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1 Introduction

An essential feature of the dynamics of frustrated disordered systems (or even some
nonfrustrated disordered systems) is that, in the low-temperature phase, macro-
scopic systems do not reach equilibrium in the timescales available to experimen-
talists. Understanding such systems, therefore, necessarily involves studying the
nonequilibrium dynamics of the ordered phase. Indeed, even in pure systems this
is true in the thermodynamic limit if the system is cooled through the transition
temperature at any finite rate. The latter is the subject of ‘phase-ordering kinetics’.
In these lectures I shall begin with the nonequilibrium dynamics of pure systems,
introducing the concepts of coarsening and aging in this simple context. I will then
discuss how the results are modified in nonfrustrated disordered systems, where the
disorder provides a pinning barrier to the motion of the domain boundaries between
different pure states. For frustrated disordered systems, notably spin glasses, the
question of the number of such pure states has not been definitively settled for finite-
dimensional systems. [ will introduce the simple ‘droplet model’, with only two pure
phases, and use it to discuss the nonequilibrium dynamics of spln glasses in a man-
ner motivated by the earlier study of pure and nonfrustrated disordered systems.
Finally, the phenomenon of ‘persistence’ will be introduced and briefly discussed in
the context of pure systems. A more complete discussion of the material in section
IT can be found be found in a recent review {1}, while much of the material on the
droplet model is based on an earlier review [2].

2 Coarsening of Pure Systems

Systems cooled from a disordered phase into an ordered phase do not order instanta-
neously. Instead, the length scale of ordered regions grows with time as the different
broken symmetry phases compete to select the equilibrium state. To fix our ideas,
it is helpful to consider the simplest, and most familiar, system: the ferromagnetic
Ising model. Consider a temperature quench, at time ¢ = 0, from an initial tem-
perature T above the critical point T to a final temperature T below Ty, At
Tr there are two equilibrium phases, with magnetization £My. Immediately after
the quench, however, the system is in an unstable disordered state corresponding to
equilibrium at temperature T7. The theory of ‘phase-ordering kinetics’ is concerned
with the dynamical evolution of the system from the initial disordered state to the
final equilibrium state.

It is important to realize that, in the thermodynamic limit, final equilibrium
is never achieved! This is because the longest relaxation time diverges with the
system size in the ordered phase, reflecting the broken ergodicity. Instead, a pattern
of domains of the equilibrium phases develops, and the typical length scale associated
with these domains increases with time f. This situation is illustrated in Figure 1,
which shows a Monte Carlo simulation of a two-dimensional Ising model, quenched
from T = oo to Tr = 0. Inspection of the time sequence may persuade you that
domain coarsening is a scaling phenomenon - the domain patterns at later times
look statistically similar to those at earlier times, apart from a global change of
scale. This ‘dynamic scaling hypothesis’ will be formalized below.

For pedagogical reasons, we have introduced domain-growth in the context of the
Ising model, and will continue to use magnetic language for simplicity. A related
phenomenon that has been studied for many decades, however, by metallurgists,
1s the spinodal decomposition of binary alloys, where the late stages of growth are
known as ‘Ostwald ripening’. Similar phenomena occur in the phase separation of
fluids or binary liquids, although in these cases the phase separation is accelerated
by the earth’s gravitational field, which severely limits the temporal duration of
the scaling regime. The gravitational effect can be moderated by using density-
matched binary liquids and/or performing the experiments under microgravity. All
of the above systems, however, contain an extra complication not present in the
Ising ferromagnet. This is most simply seen by mapping an AB alloy onto an Ising
model. If we represent an A atom by an up spin, and a B atom by a down spin,
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then the equilibrium properties of the alloy can be modelled very nicely by the Ising
model. There is one important feature of the alloy, however, that is not captured by
the Ising model with conventional Monte-Carlo dynamics. Flipping a single spin in
the Ising model corresponds to converting an A atom to a B atom (or vice versa),

which is inadmissible. The dvnamics must conserve the number of A and B atoms
separately, 1.e. the magnetization (or ‘order parameter’) of the Ising model should
be conserved. This will influence the form of the coarse-grained equation of motion,
as discussed in section 2.1 and lead to slower growth than for a non-conserved order
parameter.

In all the systems mentioned so far, the order parameter (e.g. the magnetiza-
tion of the Ising model) is a scalar. In the last few years, however, there has been
increasing interest in systems with more complex order parameters. Consider, for
conceptual simplicity, a planar ferromagnet, in which the order parameter is a vector
confined to a plane. After a quench into the ordered phase, the magnetization will
point in different directions in different regions of space, and singular lines {vortex
lines) will form at which the direction is not well defined. These ‘topological de-
fects’ are the analog of domain walls for the scalar systems. An understanding of
the relevant topological defects in the system, combined with the scaling hypothe-
sis, provides the basis for understanding the forms of the growth laws and scaling
functions for phase ordering in a wide variety of systems.

2.1 Dynamical Models

It is convenient to set up a continuum description in terms of a codrse—grained order-
parameter field (e.g. the ‘magnetization density’) ¢(x, 1), which we will initially take
to be a scalar field. A suitable Landau free-energy functional to describe the ordered
phase 13

Figl= [ d's (597 +V(9)) | (1)

where the ‘potential’ V(¢) has a double-well structure, e.g. V(¢) = (1 — ¢?)*. We
will take the minima of V(¢) to occur at ¢ = +1, and adopt the convention that
V(£1) = 0. The two minima of V' correspond to the two equilibrium states, while
the gradient-squared term in (1) associates an energy cost to an interface between
the phases.

In the case where the order parameter is not conserved, an appropriate equation
for the time evolution of the field ¢ is

9¢/0t = —6F/5¢
Vig—V'(), (2)

where V'(¢) = dV/d$. A kinetic coefficient I', which conventionally multiplies
the right-hand side of (2), has been absorbed into the timescale. Eq. (2), a sim-
ple ‘reaction-diffusion’ equation, corresponds to simple gradient descent, i.e. the
rate of change of ¢ is proportional to the gradient of the free-energy functional in
function space. This equation provides a suitable coarse-grained description of the
Ising model, as well as alloys that undergo an order-disorder transition on cooling
through T¢, rather than phase separating. Such alloys form a two-sublattice struc-
ture, with each sublattice occupied predominantly by atoms of one type. In Ising
model language, this corresponds to antiferromagnetic ordering. The magnetization
is no longer the order parameter, but a ‘fast mode’, whose conservation does not
significantly impede the dynamics of the important ‘slow modes’.

When the order parameter is conserved, as in phase separation, a different dy-
narmics is required. In the alloy system, for example, it is clear physically that A and
B atoms can only exchange locally (not over large distances), leading to diffusive
transport of the order parameter, and an equation of motion of the form

d$lOt = VEEF/5¢
V2V ¢ - V'(¢)], (3)
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which can be written in the form of a continuity equation, d;¢ = —V - 7, with
current 7 = —AV(8§F/8¢@). In (3), we have absorbed the transport coeflicient A into
the timescale.

Egs. (2) and (3) are sometimes called the Time-Dependent-Ginzburg-Landau
(TDGL) equation and the Cahn-Hilliard equation respectively. A more detailed
discussion of them in the present context can be found in the lectures by Langer
[3). The same equations with additional Langevin noise terms on the right-hand
sides are familiar from the theory of critical dynamics, where they are ‘model A’
and ‘model B’ respectively in the classification of Hohenberg and Halperin [4].

The absence of thermal noise terms in (2) and (3) indicates that we are effectively
working at T' = 0. A schematic Renormalization Group (RG) flow diagram for T
is given in Figure 2, showing the three RG fixed points at 0, T¢ and oo, and the
RG flows. Under coarse-graining, temperatures above T flow to infinity, while
those below T¢ flow to zero. We therefore expect the final temperature Tr to be an
irrelevant variable (in the scaling regime) for quenches into the ordered phase. This
can be shown explicitly for systems with a conserved order parameter [5, 6]. For this
case the thermal fluctuations at Tr simply renormalize the bulk order parameter and
the surface tension of the domain walls: when the characteristic scale of the domain
pattern is large compared to the domain wall thickness (i.e. the bulk correlation
length in equilibrium), the system behaves as if it were T' = 0, with the temperature
dependence entering through 7-dependent model parameters.

In a similar way, any short-range correlations present at T should be irrelevant in
the scaling regime, i.e. all initial temperatures are equivalent to Ty = oco. Therefore
we will take the initial conditions to represent a completely disordered state. For
example, one could choose the ‘white noise’ form

(#(x,0)$(x',0)) = Ad(x —-x), (4)

where (---) represents an average over an ensemble of initial conditions, and A
controls the size of the initial fluctuations in ¢. The above discussion, however,
indicates that the precise form of the initial conditions should not be important, as
long as only short-range spatial correlations are present.

The challenge of understanding phase ordering dynamics, therefore, can be posed
as finding the nature of the late-time solutions of deterministic differential equations
like (2) and (3), subject to random initial conditions. A physical approach to this
formal mathematical problem is based on studying the structure and dynamics of
the topological defects in the field ¢.

2.1.1 The Scaling Hypothesis

Although originally motivated by experimental and simulation results for the struc-
ture factor and pair correlation function [7, 8, 9, 10] for ease of presentation it is
convenient to introduce the scaling hypothesis first, and then discuss its implica-
tions for growth laws and scaling functions. Briefly, the scaling hypothesis states
that there exists, at late times, a single characteristic length scale L(¢) such that
the domain structure is (in a statistical sense) independent of time when lengths
are scaled by L(t). It should be stressed that scaling has not been proved, except
in some simple models such as the one-dimensional Glauber model[11] and the n-
vector model with n = oo [12]. However, the evidence in its favour is compelling.
Moreover, it turns out that the scaling hypothesis, together with a result (‘Porod’s
Law’ — see below) for the tail of the structure factor, is sufficient to determine the
form of L(t) for most cases of interest [23, 24, 1].

