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8
Laser Beam Transformation

8.1 INTRODUCTION

Before it is put to use, a laser beam i generally transformed in some
way. The most common type of transformation is that which occurs when
the beam is made to propagate in free space or through a suitable optical
system. Since this produces a change in the spatial distribution of the beam
(e.g., the beam may be focused or expanded), we shall refer to this as a
spatial transformation of the laser beam. A second type of transformation,
also rather frequently encountered, is that which occurs when the beam is
passed through an amplifier or chain of amplifiers. Since the main effect
here is to alter the beam amplitude, we shall refer to this as amplirude
transformation. A third, less trivial, case occurs when the wavelength of the
beam is changed as a result of propagating through a suitable nonlinear
optical material (wavelength transformation). Finally, the ternporal behavior
of the laser beam can be modified (e.g., the time variation of the output
from a pulsed laser may be changed) by a suitable electro-optical or
nonlinear optical element. This fourth and last case will be called time
transformation. It should be noted that these four types of beam transforma-
tion are often interrelated. For instance, amplitude and wavelength trans-
formation often result in spatial and tinie transformations occurring as well,

In this chapter the cases of spatial, amplitude, and wavelength trans-
formation will be briefly considered. In the case of wavelength transforma-
tion, of the various nonlinear optical effects which can be used” to
achieve this, only the so-called parametric effects will be considered here.
These in fact provide some of the most useful techniques so far developed
for producing new sources of coherent light. Time transformations wilt aot
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8.2 TRANSFORMATION IN SPACE:
GAUSSIAN BEAM PROPAGATION

In this section we will limit ourselves o considering the propagation of
a lowest-order Cuaussian beam (YEM,;, mode). The important topics of
Propagation of coherent beams having non-Gaussian transverse distribu-
tions (for which the Kirchhoff integral or equation {8.10) can still be used)
and propagation of partially coherent beams® witl not be considered.

The case of free-space propagation of a TEM,, Gaussian beam has
already been considered in Chapter 7 (see Section 7.4). For convenience we
repeat here the expressions for beam spot size w and radius of curvature R
of the equiphase surfaces, viz.,

w2=wg[| +(ﬁ?_2)2} (8.1a)
o/
R=: 1+(%” (8.15)

where wy is the spot size at the beam waist and the z coordinate is measured
along the propagation direction with its origin at the waist.’ Figure 8.1
shows the behavior of the beam spot size and equiphase surfaces with
distance z. We re-emphasize that the propagation properties of this beam
depend only on the wavelength and the value w, of the spot size at the
beam waist. We also recall that this can be understood by noting that, once
Wy is known, both the amplitude and phase are known at the waist (the
wavefront is plane at the waist). Since the field distribution is thus known
over the entire plane z = 0, diffraction theory [e.g., the Kirchhoff integral
{4.10)] can be used to calculate the field amplitude at any given point in
space. We shall not carry out such a caiculation here and we limit ourselves
to noting that equation (8.1a) shows that the square of the beam spot size
at a distance z from the waist is given by the sum of the squares of the spot

tWe recall that the sign convention for radius of curvature is that R{z) is taken as positive
when the center of curvature is to the left of the wavefront.
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FIG. 8.1, Propagation of a Gaussian beam.

size at the waist, w?, and the contribution {(A/mwg)z]? arising from di-ffrac-
tion. At the end of this section, as an exercise, equalions (8.1).w111 be
derived directly from Maxwell’s equations rather than using the Kirchhoff
integral. .

We now turn our attention to the propagation of a TEMy, Gaussian
beam through a lens system. Figure 8.2 depicts the behavic-!r of the -bcam as
a result of passing through a lens of focal length f. We begin by noting that,
just before the lens, the spot size w, and radius of curvature R, of the beam
can, according 1o (8.1), be written as

AL, \2
wi=wl, l+(;——w—§-—) } (8.2a)
1
i\’
el (22) -

We also note that, for a thin lens, the amplitude distribution mus? rema..in
unchanged upon passing through the lens, i.e., there cannot be a discontin-
uous change of spot size. Thus we can write

Wy =W, (8.3a)
for the beam spot size after the lens. To calculate the correspond.ing
wavefront curvature we first consider the case of propagation of a spherical
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FIG. 8.2, (a) Propagation of a Gaussian beam through a lens; (b) propagation of & spherical
wave through a lens.

wave through the same lens (Fig. 8.26). Here a spherical wave originating
from a source point P, is focused by the lens to the image point P,. From
geometrical optics there follows the well-known result that pl+gt
= f~!. Since the radii of curvature R, and R, of the two spherical waves

Just before and after the lens are equal to p and — g respectively’ we can
also write

1_1
ERTF (8.3)

A spherical lens can then be seen to transform the radius of curvature R, of
an incoming wave to a radius R, of the outgoing wave according to (8.34).
Similarly, the radius of curvature R, of the outgoing Gaussian beam of Fig.
8.2a will also be given by (8.34), and so we now have both the amplitude
[through (8.3a)} and phase [through (8.35)] distribution of the outgoing
wave. This wave therefore has a Gaussian amplitude distribution and
spherical wavefront, i.c., a Gaussian beam remains a Gaussian beam after
passing through a (thin) lens system, This result applies also to a thick lens

TNote the application of the sign convention referred to earlier.

system, as can be seen by considering a thick lens as a sequence of thin
lenses. Once the spot size and radius of curvature of the outgoing wave are
known just after the lens, we can calculate the corresponding values at any
points in space. For instance, the spot size wy, at the new beam waist and
the distance L, of this waist from the lens can be obtained by using
equations (8.1) in reverse. After some straightforward manipulation we
arrive at the following two equations:

Lo=gx (32 -2y (84a)

L=+ (2 ) -0" (8:48)

from which both wy, and L, can be obtained. The quantity f; in equations
(8.4) is given by g

Jo= oW/ (8.5)
and either the two plus or the two minus signs can be chosen. These

equations prove very useful for solving a variety of problems which arise in
Gaussian beam propagation (sec Problems 8.2 and 8.3). We limit curselves

to pointing out here that, when the first waist is coincident with the first-

focal plane (L, = f), the second waist also coincides with the second focal
plane of the lens (L, = f). We also note that, in generzl, the planes of the
two waists are not conjugated in accordance with the geometrical optics
result (e, L7+ L7t f71).

Before ending this section we show, as an exercise, how (8.1) can be
derived through Maxwell’s equations rather than using the Kirchhoff
integral. In the scalar case, Maxwell’s equations lead to the wave equation’

) ,
ve-L3IE g 8.6
¢t A S
For a monochromatic wave we write E(x, y,2,f) = E(x, y,z)exp (iwf), and
equation (8.6) gives (Helmholtz equation)
V3E(x, y;2) + k*E(x, y,z) =0 (3.7
with k = w/c. For a radially symmetric beam, expressing (8.7) in cylindri-
cal coordinates gives

(3—2+11+-§1)E+PE-0 (X))
r dz

It has been pointed out"® that some care is needed to derive this equation in a rigorous
fashion,



W nuw ook 1or o solulon of the form
E(r.z) = Ulr.zyexp(—ikz) (8.9)
in which U(r,z). as a function of z, is assumed to be slowly varying on the
scale of a wavelength (A = 27 /k). Substituting (8.9) into (8.2}, and using
this slowly varying amplitude approximation (ie., putting 2U/9%
< kalU/8z) gives
# .13 4 Al _
(ar2 1 ar)U 2k 2 = 0 (8.10)
This is the fundamental equation we require (known as the quasi-optical
equation) and s widely used in diffraction theory. It has to be solved with
the appropriate boundary conditions.
To solve (8.10) in our case, we set the boundary condition (see Fig, 8.1)

U(r,0) = exp(—r/wy)’ (8.11)
Accordingly, for z > @, we look for a solution of the general Gaussian form
U(r,z) = exp(a — Brz) (8.12)

where both a and 8 are taken to be complex functions of z. Before
proceeding it is appropriate to point out the physical significance of both a
and B. The real part of a gives the change in amplitude on the beam axis
{where r = () due to beam propagation. The imaginary part of a gives a
phase shift which is additional to the plane wave phase shift kz already
included in (8.9). The real part, 8., of 8 is obviously related to the beam
spot size w by the equation

B =1/w? (8.13)

To understand the meaning of the imaginary part, 8, of 8, consider a
uniform spherical wave emitted from a point source P located at z = 0 (Fig.
8.3). The field U(P,) of this wave at point P, lving on a plane which is
perpendicular to the z axis and which is placed at a distance R from point

J FIG. 8.3. Phase value at point Py(z = R) for
/ a spherical wave originating from point P
/ (z=10).

e

[

2
exp [ - r'!c(r2 + Rz)[/ ]
[+ R?]"?

