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Observations about the brain

¢ Many neurons ~ 10
Many connections ~ 10® per neuson

Connections of all ranges

Individual neurons relatively simple

Can learn, retrieve & process a lot of ET
data

Operates quickly despite relatively
slow elements

Robust

+ Capabilities complementary to
conventional computers
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¢ Feedforward and backward
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Excitatory

¢ Synaptic weight
¢ Total s

¢ Idealise
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Consequence of input
‘potential’

¢ Output activity of neuron i

- \ ot
threstwold potential

¢ and so on through the network




¢ dynamically stable/quasi-stable
global firing patte

¢ sequential global attractor

¢ chaos

¢ determined by synaptic weights,
thresholds, starting state.




Concepts for neural
memory

4 & Patterns to be memorized
¢ Particular global activity states or sequences

¢ Recall

¢ Retrieval of memorized pattern from distorted
initial state / Association
¢ Generalization

¢ | earning

¢ Modification of local rules/ synaptic strengths/
thresholds
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¢ single state or more complex

¢ for associative memory,
sirsctors ~ memorized patterns

¢ for ammny aeemnor porized patterns one
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Issues

¢ Given an architecture, local
rules and algorithms for
synapses and thresholds

¢ determine performance

¢ Given information to learn

¢ determine what is optimally
achgivable for particular aspects

¢ determine algorithms to acheive it

¢ determine consequences for other
questions

\3 N



Binary neurons
(McCulloch-Pitts)

¢ Idealise to two neural states
« Firing: V=1; o
e Non-firing: ¥, =0; o,=-1

¢ Probabilistic update rule
Prob of neuron i finng
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Input potential to neuron !
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¢ Analogous to stochastic dynamics of Ising

model of magnetism — statistical physics
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Glauber dynamics in
statistical physics

¢ Ising spin system
¢ Temperature T
¢ Update probability

p(o,it) Z% l""UI!MﬂZJ:JUo-’)

¢ ‘Gain’ = Inverse of temperature p=T*
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Statishcal mechanics of Memory retneval
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Stokichcal rlevance
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MACRODYNAMICS OF DISORDERED AND FRUSTRATED SYSTEMS

D SHERRINGTON, A.C.C. COQLEN AND S.N. LAUGHTON
Theoretical Physics, Universily of Ozford, | Keble Road,
Ozford, OX1 INP. England
E-mail: sherr@thphys.ox.ac.uk, coolen@thphys.ox.ac.uk, stephen@thphys.ox.ac.uk

ABSTRACT

It is shown hew the macroscopic non-equilibrium dynamics of systems whase
microscopic stochastic dynamics invelves disordered and frustrated interactions
can be well deseribed by closed deterministic flow equations; this requires an
appropriate cheice of order parameter/Tunction and ansatze.

1. Introduction

One would often wish to describe the macroscopic non-equilibrium dynamics of
systems of many stochastically interacting microscopic units in terms of a closed set
of deterministic flow equations. This is a non-trivial exercise for systems which are
highly disordered and frustrated, but below we describe a procedure which works very
well for two such problems, the Sherrington-Kirkpatrick spin glass' and the Hopfield
neural network?, and, we believe, provides a framework for more general application.

It is based on an appropriate choice of macroscopic order parameters together
with two ansitze. Here we outline the philosophy and the essentials of the technique
and present a few results to illustrate the degree of success. Further details can be

found elsewhere?4:5.

2. The problem

In general terms, we are concerned with systems whose microscopic state is de-
scribed by a set of NV variables S, at “sites’ ¢ = 1...N and which obey random stochas-
tic microdynamics leading to known master equations for the time-dependence of the
microstate probability distributions p,({S}), involving only the instantaneous time ¢
but with disorder and frustration in the local and intersite controlling elements. Qur
objective is to devise a description of the macrostate dynamics in terms of closed
equations for few-parameter sets of macrovariables ,({S});u = 1..n.

