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Abstract. An analytical treatment of the ultrashort-pulse generation in a solid-state laser is
given taking into account gain saturation. The probability for the breakdown of the
picosecond-pulse evolution caused by the amplification depletion is caleulated. The influence
of the active medium saturation on the satellite-pulse probability is investigated. Both
probabilities characterize the mode-locking behaviour of the laser system and are calculated
for various laser parameters to find an optimum laser regime.

PACS: 42,55

The generation of ultrashort pulses in passively mode-
locked solid-state lasers has been investigated by sev-
eral authors [1-14). In the fluctuation mode] mode-
tocking is explained by the selection and progressive
enhancement of a single fluctuation peak from the
initial muitimode emission intensity of the laser.
Analytical treatments of this process were presented in
[1-7}. In these papers the puise evolutien is divided in
a linear, a nonlinear and a giant pulse stage. Their
analysis is founded on the assumption that the pulse
selection by the saturable absorber is completed in the
noniinear absorption stage before any appreciable
depletion of the population inversion in the active
medium cccurs. The results obtained by using this
assumption provide a qualitative understanding of the
pulse generation process. But experimental investi-
gations [8-10] showed that under certain conditions
the pulse formation can be influenced by the inversion
depletion in the active medium, In these experiments
the existence of two thresholds was observed. Free-
running oseillation arises when the pumiping energy
reaches the laser threshold (first threshold). A train of
ultrashort pulses only appears when the pumping
energy exceeds the mode-locking threshold (second
threshold). The existence of the second threshold is

attributed to the reduction of the population inversicn
during the nonlinear stage.

Hitherto theoretical investigations concerning the in-
fluence of gain saturation were carried out founded on
computer simulations [11-14]. Lariontsev and Serkin
{t1] investigated the optimum cavity length for &
maximum contrast of the ultrashort pulses. The exis-
tence of an optimum cavity length is connected with
the nonlinear action of the active medium. In [11] a
very simple model of the radiation field was used
allowing only a qualitative discussion of the investi-
gated effect. A computer simulation was also presented
by Glenn [12]. From the results of his calculations
Glenr concluded that by the influence of the amplifi-
cation depletion the efficient single-pulse selection is
enormously enhanced. But Glenn strongly over-
estimated the depletion of the population inversion by
the laser radiation. In [Ref. 12, Eq. (19)] used in the
cemputer calculations the cavity round-trip time has
to be substituted by the pulse duration. Wilbrands and
Weber [13] investigated the second threshold and its
probabilistic nature for a mode-locked Nd: Y AG laser
in more detail. In their calculations the authors used a
slow saturable absorber (energy relaxation time long
compared with the duration of the fluctuation peaks).
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Such an absorber provides only a weak pulse selection
and represents a disadvantageous approximation far
the solid-state laser situntion. More recently New [14]
presented results of a computer calculation of the
second threshold including the noise statistics in &
realistic way for one set of Nd:YAG  laser
parameters.

In the present paper an analytical treatment of the
picosecond-pulse generation in a passively mode-
locked solid-state laser is given taking into account
gain saturation. By the influence of the depletion of the
population inversion in the active medium a critical
intensity level relatively to the mean intensity exists at
the end of the stage of linear amplification.
Fluctuation peaks with intensities above this critical
level are amplified, the others are damped. From the
existence of this critical level the probability for an
early breakdown of the single-pulse evolution is calcu-
lated. In this case the laser system remains in a regime
of free-running osciliation. Since this probability very
sensitively depends on the pumping rate the second
threshold for the pumping rate characterized by a low
breakdown probability may be estimated. For fixed
values of the pump rate and of the other laser parame-
ters an optimum cavity length with a minimal proba-
bility of the breakdown exists. We give an approxi-
mated analytical expression of this optimum cavity
length,

Besides the probability for the breakdown of the pulse
formation the probability for the appearance of double
pulses is another feature of a mode-locked laser sys-
tem. With increasing pumping rate the double-pulse
probability becomes larger, but the breakdown proba-
bility decreases. For good mode-locking both pro-
babilities shall be small. Therefore an optimization of
the laser system may be performed comparing both
probabilities in dependence on the pumping rate and
the cavity length.