Two commonly used probes of the domain structure are the equal-time pair
correlation function

C(r,t) = (p(x +r, t) qb(x, t)) ’ (5)
and its Fourier transform, the equal-time structure factor,
S(k,t) = (di(t) p-x(t)) - (6)
4
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Here angle brackets indicate an average over initial conditions. The structure factor
can. of course, be measured in scattering experiments. The existence of a single
characteristic length scale, according to the scaling hypothesis, implies that the pair
correlation function and the structure factor have the scaling forms

C(r,t) = J(r/L),
S(k,t) = Lig(kl), (7)

where d is the spatial dimensionality, and g(y) is the Fourier transform of f(z).
Note that f(0) = 1, since (at 7" = 0) there is perfect order within a domain.

At general temperatures T < T, f(0) = M? where M is the equilibrium value
of the order parameter. (Note that the scaling limit is defined by r > £, L > ¢,
with r/L arbitrary, where £ is the equilibrium correlation length). Alternatively, we
can extract the factor M? explicitly by writing C(r,#) = M? f(r/L). The statement
that T is irrelevant then amounts to asserting that any remaining temperature de-
pendence can be absorbed into the domain scale L, such that the function f(z) is
independent of T. The scaling forms (7) are well supported by simulation data and
experiment. '

For future reference, we note that the different-time correlation function, defined
by C(r,t,t') = }qﬁa(x + r,t) ¢(x,1")), can also be written in scaling form. A simple
generalization of (7) gives [13, 14

C(r,t,t')y = f(r/L,r/L'), (8)

where L, L' stand for L(¢) and L(¢'). Especially interesting is the limit L > L/,
when (8) takes the form

C(r,t,t) = (/LY h(r/L), L>1IL, (9)

where the exponent A, first introduced by Fisher and Huse in the context of non-
equilibrium relaxation in spin glasses [13], is a non-trivial exponent associated
with phase ordering kinetics [16]. It has recently been measured in an experi-
ment on twisted nematic liquid crystal films [17]. The autocorrelation function,
A(1) = C(0,1,1') is therefore a function only of the ratio L'/L, with A(t) ~ (L'/L)*
for L > L'

In the following sections, we explore the forms of the scaling functions in more
detail. For scalar fields, for example, the scaling function f(z) is linear for small z,
for both conserved and non-conserved dynamics. We shall see that this is a simple
consequence of the existence of ‘sharp’ (in a sense to be clarified), well-defined
domain walls in the system. A corollary is that the structure factor scaling function
g(y) exhibits a power-law tail, g(y) ~ y~¢*1) for y > 1, a result known as ‘Porod’s
law’ {18, 19]. It can be shown that this result, and its generalization to more complex

fields, together with the scaling hypothesis, are sufficient to determine the growth
law for L{t) [23, 24, 1].

2.1.2 Domain Walls

It is instructive to first look at the properties of a flat equilibrium domain wall.
From (2) the wall profile is the solution of the equation

d’¢/dg* = V'(¢) : (10)

with boundary conditions ¢(+oo) = +1, where g is a coordinate normal to the wall.
We can fix the ‘centre’ of the wall (defined by ¢ = 0} to be at ¢ = 0 by the extra
condition ¢(0) = 0. Integrating (10) once, and imposing the boundary conditions,

gives (do/dg)* = 2V (). This result can be used in (1) to give the energy per unit
area of wall, i.e. the surface tension, as

o= [ dgtas/dgy = [ g IV(9). (1)
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Note that, for scalar fields, the two terms in (1) contribute equally to the wall energy.
The profile function ¢(g) has a sigmoid shape (like a hyperbolic tangent). For
g — £oo, linearizing {10} around ¢ = +1 gives

1F ¢~ exp(—[V"(x1)]"?g]), g— +o0, (12)

i.e. the order parameter saturates exponentially fast away from the walls. It follows
that the excess energy is localized in the domain walls, and that the driving force for
the domain growth is the wall curvature, since the system energy can only decrease
through a reduction in the total wall area. The growth mechanism is rather different,
however, for conserved and nonconserved fields.

2.1.3 The Interface Equation: Nonconserved Fields

The existence of a surface tension implies a force per unit area, proportional to
the mean curvature, acting at each point on the wall. The calculation is similar
to that of the excess pressure inside a bubble. Consider, for example, a spherical
domain of radius R, in three dimensions. If the force per unit area is F, the work
done by the force in decreasing the radius by dR is 47 F R*dR. Equating this to
the decrease in surface energy, 8vo RdR, gives F = 20/R. For model A dynamics,
this force will cause the walls to move, with a velocity proportional to the local
curvature. If the friction constant for domain-wall motion is 7, then this argument
gives ndR/dt = —20/R. For general dimension d, the factor ‘2’ on the right is
replaced by (d —1).

It is interesting to see how this result arises directly from the equation of motion
(2). We consider a single spherical domain of (say) ¢ = —1 immersed in a sea of
¢ = +1. Exploiting the spherical symmetry, (2) reads

06 _ 0% d-100
gt Or? r Or

Provided the droplet radius R is much larger than the interface width &, we expect

a solution of the form
#(r,t) = f(r — R(t)) . (14)

- V(¢) - (13)

Inserting this in (13) gives
0= f" +[(d—1)/r+dR/A)] ~V'(]) (15)

The function f(z) changes from -1 to 1 in a small region of width £ near z = 0. It’s
derivative is, therefore, sharply peaked near z = 0 (i.e. near r = R(t)). Multiplying
(15) by f' and integrating through the interface gives

0=(d—1)/R+dR/dt, (16)

where we have used f' = 0 far from the interface, and V'(f) has the same value on
both sides of the interface (in the absence of a bulk driving force, i.e. a magnetic
field). Integrating (16) gives R*(t) = R*(0) — 2(d — 1)t, i.e. the collapse time scales
with the initial radius as t ~ R?(0). Equation (16) is identical to our previous result
obtained by considering the surface tension as the driving force, provided the surface
tension ¢ and friction constant 7 are equal. This we show explicitly below.

The result for general curved surfaces was derived by Allen and Cahn [20], who
noted that, close to a domain wall, one can write V¢ = (0¢/d¢), g, where § is
a unit vector normal to the wall (in the direction of increasing ¢), and so V¢ =
(0%¢/3g*)i+(0¢/89): V- §. Noting also the relation (9¢/0t), = —(0¢/0g): (0g/0t)s,

(2) can be recast as

—(0¢/8g): (0g/0t)s = (09/09). V - § + (8°¢/0g%). = V'(4) . (17)
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Assuming that, for gently curving walls, the wall profile is given by the equilibrium
condition {10), the final two terms in (17) cancel. Noting also that (8¢/0t); is just
the wall velocity v (in the direction of increasing ¢}, (17) simplifies to

v=-V-j=-K, (18)

the ‘Allen-Cahn equation’, where X' = V - § is (d — 1) times the mean curvature.
For brevity, we will call K simply the ‘curvature’. An alternative derivation of (18)
follows the approach used for the spherical domain, i.e. we multiply Eq. (17) by
(d¢/dg), and integrate (with respect to g) through the interface. This gives the
same result.

Equation (18) is an important result, because it establishes that the motion of the
domain walls is determined (for non-conserved fields) purely by the local curvature.
In particular, the detailed shape of the potential is not important: the main role of
the double-well potential V(¢) is to establish (and maintain) well-defined domain
walls. (Of course, the well depths must be equal, or there would be a volume driving
force).

For a spherical domain, the curvature K is (d — 1)/R, and (18) reduces to (16).
Our explicit treatment of the spherical domain verifies the Allen-Cahn result, and,
in particular, the independence from the potential of the interface dynamics.

A second feature of (18) is that the surface tension o (which does depend on the
potential) does not explicitly appear. How can this be, if the driving force on the
walls contains a factor o7 The reason, as we have already noted, is that one also
needs to consider the friction constant per unit area of wall, n: The equation of
motion for the walls in this dissipative system is nv = —o /Y. Consistency with (18)
requires n = o. In fact, » can be calculated independently, as follows. Consider a
plane wall moving uniformly (under the influence of some external driving force) at
speed v. The rate of energy dissipation per unit area is

dE/dt

/""d §F ¢
o V38 Bt

using (2). The wall profile has the form ¢(g,t) = f(g—vt), where the profile function
f will, in general, depend on v. Putting this form into (19) gives

dE/di = —v* ] dg (9¢/8g)? = —ov* | (20)

where the definition (11) of the surface tension o was used in the final step, and the
profile function f(;nf) replaced by its v = 0 form to lowest order in v. By definition,
however, the rate of energy dissipation is the product of the frictional force nv and
the velocity, dE/dt = —nv? Comparison with (20) gives 7 = 0. We conclude
that, notwithstanding some contrary suggestions in the literature, the Allen-Cahn
equation is completely consistent with the idea that domain growth is driven by the
surface tension of the walls.