More specifically, we concentrate on systems in which the variables § are Ising
spins {0 = £1} and obey random sequential Glauber stochastic dynamics via local
effective fields determined through pairwise exchange interactions with other spins
and external stimuli. The evolution of the microstate distribution satisfies the master
equation

Z pilFo )W (Fro) — 1(0‘)Wk(0‘)} (1)

k=1

at’
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where Fj is the spin-flip operator Fi®(o) = ®(oy, ..., — 0, ...,on}, the transition rates
and local fields are

. 1
Wile) = 31 — ortanh(Bhi(o))]  hilo) =3 Juoe+ bk, (2)
< ik
3 is the inverse temperature and we are now using the vector notation & = (a1, ...0N)-
From (1) we may derive an equation for the evolution of the macrovariable probability
distribution

P2 = 2 pdeé[2 = Aol 2= (S 3)
o
in the form
4oy =s C S T (iR i) )
d | 21 £ k=1 N ke=1 anl"'an, t ky..k¢ )

where

N
FO 124 = (3 Wi(0) Ak (0) Do) 2, Dirle) = U(Fio) — Qo) (5)

ke
j=1

and the notation {) ., refers to a sub-shell average

Lo p(0)32 - o)l (@) ©
Ton(@)R2 — 2@

In several cases of interest and for finite times only the first term on the right
hand side of (4) survives in the limit N — oo, yielding the deterministic flow

(flo)) .

d

Ent = (Z Wi(a)|(Fo) - R200)h o, - (7)
In general this does not yet constitute a closed set of equations due to the appearance
of pi(e) in the sub-shell average. This requires an appropriate choice of 2 and

possibly further ansatze.

3. The specific physical systems

Here we concentrate on the two specific model systems, the Sherrington-Kirkpatrick

(SK) spin glass* and the Hopfield neural network?. In the SK model the {c} represent

true magnetic spins and the {J;;} are chosen randomly from a Gaussian distribution

J,'j = JO/N + JZ,'J‘/\/N Zij = Zji (Z,‘j) =10 (Z,'J"Z) =1 (8)

1
M



In the Hopfield model the {o} represent states of McCulloch-Pitts neurons, o = #1
corresponding to firing/non-firing, and the {J;;} provide for the storage and re-
trieval of random patterns {¥ = *1}: 4 = 1..p = aN, via the Hebb rule
Jiy = N7TURIE_ £4¢). Concentrating for simplicity on the region of phase space within
the basin of attraction of one pattern, 4 = !, it is convenient to apply the gauge trans-
formation oy — o], J;; = ££)J,. 6 — €16, to re-write this in the form of (8)
with Lo

. Leppl ppt . N~ —

Zy = ﬁ% gereler  Jo=1 J=\a (=0 . (9)

The symmetry z;; = z), provides for the steady state diseribution pe(o) to be

expressible in the Boltzmann form p, (o) ~ exp(—3H) with the Hamiltonian

H= =3 Jio0, ~ > 8o (10)

i<

Further specializing to 8, = #, all 7, the Hamiltonian is expressible in terms of the
two macroscopic parameters

m(o) = N~! Zo*,- r(o) = N-32 Za,-z,-jaj (11)
H(a)/N = [M%Jamz(a’) 4 m(e)] — Jr(o) + O(N) (12)

where the term in [ | is disorder-independent with all the disorder effects in the Jr(o)
term. Hence m,r suffice as order parameters to describe the equilibrium probability
distribution and represent a minimum choice for the set §2 consistent with needing
m to study magnetization or overlap with the condensed pattern.

Thus we shall first discuss an attempt to find a non-equilibrium macrodynamics in

terms of m, r, alone, and show that it provides a reasonable but imperfect description.

We shall then go on to a more sophisticated theory in terms of a generalized order
function which provides a very good fit to the results of microscopic simulation.

4. The simple version of the theory
[n this section we choose the minimal form

(o) = (o), {a(e)) = (m(o).r(a)) (13)

The resultant F,[2°} does indeed satisfy a Liouville equation in the thermodynamic
limit, yielding the deterministic low equations

% - / Az Dy i 2) tanh B(Jon + Jz + 6) — m (14)

Sb



d
d_: = /(E:Dm_,;t(:]: tanh 3(J,m + Jz + 8) = 2r {15)

where D, +.(z) is the sub-shell averaged distribution of the disorder contributions to
the local fields

Ly o p(e)bim = mighelr = r(e) V5, 8z = 2())
N Sa pdo)élm — mig))a(r — rle))

