge and the extracted ion beam is mass-
analysed by a 55° electromagnetic sactor. The beam is focussed
at the intermediate slit and the ion current may be Measured
immediately after the slit using an off-axis electron multiplier.
The ion beam then passes into .an e;ectrostatic analyser (ESA) which
salects a particular fragment ion formed from the parent ion between
the two analysers. The fragment ion current may be measured either
by means of a Faraday cup, or with a second off-axis electron
multiplier. Prior to the intermediate slit the ion beam passes
through a tube of 40 cm length, known as the drift tube. Potentials
in the range -500 to +5S00 volts may be applied to this tube, and
the E3A is able to separate fragment ions formed in the drift tube

from those formed elsewhere at earth potential due to their different

kinetic energies. The path of the ion beam 1s evacuated to ~7 x
10'8 torr,
Two lasers are available for spectrosceopic studies. [Laser 1

is of sealed tube design and may be operated with CO as the lasing
gas to give maximum powers of 3W in a single line, or with CO2
giving powers of up to 25W per line, The laser beam is reflected
into parallel or antiparallel alignment with the ion beam and is
focussed at the intermediate slit. Laser 2 may be cperated in a
sealed or flowing gas mode with CO2 as the lasing gas, and has a
maximum output power of 60W CW in a single line. The laser beam
is aligned antiparallel with the ion beam and focussed into the
drift tube, although when both lasers are operated simﬁltaneously
a small angle is created between the two laser beams to avoid
interference.

In experiments using the photodissociation method both lasers
may be used simultaneocusly. In studies of the v=16-18 band the
vibration-rotation transitions are Doppler tuned intc resonance

Wwith cone of the lasers (using C02}, operated at low power to minimise



power broadening; the transitions are detected by dissociation of
the upper state using the other laser (also with C02) at high power
te maximise the sensitivity,

For the v=1U4-17 band, however, only

laser 1 operating with CO is used. Photodissociation oeccurs mainly

from v=17 with the CO laser, and mainly from v=18 with the 002 laser.

Several different Doppler tuning and signal detection modes
are possible, but for the HD* studies the instrument is usually
operated in the following manner. A PDP-11 minicomputer is used
to scan the source potential over the rarge 2 to 10 kV, typically
in ©0.1 to 1 V steps. The magretic field is simultaneously scanned
by the computer to transmit-the HD* beéam at constant intensity.

The ESA potential is linked automatically to the source patential,
and is set to transmit photoproduct DY ions; the computer repeatedly
reads the DY ion current and adjusts the magnetic sector for maximum
intensity. A small d.e. voltage is applied to the drift tube, so
that DV ions farmed in the drift tube may be separated by the ESA
from those formed elsewhere; in addition a squars-wave modulation

of frequency up to 10 kHz and amplitude up to 10 volts is also
applied to the drift tube. Voltage modulation causes velocity
modulation of the HDY beam and is, through the Doppler effect,
equivalent to frequency modulation. Hence the ESA voltage is
synchronously modulated and a phase-sensitive detector used to
demodulate the fragment ion signal; the d.c. signal output is read
by the computer for each step of the source potential scan.

The experimental results are listed in Table 1. A total
of 9 rotational components of the vz18-16 band, 7 components of
the v=17-14 band and 1 component of the v=17-15 band have now been
cbserved. In many cases it is possible to obtain two or three
independent measurements of the same transition by using different
laser lines, parallel or antiparallel, at different Doppler tuning

potentials. Consequently the transzitiocn frequencies are determined

~Fiy

to I 0.000C5 cm"E and, as we have seen in Table 1, the results
previde a severe test of the nonadiabatic calculations of Wolniewiag
and Poll [58].