2.1.4 Conserved Fields

For conserved fields the interfaces cannot move independently. At late times the
dominant growth mechanism is the transport of the order parameter from interfaces
of high curvature to regions of low curvature by diffusion through the intervening
bulk phases. To see how this works, we first linearize (3) in one of the bulk phases,

with say ¢ =~ 1. Putting ¢ =1+ é in (3), and linearizing in ¢, gives

0p/Ot = =V 4+ V'(1)V24 . (21)



Since the characteristic length scales are large at late times, the V* term is negligible,
and (21) reduces to the diffusion equation, with diffusion constant D = V"(1). The
interfaces provide the boundary conditions, as we shall see. However, we can first
make a further simplification. Due to the conservation law, the interfaces move little

during the time it takes the diffusion field ¢ to relax. If the characteristic domain
size 1s L, the diffusion fleld relaxes on a time scale tp ~ LZ. We shall see below,
however, that a typical interface velocity is of order 1 / L?, so the interfaces only
move a dlstance of order unity (i.e. much less than L) in the time ¢p. This means
that the diffusion field relaxes quickly compared to the rate at which the interfaces
move, and is essentially always in equilibrium with the interfaces. The upshot is

that the diffusion equation can be replaced by Laplace’s equation, Vzé = 0, in the
bulk. .

To derive the boundary conditions at the interfaces, it is convenient to work, not
with ¢ directly, but with the chemical potential u = 5F/5¢5 In terms of g, (3) can
be written as a continuity equation,

96/0t = —V.j (22)
i = ~Vu (23)
b= VI($)-V%. (24)

In the bulk, i and f;g are proportional to each other, because (24) can be linearized
to give p = V"{1)¢ — V3¢, and the V? term is again negligible.. Therefore y also
obeys Laplace’s equation,

Viu=0, (25)

in the bulk.

The boundary conditions are derived by analysing (24) near an interface. As
in the derivation of the Allen-Cahn equation, we consider surfaces of constant ¢
near the interface and introduce a Cartesian coordinate system at each point, with
a. coordinate g normal to the surface (and increasing with increasing ¢). Then (24)
becomes (compare Eq. (17),

i = V() —~ (06/09). K — (9°$/0g"): (26)

near the interface, where K = V- g is the curvature. The value of ¢ at the interface
can be obtained (just as in our treatment of the spherical domain in section 2.1.3),
by multiplying through by (8¢/3g), which is sharply peaked at the interface, and
integrating over g through the interface. Noting that ¢ and K vary smoothly through
the interface, this gives the completely general relation

pAp = AV — oK (27)

at the interface, where A¢ is the change in ¢ across the interface, and AV is the
difference in the minima of the potential for the two bulk phases. In deriving (27),
we have used (3¢/dg): — 0 far from the interface, and made the identification
[ dg(84/8g)? = o, as in (11), with o the surface tension. Simplifying to the case
where the minima have equal depth (we shall see that the general case introduces
no new physics), and taking the minima to be at ¢ = +1 as usual, gives AV =0
and A¢ = 2. Then (27) becomes

u=—-okj/2. (28)

This (or, more generally, Eq. (27)) is usually known as the Gibbs-Thomson boundary
condition. Note that we have assumed that the order parameter takes its equilibrium
value (£1) in both bulk phases. This is appropriate to the late stages of growth in
which we are primarily interested.

To summarize, (28) determnines g on the interfaces in terms of the curvature.
Between the interfaces, p satisfies the Laplace equation (25). The final step is to
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use {23) to determine the motion of the interfaces. An interface moves with a velocity
given by the imbalance between the current flowing into and out of it:

UA¢ = jout - jin = —[5;1/39] = —[.é . vlu‘] ’ (29)

where v 1s the speed of the interface in the direction of Increasing @, g 1s the usual
coordinate normal to interface, (- -] indicates the discontinuity across the interface,
and we have assumed as usual that ¢ ~ +1 in the bulk phases.

To illustrate how (25}, (28) and (29) are used, we consider again the case of a
single spherical domain of negative phase (¢ = —1) in an infinite sea of positive
phase (¢ = +1). We restrict ourselves to d = 3 for simplicity. The definition of 4,
Eq. (24), gives 4 = 0 at infinity. Let the domain have radius R(t). The solution of
(25) that obeys the boundary conditions g = 0 at infinity and (28} at » = R, and
respects the spherical symmetry is (using K =2/Rford =3) u= —o/r for r > R.
Inside the domain, the 1/r term must be absent to avoid an unphysical singularity
at » = 0. The solution of (25) in this region is therefore yt = const. The boundary
condition {28) gives y = —o/R.

To summarize,

‘u, = ——O'/R, T‘<R
= —O'/T', TZ R (30)

Using (29), with A¢ = 2, then gives
1
dRtfdt = v = —[Ou/or|}¥ = —0/2R? (31)

and hence R3(t) = R*(0) — 30t/2. We conclude that a domain of initial radius R(0)
evaporates in a time proportional to R3(0). This contrasts with the R%(0) result
obtained for a non-conserved order parameter. In the non-conserved case, of course,
the domain simply shrinks under the curvature forces, whereas for the conserved
case tt evaporates by the diffusion of material to infinity.

2.1.5 Growth Laws

The scaling hypothesis suggests a simple intuitive derivation of the ‘growth laws’ for
L(t}, which are really just generalizations of the calculations for isolated spherical
domains. Lor model A, we can estimate both sides of the Allen-Cahn equation
(18} as follows. If there is a single characteristic scale L, then the wall velocity
v ~ dL/dt, and the curvature K" ~ 1/L. Equating and integrating gives L(¢) ~ t!/2
for non-conserved scalar fields.

For conserved fields (model B), the argument is slightly more subtle. We shall
follow the approach of Huse {21]. From (28), the chemical potential has a typical
value p ~ o /L on interfaces, and varies over a length scale of order L. The current,
and therefore the interface velocity v, scale as Vu ~ ofL? giving dL/dt ~ ofL?
and L(t) ~ (o#)'/3. A more compelling argument for this result can be found in
[23. 24, 1]. We note, however, that the result is supported by evidence from com-
puter simulations [21, 22| (which usually require , however, some extrapolation into
the asymptotic scaling regime) as well as a Renormalization Group (RG) treatment
[5. 6]. In the limit that one phase occupies an infinitesimal volume fraction, the orig-
inal Lifshitz-Slyozov-Wagner theory convincingly demonstrates a #!/2 growth. This
calculation, whose physical mechanism is the evaporation of material (or magneti-
zation) from small droplets and condensation onto larger droplets, will be discussed
briefly in the following subsection.

It is interesting that these growth laws can also be obtained using naive ar-
guments based on the results for single spherical domains [3]. For nonconserved
dynamics, we know that a domain of radius R collapses in a time of order R2.
Therefore, crudely speaking, after time ¢ there will be no domains smaller than £1/2,
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so the characteristic domain size is L(t) ~ t/2. Of course, this is an oversimplifica-
tion, but it captures the essential physics. For conserved dynamics, the same line of
argument leads to ¢'/3 growth. In fact, this approach can be used rather generally.
for a variety of systems, and gives results which agree, in nearly all cases, with the
exact growth laws [23, 24, 1]

2.2 Topological Defects

The domain walls discussed in the previous section are the simplest form of ‘topolog-
ical defect’, and occur in systems described by scalar fields [25]. They are surfaces,
on which the order parameter vanishes, separating domains of the two equilibrium
phases. A domain wall is topologically stable: local changes in the order parameter
can move the wall, but cannot destroy it. For an isolated flat wall, the wall profile
function is given by the solution of (10), with the appropriate boundary conditions,
as discussed in section 2.1.2. For the curved walls present in the phase ordering pro-
cess, this will still be an approximate solution locally, provided the typical radius of
curvature L is large compared to the intrinsic width (or ‘core size’), €, of the walls.
(This could be defined from (12) as ¢ = [V"(1)]7'/%, say). The same condition,
L > £, ensures that typical wall separations are large compared to their width.
Let us now generalize the discussion to vector fields. The ‘O{n) model’ is de-

scribed by an n-component vector field #(x,1), with a free energy functional F &)
that is invariant under global rotations of ¢. A suitable generalization of (1) is

Fid = [ dz (5997 + V() . (32)

where (V¢)? means S 37, (8;¢°)? (i.e. a scalar product over both spatial and
‘internal’ coordinates), and V(¢) is ‘mexican hat’ (or ‘wine bottle’) potential, such

as (1—@?)2. It is clear that F[@] is invariant under global rotations of ¢ (a continuous
symmetry), rather than just the inversion symmetry (¢ — —¢, a discrete symmetry)

of the scalar theory. We will adopt the convention that V has its minimum for o2 =1.
For non-conserved fields, the simplest dynamics (model A) is a straightforward
generalization of (2), namely

84/0t = V2§ — dV/d$ . (33)

For conserved fields (model B), we simply add another (—V?) in front of the right-
hand side.

Stable topological defects for vector fields can be generated, in analogy to the
scalar case, by seeking stationary solutions of (33) with appropriate boundary con-
ditions. For the O(n) theory in d-dimensional space, the requirement that all n

components of ¢ vanish at the defect core defines a surface of dimension d —n (e.g.
a domain wall is a surface of dimension d — 1: the scalar theory corresponds to
n = 1). The existence of such defects therefore requires n < d. For n = 2 these
defects are points (‘vortices’) for d = 2 or lines (‘strings’, or ‘vortex lines’) for d = 3.
For n = 3, d = 3 they are points (‘hedgehogs’, or ‘monopoles’). The field configura-
tions for these defects are sketched in Figures 3(a)-(d). Note that the forms shown
are radially symmetric with respect to the defect core: any configuration obtained

by a global rotation is also acceptable. For n < d, the field ¢ only varies in the n
dimensions ‘orthogonal’ to the defect core, and is uniform in the remaining d — n
dimensions ‘parallel’ to the core.