Dopralz) = (16)

hilo) :.Lm(tr}-%—.]:,(a)+U+U(.\'—'j o) = _\'_Uzz:UJJ (17)
J

As vet. because of the p (o) in (16). equations (14]. (15) are not closed except in
the disorder-free case J = 0. To close the equations we introduce two simple ansatze:
(i) we assume that the evolution of the macrostate (m, r) is self-averaging with respect
to the specific microscopic realization of the disorder {2}, (ii) as far as evaluating
D(z) is concerned we assume equipartitioning of the microstate probability p(o)
within each (m,r} shell. The first of these ansatze is well borne out by computer
simulations of the microscopic dynamics and permits averaging over pattern choices.
The second, which can only be judged a posteriori, eliminates memory effects beyond
their reflection in m,r and removes explicit time-dependence from D. Together they
give

Dm,f;t(z) - Dm.r(z) =

<Za §(m —m(0))8(r —r(g))N"' 5. 6(z = Z-‘(U))>
Lo 6(m —m(a))s(r - r(a)) {20,}
(18)

whose insertion into (14) and (15) yields the required closure.

The actual evaluation of Dy, .(z) from (18} remains a non-trivial exercise, but one
which is amenable to solution by replica theory as developed for the investigation
of local field distributions in spin glasses®. After several manipulations [J can be
expressed in the form

Dpslz) = ll_l:%/ ];[a‘ﬁgmndmfdy?ﬁ exp[—N®(m,r, z; {7}, {y?ﬁ )] (19)
where the number of indices i, j is finite and ® is O(N?). Because of the exponential
scaling as N, the integral can be evaluated by steepest descents.

The extremization of (19) is discussed in detail elsewhere* but we note that it in-
volves a parameter ¢®° which is a dynamical analogue of the usual (static) spin-glass
order parameter and has a similar, but now dynamically constrained, interpretation
in terms of overlaps; specifically, the disorder-averaged probability distribution for the
mutual overlap between microscopic configurations confined to the same macroscopic
(rn,r) sub-shell i1s given by
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Fig. 1. Macroscopic flow trajectories for a Hopfield model with storage capacity a = 0.1 and
deterministic microscopic dynamics (3 = ac); dots indicate simulations (N = = 32000}, solid lines
indicate analytic RS theory. The outer dashed line is the boundary predlcted by RS theory; the
inner dashed line indicates the onset of instability against RS-breaking fluctuations.

Pns(q) =

<Zo-,o-'5(q — N7 5 oi0])é(m — m(a})8(m — m(o’))8(r — r(o))é(r - "(0'))>
o a8 =m{o i =i~ (&) =) o

= lim Z&q—q (20)

n-Onn—l)a#ﬁ

The steady state condition dm/dt = dr/dt = 0 is satisfied by m,r, {¢*#} which
obey the usual self-consistency equations as obtained from equilibrium analysis?7#?
including all replica-symmetry hreaking aspects.

For general m,r the explicit extremization and limiting procedure for (19) is
greatly simplified within the replica-symmetric (RS) ansatz, which already yields a
non-Gaussian form for Dy, ,(z) in qualitative accord with the results of simulation®*
Substituting into (14) and (15) there result closed equations of the form

dmjdt = F(m,r)  dr/dt = G(m.r) (21)

where F, G are complicated functions taking the form of integrals over other func-
tions involving parameters self-consistently determined from m, r via non-linear equa-
tions. Figs 1 and 2 show examples of their predictions for the Hopfield model com-
pared with microscopic simulations'®. These figures show several points of note; first,

v
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Fig. 2. Temporal dependence of the order parameters for a Hopfield modei with storage o = 0.1 and
zero-temperature dynamics (4 = o<}, dots indicate simulations (N = 32000), the other lines indicate
RS theory shown with solid lines where stable, dashed lines where unstable. Time is measured in
Monte Carlo steps per spin.

they demonstrate the concept of basins of attraction — there is a critical locus of
(m(0),7(0)) which separates flows which retrieve (m(oc) ~ @(1)) from those which
do not (m(oo) — 0); second, the critical mc(0) depends on r(0); third, the present
version of the theory and ansitze yield qualitatively reasonable results for r versus m
along flow lines away from the critical locus, but miss the slowing-down of m(t),r(t)
seen in simulations of non-retrieving flows. Fig. 1 also shows (dashed) two other
special loci; the upper one is a theoretical limit of the boundary of the physical region
within the RS ansatz and corresponds to the limit of maximum ¢ = 1; the lower
dashed locus is the upper boundary of the limit of stability of the RS ansatz for
calculations of D, a dynamical analogue of the de Almeida-Thouless'! (AT) line.