1. Linear Stage of Pulse Evolution

The pulse evolution is described by the following basic
equations [7]
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k is the number ol cavity iuuua-tzips after exceeding
the laser threshold,

Efk,o—md= [ drexpl Mo wuig (k1)

is the Fourier transformed field strength. t marks the
time courdinate during a cavity round trip:
- U251 <lU/2, where U is the cavity round trip
period. !E,_(k]\z designates the time average over a
cavity round trip:

- L2
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In (1) a fluctuation force Nk, ©) was introduced. Nik, 1)
represents a white Gaussian random noise process. a(k)
=2a"L'n*(g3, — 8%, ) is the gain per pass in the centre of
the laser line. y and x=2¢"I"r® contain the constan:
cavity losses and the small signal absorption of the
saturable absorber per pass, respectively.

The other abbreviations are

Ll —wp) =1+ 2i(w—m ) 4w,
Co= = Zihanoy
B=1{e"pg) 2" Ushany,

p= gy P2

1% is the absorber saturation intensity, o the absorption
cross section, n the particle number density, L the
length of the medium, g, the density matrix elements,
i, the matrix element of the dipole operator, w, the
laser frequency, and dw®=2nAv" the spectral width of
the homogenecusly broadened laser line, The quan-
titigs referring to the active medium are denoted by the
index a and those referring o the absorber by the
index b,

P is the approxunately constant and frequency-
independent pumping rate per pass. For a ruby laser
{three-level system), it is given by

P=Ug,F, tk=0uy,, —ir,),
for a Nd:glass laser (four-level system) by
P=Ulo,f (k=0ay,, ~ 7, /T}],

with q.,. =20°Ln" and ag,, =% +7. 6, is the absorp-
tion cross-section for the pump radiation, F, the pump
photon flux density at Jaser threshold (k=0),

The pulse evolution starts with the exceeding of the
laser threshold. At this point the amplification e, just
compensates the cavity losses (ap,=x+7). Above
threshold a period of linear behaviour of the absorp-
tion and ampiification begins. The fluctuation force
and the frequency dependence of the amplification
expressed by L{w—w,) are taken into caleulation.
Because of the low intensity the pepulation changes

z
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caused by the laser radiation in the absorber and the
active medium are negligible. Using these approxi-
mations the normalized field-strength correlation func-
tion is given by [7]

CEgfk, DEfk, 7+ h)
{IE (e, %>

h 2
=exp{- 2(In2) (F(k)) } . 3

where T(k)=2(ndv*)"'{2ap, kIn2)Y"% The radiation
field £,(k, 1) can be treated as a narrow-band Gaussian
noise process during the linear stage.
The statistical average of the intensity is (7]
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Ity is the intensity at laser threshold. During the lingar
stage the statistical average corresponds to the time
average over one cavity round-trip (¢ I(k)> = I{k)} [7].
The expressions (3) and (4) are valid for k» .
The amplification increases linearly (g =ay,, + Pk}
Different from [1-7] we define the end of the linear
stage by the condition

g, {Ikg)y =P, {5)

where o =¢*U(a®T}) ™", This means that the depletion
of the population inversion in the active medium
caused by the laser radiation becomes essential at
k=k,

The intensity is normalized to the absorber saturation
intensity 1% =he (6* 17} . Using (4) and (3) we find an
approximate expression for the number of cavity
round-trips in the linear stage

2 P fo—
ky=1-1 (-———- /2Pa,
’ lP " UaThr<ITﬁr>L e

12 P 2
L Flngarm<'[nr>)‘ ' ©)

For usual solid-state laser parameters the influence of
the nonlinear absorption at k=k, is negligible,

2. The Effect of the Amplification Depletion
During the Nonlinear Stage

Due to the natural mode selection the width of the
fluctuation peaks increases proportional to [/E during
the linear stage leading to a speciral narrowing of the
radiation. Since the linear stage includes several thou-
sands of cavity round-trips and the number of cavity
round-trips between the end of the linear stage and the
end of the pulse development is small compared with

3

kg, the frequency dependence of the amplification is
negligible for k>k;.