For n < d, the defects are spatially extended. Coarsening occurs by a ‘straighten-
ing out’ (or reduction in typical radius of curvature) as sharp features are removed,
and by the shrinking and disappearance of small domain bubbles or vortex loops.
These processes reduce the total area of domain walls, or length of vortex line, in
the system. For point defects (n = d), coarsening occurs by the mutual annihilation
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of defect-antidefect pairs. The antidefect for a vortex (‘antivortex’) is sketched in
Iligure 3(e). Note that the antivortex in not obtained by simply reversing the di-
reciions of the arrows in 10(b}: this would correspond to a global rotation through
7. Rather, the vortex and antivortex have different ‘topological charges’: the fields
rotates by 27 or —27 respectively on encircling the defect. By contrast, an anti-
monopole is generated by reversing the arrows in 10(d}: the reversed configuration
cannot be generated by a simple rotation in this case.

" For the radially symmetric defects illustrated in 10(b)-(d), the field ¢ has the

form qg(r) = # f(r), where 7 is a unit vector in the radial direction, and f(r) is the
profile function. Inserting this form into (33), with the time derivative set to zero,
gives the equation

abzdd Lol vip=o, (34)

with boundary conditions f(0) = 0, f(oco) = 1. Of special interest is the approach
to saturation at large r. Putting f(r} = 1 — ¢(r) in (34), and expanding to first
order in e, yields

(n—-1) 1
e(r) =~ Vi) 5
This should be contrasted with the exponential approach to saturation (12) for scalar
fieldls. A convenient definition of the ‘core size’ £ is through f ~1 — £2/r? for large

. This gives £ = [(n — 1)/V"(1)]"2 for n > 1.

r— oo . (35)

2.2.1 Defects Energetics

Cousider an isolated, equilibrium defect of the O(n) model in d-dimensional space

(with, of course, n < d). For a radially symmetric defect, gg(r) = fgr) I, the energy
per unit ‘core volume’ (e.g. per unit area for a wall, per unit length for a line, or per
defect for a point) is, from (32)

E= S'n/dr pn=l (("2;1) 74+ % (V)P + V(f)) : (36)

where S, = 27"/2/T'(n/2) is the surface area of an n-dimensional sphere.

For scalar fields (n = 1), we have seen (section 2.1.2) that the terms in (V f)?
and V(f) contribute equally to the wall energy. For n > 2, the first term in (36)
dominates the other two because, from (35), the three terms in the integrand fall off
with distance as r=2, »=% and V(f) ~ V"(1)(1 — f)? ~ r™* respectively as r — oo.
For n > 2, therefore, the first term gives a divergent integral which has to be cut
off as the system size Ly, i.e. E ~ In(Lgys/€) for n =2 and E ~ L3 2 for n > 2.
Actually, the second and third terms give divergent integrals for n > 6 and n > 4
respectively, but these are always subdominant compared to the first term.

The above discussion concerns an iselated defect. In the phase ordering system
the natural cut-off is not L, but L(1), the characteristic scale beyond which the
field of a single defect will be screened by the other defects. Of particular interest are
the dynamics of defect structures much smaller than L(t). These are the analogues
of the small domains of the scalar system. For d = n = 2, these are vortex-antivortex
pairs, for d = 3, n = 2 they are vortex rings, while for d = 3 = n they are monopole-
antimonopole pairs. For such a structure, the pair separation r (for point defects)
or ring radius r (for a vortex loop) provide the natural cut-off. Including the factor
r4=* for the volume of defect core, the energy of such a structure is

E ~ rtIn(r/f), d>n=2,
T d>n>2. (37)

11



The derivative with respect to r of this energy provides the driving force, —dE /dr,

for the collapse of the structure. Dividing by r*~" gives the force F' acting on a unit
volume of core (i.e. per unit length for strings, per point for points, etc.):

F(ry ~ —r7t, d=n=2,
~ —r* 3 In(r/€) , d>n=2,
~ = d>n>2. (38)

In order to calculate the collapse time we need the analogue of the ‘friction
constant’ 77 (see section 2.1.3) for vector fields. This we calculate in the next section.
Before doing so, we compute the total energy density ¢ for vector fields. This can
be obtained by putting r ~ L(f) in (37), and dividing by a characteristic volume
L(t)? (since there will typically be of order one defect structure, with size of order

L(t), per scale volume L(t)%),
e ~ L (L)) |
~ L)%, d2

-1

n=2,
2. (39)

For scalar systems, of course, ¢ ~ L(t)

As a caveat to the above discussion, we note that we have explicitly assumed
that the individual defects possess an approximate radial symmetry on scales small
compared to L(t). It has been known for some time [26], however, that an isolated
point defect for d > 3 can lower its energy by having the field uniform (pointing
‘left’, say) over most of space , with a narrow ‘flux tube’ of field in the opposite
direction (i.e. pointing ‘right’). The energy is then linear in the size of the system,

E ~ L,y,£473, which is smaller than the energy, ~ L% 2, of the spherically symmetric
defect, for d > 3. A defect-antidefect pair with separation r, connected by such a
flux tube, has an energy £ ~ r£973, which implies an r-independent force for all
d > 3, in contrast to (38). '

How relevant are these considerations in the context of phase-ordering dynamics?
These single-defect and defect-pair calculations treat the field as completely relaxed
with respect to the defect cores. If this were true we could estimate the energy
density for typical defect spacing L(t) as €473L(¢t)'~¢ for d > 3. However, the
smooth variation (‘spin waves’) of the field between the defects gives a contribution
to the energy density of (V¢)? ~ L(t)~?, which dominates over the putative defect
contribution for d > 3. Under these circumstances, we would not expect a strong
driving force for point defects to adopt the ‘flux tube’ configuration, since the energy
is dominated by spin waves. Rather, our tentative picture is of the point defects
‘riding’ on the evolving spin wave structure for d > 3, although this clearly requires
further work. Note, however, that these concerns are only relevant for d > 3: Eq.
(38) is certainly correct for the physically relevant cases d < 3.

2.2.2 Defect Dynamics

Here we will consider only nonconserved fields, although it is possible to generalize
the results to conserved fields [24]. The caveats for d > 3 discussed in the previous
subsection also apply here.

The calculation of the friction constant n proceeds as in section 2.1.3. Consider
an isolated equilibrium defect, i.e. a vortex for d = n = 2, a monopole for n = d = 3,
a straight vortex line for n = 2, d = 3 etc. Set up a Cartesian coordinate system
Zy,...,Zq. For extended defects, let the defect occupy the (hyper)-plane defined by
the last d — n Cartesian coordinates, and move with speed v in the z; direction.

Then q—S‘ only depends on coordinates zj, ..., s, and the rate of change of the system
energy per unit volume of defect core is

dE/dt = f dz ...dz, (SF/33) - 8¢/ 0t
- _ j dzy .. .dz, (03/0t)? . (40)
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The defect profile has the form q;(.rl,...j:cn) = f(:rl — vt xg,...,2,), where the

function fdepends on v in general. Putting this into (40) gives
dE[dt = —szda:l...da:n (a&)’/aml)z
= —(*/n) [&r(V) = -, (41)

where the function f has been replace by its v = 0 form to lowest order in v, and
n is the friction constant per unit core volume. The final expression follows from
symmetry. It follows that 7 is (up to constants) equal to the defect energy per unit
core volume. In particular, it diverges with the system size for n > 2. For a small
defect structure of size 7, we expect the divergence to be effectively cut off at r.
This gives a scale-dependent friction constant,

n(r) ~ r"?In(r/€), d>n=2,
~ P2 d>n>2. (42)

[nvoking the scaling hypothesis, we can now determine the growth laws for non-
conserved vector systems. FEqgs. (38) and (42) give the typical force and friction
constant per unit core volume as F(L) and n(L). Then a typical velocity is v ~
dL/dt ~ F(L)/n(L), which can be integrated to give, asymptotically,

L(t) ~ (t/Int)¥/?, d=n=2,
~ Y7 otherwise . (43)

The result for n = d = 2 was derived by Pargellis et al. [27], and checked numerically
by Yurke et al. [28]. The method used here follows their approach [29]. The key
concept of a scale-dependent friction constant has been discussed by a number of
authors [30]. A detailed analysis of monopole-antimonopole annihilation, in the
context of nematic liquid crystals, has been given by Pismen and Rubinstein [31].

A more general and powerful method to derive growth laws, valid for both con-
served and nonconserved systems, has been given elsewhere [23, 24, 1]. The results
agree with the intuitive arguments presented above.

2.2.3 Porod’s Law

The presence of topological defects, seeded by the initial conditions, in the system
undergoing phase ordering has an important effect on the ‘short-distance’ form of the
pair correlation function C'(r, ¢), and therefore on the ‘large-momentum’ form of the
structure factor S(k,?). To see why this is so, we note that, according to the scaling

hypothesis, we would expect a typical field gradient to be of order |V¢| ~ 1/1. Ata
distance r from a defect core, however, with £ &« r « L, the field gradient is much
larger, of order 1/r (for a vector field), because ¢ = 7 implies (V)2 = (n — 1)/r2.
Note that we require r > £ for the field to be saturated, and r < L for the defect
field to be largely unaffected by other defects (which are typically a distance L
away). This gives a meaning to ‘short’ distances ({ € r <« L), and ‘large momenta’
(L' < k <« £7'). The large field gradients near defects leads to a non-analytic
behaviour at @ = 0 of the scaling function f(z) for pair correlations. '

We start by considering scalar fields. Consider two points x and x + r, with
¢ <« r « L. The product ¢(x)¢(x + r) will be —1 if a wall passes between them,
and +1 if there is no wall. Since r &« L, the probability to find more than one
wall can be neglected. The calculation amounts to finding the probability that a
randomly placed rod of length r cuts a domain wall. This probability is of order
r/L, so we estimate

Clr,t) o~ (=1) x (r/L) +(+1) x (1 — r/L)
= 1—2r/L, r< L. (44)
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The factor 2 in this result should not be taken seriousiy.