Linewidths down to 7 MHz are obtained and each transition
shows a doublet splitting, the two lines showing an intensity ratio
of about 3 to 1, and separations of from 15 to 25 MH=z. This
splitting arises from nuclear hyperfine interaction, but it is not
immediately obvicus why a doublet separation is consistently observed,
or what determines the size of the splitting. We must, therefore,
consider the effects of the nuclear nyperfine and spin-rotation
interactions in more detail. The effective Hamiltonian may be
written in the form

Rere = ®151-8 + 051508 + o113, + o1y 5, + y2-4

The first two terms represent the Fermi contact interaction between
the electrorn spin (%) and the proton (£1) and deuteron (Ez) nuclear
spins. The third and fourth terms represent the axial compenents
of the dipolar hyperfine couplings, where z is the internuclear
axis, whilst the fifth term represents the electron spin-rotation
interaction. The simplified form of the dipolar terms implies
neglecet of non-axial components which have matrix elements connecting
different electronic states. We nave also neglected the nuclear
spin-rotation interaction, and terms describing the deuterium
rnuclear quadrupeole interaction.

Within the restrictions of eour Hamiltonian, the hyperfine and
fine structure of esach vibration-rotation level will depend upon
the values of the five constants b1, b2. c], c2 and X' A3 we saw
in section V, information abouﬁ these constants in H; has been
obtained by Jefferts [96,68] for the levels v=4 to 8. Although

extrapolation of these results to the v=1§ and 18 levels of HD*

is undesirably lorg, they do suggest that the Fermi cgntact



A&

interaction constant (b1) for the proten is by far the most important,
with a value of approximately 720 MHz. The deutercn constant b2
would then be expected toc be smallier in proporticn %o the difference
in magnetogyric ratios for the proton and deutercn (i.e. by a factor
of 0.1535}). The dipclar constants e, and ¢, are fairly small for
the lower vibraticnal levels and are likely to be even smaller for
v=16 and 18, Finally the spin-rotation constant J is only 32 MHz
for v=0 and becomes progressively smaller the higher the vibrational
level; we anticipate ) values of only a few MHz for v=16 and higher.
These considerations suggest that the most appropriate coupling

scheme for the spin and rotational angular momenta is the following:

2o+ Iy =Gy, Gy=130,
Gy + I, =G, G,=2,1,0;1,
92 + N = F, F :|N+G2j,...., IN'ng

Consequently the hyperfine levels may be characterised by values

of the guantum numbers G1, G2' N, F and an appropriate energy level

diagram for the transition 18,3-16,2 is shown in Figure 10.

The selection rules for the electric-dipocle allowed vibration-
rotation transitions are AN=21, AGT:GGZ:O,AF:t1,O. The strongest
lines therefore arise from the four transitions shown in Figure 10,
and any splitting between the lines will arise only from differences
in the values of the constants for the twe vibrational levels
involvead. The doublet splittings observed in the HDY lines
therefore arise primarily from the difference in b1 for v=16 and 18.
The weaker component involves the levels with GW=O, and the stronger

component has G1:1. Conseqqently the stronger component contains
unresolved deuterium structure, and each component is probably
broadened by unresclved spin-rotation structure. Absolute values
of the hyperfine constants could only be obtazined through the