Supposing that the absorber energy relaxation time TP
fulfils the relation T} « Tik,) the intensity dependence
of the absorber losses is given by x/(1+ /). We devide
the nonlinear stage into three parts, During the first
part immediately after the linear stage the ubsorber
losses may be expanded up 1o the first order of the
intensity. At the end of the range of validity of this
expansion (at k=k,) the intensity I, of the highest
fluctuation peak is in the order of I {k,)~=0.2. During
the second part of the nonlinear stage the peak in-
tensity exceeds the absorber suturation intensity.
Therefere, in this phase the exact form x/ 1 + ) of the
nonlinear absorption has 1o be taken into account. It
will be shown that in these two parts of the nonlinear
stage in ruby and Nd :glass laser systems the reduction
of the amplification by the luser field is small compared
to the threshold amplification a,,. This is not flfilled
for the Nd Y AG laser, The stimulated emission cross
section of the Nd: YAG exceeds the cross sections the
two other laser types by a factor 30 leading to a much
faster depletion of the population imversion in the
Nd:YAG system. Therefore. the following calcu-
lations are valid only for ruby and Nd :glass lasers,
In the first part of the nonlinear stage the small
depletion of the population inversion may strongly
affect the pulse evolution since the laser is working just
above the threshold. The second part of the nonlinear
stage is characterized by the action of the saturable
absorber: the influence of the inversion depletion is
negligible. Therefore, the probability of the breakdown
of the picosccond pulse generation caused by the
combined action of small population changes in the
active medium and in the saturable absorber is essen-
tially determined in the first part of the nonlinear stage,
as will be shown later. [n the third part of the nonlinear
stage, which may be called giant pulse stage, the
absorber is completely saturated. The pulse intensity
increases very rapidly leading to a fast depistion of the
population inversion, A train of picosecond pulses
having pulse distances equal to the cavity round-trip
time leaves the laser. The statistical properties of the
radiation field do not change during this part of the
pulse development (cf. [Ref. 7, Sect. 7%

Using the approximations discussed above the first
part of the nonlinear stage is described by the
equations

3
ﬂ;'i_” = KMk, )+ %l %1k, 7). Gl
da(k) T
= = Gy, SR, (8)

where we introduced the excess amplification
d=a—ap, and used the relation &<y, With the
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Fig. |. Excess amplification & and diserimination parameler ji,, as a
function of 2 fer ruby laser and Nd:glass laser parameters. The
patameter values are U'=6ns, P=d. 107", ap, =05, »=03 lor the
ruby laser (curves 1) and I =6ns, P=10 . .\ Gry =03, =03 for the
Nd :glass Jaser (curves 2)

variable

k K 1
z(k) = | dk"exp! i dk"a(k")! ICl]
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the selution of (7) may be written as

fiko, r)j;
R v e (o
The limit of validity of the solution {10) 15 character-
ized by the condition 7,(k,)=0.2 for the highest fluc-
tuation peak. At this limit the term 1, (k;)z is in the
order of unity. Since the averaged intensity of the
highest fluctuation peak characterized by the con-
dition N(#™* U)=1, ¢f. (21), exceeds the mean in-
tensity I{kg} at the end of the linear stage by a lactor
™ in the order of five to ten, the averaged intensity
f{z} can be calculated by expanding (10) up to the
second order in z:

o -
T~ ﬁ [Tteg) + wzFokg) + (T (

If f{k,, ) would be an exact stationary random process
with the probability density

P =y )y ™ texp[ = I kg1

the mean value {[(z)) would diverge. Since f(k,. 7} is
only defined in the time interval — U/2 51 < + U2 the
correspondence between the statistical and the time

average is limited {cl. [Ref 7, Sect.5]). The main
cantribution to the average

Uy = Clkg)> ™ ljdu"exp[ £ I(ko)5]

results from the region around n{f(k,)>. Therefore, the
statistical average diflers essentiaily frem the time
average over a cavity round trip for »z f™* But
up to n=3 both averages agree and we oblain
Tikot=211kg) avd TPlkgt=6T(kg). Putting (%) and
(11} inte (8) we obtain an equation for z(k):

d* | dz — =
g = e I 02

[L+2xTthg)z + 6¢TTkg) 2] .

The initial conditions are z(ky)=0, dz/dk;,‘ =1 and
d’zjdk?|, =alk,). Equation (12) can be reduced ta a
first-order differential equation

& —
Jn )= —doan, Ik (13

Th+ §slikgle+ Atk ]+ atkglz + 1.