The important result is that (44) is non-analytic in r at r = 0, since it is linear
in 7 = |r|. Technically, of course, this form breaks down inside the core region, when
r < £. We are interested, however, in the scaling limit defined by r > £, L > ¢,
with z = /L arbitrary. The nonanalyticity is really in the scaling variable z.

The nonanalytic form (44) implies a power-law tail in the structure factor, which
can be obtained from (44) by simple power-counting:

1

S(k, 1) ~ T -

kL > 1, (45)

a result known universally as ‘Porod’s law’. It was first written down in the general
context of scattering from two-phase media [18]. Again, one requires £{ < 1 for
the scaling regime. Although the k-dependence of (45) is what is usually referred to
as Porod’s law, the I-dependence is equally interesting. The factor 1/L is simply
(up to constants) the total area of domain wall per unit volume, a fact appreciated
by Porod, who proposed structure factor measurements as a technique to determine
the area of interface in a two-phase medium [18]. On reflection, the factor 1/L
is not so surprising. For kL > 1, the scattering function is probing structure on
scales much shorter than the typical interwall spacing or radius of curvature. In
this regime we would expect the structure factor to scale as the total wall area,
since each element of wall with linear dimension large compared to 1/k contributes
essentially independently to the structure factor.

This observation provides the clue to how to generalize (45) to vector (and other)
ficlds [32, 33]. The idea is that, for kL >> 1, the structure factor should scale as the
total volume of defect core. Since the dimension of the defects is d — n, the amount
of defect per unit volume scales as L™". Extracting this factor from the general
scaling form (7) yields

1
~ Ln jd+n ¥

S(k,1) kL>1, (46)

for the O(n) theory, a ‘generalized Porod’s law’.

Equation (46) was first derived from approximate treatments of the equation of
motion (33) for nonconserved fields [34, 35, 36, 37). In these derivations, however,
the key role of topological defects was far from transparent. The above heuristic
derivation suggests that the result is in fact very general (e.g., it should hold equally
well for conserved fields), with extensions beyond simple O(n) models. The appro-
priate techniques, which also enable the amplitude of the tail to be determined, were
developed by Bray and Humayun [33)].

2.3 Scaling Functions

We begin by discussing phase ordering of a vector field in the limit that the number
of vector components of the field, n, tends to infinity. This limit has been studied,
mostly for nonconserved fields, by a large number of authors [12, 16, 38, 39, 40, 41].
In principle, the solution is the starting point for a systematic treatment in powers
of 1/n. In practice, the calculation of the O(1/n) terms is technically difficult
[16, 41]. Moreover, some important physics is lost in this limit. In particular, there
are no topological defects, since clearly n > d + 1 for any d as n — oco. As a
consequence, Porod’s law (46), for example, is not found. It turns out, however,
that similar techniques can be applied for any n after a preliminary transformation

from the physical order parameter field ¢ to a suitably chosen ‘auxiliary field’ 7.
This is discussed in sections 2.3.3 and 2.3.5. The topological defects are incorporated

through the functional dependence of qg on 7, and Porod’s law is recovered.
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2.3.1 The Large-n Limit: Nonconserved Fields

Although not strictly necessary, it is convenient to choose in (33) the familiar ‘¢"

ury

potential, in the form V(@) = (n — 52)2/4?1, where the explicit n-dependence is for
later convenience in taking the limit n — co. With this potential, (33) becomes

83/91= G+ G-~ ()3 (47)

The simplest way to take the limit is to recognize that, for n = oo, 52/71 can be
replaced by its average, to gtve

D¢/t = Vié+a(t)d (48)

at) = 1-(6), (49)

where ¢ now stands for (any) one of the components of é. Eq. (48) can alternatively
be derived by standard diagrammatic techniques [16]. Eq. (48) can be solved exactly
for arbitrary time ¢ after the quench. However, we are mainly interested in late times

(i.e. the scaling regime), when the solution simplifies. After Fourter transformation,
the formal solution of (48) is

k() = ¢x(0) exp[—k*t + b(t)] , (50)
b1) = ]Otdt’a(t’), (51)

gIving
a(t) =dbjdt =1 — A exp[—2K"t + 20(1)] , (52)
k

where (4) has been used to eliminate the initial condition. Since we shall find «a
posierior that a(t) < 1 at late times, the left side of (52) is negligible for ¢ — co.
Using ¥ exp(—2k*t) = (87t)~%/2 gives b(t) — (d/4) In(t/to), where

to = AM4/8r . (53)

Therefore, a(t) — d/4t for { — oo, and the solution of (50), valid at late times, is

$e(t) = ¢u(0) (/1) exp(—-k*) . (54)

Using (4) once more, we obtain the structure factor, and its Fourier transform, the
pair correlation function as,

S(k,t) = (8mt)? exp(—2k%t), (55)
C(r,t) = exp(—r°/8t). (56)

These results exhibit the expected scaling forms (7), with length scale L(¢) o t}/2.
Note that the structure factor has a gaussian tail, in contrast to the power-law tail
(46} found in systems with n < d. It might be hoped, however, that the large-n
forms (55) and (56) would be qualitatively correct in systems with no topological
defects, 1.e. for n > d + 1.

2.3.2 Two-Time Correlations

Within the large-n solution, we can also calculate two-time correlations to test the
scaling form (8). It turns out (although this becomes apparent only at O(1/n))
[16. 41] that there is a new, non-trivial, exponent associated with the limit when
the two times are well separated [42].
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From (54) it follows immediately that

Sk, t, 1) = (¢u()o-k(t))) = [Sm(tt)/HY? exp|-K*(t + )], (57)
a1 2
Clr,1,t) = {(¢(r,1)(0,t')) = lm] exp [—m] - (58)
Eq. (58) indeed has the expected form (8). In the limit ¢ 3> t/, (58) becomes
C(r,t,t') = (4t'/t)* exp(—r?/4t) , (59)
= (L'/LY*h(r/L), (60)

where the last equation defines the exponent A through the dependence on the later
time ¢t. Clearly, A = d/2 for n = co. When the O(1/n) correction is included,
however, an entirely non-trivial result is obtained {16, 41].

It is interesting to consider the special case where the earlier time t’ is zero. Then
C(r,t,0) is just the correlation with the initial condition. This quantity is often
studied in numerical simulations as a convenient way to determine the exponent A.
Within the large-n solution, Eqs. (54) and (53) give, in Fourier and real space,

S(k,t,0) = [8m(tto)'/?Y? exp(—K?t) , (61)
C(r,t,0) = (dt5/t)** exp(—r?/4t) . (62)

This is just what one gets by replacing ¢’ by to in (57) and (58) (with to playing the
role of a short-time cut-off), and then neglecting {q compared to 1.
A related function is the response to the initial condition, defined by

G(k,t) = (O¢x(t)/ 0 (0)) . (63)
Within the large-n solution, (54) gives immediately
G(k,t) = (t/to)¥* exp(—k?t) . (64)
Comparing (61) and (64), and using (53) once more gives the relation.
S(k,t,0) = AG(k,t) . (65)

In fact, this is an exact result, valid beyond the large-n limit, as may be proved
easily using integration by parts on the gaussian distribution for {¢k(0)}. The
general scaling form for G(k, 1),

Gk, ) = I* gr(kL) , (66)

defines a new exponent A, equal to d/2 for n = co. Since, however, the correlation

with the initial condition has the scaling form C(r,t,0) = L=* f(r/L), the identity
(65) gives immediately [43] )
A=d—). (67)

(The symbol A is also used for the transport coeflicient in systems with conserved
dynamics. This should not be a source of confusion, as the meaning will be clear
from the context).

Before leaving this section, it is interesting to consider to what extent the results
depend on-the specific form (4} chosen for the correlator of the initial conditions.
Let us replace the right-hand side of {4) by a function A(|x — x’|), with Fourier
transform A(k). Then A(k) will appear inside the sum over k in Eq. (52). The
dominant & values in the sum, however, are of order t~'/2, so for late times we
can replace A(k) by A(0), provided the latter exists. This means that universal
results are obtained when only short-range spatial correlations are present at { = 0.
For sufficiently long-range correlations however, such that Agk) diverges for k£ — 0,
new universality classes are obtained. A general treatment of long-range correlated
initial conditions is given in [44].
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2.3.3 'The OJK Theory

A rommon theme, introduced by Ohta, Jasnow, and Kawasaki [45] (OJK), in the
approximate theories of scaling functions is the replacement of the physical field
¢(x,t), which is £1 everywhere except at domain walls, where it varies rapidly, by
an auxiliary field m(x,t}, which varies smoothly in space. This is achieved by using
a non-linear function ¢(m) with a ‘sigmoid’ shape (such as tanhm). In the OJK
theory, the dynamics of the domain walls themselves, defined by the zeros of m, are
considered. The normal velocity of a point on the interface is given by the Allen-
Cahn equation (9), v = —K = —V-n, where K is the curvature, and n = Vm/[Vm]|
is a unit vector normal to the wall. This gives

v = {—=V?m + n,mV,Vym}/{Vm]| . (68)
In a frame of reference comoving with the interface,
| dm/dt =0 = dm/dt +v-Vm . (69)
But since v is parallel to Vm (and defined in the same direction), v.Vrn = v|Vm|
SO
v = —TVI?—M %’;1 | (70)
Eliminating v between (68) and (70) gives the OJK equation
Om/ot = V*m — n,nyV,Vym . - (71)

Since n = Vm/|Vm]|, this equation is non-linear. To make further progress, OJK
made the simplifying approximation of replacing n,ns by its spherical average 8,,/d,
obtaining the simple diffusion equation

om/ot = DVim , (72)

with diffusion constant D = (d — 1)/d.