observation of transitions for which AG]iO, AG2£0. Unfortunately

| G '5:
2 %
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Table 1. Corparison of 2xperimental transiticon frequencies for
4; D" with adiavatiec ard nonadiabatic calculations.
these transitions have very little elestric dipole intensity, Transition Experiment Adiabatic® Nonadlabaticf Exp.-Nonadiab:
-1 -1 -1 -1
essentizlly bscause the electron spin is only very weakly coupled (v dn)afun, 2 tem™ 1) (em ) tem ) Cem )
to the internuclear axis. (1.0) - (0,1) 1369.1343 1869.25 1869.135 -0.001
The preseat pssition for HD®, therefore, is that experiment {1,1y - (0,2) 1323.533% 1823.67 1823.533 0.000
. . b
1 L4611 -0.002
and theory agree to within a few thousandths of a wavenumber for (1,2) - (0,3) 1776.459 1776.60 776.46 ’
(z,7y - (1,07 1356.778% 1856.92 1856.779 - -0.001
levels of moderate v and N value. It may be possible to improve (3,13 - (2,0 1761.616% 1761.74 1761.616 0.000
the accuracy of the experiments by an order-of-magnitude, and thus (3,2) - (2,1} 1797.522% 1797.64 1797.519 0.003
‘ . [ 1 8 0.005
Lo probe certain more subtle aspects of the molecular physics. (3,3 - (2,2) 1331.083 1831.21 831.07
(3,1) - (2,2) i%42.1082 1642.23 642,111 -0.003
The agreem;nt between theory and experiaent for the higher (17,1) - (14,07 '313.BSEC 1813.66 1813.852 0.000
vibratisn-rotation levels is leas satisfactory. A particularly (17,2) - (14,17 1320.209° 1820.00 1820.201 0.008
. ;o tiz ¢ 201 0.0714
challengzing experimental problem is to detect trarsitions involving (17,3) - (1h,2; 220,199 1819.99 1820. 137
(17,4) - (34,3 1213.6u4° 1813.43 1813.627 0.017
the highest vibrational levels, v=20 and 21, Searches for such (17,5} = (14,4) 1:00.358° 1800, 14 1800.333 0.025
transitions have been made [100], so far without success. The {17,6) - (14,5) 730.145° 1779.92 1780, 115 0.030
.- c -G.004
ruclear nyperfine structure for a level which is close to the lower (17,00 - (tu,1) 732,772 . 1782.57 1782.776 ¢.o0
- (18,1) « (16,0} 326.4835 §26.131 926.490 0.000
. c C {.e. within 1 i 2h . ‘ )
dissociation limit (i.e. within or 2 cm ) might be most unusual (18,2) - (16.1) 332'2237d $32.03 932.220 0.004
Because of the lack of an electric dipole moment in the (18,3) - (16,25 933,2129d 933.02 932.207 0.006
- 3 d a0
homecnuclear species Hg and D;, vibration~rotation spectra of the (18,4) - {16,3) :29.2“71d 925.06 929.238 0.00¢9
+ (18,5) - (16,4 320.1001 919.91 920.089 0.0
m ed £ o) i . ] i i
type measured for HD® are not accessible It is possible that (18,6) - (16,5) }05‘5]91d 905.33 905.5128 0.007
molecular quadrupole-induced transitions could be detected using (18,7) - (16,67 385.2183d 885.03 885. 2298 ~0.011
‘ d - 6
the much larger infrared powers available from pulsed sources. (18,00 - (16,1) 931.56u8d 901.38 801.571 0.00
(18,1) - (16,2) i32.7312 882.55 882,743 -0.012
(15,75 - (17,8) i078.8532%  qo0v8.67 1078.9078 -0.054
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CAPTIONS TO FIGURES.

Table 4. Franck-Condon factors for the icnisation of HD to HD+,
with N=0. Taken from Tadjeddine and Parlant [71]
Figure 1. <Coordinate system for the hydrogen moclecular ion.
v 4 v £ v 3 v f C is the arbitrary space-fixed origin, C.M. is the
centre-of-masﬁ of the system and G is the geometric

0 0.06320 1 0.12862 2 0.15732 3 0.15186

5 0.12845 5 0.10040 6  0.07480 7 0.05416 centre of the nueleli.

8 0.03859 9 G.02730 10 0.01928 11 0.01366 Figure 2. Cartesian coordinate system.

12 0.00972 3 0.00696 14 0.00501 13 0.00362 Figure 3. Born-Oppenheimer potential and adiabatic corrections
16 0.00261 17 0.00187 18 0.00129 19 0.00083 v 2o P

20 0.00045 21 ©0.00013 Hy = 'sts(’n’ar‘)dsd’lg and Ky = ‘j?s(“g"ar)ﬁsd‘:g from

the calculations of Bishop and Wetmore [50].

Figure 4. Photoelectron spectra (584 R, of c-H HD arndi D

2 2

expanded from 200 torr at 77 K [83;

Figure 5. Principles of measurement of the ms:entum of the HY
ion in the laser photofragmentaticn of HE.

Figure &. Hyperfine structure of the N=7 rotational level of
ortho-H;, and the N¥=2 rotational lavel of para-Hg.

Figure 7. Block diagram of the guadrupole trap apparatus used
by Jefferts [96].

Figure 8. Ion beam/laser beam apparatus using charge-exshange
detection [45].

Figure 3. Tandem ion beam/laser beam apparatus using photodissociation
detection [46].

Figure 10. Hyperfine and spin-rotation splitting for the 18,3-16,2

transition in HD™,
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