—ikR

~ ﬂﬁl———)- exp [ —(ikr’/2R)]
Note that R is also the radius of curvature of the spherical wave at the
plane considered (dashed arc in Fig. 8.3). We thus recognize that a Phasc
term of the form kr?/2R must represent a spherical wavefront of radius R.
The comparison of the phase term i8,r® in (8.12) with the phase term
ikr? /2R in (8.14) then shows that B, is related to the radius of curvature of
the wavefront by

Upy)x

forr«R (8.14)

B,=k/2R (8.15)

We are now ready to substitute (8.12) into the wave equation (8.10)
and use the boundary condition (8.11). The substitution gives
dB . da
A ik — H [k +28)=0 8.16
r(:kdz+28) (;kdz+ ,B) (8.16)

Since this expression must be zero for any r, each of the two terms in
brackets must be zero, i.c.,

LNy T 8.17a
kS +267=0 (8.17a)
ik 9 428 =0 (8.17b)

The solution of (8.174) with the boundary condition (8.11) gives
g - (8.18)
oz 41T
(Z + i T )
With the help of (8.18) and again using the boundary condition (8.11), we
obtain from (8.175)

=—Inf1- ﬂ) 8.19
a ln( i (8.19)
Calculating the real and imaginary parts of 8 from (8.18) and using the
relations (8.13) and (8.15) then yields equations (8.1a) and (8.15) respec-
tively, Equation (8.19), with the help of (8.1a), can be expressed in the form

expa = l:? expi¢ (8.20)
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83 TRANSFORMATION IN AMPLITUDE:

LASER AMPILIFICATION % ‘

In this section we consider the rate-equation treatment of a laser
amplifier. We assume that a plane wave of uniform intensity I enters (at
7 = 0) a laser amplifier extending for a length [ along the z direction. We
Limit our considerations to a situation where the incidens radiation is in the
form of a pulse of duration 7, such that r, < r (1, WF“}, where r, and 7
are respectively the lifetime of the lower and upper levels of the amplifier
medium and where W is the amplifier pump rate. This is perhaps the most
relevant set of conditions for laser amplification and applies, for instance,
when a Q-switched laser pulse from a Nd: YAG laser needs to be amplified.
The case of cw amplification (steady-state amplification) is therefore not
considered here and we refer the reader elsewhere for a discussion of this
topic.>-®

Given these assumptions, the population of the lower levei of the
amplifier can be set equal to zero, and pumping and decay of the upper
level of the amplifier duning the passage of the pulse can be neglected. The
rate of change of population inversion N(¢,z) at a point z within the
amplifier can then be written with the help of (2.60) [in which we put

- VAN = — % B2y
R¥: v i ( /
where
hr
m B 8.24
L (824)

{s 3 parameter whizh depends only on the laser material. Note that a partial
derivative is required in (8.23) since we expect N to be a function of both z
and ¢, ie., ¥ = N(1,2), on account of the fact that I = I{t,z). Next we
derive a uifferential equaiion describing the temporal and spatial vanation
of intensity /. Tc do this we first consider the rate of change of energy
density p of the light wave (where p= {/¢, hence 31/cds =dp/dt). By
considering the net raie of change of photon energy within a smail volume
of the ampiifier (see Fig. 8.4) we can write

I3 (3p) do dp

fma (e w5 (8:25)
where {3p/2f), accounts for stimulated emission and absorption in the
amplifier, (8p/3¢r), for the amplifier loss (e.g., scattering losses), and
{8p/dt), for the net photon flux which flows into the volume. With the help
of (2.60) [F = I/ hr] we obtain

(%) = WNhy = oNI (8.26)
1
and from (2.60) and (2.64) we obtain
(a—") =~ W,Nhv= —al (8.27)
9t /,

where N, is the density, W, the absorption rate, and « the absorption
coefficient of the loss centers. To calculate (9p/dt),, we refer to Fig. 8.4
where an elemental volume of the amplifier material of length dz and unit
cross section is indicated by the shaded region. The quantity (3p/91),dz is
the rate of change of photon energy in this volume due to the difference

R
—— / [
Ttz —ef ] 1 (t,2+d2)
———iior}
E—
FIG. 8.4. Rate of change of the photon energy con-
tained in an elemental volume oz (unit cross section) of d
the laser amplifier P
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From (8.25) to (F 5 we then obtain the equation
| af | af <
Lol ol ony .
C o T gy =Nl (8.29)

which together with (R.23) completely describes the amplification behavior.
Note that (8.29) has the usual form of a time-dependeat transport equation.
Note also that, in the steady state and for a = 0, it reduces to (1.7

Equations (8.23) and {8.29) must now be solved with the appropriate
boundary and initial conditions. As the initial condition we take N{0,z)
= Ny = const, where N, is established by pumping of the amplifier before
the arrival of the laser pulse. The boundary condition is obviously estab-
lished by the intensity /y(t) of the light pulse which is injected into the
amplifier, i.e., J(¢,0) = I(r). For negligible amplifier losses (i.e., neglecting
the term — af), the solution to (8.29) can be written as

I(z,7) = 10(7){ E—{1—exp(—goz)]exp { —foO(T')df'/rj]}

(8.30)

where 7 = t — (z/¢) and where g, = aN,, is the unsaturated gain coefficient
of the amplifier. From (8.29), one can also readily obtain an equation for
the total laser energy fluence
O(z) = [ “1(zryds (8.31)
B — o
Integrating both sides of (8.29) with respect to time, from f= — o0 to
t = + o0, and using (8.23), we get
r
‘;,—z = gol,[1 - exp(~T/T )] — aT (8:32)

Again neglecting amplifier losses, (8.32) gives
Fin
cxp( T ) - 116G, (8.33)

where G, = exp g,/ is the unsaturated amplifier gain and T, the energy
fluence of the input beam. As a representative example the ratio /T, is
plotted in Fig. 8.5 versus I', /T, for G, = 3. Note that, for I', < T,, (8.33)
can be approximated as

1“(;)=1",1n{|+

T(/) = G,T;, (8.34)

and the output fluence increases linearly with the input fluence (linear

Leo b

| T
G -
G,=3 A
~
-~
-
-~
~
2— -~ —
ol
S //
1 / —]
FIG. 85. Output laser energy
Muence I versus input fluence T,
for a laser amptlifier with & small i { |
signal gain Gy =3. The energy as 1 15
fluence is normalized to the laser .
saturation fluence ') = hv /0. L ln/ i

amplification regime). Equation (8.34) is also plotted in Fig. 8.5 as a dashed
straight line starting from the origin. At higher input fluences, however, T
increases with I, at a lower rate than that predicted by (8.34) (see Fig. 8.5),
i.e.,, amplifier saturation occurs. Thus I', may be called the saturation
energy fluence of the amplifier. For T, 3 T", (saturation regime) we get

T(/)=T, +T,g/ (8.35)

Equation (8.35) has also been plotted in Fig. 8.5 as a dashed straight line.
Note that (8.35) shows that, for high input fluences, the output fluence is
linearly dependent on the length / of the amplifier. Since T, gy = Nylhv, we
see that every excited atom undergoes stimulated emission and thus con-
tributes its energy to the beam. Such a condition obviously represents the
most efficient conversion of stored energy to beam energy, and for this
reason amplifier designs operating in the saturation regime are used wher-
ever practical.