Providing there are no long-range correlations present, we do not expect the form
of the random initial conditions to play an important role in the late-stage scaling.
A convenient choice is a gaussian distrtbution for the field m(x,0), with mean zero

and correlator

(m(x,0}m(x',0)) = Ad(x — x') . (73)
Then the linearity of (72) ensures that the field m(x,?) has a gaussian distribution
at all times. Solving (72), and averaging over initial conditions using (73) gives the
equal-time correlation function

(m(1)m(2) = oz b (57 )

where ‘1’ and ‘2’ represent space points separated by r. Of special relevance in what
follows is the normalized correlator

o m(Um@)
209 = i = (37 (7

The generalization to different times is straightforward [46] and will be given explic-
itly below.

To calculate the pair correlation function of the original field ¢, we need to know
the joint probability distribution for m(1) and m(2). For a gaussian field this can
be expressed in terms of the second moments of m:

1 m(1)? m(2)2_ m(1)m(2)
=) [50(1) e TP so(l)so(z)D

P(m(1),m(2)) = N exp (—2
(76)
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where vy = v(12), and

So(1) = (m(1)?), Sa(2) = (m(2)), N = (21)7[(1 = ¥")Se(1)Se(2)]7/* . (77)

Note that (76) is a general expression for the joint probability distribution of a gaus-
sian field, with + defined by the first part of (75). Now ‘1’ and ‘2’ represent arbitrary
space-time points. For the special case where m obeys the diffusion equation (72},

v is given by
_htz v ex ( T ) (78)
= - ) {
INCETAE P\79D( + 1)

a simple generalization of (75).

The pair correlation function is given by C(r,t) = (¢{m(1)) ¢ (m(2))). In the
scaling regime, one can replace the function ¢{m) by sgn(m), because the walls
occupy a negligible volume fraction. In a compact notation, :

C(12) = (sgnm(1)sgn m(2)) = (2/m) sin™'(v) . | (79)

The gaussian average over the field m required in (79) is standard (see, e.g., [47]).
Egs. (75) and (79) define the ‘OJK scaling function’ for equal-time pair correlations.
Note that (apart from the trivial dependence through D) it is independent of the
spatial dimension d. We will present arguments that it becomes exact in the large-d
limit. The OJK function fits experiment and simulation data very well.

The general two-time correlation function is especially interesting in the limit
t, 3> t, that defines (see, e.g., (60)) the exponent A. Since v < 1 in this limit, (79)
can be linearized in v to give C(r, ty,t,) ~ (4t /t3)%* exp(—r?/4Dty), ie. A = d/2
within the OJK approximation.

2.3.4 The KYG Method

An earlier approach, due to INawasaki, Yalabik and Gunton (KYG) [48], building
on still earlier work of Suzuki {53], was based on an approximate resurnination of
the direct perturbation series in the non-linearity, for the quartic potential V'(¢) =
(1/4)}(1 — ¢$?)%. The equation of motion (2) for this potential is

d¢/0t =V’?d+ ¢ —g¢°, (30)

with ¢ = 1. The basic idea is treat ¢ as small, expand in powers of g, extract the
leading asymptotic (in ¢) behaviour of each term in the series, and set g = 1 at the
end. However, an uncontrolled approximation is made in simplifying the momentum
dependence of each term (the expansion is performed in Fourier space). After setting
g = 1, the final result can be expressed in terms of the mapping

$(m) = m/(1 +m*)!/? . (81)
It is found that i obeys the equation
Omfot=V’m+m, {82)

instead of (72), which gives an exponential growth superimposed on the diffusion.
After the replacement ¢(m) — sgn(m), however, this drops out: the OJK scaling
function (79) is recovered, with -y given by (75) (but with D = 1).

The nature of the approximation involved can be clarified by putting {81} into
(80) (with g = 1) to derive the exact equation satisfied by m:

2
om v2m+m_3m(Vm)

at 1+ m? (33)
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In contrast to a claim made in [48], there is no reason to neglect the final term. On a
physical level, the fact that this approach gives the correct growth law, L(t) ~ ¢1/2,
seems to be fortuitous. In particular, the crucial role of the interfacial curvature in
driving the growth is not readily apparent in this method. By contrast the OJK
approach, while giving the same final result, clearly contains the correct physics.
Despite its shortcomings, the KYG method has the virtue that it can be readily
extended to vector fields [34, 54]. Eq. (82) is again obtained, but with m replaced
by a vector auxiliary field nt, with qg = m/(1 + m?2)/2. At late times, ¢ — 77, a
unit vector, almost everywhere and C(12) = (rh(1) - m(2)). Taking gaussian initial
conditions for 17, the resulting scaling function 1s [34], with v again given by (75)

(but with D = 1),

_ny n+1 l)r (l 1 n42 2)
ci1z) =22 [B( —3)| F(3357) (84)

where B(z,y) is the beta function and F(a, b; ¢; z} the hypergeometric function , F}.
The same scaling function was obtained independently by Toyoki [35]. We will call
it the ‘BPT scaling function’. The result (75) for v implies L(t) ~ t'/2 for all n
within this approximation.

2.3.5 Mazenko’s Methoed

In an interesting series of papers, Mazenko [49, 50, 51] has introduced a new approach
that deals with the interface in a natural way. This approach combines a clever choice
for the function ¢(m) with the minimal assumption that the field m is gaussian.
Specifically ¢(m) is chosen to be the equilibrium interface profile function, defined

by (compare Eq. (10))
¢"(m) =V'(¢), (85)

with boundary conditions ¢(+oo) = %1, ¢(0) = 0. The field m then has a physical
interpretation, near walls, as a coordinate normal to the wall. Note that this map-
ping transforms a problem with fwo length scales, the domain scale L(¢) and the
interface width £, into one with only a single length scale, namely L(t) (see Fig. 4).
With the choice (85) for ¢(m), the TDGL equation (2) becomes

O, = V¢ — ¢"(m) . (86)

Multiplying by ¢ at a different space point and averaging over initial conditions
gives

(1/2)8,C(12) = V2C(12) — (¢ (m(1)) $(m(2)) - (87)

So far this is exact. In order to simplify the final term in (87), Mazenko assumes
that m can be treated as a gaussian field. Then the final term can be expressed in
terms of C(12) itself as follows, exploiting the Fourier decomposition of ¢(m) and
the gaussian property of m [50}:

(¢"(m(1)) d(m(2))) = D iy bao—ki){exptkim(1) + ikam(2)])

k1,kz2
= D br b (k) expl—k{So(1)/2 - k350(2)/2
ki ko ‘
—ky k2 Co(12)]
— 28C(12)/05(1) . (88)

where Sp(1), So(2), are given by (77) and Cy(12) = (m(1)m(2)). The derivative
in (88) is taken holding S5(2) and Cp(12) fixed. Since, from the definition (75),
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v(12) = Co(12)/+/S0(1)56(2), the general result {79) for gaussian fields implies

2(9(7(12) _,dC(12) 9+4(12)
_ dC(12)
= a(t)y(12) (13) (89)
where
a(t) = 1/So(1) = (m(1)3)~" . (90)
Putting it all together, and suppressing the arguments, the final equation for ' is
(1/2)8,C = V2C + a(t)ydC/d~ . (91)

Using (79) for C(v) gives vdC/dy = (2/r)tan[(7/2)C]. Then (91) becomes a
closed non-linear equation for C. For a scaling solution, one requires L}t) ~ /2
and a(t) = A/2t for large ¢ in (91), so that each of the terms scales as 1/t times a
function of the scaling variable r/{}/2. Setting C(r,t) = f(r/t!/?) gives the equation

0=f"+ (f_i+f) £+ 2 tan (ff> (92)
z 4 T 2

for the scaling function f(z). The constant ) is fixed by the requirement that the
large-distance behaviour of C' be physically reasonable [50]. Linearization of (92)
(valid for large z) leads to two linearly independent large-z solutions with gaussian
and power-law tails. The constant A is chosen to eliminate the ‘unphysical’ power-
law term.

It is straightforward to adapt this approach to nonconserved vector fields ‘36,
37]. A significant simplification is that for gaussian fields, the joint probability
distribution for m{1) and r(2) factors into a product of separate distributions of
the form (76) for each component. This results is an equation of form (91) for any
n, but with the function C(v) given by (84) for general n instead of (79). Again,
a(t) = A/2t, with A chosen to eliminate the power-law tail in the scaling function
f(z). The values A for various n and d are given in table 1.

It is interesting that the ‘unphysical’ power-law tails in real space become phys-
i[ca.l W}ien sufficiently long-range spatial correlations are present in the initial state
44, 55).