Equation (13} may be solved by scparation of the
vartables and decomposition into partial fractions.
This solution of (13} is unnecessary because we need
only dz/dk as a function of z in the following
calculations.
I the excess amplification is reduced to values & <0 the
first term in (7) beeomes negative. The Mluctuation peak
for which the first term s dominant (that means
¢f/dk <0y is damped. If at a given moment the telation
1'% <0 hoids it remains valid for all later times too,
and I goes to zero, The maximum condition 6{/8k=0
marks the end of the amplification region of the
fluctuation peak under consideration. From the de-
finition of z it follows that dz/dk >0 is valid for all &
Therefore, the condition ¢I/2k=0 is equivalent to
élidz={0 We consider the ensemble of fluctuation
peaks at the end of the linear phase (k =k,). Using the
average m as unit for the mtensity the fluctuation
peak intensity is described by the dimensionless factor
B =I{ky. t): 1 {ky). Combining (10) with the maximum
condition é1/dz=0 we obtam
By ()= ,,,7“(-) — (14
xl(kﬂjl a(z)

This formula means that pulses with the intensity
iy I[kuj at the end of the linear slage reach their
maximum at the point z aiz) is given by
didz{dz/dk]. Using (13) we {ind

Az} = — gy IRz {| + )z
+ 2[nl (k27 +alky). (13)

The functions &@iz) and §,1z) are depicicd n Fig, i for
ruby and Nd:glass laser parameters, In all numerical
caleulations of this paper we use the parameters

[N
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6°=25-10 *em?  Aw=33.10""Hz, T=1dps,
a*=10 '*em?, {fp,>=10""" for the ruby laser and
0°=3-10"*em?, Av'=7- 10" Hz, Th=8ps, a*=57
107 em?, ({4, > = 1072 for the Nd:gluss laser. The
other parameters are given in the figure caption in each
Cdse,
All pulses with > f,, lying above the curve f8,12), are
amplified, the pulses with f < §,, are discriminated. The
function fip{z} reaches its maximum value g3™ at
= 13,500 (ruby laser) and z=9800 {INd:glass laser),
respectively, where dz/dk{zj=0.
However the validity of the approximations discussed
at the beginning of this section ends at smaller z-values
(z=2z,). At this point z=2, the intensity of the highest
fluctuation peak is I™(z,)=0.2, For the parameters
used in Fig, | we find z, = 10,030 for the ruby laser and
z, =8120 for the Nd:glass Jaser. z, marks the end of
the first part of the nonlinear stage (k=%,). For k>k,
the exact form s¢{1+ 1) of the absorber nonlinearity
has to be taken into account providing higher absorber
losses than the expansion of %41 + 1) used in (7). By
these higher losses the intensity increases slower than
discribed by (7} leading to a slower depletion of the
population inversion. Then the effect of the pulse
diserimination will be weaker. The ascent of the exact
curve (7} would be flatter for z>z, than the ascent of
the curve in Fig. Iband 2b. Since the variation of §,(z)
in the range z>z, s small the maximum value f3*
pravided by {14) does not essentially differ from the
maxirum value of the curve §,(z) obtained by using
the exact absorber losses. Independent on z, the
maximum value S5 may be regarded as the upper
limit of the pulse discrimination.
Using (i4) and (5) the condition dz/dk=0 in (13}
provides for 5™ the relation

(a2 4 g“”"f}(k“,] mas [Eaﬁk)_z
»P 2P

b2 -
I T ey
For f3**<3 higher-order correction terms in the

square brackets have to be taken into caltcuiation.
We compared the analytical result (16) with New's
computer simulations [14]. New calculated 100 in-
dividual laser shots for one given set of Nd: YAG laser
parameters. Using these parameters equation (18)
provides fp**=1376. New found in his calculation
A5 =403, The probability of the breakdown of the
pulse evolution (derived in the next section) is 23 % for
this parameters. New found that from 100 shots mode-
locking failed to occur in 20 cases. The results are in
good correspondence though the approximations
made to derive equation (16) are better fulfilled for the
ruby and Nd: glass system than for the Nd: Y AG laser.