If amplifier losses are present, the above picture is somewhat modified.
In particular the output fluence I'(!) does not continue to increase with
input fluence (as in Fig. 8.5) but reaches a maximum and then decreases.
This can be understood by noting that the output as a function of amplifier
length tends to grow linearly due to amplification {at least for high input
fluences, see (8.35)] and to decrease exponentially due to loss [on account
of the term — oT in (8.32)]. The competition of these two terms then gives a



maximum foi the output Muence T For < g, this maximum vajue of the
output fluence is

IF~gJ. /a (8.36)
Since, however, amplifier losses are typicaliy quite small, other phenomena
usually limit the maximum energy fluence that can be extracted from an
amphifier. In fact, the fimit is usually set by the amplifier damage fluence T,
(of the arder of 10 J/em* in some practical cases). From (8.35) we then get

P T gl < T, (8.37)

On the other hand. the unsaturated gnin G, = exp{ go/) must not be made
too high. otherwise two undesitable effects can oceur in the amplifier: (i)
parasitic oscillations, (it} ampiified spontanecus emission {ASE). Parasitic
oscillation occurs when the amplifier starts lasing by virtue of some internal
feedback which will always be present 1o some degree (e.g., due to the
amplifier end faces). The phenomenon of ASE has already been discussed
in Section 2.3.4. Both these phenomena tend to depopulate the available
inversion and hence decrease the laser gain, To minimize parasitic oscilla-
tions one should avoid elongated amplifiers and in fact idezlly use amplifi-
ers with approximately ecual dimensions in all directions. Even in this case,
however, parasitic osciilations set an upper lmit { g,/
gain cocfiicient g, times the amplifier length. /. ie.,

gol (gl . (8.38)

and ( gof )y, May be of the order of 3 to § in practical cases. The threshold
for ASE has already been given in Section 2.3.4 [equation (2.915)]. For an
amplifter in the form of a cube (ie, for =1) we gei G=5.1 [ie,
gol = 1.6] which is of the same order as that established by parasitic
oscillations. For smaller values of solid angle & (as is more common), the
vafue of G for the onset of ASE increases [equation (2.915)]. Hence
parasitic oscillations, rather than ASE, usually determine the maximum
gain that can be achieved. Taking into account both the Limit due to
damage, (8.37), and the linut due to parasitic oscillations, (8.38), we can
readily obtain an expression for the maximum energy E, which can be
extracted from an amplifier as

E,=Tyn=Tu&'),/8 (8.39)
where /[ is the maximum amplifier dimension {for a cubic amplifier)
implied by (8.38). Equation (8.39) shows that E,, is increased by decreasing
the amplifier gain coefficient g,. A limit to this reduction of g, would
ultimately be established by the amplifier losses a. Taking, as an example,
go=10"?cm™' and T, = {0 J/cm?, we get from (8.39) E,, = | MJ. This,

may (O the available

however, would tequire an amplifier dimension of the order of [,
o~ ( gol )/ o= 4 m, which is somewhat impracticable.

So far we have concerned ourselves mostly with the change of a laser
pulse energy as it passes through an amplifier, In the saturation regime,
however, important changes in both the temporal and spatial shape of the
input beam also occur. The spatial distortions can be readily understood
with the help of Fig. 8.5. For an input beam with a bell-shaped transverse
intensity profile (e.g., a Gaussian beam), the beam center, as a result of
saturation, will experience less gain than the periphery of the beam. Thus,
the width of the beam’s spatial profile is enlarged as the beam passes
through the amplifier. The reason for temporal distortions can also be seen
quite readily. Stimulated emission caused by the leading edge of the pulse
implies that some of the stored energy has already been extracted from the
amplifier by the time the trailing edge of the pulse arrives, which will
therefore see a smaller population inversion and thus experience a reduced
gain. As a result, less energy is added to the trailing edge than to the
leading edge of the pulse, and this leads to considerable pulse reshaping.
The output pulse shape can be calculated from (8.30), and it is found that
the pulse may either get broader or narrower (or even remain unchanged)
due to this phenomenon, the outcome depending upon the shape of the
input pulse.¥

To conclude this section we will briefly examine two further examples
of laser amplification, involving conditions different from those considered
above. In the first case the duration 7, of the pulse to be amplified is
assumed to be much shorter than the lifetime of the lower laser level.t This
is, for instance, the situation in a ruby amplifier in which the lower laser
level is coincident with the ground level. This is also the situation in a
neodymium amplifier when 7, < 1 ns. In both previous cases the amplifier
behaves like a three-level system, and it can be readily shown that the
previous equations still apply provided I', is now given by

T,=hv/20 {8.39a)

The second case we briefly consider is that of an amplifier in which both
the upper and lower levels are made up of many sublevels which are
strongly coupled. This applies, for instance, to CO, or HF amplifiers whose
upper and lower (vibrational) states consist of many rotational levels (see,
for example, Fig. 6.13). If the pulse duration is much longer than the time
for rtelaxation between rotational levels, then the thermal equilibrium

tWe will, however, assume 7,3» T, where 7 = 1/m4rg, this being & necessary condition for
the validity of the rate-equation approximation (see Section 5.5).



population distribution will be muintained one these levels. The popula-
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he written as o Nacteor = 8 the otal pepnlamo v of the vibrational state

(see Section 2.7). where 2 (the partition function) can be calculated accord-
ing to Boltzmann statistics. We further assume that: (i} The pulse duration
7, is much shorter than the relaxation time of the lower laser level (so that
the system effectively behaves like a three-level system). (ii) The wavelength
of the incoming light pulse corresponds to just one rotational-vibrational
line. In this case all the previous results will again apply provided we take®

I',=hr/2o: (8.39b)
where ¢ is the stimulated emission cross section for the rotational-
vibrational transition involved in the amplification process. A comparison
of (8.398) with (839} then shows that we can define an effective cross
section as zo [sec also equations (2.142m1) and (2.142n)]. When the pulse
duration becomes comparable with the rotational relaxation time, the
picture becomes much more involved, and calculations using the resulting
equations generally require the use of computers.t®™

8.4 TRANSFORMATION IN FREQUENCY:
SECOND-HARMONIC GENERATION AND
PARAMETRIC OSCILLATION'-®
In classical linear optics one assumes that the induced dielectric

polarization of a medium is linearly related to the applied electric field, ie.,

P = gxE (8.40)

where x is the dielectric susceptibility. With the high electric fields involved
in laser beams the above linear relation is no longer a good approximation
and further terms in which P is related to higher-order powers of E must
aiso be considered. This nonlincar response can lead to an exchange of
energy between e.m. waves at different frequencies.

In this section we will consider some of the effects produced by a
nonlinear polarization term which is proportional to the square of the
electric field. The two effects that we will consider are: (i) Second-
Harmonic Generation (SHG) in which a laser beam at frequency w is
partiafly converted, in the nonlinear material, to a coherent beam at
frequency 2w (as first shown by Franken et al.'™); (ii) Optical Parameter
~Oscillation (OPO) in which a laser beam at frequency w, causes the
simultaneous generation, in the nonlinear material, of two coherent beams
at frequency «, and w, such that w, + w;,=w, (as first shown by

Giordmaine and Miller!'""), With the high electric fields available in laser
beams the conversion efficiency of both these processes can be very high
(approaching 100% in SHG). These techniques are therefore currently being
used to generate new coherent waves at different frequencies from that of
the incoming wave.

8.4.1 Physical Picture

We will first introduce some ideas using the simplifying assumption
that the induced nonlinear polarization PN' is related to the electric field E
of the e.m. wave by a scalar equation, i.e.,

PN = 2¢,dE? (8.41)

wherte d is a coefficient whose dimension is the inverse of an electric field.!
The physical origin of {8.41) is due to the nonlinear deformation of the
outer, loosely bound, electrons of an atom or atomic system when subjected
to high electric fields. This is analogous to a breakdown of Hooke's law for
an extended spring, i.e., the restoring force is no longer linearly dependent
on the displacement from equilibrium. A comparison of (8.41) and (8.40)
shows that the nonlinear polarization term becomes comparable to the
linear one for an electric field E=:x/d. Since x==1, we see that (1/d)
must be that field strength at which the linear and nonlinear terms become
comparable, i.c., at which a sizable nonlinear deformation of the outer
electrons will occur. Thus 1/d is expected to be of the order of the electric
field which an electronic charge produces at a distance corresponding to a
typical atomic dimension a, i.e., (1/d) = e/dneqa® [thus (1/d)~10" V/m
for a~1 A]. We note that, for symmetry reasons, d must be zero for a
centrosymmetric material (such as for a centrosymmetric crystal and usu-
ally for liquids and gases). For symmetry reasons, in fact, if we reverse the
sign of E, the sign of the total polarization Py = P + PNl must also
reverse. Since, however, PN" « E?, this can only occur if 4 = 0. From now
on we will therefore confine ourselves to a consideration of noncentro-
symmetric materials. We will see that the simple equation (8.41) is in this
case able to account for both SHG and OPO.