The general two-time correlation function C(x, t1,1;) can also be evaluated within
this scheme [36, 37]. It is given by a simple generalization of (91), namely

8;,C = V*C + a(t1)vdC/dy , (93)

with a{t;) = A/2t;. This equation simplifies for ¢; 3> t,, because C is then small and
the linear relation between C' and « for small C (see Eq. (84)) implies vdC/dy = C,

1.e.
@g,C = VZC' + ()\/2t1) C N tl > t2 . (94)

This linear equation can be solved by spatial Fourier transform. Choosing an initial
condition at {; = aty, with a 3> 1 to justify the use of (94) for all t; > at,, gives

t Af2
S(k, b, ts) = (a_gz) exp{—k2(t; — ata)} S(k, ata, 12) . (95)

Imposing the scaling form S(k, atz,t;) = tg/zg(kztz), with g(0) = constant, and
Fourier transforming back to real space gives, for #; > ats,

ts (d-A)/2 r2
C(12) = constant (-—) exp|——1 . (96)
tl 4t1
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The constant cannot be determined from the linear equation alone: it is. of course,
independent of a. _

(‘omparison of (96) with the general form (60), shows that A = d — A, i.e. the
parameter A of the Mazenko theory is precisely the exponent A associated with the
response function G(k,?) (Eq. (66)), related to A by (67). This connection was
first. pointed out by Liu and Mazenko {56]. The values of A obtained (table 1) are
in reasonable agreement with those extracted from simulations [15, 40, 58, 59]. For
example, for the scalar theory in d = 2 simulations [15, 38, 56] give A ~ 0.75 (argued
to be 3/4 exactly in {15]), compared to 0.711 from table 1.

1 0 0.301 0.378 0414
2 0.711 0.829 0.883 0.912

3 1.327 1.382 1.413 1.432

Table 1 Exponent A within the Mazenko theory.

To summarize, the virtues of Mazenko's approach are (i) only the assumption
that the field m is gaussian is required, (ii) the scaling function has a non-trivial
dependence on d {whereas, apart from the trivial dependence through the diffusion
constant D, (75), (79) and (84) are independent of d), and (iii) the non-trivial
behaviour of (iiﬁ)erent-time correlation functions [16] emerges in a natural way [56].
In addition, the QJI result (79), and its generalization (84), are reproduced for
d — oo, while the exact scaling function of the 1 — d Glauber model is recovered
from (92} in the limit d — 1 [60]. In practice, however, for d > 2 the shape of the
scaling function f(z) differs very little from that of the OJIK function given by (79)
and (75), or its generalization (84) for vector fields [37). All these functions are in
good agreement with numerical simulations. The Mazenko approach can also be
nscd, with some modifications, for conserved scalar [51] and vector [57] fields.

To conclude this section we note that the crucial gaussian approximation, used
in all of these theories, has recently been critically discussed by Yeung et al. [61]. By
explicit simulation they find that the distribution FP(m) for the field m at a single
point is flatter than a gaussian at small m. Recent work by Mazenko presents a first
attempt to go beyond the gaussian approximation [62].

2.3.6 A Systematic Approach

All of the treatments discussed above suffer from the disadvantage that they invoke
an uncontrolled approximation at some stage. Recently, however, a new approach
has been developed [52] which recovers the OJIK and BPT scaling functions in leading
order, but has the advantage that it can, in principle, be systematically improved.
For simplicity we will consider only scalar fields - the extension to vector fields is
straightforward [52}.

The TDGIL equation for a non-conserved scalar field ¢(x, 1) is given by Eq. (2).
We recall that, according to the Allen-Cahn equation (18), the interface motion is
determined solely by the local curvature. It follows that the detailed form of the
potential V(¢) is not important, a fact that we can usefully exploit: the principal
role of the double-well potential is to establish and maintain well-defined interfaces.

Following Mazenko [50] we define the function ¢(m) by Eq. (85) with boundary
conditions ¢(2oo) = £1. We have noted that ¢(m) is just the equilibrium domain-
wall profile function, with m playing the role of the distance from the wall. Therefore,
the spatial variation of m near a domain wall is completely smooth (in fact, linear).
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The additional condition ¢(0) = 0 locates the center of the wall at m = 0. Figure 4
illustrates the difference between ¢ and m for a cut through the system. Note that,
while ¢ saturates in the interior of domains, m is typically of order L(t), the domain
scale. Rewriting (2) in terms of m, and using (85) to eliminate V’, gives

_ 2 _gS”(m) — (Vm)? -
om = V*m F(m) (1—(Vm)?). (97)

For general potentials V(¢#), Eq. (97) is a complicated non-linear equation, not
obviously simpler than the original TDGL equation (2). For reasons discussed in
section 2.1.3, however, we expect the scaling function f(z) to be independent both
of the detailed form of the potential and of the particular choice for the distribution
of initial conditions. Physically, the motion of the interfaces is determined by their
curvature. The potential V (¢} determines the domain wall profile, which is irrelevant
to the large-scale structure. '

Similarly, the initial conditions determine the early-time locations of the walls,
which should again be irrelevant for late-stage scaling properties. For example, in
Mazenko’s approximate theory, both the potential and the initial conditions drop
out from the equation for the scaling function f(z).

The key step in the present approach is to exploit the notion that the scaling
function should be independent of the potential (or, equivalently, independent of the
wall profile) by choosing a particular V(¢) such that Eq. (97) takes a much simpler
form (Eq. {101)). Specifically we choose the domain-wall profile_function ¢(m) to
satisfy )

¢"(m) = —m¢'(m) . (98)
This is equivalent, via (85), to a particular choice of potential, as discussed below.

First we observe that (98) can he integrated, with boundary conditions ¢{+oo) = %1
and ¢(0) = 0 to give the wall profile function

#(m) = (2/m)"? [" do exp(=a*/2) = erf (m/v/2) , (99)

where erf (z) is the error function. Also, (85) can be integrated once, with the zero
of potential defined by V(+£1) = 0, to give

V(8) = (1/2)(#)* = (1/7) exp(—m?) = (1/m) exp(=2[exf™" (¢)]*) , (100)

where erf™! (z) is the inverse function of erf (z). In particular, V(¢) ~ 1/m — ¢?/2
for ¢? « 1, while V() ~ (1/4)(1 — )} 1In(1 — ¢?)| for (1 — ¢?) < 1.
With the choice (98), Eq. (99) reduces to the much simpler equation

Om = V?m + (1 — (Vm)*)m . (101)

This equation, though still non-linear, represents a significant simplification of the
original TDGL equation. It is clear, however, on the basis of the physical arguments
discussed above, that it retains all the ingredients necessary to describe the universal
scaling properties.

We now proceed to show that the usual OJK result is recovered by simply re-
placing (Vm)? by its average (over the ensemble of initial conditions) in (101), and
choosing a gaussian distribution for the initial conditions. In order to make this
replacement in a controlled way, however, and to facilitate the eventual computa-
tion of corrections to the leading order results, we systematize the treatment by
attaching to the field m an internal ‘colour’ index a which runs from 1 to N, and
generalize (101) to

N
e = Vima + (1 = N71 > (Vmg)}) myg . (102)
B=1
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Eq. (101) is the case N = 1. The OJI result is obtained. however, by taking the
limit N = oo, when N7} Eg;l(Vmﬁ)z may be replaced by its average. In this limit
(101) becomes (where m now stands for one of the mg)

dm = Vim4+a(t)m (103)
at) = 1-{(Vm)%), (104)

a self-consistent linear equation for m(x,1).

It is interesting that the replacement of (Vm)? by its average in {101) is also
justified in the limit d — co, because (Vm)? = ¥4 (dm/dz;)%. If m is a gaus-
sian random field (and the self-consistency of this assumption follows from (103) -
see helow) then the different derivatives dm/dz; at a given point z are indepen-
dent random variables, and the central limit theorem gives, for d = co, (Vm)? —
d{(dm]dz;)?) = ((Vm)?), with fluctuations of relative order 1//d. While this ap-
proach is not so simple to systematize as that adopted above, it seems clear that
the leading order results become exact for large d. _

As discussed above, we will take the initial conditions for m to be gaussian, with
mean zero and correlator (in Fourier space)

(mx(0)m_iw(0)) = Adypr (105)

representing short-range spatial correlations at ¢ = 0. Then m is a gaussian field at
all times. The solution of (103) is

my(t) = mu(0)exp(—k*t+b(2)), (106)
bt) = [ dta(t). (107)

Inserting this into (104) yields
a(t) = dbjdt =1 — A> k* exp(—2k*t + 2b) . (108)
k

After evaluating the sum one obtains, for large ¢ (where the db/dt term can be

neglected), exp(2b) ~ (4t/Ad) (87t)¥/?, and hence a(t) ~ (d + 2)/4t. This form for
a(1) in (103), arising completely naturally in this scheme, reproduces exactly the
Oono-Puri modification of the OJK theory [47], designed to keep the wall-width
finite as t — oo, which was discussed in section 2.3.4.

The explicit result for my (), valid for large {, is

mi(t) = mi(0) (4¢/ Ad)'/? (872)* exp(—k*t) | (109)

from which the equal-time two-point correlation functions in Fourier and real space
follow immediately:

(mi(t)m_i(2)) = (4t/d) (87t)%/* exp(—2k7t) , (110)
(m(1)m(2)) = (4t/d) exp(—r?/8t) , (111)
where ‘1’, “2'. are the usual shorthand for space-time points (r,t), (r,¢), and

r = |r; — raf.

We turn now to the evaluation of the correlation function of the original fields
¢. Since, from (111), m is typically of order /t at late times it follows from
(99) that the field ¢ is saturated (i.e. ¢ = £1) almost everywhere at late times.
As a consequence, the relation (99) between ¢ and m may, as usual, be simpli-
fied to ¢ = sgn(m) as far as the late-time scaling behavior is concerned. Thus
C(12) = (sgn (m(1)) sgn (m(2))). The calculation of this average for a gaussian field
m proceeds just as in the OJK calculation. The OJK result, given by (79) and 875),
(with D = 1) is recovered. The present approach makes possible, in principle, a
systematic treatment in powers of 1/N, although technical difficulties have thus far
prevented this programme being put into practice.
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2.4 Aging

Consider the following experiment. The system is quenched into the ordered phase
at time { = 0, and left to evolve for a time ¢,,. Then a perturbation is applied
(e.g. a magnetic field is switched on), and the response to the perturbation (the
magnetization) is monitored. Since the system is in a nonequilibrium state at time
., 1t is to be expected that the subsequent response will depend explicitly on the
waiting time ¢,,. This eflect is termed ‘aging’, and plays an important role is the
study of spin-glass systems where nonequilibrium dynamics is endemic. The same
type of phenomenon, however, can be observed also in simple coarsening systems of
the type we have been discussing.