=) (16}

)

3. Probability for the Breakdown
of the Pulse Evolution

If none of the fluctuation peaks exceeds the level F7
at the end of the linear stage all peaks are discrimi-
nated and the pulse evolution breaks down. We may
calculate the probability for the cccurance of this
event. The probability of the case that the amplitude 1
of a narrow-band noise process cxceeds the level A,
during the time interval (r, 7+ A1) is given by {15]:

Fa Ap
W= [dad | daplAA). (7
U Ap = Adc

P2(4. 4) is the joint probability density of the ampli-
tude 4 and its time derivation A. If At is smali enough
this expression can be expanded up to the first power
of Az:

W=t { dAd py{d,— Adz, V=N, At (18)
[}

The ratio of the number ¥ of intervals Az during which
the level Ap is exceeded 1o the total number n{ns 1) of
intervals is equal to the probability W5 =N, At=N/n
that during an arbitrary chosen 1nlerval At the event
"4, is exceeded” occurs. The observation time of the
process is the cavity round-trip period & = i-47. Tn the
limit At—{} we find

N=U[dAAp,id,, 4). (19
0

Applying formula {19} to a narrow-band Gaussian
noise process one obtains for the mean number of
exceedings of the level §<I> during the time U the
expression [16]:

_ d*
Nif, U)=Ul/ —gmx(hm_—oc‘” (20)

z(h) is the normalized field strength correlation func-
tion. Using {3) taken at k=k, we obtain

R, Uy = —o l/."L“zpe‘ﬂ. 21y

T(K ) 2

The cendition N (5, {/)=1 defines the averaged in-
tensity of the highest flictuation peak at k =k,. Putting
A3 into the expression {21) we obtain the mean
number of exceedings of the level 7** at the end of the
linear stage.,

Wy =1—-WZ is the probability that during one in-
terval At the level A, is not exceeded, The probability
that during all n=U/A7 intervals the level A, is not
exceeded is Wy =(W, )" In the limit A7—0 we receive

W™, Uy=exp[ - N (i 0] i22)
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This is the probability that the pulse evolution breaks
down and no pulse train leaves the laser.

The breakdown probability shows an interesting de-
pendence on the cavity length. At fixed laser parame-
ters an oplimum cavity round-trip time U, exists
where the breakdown probability is minimal. Wc may
derive an approximate analytical expression of the
optimum cavity round-trip time and the correspond-
ing breakdown probability. For solid-state laser pa-
rameters the term (A%**) may be neglected in (L6
Since all other parameters are [ixed equation (16)
provides U as a function of 85**. In this calculation the
dependence of the pumping rate P on the cavity round-
trip time has to be regarded since § = P/U is 2 constant
(cf. Sect 1) Using the function U=U(5™) in (21)
N{BT™ U) is given as a function of A5 alone

_ ; (fmax)de AR
Nipr) =0 32 re - (23)
3 @“‘lz
where @ is a constant depending on the laser parame-
ters. The maximum condition

dR g™

app=

5 hin— 3BT Vo= §UB5 ) — 8 =0.

L+ s

=0 provides the equation for (85*),,,:

Tts only real solution is (83*),,, = 3.659 independent on
the laser p.ardrnctcrs Putting this value into the func-

tions U= U(AP™) and N= N( *) we receive
Tb
U, = 6785 (" ") ", (24)
The
3 52
N, =100z 2 (‘ff‘_") . (25)
am_ a*
with
3:2
n=In|4.838%2 (‘TDTE) l
“Thr(IT'br a
Gt T 2
+ Ltinln (—— )
* ‘U “n;
Putting Nnm into (22) we get the corresponding break-

down probability.

4. Estimation of the Double-Pulse Probability Taking
into Account Gain Saturation

Besides the second threshold condition the probability
of the appearance of satellite pulses is another feature
of good mode-locking. [n & model with constant gain
during the nonlinear stage this peobability was calcu-

lated by Demokan and Lindsay [5,6], In this section
we wanl to investigate the influence of the amplifi-
cation reduction on the double-pulse probability. At
first we calculate the ratio of the two highest Muc-
ivation peaks X =1, (k, )7, (k,) at the end of the first
part of the nonlincar stage as a function of the
intensity 1,(k,) of the highest peak and the ratio
Y=1,(ko)I (k) at the end of the linear stage. Using
the equations (101 and (13) we find
[L+{s— D (k)Y 1)

X=14 - _7777,‘ (26
* —(g,ﬂl '

where s =x/a(k;)+ | and

’{s—l)[ VR r Tpp, L’l

t+(s— DI, (k B

2-xalk, 3

* o)
Deriving (26} the relation

208, (s— L, ik ) [aalky)] *
[l+Gs— k] 2B =t

fuifilled for solid-state laser parameters was used.