8.4.1.1 Second-Harmonic Generation
We consider a monochromatic plane wave of frequency w propagating

in the z direction through a nonlinear crystal. For a plane wave of uniform

tWe use 2e0dE? rather than dE? (as often used in other textbooks) to make d conform to
increasingly accepted practice.

L T
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of the wave
INENTIEY {E(z,w)exp;‘ ifet - F(“_,:)j ER (8.42)
o the above cipresss e means the oo o rlov conjueate of the other term
appearine i the heaves apud
ko= %o
Ko= ‘. (8.43)

where ¢, is the jight velocity in the crystal, n,, is the refractive index at
frequency w, and ¢, is the velocity of light in vacuo. Substitution of (8.42)
into (8.41) shows that PML contains a term? osciflating at frequency 2w,
namely

d N
P;il' - %_, { El(z- w) exp [1'(2(,\,\:' — 2)’((‘,2)} + C'C-} (844)

Equation (8.44) describes a polarization oscillating at frequency 2w and
whose spatial variation is in the form of a wave. This polanzation wave will
radiate at frequency 2w. Thus it generates an c.m. wave at the second
harmonic frequency 2w [the analytical treatment, given later, involves
substituting this polarization in the wave equation {8.6%)). and this e.m.
wave has the form

Eaulz,t) = 1 { E(z,20)exp [i(2ut ~ ky,2)] + c.c.) (8.45)
where

20 _ 2mw
, 0 Co
is the wavevector (magnitude) at frequency 2w. The physical origin of SHG
can thus be traced back to the fact that, as a result of the nonlinear relation
(8.41), the e.m. wave at the fundamental frequency w will beat with itself to
produce a polarization at 2w. A comparison of (8.44) with (8.45) reveals a
very important condition which must be satisfied if this process is 10 occur
efficiently, viz,, that the phase velocity of the polarization wave (v,
= 2w/2k,) be equal to that of the generated e.m. wave {vg=2w/k;,). The
condition can thus be written

k!w =

(8.46)

ky, = 2k, (847)

In fact, if this condition is not satisfied, the phase of the polarization wave
at some point a distance / into the crystal (i.e., where the phase is 2k 1 will

"The quantity P also contains a term at frequency w = 0 which leads to development of a
dc voltage across the crystal (optical rectification).

o
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be differest Yo that of the genviziod wave {phoesc L, 7). This increasing
phase difference with distance ! means that the generated wave will not
grow cumulatively with distance / since it is not being driven by a
polarization with the appropriate phase. Condition (8.47) is therefore re-
ferred to as the phase-matching condition. Note that, according to (8.43)
and (8.46), equation (8.47) reduces to

e, =Ry (8'48)

If the directions of E_ and PN' (and hence of E, ) were indeed the same
fas implied by (8.41)] it would not be possible to satisfy the condition (8.48)
owing to the dispersion (An = n,, — n_) of the crystal. This would then set
a severe limit to the crystal length /, over which P™* can give contributions
which keep adding cumulatively to form the second harmonic wave. This
length /. (the coherence length) must in fact correspond to the distance over
which the P wave and the E,, wave get out of phase with each other by an
amount =, ie., k, [ — 2k, [ = . From this, with the help of (8.43) and
(8.46), we get
A

I = iAn (8.49)
where A = 2wcy/w is the wavelength in vacuo of the fundamental wave.
Taking, as an example, A= 1 pm and An = 1072, we get [. = 25 pm. Note
that, at this distance into the crystal, the contribution of the P wave to the
E,, wave is 180° out of phase and the E,_, wave thus begins to decrease
rather than continuing to increase. In this case, with /. having such a small
value, only a very small fraction of the incident power can then be
transformed into the second harmonic wave.

At this point il is worth pointing out another useful way of visualizing
the SHG process, in terms of photons rather than fields. First we write the
relation between the frequency of the fundamental (w) and second-
harmonic (wgy) wdve, viz., '

wgy = 2w (8.50)

If we now multiply both sides of (8.47) and (8.50) by &, we get
hwgy = 2hw (8.51a)
hky, = 2Rk, ' (8.518)

For energy to be conserved in the SHG process, we must have dI, /dz
= ~dI /dz, where I,, and I, are the wave intensities at the two frequen-
cies. With the help of (8.51a) we get dF,,/dz = —2dF,/dz, where F, and
F,, are the photon fluxes of the two waves. From this last equation we can
then say that, in the SHG process, whenever two photons at frequency w

©)



Tl daser Bogon | ransformation
divcppear. on. photon at frequency 2w i« produced. Thus the relation
(8.51w) can he reparded as a statement of “unservation of photon energy
Recailing that i photon has a momenturm A&, tuvss equation (8.518) is seen.
.to correspond Lo the requirement that photon momentum also be conserved
in the process,

We now reconsider the phase-matching condition (8.48) to see how it
can be satisfied in a suitable, optically ansotropic erystal.'?'® To under-
stand this we will first need o make u ~mall digression to explain the
pmpagatmn hehavier of waves in an anotropie crvstal, and also how the
simple nonhinear relation t8.41) should he generalized for anisotropic
media.

Ir an anisotropic crystal it can be shown that, for a given direction of
propagation, there are two different, linearly polarized plane waves which
can propagate. Corresponding to these two different polarizations there are
two different refractive indices. The difference of refraction index is re-
ferred to as birefringence. This behavior is usually described in terms of the
so-called index ellipsoid which. for 2 uniaxiai crystal, is an ellipsoid of
n?voiu.ti(m around the optic axis {the z axis of Fig. 26). The two allowed
directions of polarization and their corresponding refractive indices are
fo_und as follows: Through the center of the cllipsuid we draw a line in the
direction of beam propagation (line OF of Fig. 8.6) and a plane perpendic-
ular to this line. The intersection of this plane with the ellipsoid is an
eliipsg. The two axes of this ellipse are paralle! to the two directions of
polarization, and the length of each semiaxis is equal to the refractive index
for that direction of polarization. One of these directions is necessarily
pcrpendicular to the optic axis, and the wave having this polarization

<t

FiG. 8.6. Index cllipsoid for a positive uniaxial
crystal.
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FIG, 8.7. Normal (index} surface for both
the ordinary and extraordinary waves (fora
positive uniaxial crystal).

direction is called the ordinary wave. Its refractive index n, can be seen
from the figure to be independent of the direction of propagation. The
wave with the other direction of polarization is called the extraordinary
wave and the corresponding index »,{#) ranges in value from that of the
ordinary wave n, (when OP is parallel to z) to a value n,, called the
extraordinary index (when OQF is perpendicular to z). A positive uniaxial
crystal corresponds to the case n, > n,, and a negative uniaxial crystal, to
the case n, < ng. An equivalent way to describe wave propagation is
through the so-called normal (index) surfaces for the ordinary and extraor-
dinary waves (Fig. 8.7). In this case, for a given direction of propagation
OP and for either ordinary or extraordinary waves the length of the ray OP
(P being the point of interception with the surface) gives the refractive
index of the wave. The normal surface for the ordinary wave is thus a
sphere, while the normal surface for the extraordinary wave is an ellipsoid
of revolution around the z axis. In Fig. 8.7 the intersections of these two
normal surfaces with the y-z plane are indicated for the case of a positive
uniaxial crystal.