Although the crossing of the AT line could be expected to herald slowing-down
due to replica-symmetry breaking, the figures show this occurs earlier, suggesting
a different origin for the discrepancy between theory and simulation. Results of a
similar quality are obtained for finite temperature and for the SK spin glass'. A
study of a related RS toy model'? further emphasises the qualitative usefulness but
quantitative incompleteness of the simple theory.

5. The sophisticated version of the theory: order function dynamics

To improve on the theory requires broadening the range of order parameters. For a
qualitative improvement we anticipate the need for a qualitative change in that range
and so, instead of two order parameters, we consider a continuous order function.

Since the microscopic dynamics is formulated entirely in terms of the states of the

S9.
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Fig. 3. Evolution of the binding vnergy of the Sherrington-Kirkpatrick spin glass (J, = 0) from a
randomn microscopic start. Comparison of simulations (¥ = 8000, solid line) and predictions of the
simple two-parameter (1, r) theory of section 4 (RS stable, dotted; RS unstable, dashed) and of the
advanced order-function theory of section b (solid}. for § = ~. Note that the two solid lines are
almost coincident.

spins o; and the fields h; we choose for £2(o) the joint distribution
D¢, h;o] = N! Z S¢a, 0(h — hi(o)) (22)

This choice automatically includes the positive features of the simple version,
since m,r follow straightforwardly from D and hence a formulation in terms of D
will automatically be correct asymptotically for systems whose Hamiltonians can be
expressed completely in terms of m,r. It has further advantages in being applicable
also to systems without detailed balance (and therefore not expressible by Boltzmann
statistical equilibrium) and of being extendable to analogue spins.

As discussed in §2 we consider the evolution of the probability distribution for the
order function P[D]. Provided we first discretize the A-distribution at a finite num-
ber of values, only passing later to the continuum limit, we do indeed find a Liouville
form corresponding to deterministic evolution of T4(¢, ] in the thermodynamic limit.
The equation of motion for D,[¢, k] involves a further noise distribution over a sub-
shell with D[, h; o] = D,[(, k], again weighted by p;(0). Thus once more we make
an equipartitioning ansatz to eliminate p,{o). as well as self-averaging, but now the
relevant sub-shell is much more restricted and contains much more memory informa-
tion. This provides a closed equation for the evolution of the order function D,[(, ).
To evaluate the ‘noise-term’ again requires replica analysis and even within replica-
symmetric theory yields a complicated self-consistent set of equations to determine
the flow. The results, however, are impressive, as fig. 3 illustrates for the flow of the
binding energy of the SK model at T = 0%>!3; while there is clear difference between
the predictions of the simple theory and the slower evolution obtained in computer
simulations, within the numerical accuracy shown D,[(, h] captures the slowing-down
well, although clearly it cannot reproduce perfectly asymptotically the equilibrium

o
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Fig. 4. Evolution of D((c, h) for SK models with J, =0, J =1, T = 0,1. The lines are predic-
tions of the sophisticated theory within RS ansatz, the histograms are obtained from microscopic
simulations (N = 8000).

ensemble result which is replica-symmetry broken. To be more quantitative we note
that the true RSB equilibrium binding energy at T = 0 is 0.7633 while RS theory
gives 0.798, a difference which is small compared with that between the simple theory
and the sophisticated theory/simulation over the time range shown (except for the
initial times; both theories are exact at t = 0). On the other hand, it should be noted
that it is also possible that the dynamical equations yield an additional asymptotic
steady state solution different from that of Gibbsian ensemble theory, but we have
not yet investigated this question.

Fig. 4 shows an example of the evolution of D¢[¢, A] itself 543 for J, = 0,7 =0, L.
Note that for T = 0 D,[¢, k] tends to zero for ((h) < 0 as t — 0o, where as for T>0
it remains non-zero over both signs of ({h) for all times.