B, denotes the intensity of the highest fluctuation pgak
at the end of the linear stage. It is a stochastic quantity.
At the end of the first part of the nonlinear stage for
ruby and Nd:glass laser paramcters the relation
|k, )| € ag,, is valid (cf. Fig. 1). Also during the second
part of the nonlinear stage the reduction of the popu-
lation inversion is small for ruby and Nd :glass lasers.
An estimation of the amplification depletion during
this stage provides [7]

21' k. Tik
i ]3?;’7‘, g, (27)

l@tk,) =
The intensity of the highest fluctuation peak 1, (k,) at
the end of the second part of the nonlinear stage
{k==k,) 15 in the order of ten. We can conclude that for
the highest fluctuation peaks during the second part of
the nonlinear stage the term al in (7) is negligible. The
equation
& wl?
Eale (28)
provides for the intensity ratio Z =1, (k,)/1,(k,) of the
two highest peaks at the end of the second part of the
noniinear stage

Z:Xexp{ ](X-l)’. 29}

1
Ik,
where the relaticn [, (tk,)e 1 is used, I,(k,) is the
nonrandem limit of the first part of the nonImear stage

fitting equation (26) to (29). In cur calculations we
chose I (k }==0.2
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[n the giant pulse stage the amplification reduction has
to be taken into consideration, but the ahsorber losses
can be neglected. Therefore, the intensity ratio remains
constant and the probability distribution function
F(Z} for double pulses can be determined using (26)
and (29). Now we calculate F(Z). At the end of the
linear stage the field strength is normally distributed.
According to [5] the bi-variable probability density
function for the intensity of the highest (#,) and second
highest fluctuation peak (f,) normalized to the mean
intensity I{kuj is given by

P2 fo)=Cre M e M [1—e T 2 (30}
where
- K-UK - v
CZ_T“ and KﬁT(kU)'
‘)

K is the mean number of fluctuation peaks at k=k,.
Usiug (26) we introduce the new variable X =X (Y. §,)
with ¥=§,/8,. For the distribution function of X we
find

= x o g, 1
FiX)= _‘[ dfi, _Ed-’ﬂ C, XA exp {-(H ﬁ)ﬁ'i}f[—])ﬁl]

.{l,ex{ B }“ RRLCSTNY
Pl™ ¥ 5, "

Integrating with respect to X' we obtain

Fix)=1-C, ?"51‘:_3] IHXP(* Y"g’]ﬁ;")r -l

(31)

with C; =C,/A(K~1). The final distribution function
for Z is easily obtained by F(Z)=F[X{Z)].
An approximate expression of (31) may be found
regarding that the function ¥Y(X.§8,) only weakly de-
pends on f, in the region where the probability density
PIB,) dess not vanish, Therefore we set Y(X, ) in
(31). f™ marks the averaged intensity of the highest
fluctuation peak at the end of the linear stage, defined
by the condition N(U.f"™*}=1, ¢l (21). Then the
distribution function F{Z) is given by

r( T ))mf[x ol
....... — 32

Ml— Tt Y[X(Z)j}

U
F(Z)=1— i YIX(Z)]

I" denctes the gamma function.

In the numerical analysis of these results we denote the
second highest pulse as a double pulse if Z lies in the
interval | £Z-<10. Then the double-pulse probability
i3 given by F(Z=10). The numerical comparison of

P
w7 345878107 2 3 45878°CY 2 3 4na

{tal
I BRESS ey

»
o7 2

Fig. 2. Breakdown probability {solid lines, index a), double-pulse
probability laking into account gain saturation (solid lines. index bj.
and the double-pulse probability in the model with constant gain
{dashed lines, index ¢) in dependence on the pumping rate P. In
curves 1) up, =05 x=0.3 and in curves 2) a,,, =09, x=07 were
used. The cavity round-trip time is U=6ns. Figure Za shows the
results for ruby laser parameters, Fig.2b [or Nd glass laser
parameters

(31) and (32} shows that the exact formula (31) provides
lower double-pulse probabilities than (32). Therefore,
the double-pulse probabilities obtained from the ap-
proximate formula (32) are upper limits of the exact
values. The difference between both formulas sen-
sitively depends on the ratio f™*/%5™ and on U/T(k).
The error of the approximate equation (32) does
not exceed 20% in the region UfT{ky)=~3800 for
A2 1.5 and in the region ©/T{ky)=4000 for
ApE 2 L1 In the region §5™ = f™* the approxi-
mate disiribution function {32) provides a stronger
overestimation of the double-pulse probabilities, But
this region is characterized by a very high break-
down probability and therefore it is out of interest in
caperiments.