After this brief discussion of wave propagation in anisotropic crystals,
we now return to the problem of the induced nonlinear polarization. In
general, in an anisotropic medium, the scalar relation (8.41) does not hold
and a tensor relation needs to be introduced. First, we write the electric
field E“(r, 1) of the e.m. wave at frequency « and at a given point r and the
nonlinear polarization vector at frequency 2w, P% (r,1), in the form

E“(r,1) = 4 [ E“(r, w) exp (iwr) + c.c.] (8.52a)
PYi(r,£) = } [P(r, 20) exp (2iwt) + c.c. ] (8.525)

A tensor relation can then be established between P2“(r,2w) and E“(r, w).
The second harmonic polarization component along, say, the { direction of



the crvstal con be wrttes o
2w _ 2 ;
P= 3 eyd EVE} (8.53)
k=123

Note that (8.53) is often written in condensed notation as
6
P =% ed(EE ) (8.54)
i
where m runs from 1 o 6. The abbreviated field notation is that (EE),

=El=E} (EF),=£El= El. (EEy,= E}l = E}, (EE),=2E,E,
=2EE, (EE)=2E\E,=2EE,. and (FF), = 2E\E, = 2FE E,, where

both the 1. 2, 3 and the v, v, 2 notation for aves have heen indicated. Note
that. expressed in matnx form, & isa 3 % & watris which iperates on the
column vector 8773 Depending on the ervstat symmetry, some of the

values of the &, matrix may be equal and some may be zero, For the 42m
point group symmetry, which includes the important nonlinear crystals of
the KDP type and the chalcopyrite semiconductors, only dyy, dys, and dy
are nonzero and these three d coefficients are themselves equal. Thus only
one coefficient, for example, dy, needs to be specified, and we can write

P, = 2eydyoE, E, (8.55a)
P, = 2e,d, EE, (8.55b)
P, =2e,d\E.E (8.55¢)

where the z axis is again taken along the optic axis of the uniaxial crystal.
The nonlinear optical coefficients, the symmetry class, and the transpar-
ency range of some selected nonlinear materials are indicated in Table 8.1.
Following this digression on the properties of anisotropic media, we
can now go on to show how phase matching can be achieved for the
particular case of a crystal of 42m point group symmetry. From (8.55) we
note that, if £, =0, only P, will be nonvanishing and will thus tend to
generate a second-harmonic wave with a nonzero z component. We recall
(see Fig. 8.6) that a wave with E, = 0 is an ordinary wave while a wave with
E, # 0 is an extraordinary wave. Thus an ordinary wave at the fundamen-
tal frequency w tends, in this case, to generate an extraordinary wave at 2w,
To satisfy the phase-matching condition one can then propagate the
fundamental wave at an angle 4, to the opuc axis. in such a way that

n(2w,8,) = nyw) (8.56)

This can be better understood with the help of Fig. 8.8 which shows the
intercepts of the normal surfaces n,(w) and n, (2w, #) with the plane contain-
ing the z axis and the propagation direction. Note that, due to dispersion

TAELE 5.5, Moninear Optcal Coefficienis for Selected Materials
Nonlinear
d coefficient Transparence
(relative to © Symmetry range
Material Symbol Formula KDP) class (pm)
Potassium dihydrogen _
phosphate KDP KH,PO, dyg=d =1 42m 0.22-1.1
Potassivm didenterium _
phosphate KD*PF  KD,PO, dy=d =106 42m 0.22-1.1
Ammonium dihydrogen _
phosphate ADP NHMH,PO, dy=d =12 42m 0.2-1.1
Cesium dihydrogen _
arsenate CDA  CsH,AsOq  dyg=d|, =092 42Zm 0.26-1.6
Lithium iodate — LifQ, dyymdyy=dy= 6 0.31-5.5
dig=14
Cadmium germanium _
arsenide — CdGeAs; dyg=d| =472 41Im 2-20
Lithium niobate LiNbO, . dy, =106 Im 0.35-4.5
dZZ - 5.1
Proustite AgyAsS,  dy =30 3m 0.6-13
dyy = 50

(normal dispersion), we have n,(w) < n,(2w) = n,(2w,0). Thus the ordinary
circle (for frequency w) intersects the extraordinary ellipse (for frequency
2w) at some angle # .7 For light propagating at this angle §,, to the optic
axis (i.e., for all ray directions lying in a cone around the z axis, with cone
angle 8,), equation (8.56) is satisfied and hence the phase-matching condi-
tion is satisfied. Note, however, that if § = 90°, the phenomenon of double
refraction will occur, i.e., the direction of the energy flow for the extraordi-
nary (SH) beam will be at an angle slightly different from 8,,. Thus the
fundamental and SH beams wilt travel in slightly different directions
(although satisfying the phase-matching condition). For 2 fundamental
beam of finite transverse dimensions this will put an upper limit on the
interaction length in the crystal. This limitation can be overcome if it is

1t shouid be noted that for this intersection to occur at alt it is necessary for n, (2w, 90°) to be
less than n,{(w) , otherwise the ellipse for a,{2w) {see Fig. 8.8) will lic wholly outside the circle
for n,(w). Thus n (2w, 90°) = 1 (2w) < n,(w) < n,(2w) which shows that crystal birefringence
n,(2w) — m,(2w) must be larger'than crystal dispersion a,(2w) — n,{w).

Ql/
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FIG. &8 Phase-matching angle 8, for type 1 se-
cond-harmonic generation in a negative uniaxial
crystal.

possible to operate with 8, =90°, je. n1la, 00°) = n.{w). This kind of

phase matching i~ callad 99° phace motchine aml in some cases can he
achieved by chanoine the ooy temperaie | ince a0 and o, in seneral
undergo different charues with the tempesatine. 1o summarize the above

discussion, we can say that phase matching can be achieved in a
(sufficiently birefringent) negative uniaxial crystal when an ordinary ray at
w [E, beam of (8.55¢)) combines with an ordinary ray at w [E, beam of
(8.55¢)] to give an extraordinary ray at 2w, or, in symbols, o, + I
This is called type I second-harmonic generation. In a negative uniaxial
crystal another scheme for phase-matched SHG, called type I, is also
possible. In this case an ordinary wave at w can combine with an extraordi-
nary wave at w lo give an extraordinary wave at 2w, or. in symbols,
o+ e, eyt

Second-harmonic generation is currently used to provide ccherent
sources at new wavelengths. The nonlinear crystal may be placed either
outside or inside the cavity of the laser producing the fundamental beam.
In the latter case one takes advantage of the greater e.m. field strength
inside the resonator to increase the conversion efficiency. Very high conver-
sion efficiencies (approaching 100%) have been obtained with both arrange-
ments. Among the most frequent applications of SHG are frequency
doubling the output of a Nd:YAG laser (thus producing a green beam,
A = 532 nm, from an infrared one, A = 1.06 um} and generation of tunable
UV radiation (down to A = 210 nm) by frequency doubling a tunable dye
laser. In both of these cases either cw or pulsed laser sources are used.

+ . L . -
More generally. interactions in which the pelarizations of the two fundamental waves are the
samec are termed type I {c.g., 2lso e, + e,— 0,,), and interactions in which the polarization of
the fundamental waves are orthogonal are termed type i1.

TN
The nonlinear crystals most commonly used for SHG belong to the 42m @

point group symmetry, in particular the materials KDP, KD*P, and CDA.
For intracavity SHG, Lithium lIodate (LilO;) is also often used. Efficient
frequency conversion of infrared radiation from CO, or CO lasers
in chalcopyrite semiconductors (e.g., CdGeAs,) is another interesting
example.

8.4.1.2 Parametric Oscillation

We now go on to discuss the process of parametric oscillation. We
begin by noticing that the previous ideas introduced in the context of SHG
can be readily extended to the case of two incoming waves at frequencies
w, and w, combining to give a wave at frequency w;=w, + w, (sum-
frequency generation). Harmonic generation can in fact be thought of as a
limiting case of sum-frequency generation with w, = w, = « and «; = 2w,
The physical picture is again very similar to the SHG case: By virtue of the
nonlinear relation (8.41) between PN and the total field E [E = E, (z,0) +
E,_(z,1)), the wave at w, will beat with that at w, to give a polarization
component at w; = w; + w;. This will then radiate an e.m. wave at w;. Thus
for sum-frequency generation we can write

hw, + hw, = ho, (8.57a)

which, according to a description in terms of photons rather than fields,
implies that one photon at w; and one photon at w, disappear while a
photon at w, is created. We therefore expect the photon momentum to*be
also conserved in the process, i.e.,

hk, + Ak, = Rk, (8.57b)

where the relationship is put in its general form, with the k& denoted by
vectors. Equation (8.575), which expresses the phase-matching condition
for sum-frequency generation, can be seen to be a straightforward general-
ization of that for SHG [compare with (8.518)].