6. Conclusion

We have demonstrated that with an appropriate choice of order parameters and
two simple ansatze one can derive closed macroscopic flow equations for range-free
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disordered and frustrated systems in good accord with the results of microscopic
simulations. In its more sophisticated version. in terms of an order function describing
the distribution of spins and fields, and including RSB effects the theory may even be
exact. Discussion has been restricted to Ising spins and detailed balanced dynamics,
but the sophisticated version of the theory, can he extended beyond these restrictions.
In the case of neural networks both versions can also be extended to regions of phase
space having finite overlaps with more than one pattern'?,
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Abstract

A brief introductory overview in general terms is given of concepts, issues and
applications of the paradigm of rugged landscapes in the contexts of physics
and biology.

In the present context, landscapes describe the structure of control functions relevant
to the cooperative behaviour of systems of many interacting units. The paradigm is now
ubiquitous in several branches of science, particularly for the conceptualization of behaviour
which is commonly described as complex.

To biologists the landscape is typically visualized as giving a measure of fitness, to
be maximized, while to physicists it is usually considered as specifying an energy, to be
minimized. However, these are simply inverted representations of the of the same thing and
henceforth 1 shall tend to use the physicists’ language.

As in geography, these landscapes come in various forms, flat, smooth, discontinuous
and rugged. Again as in human perception of the world around us, flat landscapes are the
simplest to contemplate but rugged landscapes excite the greatest interest, in the sense of
having the richest, most complex consequences. This perception of interest in ruggedness is

reflected in the papers that follow, but even systems with flat landscapes can yield highly
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non-trivial behaviour when interactions between their inhabitants are sufficiently compli-
cated.

What is the space of these landscapes? For some problems it is low-dimensional, as,for
example. when the landscape represents the potential energy seen by an electron due to
interactions with atoms, ions or other fixed objects; in this case the ‘grid coordinates’ (to use
an analogy with a cartographic map) indicate the location of the electron and the ‘elevation’
measures the potential at that point [1]. A similar situation at a mo‘re coarse-grained level
can apply to measures of coefficients in a Ginzburg-Landau free energy functional expansion
in statistical physics. Here. however, we shall be thinking of a different situation where the
landscape sits in some high-dimensional space in which each ‘grid-point’ specifies either a
complete microstate, which describes the ‘positions’ of all the individual units which make up
the many-body system, or some more coarse-grained, but still multi-dimensional, macrostate
characterization. In most cases we shall think in terms of a single ‘height’ parameter as a
function of a multi-dimensional ‘location’ parameter, but it is perfectly possible to have a
several-dimensional height measure. Neither the ‘horizontal’ nor the ‘vertical’ coordinates
of the landscape need be continuous, but, since the conventional world whose experience has
molded our normal conceptualization does have this feature, for orientation I shall often use
images based on such a continuous picture.

At the simplest level one might think of the dynamical behaviour of the many-body
system in terms of motions on this landscape; in particular, for deterministic dynamics, in
terms of gradient descent to local minima. In a non-flat landscape this leads immediately to
an image of separated regions of flow and their associated attractors, corresponding to the
valleys, with barriers between them, cor;esponding to the hills and saddles.

For many of the problems of interest the effective Jandscape structure is rugged in the
sense that within a single closed contour of some ‘height’ one finds many closed contours
of lower height and, further, within each of these one finds many closed contours of even
lower height and so on. Equivalently, there is a hierarchy of several sub-valleys within

valleys at many scales. The consequence is that deterministic microdynamics can yield
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many possible final stopping states, hierarchically related and often with quasidegeneracies

in their ‘heights’. Even for stochastic dynamics, in which uphill moves are also allowed with
a probability decreasing with the height change involved, in large enough systems ruggedness
of the microscopic landscape leads to the possibility of effective non-ergodicity in which non-
equivalent macrostates result depending on the starting microstates, not communicating on
realistic timescales. This is sometimes re-expressible as downhill moves on a still-rugged free
energy surface in macrospace.

Let us turn now to the origin of rugged landscapes. They can arise due to competition
between different microscopic few-body interactions: for example. in a magnetic context
between ferromagnetic and antiferromagnetic exchange interactions; in a neural network
between excitatory and inhibitory synapses or neurons. Or they can be due to conflicts
between few body-forces and global constraints, as in the cost functions of graph equipar-
tioning. They can also have their origin in competition between internal and external forces,
as in the random field Ising model. Generically we refer to these conflicts as frustration.