In the numerical analysis we compare our results with
the double-pulse probability derived in the model with
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Fig. 3. Breakdown probability {selid Lines, index a), double-pulse
prabahility raking into account gain saturation {solid lines, index b),
double-pulse probability in the model with constant gain (dashed
lines, indexc) and position of the minima of the breakdawn
probability (dash-dat lines) in dependence on the cavity round trip
time U -epy, =05 and k=03 were used. Parameter of the curves is
4= P;U. Figure 3a represents the resuits for the ruby laser for
S=100s " fcurves I}and 6 =2005"" icurves 2). Figure 3b shows the
results for the Ndglass laser for 6=100s"" (curves i) and
#--23057 ! (curves 2

constant gan during the nonlinear stage by Demokan
and Lindsay [3]. In this approximation ¥ =2Z'7 has 1o
be substituted in (32).

Calculating the satellite-pulse probability there should
be considered the exact statistics of the intensity
maxima. However this would lead to very complicated
caleulations and does not provide essential corrections
of the results [6].

5. Numerical Analysis of the Results

We caleulated the breakdown probability (Figs. 2 and
3. solid lines, index a), the double-pulse probability

taking into account gain saturation (Figs. 2 and 3,
solid lines, index b}, and the double-pulse probability
in the model with constant pain (Figs. 2 and 3, dashed
lines, index ¢) for Nd:glass and ruby laser parameters,
respectively. The parameters used are given in the
figure captions. In Fig. 2 the pumping rate P is varied.
Comparing Lhe curves (a) and (#) we see that with
increasing pumping rate the double-pulse probability
changes much slower than the breakdown probahility,
especially in the Nd:glass system. Corresponding to
the experimental claims an optimum pumping rate
may be found. The increase of the absorber losses at a
fixed vaive of P leads to a decrease of the double-pulse
probability and in the Nd:glass laser also to # decreas-
ing breakdown probability. Figure 2 shows that the
ratio of the double-pulse probabilities calculated by
using (32) and in the model with constant gain de-
creases from a factor ten at lower pumping rates to a
factor three at higher pumping rates. In Fig. 3 we
varied the cavity round trip time U leading to a
varying number of fluctuation peaks at the end of the
linear stage. Parameter of the curves is §=P/U. The
curves of the breakdown probability are drawn on the
left-hand side up to the region where §7°% 23, cf. (16}
The calculation shows that at a fixed § a minimum
value of the breakdown probability exists. For longer
cavitics the number of fluctuation peaks at the end of
the lingar stage increascs leading to a faster depletion
of the population inversien during the first part of the
nonlinear stage. For 2 short cavity the number of
fluctuation peaks at k =k, is se small that the proba-
bility that one of these pulses exceeds the intensity level
Bp"tHkg) is small In both cases the consequence is a
higher breakdown probability than at the optimum
cavity length. The exstence of an optimum cavity
length was shown previously by Lariontsev and Serkin
[11]. But they did not take into account the important
fact that the ratio of the intensity of the highest
fluctuation peak to the mean intensity at the end of the
linear stage mereases with increasing cavity length,
Eliminating & in the approximate analytical ex-
pressions {24) and {25) we can depict the position of the
minima of the breakdown probability in Fig. 3 (dash-
dot lines). [n the experiment shorter cavity round-trip
times than U/ may be used in order to obtain an
optimum laser regime since the probability of satellite-
pulse gencration decreases with decreasing cavity
length.

n [7] the mean pulse shape and its {luctuations were
calculated founded on the model with constant gain
during the ponlinear stage. These caleulations
concerning the highest fuctuation peak keep valid in a
good approximation when the intensity of the highest
fluctuation peak ™k ) at the cud of the linear stage
exveeds the level PRV IA) by a factor two or more,
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