Optical parametric generation is in fact just the reverse of sum-
frequency generation. Here a wave at frequency w, (the pump frequency)
generates two waves (called the idler and signal waves) at frequencies w,
and «,, in such a way that the total photon energy and momentum is
conserved, i.e.,

hw, = Aw, + hw, (8.58a)

Rk, = Bk, + bk, (8.58b)
The physical process occurring in this case can be visualized in the
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erystal. Then the tote] £ field will in fact se the sum of three fields
[F =FE_ {z.0+ E ooy + E (z,0)] and the wave at w; will in turn beat
with the wave at wy o give a polarizalion component at w; — w, = w,, This
pelarzation will cause the «, wave 1o grow also. Thus power v:rill he
wransferred from the beam at «, to those at w, and w,, and the weak wave
at w, which was assumed to be imnally present will be& amplified. From this
picture we see a fundamental difference hetween parametric generstion and
SHG. Tn the latter covc unly 4 strong beam at the fundamental frequency is
needed for the SHG process to oceur. In the former case, however, a weak
beam at w, is alo needed and the system behaves like an amplifier at
frequency w, (and w,). In practice, however, the weak beam need not be
?upp[iemi hy an external source (such as ancther laser) since it is generated
internally to the crystal as o form of nojee twoecniled parameitic noise), One
can then gererite coherent heams from thye qoge moa was analogous to
that wsed m i keser osallator. Thus, the nonbpear crvstul, wHich is pumped
h'\'. an appropriately focused pump beam, is placed in an optical resonator
(Fig. 8‘.9). The two mirrors (1 and 2) of this parametric oscillator have high
reflf:clwily {(e.g, Ry=1 and R,=1) either at w, only (singly resonant
oscillator, SROY or at both w; and w, {doubly resonant oscillator, DROQ).
The mirrors are ideally transparent (o the pump beam. Oscillation will start
when the gain arising from the paramelric effect Just exceeds the losses of
the optical resonator, Some threshold power of the input pump beam is
therefore required before oscillation will hegin, When this threshold is
reached, oscillation occurs at both w, and w,, and the particular pair of
values of w, and «, is determined by the two equations (8.58). For instance

with type T phase matching involving an extraordinary wave at wy anc;
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FIG. 8.9, Schematic diagram of an optical parametric oscillator.
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For a given #, ie, for a given inclination of the nonlinear crystal with
respect (o the cavity axis, (8.59) provides a relation between w, and o,
which, together with the relation (8.584), determines the values of both w,
and w,. Phase-matching schemes of both type I and type II (e.g., e,
o, + e, for a negative uniaxial crystal) are possible and tuning can be
achieved by either changing the crystal inclination (angle tuning) or its
temperature (temperature tuning). As a final comment, we note that, if the
gain from the parametric effect is large enough, one can dispense with the
mirrors altogether, and an intense emission at w, and w, grows from
parametric noise in a single pass through the crystal. This behavior is
superficially rather similar to the phenomena of superfluorescence and
amplified spontaneous emission discussed in Section 2.3.4 and is sometimes
(rather inappropriately) called superfluorescent parametric emission.

Singly resonant and doubly resonant optical parametric oscillators
have both been used. Doubly resonant parametric oscillation has been
achieved with both cw and puised pump lasers. For cw excitation, thresh-
old powers as low as a few milliwatts have been demonstrated. However,
the doubly resonant character of the resonator causes the output to be
somewhat unstable both in amplitude and frequency. Singly resonant
parametric oscillation has only been achieved using pulsed pump lasers
since the threshold pump power for the singly resonant case is much higher
(as much as about two orders of magnitude) than that of the doubly
resonant case. However, singly resonant oscillators produce a much more
stable output and impose less stringent demands on the mirror coating
design. For these reasons the singly resonant configuration is the one most
frequently used. Optical parametric oscillators producing coherent radia-
tion from the visible to the near infrared (0.5-3.5 pm) are now well
developed, with the most successful device based on a lithium niobate
(LINbO,) crystal pumped by a Nd:YAG laser. They face competition,
however, from color-center lasers, which operate in a similar range in the
infrared. Optical parametric oscillators can also generate coherent radiation
at longer infrared wavelengths (1o ~14 pm) using crystals such as proustite
(Ag,AsS,) and cadmium selenide (CdSe)." The efficiency of an OPO can
also be very high (approaching the theoretical 100% photon efficiency).

tMaterials such as the chalcopyrite semiconductors have shown much promise, but unfortu-
nately suffer from high loss and hence have not been operated as parametric oscillators.
Nevertheless, these materials and many others have been widely used for difference fre-
quency generation, i.e., where two beams, w; and w,, are used to generate radiation at their
difference frequency w; = wy — @},
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ooarrive st an anuiztizal description of both SHG and parameiric
priviosses, we need (0 see how the nonlisea: polarization [e.g.. (8.41)] which
acts as the source t2nn 1o drive the generated waves is introduced into the
wave equation. The fields within the material obey Maxwell’s equations:

Fapo . 0B
B By (8.60a)
T = 99_
TrH=J+ S (8.605)
v. = P (860(?)
V-B=0 {8.60d )

where p is the free-charge density. For the media of interest here we can
assume the magnetization M 10 be zero: thus

B =l + M= g H (8.61)

-Losses w1‘thin the material {e.g.. scattering losses) can be simulated by the
mtreduction of a fictitious conductivity o, such that

J=gaFE {8.62)
Finally we can write

D--rE+PL 4PN e (8.63)

.whcrc P i the linear polarization of the medium and is aken account of
in the usual way, by intreducing the dielectric constant £. As we shall no“:
see, -whcn D given by (8.63) is substituted in Maxwell’s equations, the
nonlm.ear polarization term PN is introduced into the wave equation,
Applying the V X operator to both sides of (8.60a) finterchanging the order
of V X and 9/3¢ operators on the right-hand side of (8.60a)] and making
use of (8.61), (8.605), {8.62), and (8.63), we first obtain

vxvxE=~p(o,a—E+ OE , 3P

S THRF YRRy (5.64)
Using the identity VX ¥V X E = (V +E) ~ ¥°F, and making the assumption
that V. E=~0, we find from {8.64) that

wE- % JE _ 1 #E _ | ¥

ee? 31 o2 g g2 g0

where ¢ = (1)~ /7 is the phase velocity in the material. Equation (8.65) is
the wave equation with the nonlinear polarization term included. Note that
the linear part of the medium polarization has been transferred to the

left-hand side of (8.65) and is contained in the dielectric constant e. The

(8.65)
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noriinear part P~ has been kept on the right-hand side, and it will be
shown to act as a socurce term for the waves being generated al new
frequencies as well as a loss term for the incoming wave. Confining
ourselves to the simple scalar case of plane waves propagating along the z
direction. we see that {8.65) reduces to

PE_ % 3E_ 1 ¥E_ 1 PN (8.650)

The field amplitude at frequency «; will be written as
E“(z,0) =L E(z)exp [i{wt ~ kiz)] +cc.} (8.66a)

where E; is taken to be complex in general. Likewise, the amplitude of the
nonlinear polarization at frequency «; will be written as

Pt =4 (P (2)exp [i(wt - k;z)] +cc. } (8.66b)

Since {8.65a) must hold separately for each frequency corresponding to
waves which are present in the crystal, equations (8.66a4) and (8.665) can be
substituted into the lefi- and right-hand sides of (8.65a) respectively.
Within the slowly varying amplitude approximation, we can neglect the
second derivative of E(z) (ie., assume that d’E,/dz* < k,dE,/dz), and
(8.65a) then yields

2ﬁ + I f= —i(me)PNL (8.67)

dz  negcy 7 nEgco |/

where the relations k; = nw;/c, and g = njzeu have been used (c, is the light
velocity in vacuo and n, is the refractive index at w)).

Equation (8.67) is the basic equation that will be used in the next
sections. Note that it has been obtained subject to the assumption of a
scalar relation between PN and E [see (8.41)]. This assumption is not
correct, and actually a tensor relation should be used [see (8.54)). However,
it can be shown that one can still use this scalar equation provided that E,
now refers to the field component along an appropriate axis and an
effective coefficient, d,y, is substituted for 4 in (8.41). In general, d,, is a
combination of one or several of the d,, coefficients appearing in (8.54) and
of the angles # and ¢ which define the direction of wave propagation in the
crystal''" (8 is the angle to the z axis and ¢ is the angle that the projection
of the propagation vector in the x—y plane makes with the x axis of the
crystal). For example, for a crystal of 42m point group symmetry and for
type 1 phase matching, one obtains d; = d;;sin 2¢sin#. As a short-hand
notation, however, we will still retain the symbol 4 in (8.41) while bearing
in mind that it means the effective value of the d coefficient, d.y.