On a fine scale the contours of a landscape can vary slowly and continuously or they can
involve a series of quasi-steps at which the height changes rather rapidly, separating regions
of slower but still hierarchical evolution; in the first case one would expect a continuous
hierarchy of metastable states as in some spin-glass models [2] , while the second would
suggest ‘tiers’ of ‘conformational substates’ as suggested in some studies of proteins (like
myoglobin) [3].

The landscapes themselves are not immutable but can change with changes in interac-
tions or external perturbations. Such changes can be {quasi-)continuous on some longer
timescale, such as in long time potentiétion (or synaptic modification) in neural network
learning, or they can be sudden due to a fast perturbation, such as occurs in photoexci-
tation in proteins. In principle, some of these modifications can be considered within a
larger space of dynamtcs allowing for simultaneous evolution of both the landscape and the
elements it controls, typically with different timescales. Changes can be smooth or chaotic

in their response to changes in global control parameters.
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Another distinction we should make is between random and quasi-random ruggedness.
In some svstems, the landscape is controlled by truly random quantities; an example is a spin
glass model in which the the exchange interactions are randomly chosen and are thought
to give rise to an energy landscape with very many attractors, a high quasi-degeneracy of
the energies of these attractors and slow long-time dynamics to approach them. In other
systems., however. the landscape is sculpted via appropriate changes in the controiling few-
body interactions. One example is in a neural network trained via a supervised learning
procedure 10 yvield desired (memory) attractors. More instances of rugged but less truly
random landscapes arise in several biological, economic and ceological contexts tuned for
success; for example, a biologically relevant (and realistic) protein must have dynamics
leading quickly to a folded state with appropriate structure and function, suggesting that
it should have one large and dominant attractor, possibly with several quasi-degenerate
‘ground states’ with similar functions but with large energy separations from higher states
with different functions {5, 4}; while in much of nature the successful agents are those which
have evolved to perform their tasks efficiently and robustly. Henceforth I shall refer to this
second group as ‘sculpted landscapes’ [6].

Thus far we have considered only the nature of the landscapes. However, the allowed
‘steps’ are also very important and the attractor structure and dynamics can be different
in different ‘step-spaces’. Furthermore, the whole concept of motion via descents on a
landscape is itself only a special case of a more general dynamic flow space for which it
is not necessary to have detailed balance or a description in terms of a quantity which is
always minimized in each microscopic move (a Lyapunov function); as examples of such
systems one can quote some neural networks and most cellular automaton models. More
fundamental is the structure of the space of dynamical flows, which is often hierarchically
fractured (and therefore warrants a description as ‘rugged’) without having a true landscape
description; it is clear that if one is to have non-fixed point attractors, such as sequences
or restricted strange attractors, the naive landscape description needs such extension. We

shall take the landscape paradigm to be generalized in this sense. However, for convenience
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we shall continue to use the language of the naive landscape paradigm in general discussion.

As noted earlier. motion on the landscapes need not not be deterministic, but can also be
stochastic: the moves need not be simply locally downhill in the space of energy landscapes
over the full microspace, but one can have ‘probabalistic hili-climbing’; alternatively, in the
description employing free energics in macrospace one has a modification of the landscape
itself, typicallv a smoothing with increased temperature. but also with possibilities of en-
tropically driven new attractors. .\ similar situation applies to the modification of flows,
attractors and their basins even without detailed balance. These changes can lead to phase
transitions as a function of stochasticity as well as those due to changes in global control
parameters. This is also an appropriate point to emphasise the difference between thermo-
dynamic and attractor phase diagrams: the former are concerned with systems with detailed
balance dynamics, governed by the laws of equilibrium statistical mechanics and with states
weighted by Bolzmann or relevant quantum statistical factors, while the latter is concerned
with the occurence of dynamical attractors, even in systems without Lyapunov functions
and where, even if the concept is meaningful, their energies may be so high as to exclude
them from thermodynamic relevance.