(4



8.4.2.1 Parametric Oscillation

We now consider three waves at frequencies w,, w,, and w; [where

w3 = @, + w,] interacting in the crystal. We thus write the total field £ (z,n)
as

E(z.1) = E“(z,4) + E*(z,0) + E*(z,1) (8.68)

where each of the fields can be written in the form of {8.66a). Upon

substituting (8.68) i_ntn (8.41) and using (8.66a) we obtain an expression for

the components P ™'z} {as defined by (8.66h)] of the nonlinear polarization

at the various frequencies w,. After some lengthy but straightforward

algebra we find that, for instance, the component PNU at frequency w, is
given by ‘

Pl = 2edEE(yexp itk + ko~ k)z)  (8.69)

The components of PN" at w, and w; are obtained in a similar way. The
field equations for each of the three frequencies are then obtained by
substituting the appropriate PN into (8.67). We thus arrive af the following
three equations:

dE, a, e . )
e —( -—~—*-~)E, - 1(—0)41‘E3152 exp[—r(k3 - ky— kl)z]

2n 800, n

(8.70a)

dE, _ a, Ao I

ra “(mﬁ:—f; Je. - { ey Jar st ik =k - k]
(8.705)

dE, 0, S ws

E— = —(m)ﬁ} - I(E)dEIEZCXp[“I(kl + k: hed k3)2]
(8.70¢)

These are the basic equations describing the nonlinear parametric interac-

tion. We note that they are coupled to each other via the nonlinear
coefficient 4.

It is convenient at this point to define new field variables 4, as
A= (n /), (8.71)
Since the imen'sily of the wave is f= r;fiDCDIE,IZ /2, the corresponding
photon flux Flis Fie= 1 /hw = (eoco/2m)|A4,]". Thus |A,|* is proportional to
the photon flux at w, with the proportionality constant being independent
of n, and . When re-expressed in terms of these new field variables,

equations (8.70) transform to

“ “'2‘4' —iM A exp [ - i(Akz)] (8.72a)
% =T az;; — iM A exp [ —i(8kz)) (8.72b)
A
.‘?.;;za = = 22 -ty exp [ i(3k2)] (8.72¢)
where we have put a; = g,/ ngco, Ak = ky ~ ky — ky, and
A= d [ @102 12 873
o MMM .

The advantage of using A; instead of E; is now apparent since, unlike
(8.70), relations (8.72) now involve a single coupling parameter A.

Neglecting the losses (i.e., puiting a; = 0), multiplying both sides of
(8.72a) by A} and both sides of (8.725) by A2, and comparing the resulting
expressions, we arrive at the following relation: d}4,[*/dz = d|A,}*/dz.
Similarly from (8.72b) and (8.72¢) we get d|A,2/dz = — d|A,]*/dz. We
can therefore write

dlA\} _dlaf _  d|4,f
dz dz dz

which are known as the Manley-Rowe relations. Since |Aj|2 is proportional
to the corresponding photon flux, (8.74) implies that whenever a photon at
w, is destroyed, a photon at w, and a photon at w, are created. This is
consistent with the photon model for the parametric process, as discussed
in Section 8.4.1.2. Note that (8.74) means, for instance, that (dP,/dz)
= —(w/w,dP,/dz), where P, and P, are the powers of the two waves.
Thus only the fraction (w,/w;) of the power at frequency w, can be
converted into that at frequency w,.

Strictly speaking, equations (8.72) apply to & traveling wave situation
in which an arbitrarily long crystal is being traversed by the three waves at
W), Wy, w;. We now want to see how these equations might be applied to the
case of an optical parametric oscillator as in Fig. 8.9. Here we will first
consider the DRO scheme. The waves at w, and w, will therefore trave!
back and forth within the cavity, and the parametric process will only occur
when their propagation direction is the same as that of the pump wave
(since it is only under these circumstances that phase matching can be
satisfied). If we unfold the optical path, it will look like that of Fig. 8.10a,
and it can be seen that loss occurs on every pass while parametric gain

(8.74)
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FIG. 810 {a) L'nfn-lded path of an optical parametrsic oscillator; (b) Reduction to a single-
pass scheme with mirror losses incorporated into the distributed losses of the crystal,

occurs only once in every twao passes. This situation can be reduced to that
of Fig. 8.10b (f we choose an appropriate definition of the effective loss
coefficient & (j = 1,2). The loss due to a crystal of length / in Fig. 8.10b
must in fact equal the losses incurred in a double pass in Fig. 8.10a. The
tatter losses must account for the actual losses in the crystal, as well as the
mirror and diffraction losses. Thus the coefficients a, and a, in (8.72) must

be appropriately defined so as to incorporate these various losses, From
TN peplec e ;

(8.7 neglecting the rocimetne mternction b o wotimeg A = f]. we see that

after traversing the oo 7 of the crystal, the power at w (j=12) is

reduced m‘ 4 fracufm exp(—a;/) of its power at the entrance face of the
crystal. This reduction must account for the round-trip cavity losses, which
requires that

exp(—al)= R;R, (1 T) (8.74a)

where :R,J, anFi R, are the two mirror reflectivities and 7 is the crystal loss
(plus diffraction loss) per pass at w;. If we now define [compare with (5.4)]
Yf’ =-IhR,, y;=~In Ry vy=~—In(1 =T, and v, =[(y,, + v,,)/2] +
¥;. we can rewrite (8.744) as '

=2
a].’ 2y

, (8.75)

where y; is the overall cavity loss per pass. Note that this amounts to
simulating the mirror losses by losses distributed through the crystal and
then including them in the effective crystal absorption coefficient a; (j = 1,
2). The loss a;, on the other hand, only involves crystal losses and can in
gencral be neglected. Thus at this point we can say that, for a DRO,
equations (8.72) will stilt apply provided that a, and «, are given by (8.75).
To obtain the threshold condition of a DRO, equations (8.72) can be
further simplified if we neglect depletion of the pump wave by the paramet-
ric process. This assumption together with the assumption a, =0 means
that we can take A,(z)= 4,(0), where A;(0), the field amplitude of the
incoming pump wave, is taken to be real. With the further assumption of
Ak =0 (perfect phase matching), (8.72} is considerably simplified and
becomes

dA, oA,

dA a4 ,
e —;-23:,4,' (8.76b)
where
Ej(ﬂ) W 12
g = 2M;(0) = 2d — ( —2 ) (8.77)
0 12

The threshold condition for a DRO is then readily obtained from (8.76) by
putting dd,/dz = dA,/dz = 0. This leads to
a A, +igd3 =0 (8.78a)
igd, — ayd3 =0 (8.78b)

where the complex conjugate of (8.765) has been taken. The solution of this
homogeneous system of equations will yield nonzero values for 4, and 4,
only if
gi=am,=4 I-;—-}z— (8.7
where (8.75) has been used. According to (8.77), g? is proportional to E5(0),
i.e., to the intensity of the pump wave. Thus condition (8.79) means that a
certain threshold intensity of the pump wave is needed in order for
parametric oscillation to start. This intensity is proportional to the product
of the single-pass (power) losses, y, and y,, of the two waves at w, and w,,
and inversely proportional to d2 and /2.
The SRO case is somewhat more involved. If the laser cavity is
resonant only at w,, then a, can again be written as in (8.75). Since the
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it s,xl! <2 arphicable priovided we now set ay = 2 S spuall parametrie
CORYErSICn e can pul 47(ss o= 1N DY on the vight-has. side of (8.76£5). We
thus get

Adpzy= - igd}(0)z/2 {8.80)

wherg the conditivn 4 £0) = 0 b hoen assumed (ie.. no field at w, is fed
back intc the crysoil iy the resuiion). {7 we subcdtute (8.80) jn {8.76a) and
put A;(z)=~ 4,(0) in the right side of (8.7(4), we get

dA, S gl
Integration of 1R.81) gives
, aii g_":r? H
=4y 1- -+ e | (8.82)

for the ficld wt w, «fier lraversing the fength [ of \he crystal. The threshold
condition is reuched when AN = 4.0y, Le. when

4a By
T L2 Th
g = I (8.83)

Since g° is proportional to the intensity £ of the pump wave, a Comparison
of (8.83) with (8.79) gives ihe ratio of threshold pump intensities as

Isro _ 2
Ioro T2 (8.84)

If, for examiple. we take a joss per pass of Y2 = 2%, we find from (8.84) that
the threshold power for SRO is 100 times larger than that for DRO.

R4.2.2 Second-Harmonic Generation
In the case of SHG we tike
Ez.ty= [ E exp[i(wr ~ k z)] + Ey exp[i(20f — ky,z) ] + cc.}
{8.85)
PNL(z, N=1lPNlexp [i{w! -~ sz)] + PNlexp [ i( 2wt — k-mz)] + c.c.}
{8.86)

Cu
kN
o

o
i
3
i
K
t

Juctitubing U85y and (R EL) o {8.44) given
Pl = edBlexp | — ik, — ;)2 ] (8.87a)
PN = deqdE ESexp [ - i(ks, -~ 2k )z ] (8.87b)

Then, substituting (8.87) into {§.67) and neglecting crystal loses (i.e., putting
0, = 0), we get

dElm _ . W 2 .

5= i P dE_exp (idkz) (888a)
dE, . & . :

P = “ldeszw C‘.up(—lAkZ) (8.88b]

where Ak = k,, — 2k,,. These arc the basic equations describing SIIG. To
solve them, it is first convenient to define new ficld variables E and E;
such that

E.=(n)"E, (8.89a)
Eiw = (nlw)I/zELu (889b)

Since the intensity [, of the wave at w is proportional to n |E |° the
quantity |E/|* is also proportional to /_, but with the proportionality
constant independent of refractive index. Substituting (8.89) into (8.88)
gives

dE} ; EZ .

d;"’ =— _—ls,[—{ E0) exp [:(Akz)] (8.90a)
dE! T _

== .___IS’H _—_Ez"(O) cxp[—:(Akz)] (8.905)

where E/(0) is the valuc of E. at z = 0 and /;, is a characteristic length for
the second-harmonic interaction, given by

oo = AO( ”wnh)
= " dE (0)

where A; is the wavelength and E_(0) the incident field amplitude of the
fundamental wave at frequency w. Note again that the advantage of using
the new field variables E, and £;, is apparent from equations (8.90) since
they involve a single coupling parameter /5. Note also that E (0) and
hence E{0) have been taken to be real. From (8.90) we find
d|E. ! dlE.}
&z a4

I/2
(8.91)

(8.92)
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be shown from (590 that £, and £ are imaginary and real respectively.
We can therefore write

E.=|E|] {B.4%4a)
Ei o= i (8.95h)
and (B 901 then wiees

(8.96a)

(8.965)

1
(4 )

SIG @ - mabeed plow of second-luemomc intensity [y, and fundamental inteosity

i for perfect shase-matching (continuous curves) and for a finite phise
Lad curves),

The soluilon of {8.96) with the boundary conditions E (I = 0} = E (D) and
Ej(0)=01is

|E3.] = E.(0) l"fmh(z/llsn) {8.97a)

|E| = E.(0)sech(z/lsy) (8.976)
Since the intensity of the wave is proportional to | E’[%, we have 1, /1 (0}
=|E; P/EXOyand 1,/1(0) = |E.|*/ E4D). The dependence of 1, /1 (0}
and [/ (0) on crystal length as predicted by (8.97) is shown by the solid
curves in Fig. 8.11. Note that, that for [ =/, an appreciable fraction
{~359%) of the incident wave has been converted into SH. This illustrates
the role of I5; as a characteristic length for the second-harmonic interac-
tion, with a value which is inversely proportional to the square root of the
fundamental-beam intensity [see (8.91)]. Note also that for /» [y, the
fundamental radiation can be completely converted into second-harmonic
radiation, in agreement with the Manley—Rowe relation (8.92).



PROBLEMS

8.1,

83

8.4

8.6.

8.8,

29,
g8.10.
&N

A Gaussian heam emitted by a visible He—Ne laser has 2 spot size (at the
beamn waist) +f wg == 0.5 mum. Calculate the beam spot size and the radius of
curvature of the equiphase surface at a distance of 1 m from the beam waist.

The Caussian beam of the previcus problem is te be focusc to a beam waist
of spot size 50 pm at a distance of 1 m from the origina! beam waist. What
focal length shouid the lens have and where should the {ens be placed?

A laser has a hemifocal rescnator of length 50 em, We want to place a lens
after the spherical {output) mirror of the resonaior to reduce the cutput beam
divergence. If we require the spot size at the bearm waist formed after the lens
to be 0.95 times the beam spot size on the spherical mirror, what focal length
must the lens have?

Prove equations (8.4).
Prove equation (8.10).

The output of a @-switched Nd:YAG laser (£ = 100 mJ, 7, = 20 1i5) is to be
amplified by a €.3-mm-dizmeter Nd/YAG amplifier with a smal} signal gain
5y = 100, Assurning a peak cross section of the laser transition of ¢ = 3.5 X
107" ¢m’. calculate the energy of the heam after the amplifier and hence the
energy amplification. Also caleulate the fraction of the stored energy in the
amptlifier which is extracted by the incident pulse.

A large Ndscse sunphifier to be used for fusion experiments uses a rod of 9
et ditnieterwed £ em lengch, The small signal gain of such an amplifier is 4.
Taking the pak cross sechon of Ndiglass as o = 3 > 1072 ¢m?, calculate the
required imput pulse energy (1-ns pulsed to generate an output of 450 J. What
is the total ¢nergy stored in the amplifier?

A large CO; TEA amplifier (with a gas mixture €0O,:N,:He in the proportion
3:1.4:1) has dimensions of 10x 10 x 100 cm. The small signal gain coeffi-
cient for the P{20) transition is gy =4 % 10 2 cm ™. The duration of the
input light pulse 15 200 ns, which can therefore be taken to be much longer
than the thermalization time of the rotational levels and much shotter than
the decay time of the lower laser level, The peak cross section for the P20)
transttion under thewe conditions can be taken to be ¢ = 1.54 % 10~ '8 ¢m?
and the partition function is z = 0.07 (7 = 300°K). Calculate the output
enesgy and gain availahle from this amplifier for an input energy of 17 §. Also
calculate the energy per unit volume stored in the amplifier.

Prove that equation (8.39a) holds for a three-level svstem.
Prove equationy (4 37
Show that (8 50) e sin i, = [tad/ny)" = V(o3 w8y - 1), where n{ and

af are the ordinary and extraordinary refractive indices at 2w and where n{ is
the ordinary refractive index at w.

£.12, The frequency of a Nd:YAG laser output (A = 1.06 pm) is to be doubled in a

KDP crystal. Knowing that, for KDP, n,(A = 1.06 pm) = nf = 1.507, n,{A
=0.532 pm) = ny = 1.5283, and n,(A = 0.532 um) = n§ = 1.48222, calculate
the phase-matching angle 8,,.

8.13. Prove (8.69).
8.14. From (8.77) and (8.79) show that the threshold intensity of the pump wave for

a DRO is I = (n;/22d%[mn A A/ R ¥ly, vy, where Z = 1/epc, =377 R is
the free-space impedance and A, and A, are the wavelengths of the signai and
idler waves.

8.15. Using the resuit of the previous problem calculate the thresheld pump

intensity for parametric oscillation at Ay z=4; = 1 pm in a S-cm-long LiNBO,
crystal pumped at A, ~0.5 pin{n, = n; = 2.16,n; = 2.24,d~6 X 10”2 m /¥,
Y1 = ¥, =2 X 1072, If the beam is focused in the crystal to a spot of ~ 100
pm diameter, calculate the resulting threshold pump power.

8.16. Calculate the second-harmonic conversion efficiency for type 1 harmonic

generation in a perfectly phase-matched 2.5-cm-long KDP crystal with an
incident beam at A = 1.06 gm having an intensity of 100 MW /cm? [for KDP
n=e 1S, doyy = dygsind, = 028 X 107'2 m/V, where 8,2 50° is the phase-
matching angle].
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