There are clearly many different systems which can be considered in the terms discussed
so far. Some require quite different mathematical formulation but other physically quite
distinct systems can be described mathematically in very similar fashions. As an illustration
let us consider a set [ have referred to previously [7] under the grouping “Magnets, microchips
and memories”, in which the magnets are Ising spin glasses, the microchips refer to the
problem of equally bipartitioning the elements of an electrical circuit between two microchips
so as to minimize the number of wires befween the chips, and the memories refer to recurrent
neural networks of McCulloch-Pitts neurons. All these cases can be described by an energy
function H = — 37}, Ji;0:0; where the subscripts label the microscopic units ( spins, circuit
elements, neurons); respectively for the magnets, microchips and memories, o = +/—1 refers
to whether the sping are up/down, the circuit elements are on the first/second microchip, or

the neurons are firing/nonfiring, while the J;; measure exchange interactions between spins,
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the wirelength needed if two circuit elements are on different microchips, or the strength
and character of the synaptic influence of one neuron on another. For the magnets and
memories the Js are a mixture of positive and negative signs, while for the microchips the
J’s are all positive but there is a global constraint that ¥, 0, = 0. All these situations are
frustrated, yielding rugged landscapes. The J's are typically random for the magnets, only
quasi-random for the neural networks which are sculpted to vield attractors corresponding
to memorized global patterns, and quasi-random, but not sculpted. for the microchips if the
circuit connections are simply designed to yield an appropriate clectronic operation rather
than to optimize the placement and wiring problem discussed here. Furthermore, both the
magnets and the memories can be considered also within a related c;)ntext in which only a
dynamic description is given, that the probability of updating o; is determined only by the
instantaneous value of a ‘field’ h; = 3, Ji;0;. In the case of the neurons there is no need
for Ji; to be equal to J;; and hence there need be no ‘energy’ landscape. For the microchip
problem there is no a priori dynamics; the objective is to find a dynamics which minimizes
the cost and use it to find the corresponding microstate.

As noted earlier, the dynamical bebaviour of random and sculpted landscapes are typi-
cally quite different. For random systems the long time dynamics is usually slow, although
there may be faster initial transients, whereas for survival in the world the kinetics of achiev-
ing a desired state are as important as the latter’s structure and require an appropriate tun-
ing of the landscape; for example, prey must respond quickly to the presence of predators,
a protein must fold rapidly, and a neural network must associate or generalize quickly.

Usually one does not require knowledge of the full micro-description, but rather one
wants macroscopic measures to monitor'performance. Hence it is important to consider the
passage from the full microdynamics to a consequential macrodynamics in terms of a few
macro-observables. These macroparameters can be a set of instantaneous measures or they
can involve multi-time correlation and response functions. Whatever the specific case, one
is faced with the question of how many such macrovariables are needed for an adequate

description; typically one cannot express the dynamics of disordered and frustrated systems
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adequately in terms of a single instantaneous macroparameter. Studies of the macrodynam-
ics expose such features as {slow) glassy macrodynamics and aging in systems with very
rugged landscapes.

Also relevant at rthe level of macrodynamics is the question of self-averaging, or its
absence. Self-averaging refers to the feature of independence of macro-observables from the
specific instances of microscopic randomness. with only the distributions from which the
random elements are drawn being relevant in the timit of large systems. Dependent on
the system, some macrovariables are self-averaging while others are not. For example, in
infinite-ranged spin_glasses the energy and the magnetization are self-averaging with respect
to the specific choice of random exchange interactions. but the overlaps [8] between two
identical but separately evolving replicas are not. There are also typically sample-to-sample
fluctuations among the reaction rates of folded proteins with the same molecular sequences.
For this reason care is required in specifying different types of averages. A related concept
is that of ultrametricity [9, 2] of such non-selfaveraging quantities, itself an indication of the
hierarchical organization of the determining landscape.

The evidence for the images presented above comes from a combination of ‘real’ exper-
iments, computer simulation experiments and the analysis of theoretical models. In the
papers which follow several aspects of both evidence and consequences will be discussed in
many different systems with many different investigative techniques. The fundamental issues
can be boiled down to two questions; (i} at the specific system level, how do the microscop-
ics lead to macroscopic structure and function and/or what do the observed structure and
function tell about the microdynamics, (i1} at the global level, to what extent is there uni-
versality in the landscape paradigm in different areas of science and compementarily what
are the nuances of differences? The simplicity of these questions hides the very considerable
subtlety of their answers and of the further questions they raise. They have exercised many
brains for several decades before yielding the conceptual images and the experimental, ana-
lytic and computational techniques which are now in place and which have greatly enriched

our understanding of the complex world around us and our toolbox of ways to probe it,
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vet the knowledge we have gained so far is certainly only the tip of an iceberg whose true

majesty will take many more years to be exposed.
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