An explicit, albeit approximate, calculation is possible using an approach of
the OJK type. (The ‘systematic approach’ of section 2.3.6 is cleaner, but more
complicated [1]). Let up apply a magnetic field after time t,. In terms of the
approach adopted in section 2.1.3, an external field corresponds to having a potential

with minima of unequal depths. Then the interface equation (18) is modified to -

v = —K + AV/o, where AV is the potential difference between the minima, and
o the surface tension. If the minimum corresponding to ¢ > 0 is the lower, then
AV < 0 and I will introduce A = —AV/o as a ‘magnetic field’. The interface
equation then becomes v = — K — h. Following the same steps as in section 2.3.3,
the equation for the auxiliary field m reads

aom /ot = Vim — nany Vo, Vym + h|Vm|. (112)

In addition to the approximation n,n; — &u/d made before, we need a further
approximation to simplify the final term. The simplest is the replacement |Vm| —

{(Vrm)?*)1/2, With these approximations, (112) becomes
Om[8t = DV®m + a(t)h, (113)

where D = (d — 1)/d and a(t) = {(Vm)}'/2
Eq. (113) is now linear, and can be solved. The Fourier components k # 0
are unaffected by the field so, since a(t) involves only these components, one has

a(t) = [k B2 (mi(D)m_, (¢)]? ~ VA/t44D/4 yp to constants. The mean value
of m(t) (for t > t,) is given by (m(t)) ~ VA i dt' h(t') /¢ D/ allowing for a
time-dependent field. The variance of m is the second cumulant (m?), ~ A/t/2.

Finally, the expectation value of the order parameter ¢ is {¢) = erf({m})/{/2(m?).),

which follows from the gaussian property of m. Expanding out the argument of the
error function for small fields gives

(#(1)) ~ 19" [ C R, (114)

Let us define the response function G(t,t") = &{¢(¢))/8h(¢"). Then G(2,t') can be
written in the form
G(t,t) = "V L) /LN (115)

For a constant field, (114) gives, for ¢ > t., m(t) ~ ht'/2 for d < 2, and m(t) ~
ht}/?(t/t,)4* for d > 2, the latter case retaining an explicit dependence on ¢, even
for t > t,,.

This result is a special case of a more general result that can be deduced using
scaling arguments [63]. The response function G(¢,t') is the magnetization at time
{ due to a field pulse at time t’. The effect of the pulse is to induce a small bias (i.e.
a non-zero magnetization) which then grows spontaneously under the subsequent
dynamics. Consider first the effect of a small bias in the initial condition. The exact
result (66), with k = 0 for a uniform bias, shows that an initially small magnetization

grows with time as L(¢)*. Now suppose that the bias is introduced, not in the initial
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condition. but at time ¢’ when the system is already in the scaling state. Then
scaling hmplies m(t) = m(¢') f[L(t)/ L(t")] for ¢ > t', where f(z) is a scaling function
with the properties f(1) = 1 and f(z) ~ «* for large z. To determine m(t’), we note
that a magnetic field & induces a systematic term in the velocity v of the domain
walls. The ‘net’ volume (in the sense of increasing magnetization) swept out hy the
walls in a time interval At is proportional to hAt¢ and to the total interfacial area,

which scales as 1/L(t'). The induced magnetization is therefore m(t') ~ hAt/L(¢ )

giving G(t,t') = [1/L(t"]f[L(t)/L()]. Recalling that L(¢) ~ t'/2, we see that this
1'esult has the same form as (115), where f(z) = 2¢/? (recall that XA = d/2 in the OJK
theory). Inserting the general form for G into m(t) = [ di' G(¢,#)h(t'}, and taking

a constant field, gives, for £ > t,,, m(t) ~ ht'/? for A < 1 and m(t) ~ hi”z(t/t Y2
for A > 1. Hence A = 1 replaces d = 2 as the boundary bhetween the two regimes.
In practice, A > 1 for ¢ > 3 (see, e.g., table 1).

3 Coarsening in Disordered Systems

3.1 Disordered Ferromagnets

The influence of quenched disorder on the motion of interfaces and other defects is
of considerable current interest in a variety of contexts. The new ingredient when
quenched disorder is present is that the defects can become pinned in energetically
favourable configurations. At T = 0 this leads to a complete cessation of growth.
For T"> 0, tllelmal ﬂuctuations can release the pins, but in general growth is much
slower than in ‘pure’ systems - typically logarithmic in time.

To see how logarithms arise, consider a single domain wall in a system with
quenched random bonds. The typlca,l transverse displacement of the wall over a
length {, due to disorder roughening, is of order {¢, while the typical fluctuation of
the wall ener gy around its mean value is of order IX. These exponents are related by
the scaling law [64] xv = 2{ 4+ d — 3, which can be obtained by estimating the elastic
energy of the deformed wall as 4= 1(56/1)2 and noting that the pinning and elastic
encrgies should be comparable. The barrier to domain motion can be estimated by
arguing (64, 65, 66, 67] that the walls move in sections of length [, where [ is the
length scale at which the walls ‘notice’ their curvature, i.e. the disorder roughening
I¢ should be comparable to the distortion, of order {2/L(?), due to the curvature of
walls with typical radius of curvature L(t). This gives | ~ LY/(7¢) and an activation

barrier of order X ~ LX/(2-0 (assuming that the energy barriers scale in the same
way as the energy fluctuations between local equilibrium positions of the wall).
Equating this barrier to T gives a growth law

L(t) ~ (T Int)P=0/x (116)

For d = 2, the exponents ¢ and x are exactly known [68]: ¢ = 2/3 and x = 1/3,
giving L(t) ~ (T'Int)?. A number of attempts to measure L(¢) in computer simula-
tions have been made [69, 70, 71|, but it is difficult to obtain a large enough range of
(In2)* for a convincing test of the theoretical prediction. Recent experimental stud-
ies of the two-dimensional random-exchange Ising ferromagnet Rb,CupgeCon.11 £y,
however, suggest L(t) ~ (In?)Y* with ¢ = 0.20 £ 0.05 [72], consistent with the
theoretical prediction ¢ = 1/4.

Perhaps of greater interest than the growth law itself is the universality class for
the scaling functions. 1t can be argued [15] that, since L 3> [ ~ LY/?=9 for L = oo
{note that ¢ < 1 for a system above its lower critical dimension, otherwise disorder-
induced roughening would destroy the long-range order), on length scales of order
L the driving force for domain growth is still the interface curvature: the pinning
at smaller scales serves merely to provide the (scale-dependent) renormalization of
the kinetic coefficient responsible for the logarithmic growth. This leads to the



conclusion {15] that the scaling functions should be identical to those of the pure
system, a prediction that is supported by numerical studies [70, 71]. The same
prediction can be made for systems with random-field (i.e. local symmetry-breaking)
disorder [15], and is supported by recent simulations [73]. A further consequence of
this idea is that the autocorrelation exponent A, defined through [{S:(#){S:(0))]ur ~
L(t)~ ), should also be the same for pure and disordered ferromagnets, and there is
support for this idea from numerical simulations [70].

It is interesting that the argument leading to (116) makes no reference to whether
the order parameter is conserved or not. The time taken to surmount the pm-
ning barriers dominates all other timescales in the problem. The argument out-
lined above suggests a scale-dependent kinetic coefficient [(L) ~ exp(—LX/=7/T).
Putting this into the usual nonconserved growth law L ~ [[(L)}t]'/? gives L ~
(T In(t/ L) 2-9), which reduces to (116) asymptotically, since InL <« Int for
t — oo. For conserved dynamics, the same argument just gives {/L® instead of
t/L? inside the logarithm, and (116) is again recovered asymptotically. ‘

While this physically based argument is certainly plausible, the RG approach
developed in [1] makes a more powerful prediction: not only are the growth laws
the same for conserved and nonconserved dynamics, but they belong to the same
untversality class! This means, infer alia, that they have the same scaling functions!
To see this, we simply note that since the fluctuations in the interfacial free energy,
§F ~ LX, are asymptotically negligible compared to the mean, (') ~ L4~! (pro-
vided the system supports an ordered phase at infinitesimal T"), the strong-coupling
exponent y (defined by F' ~ LV: see section III for a more detailéd discussion of y)
is given by the same expression, ¥y = d — 1, as in the pure system. (Alternatively,
and equivalently, the extra area of domain wall due to disorder roughening of the
interfaces in a volume L? scales as ~ L473+% « [471). In [1, 74] it was shown
that, provided the conservation law is relevant, the dynamical exponent z (defined
by L(t) ~ /%) for conserved systems is generally related to y through z = d+2 —y,
which gives the usual t*/3 growth for pure systems (using y = d — 1). However, one
can also show [74] that if this result predicts a faster growth than that of the cor-
responding nonconserved system, the conservation law must be irrelevant, and the
nonconserved scaling results are recovered — physically this is the statement that the
conservation can only slow down the dynamics, not speed it up. Since the growth for
disordered systems is logarithmic in time, i.e. slower than the t}/® growth predicted
assuming the conservation law is relevant, it follows that the conservation law is ir-
relevant for systems with quenched disorder. Therefore conserved and nonconserved
systems are in the same universality class.

Numerical simulations [75, 76] allow us in principal to test this prediction. They
certainly show logarithmic growth, but with an insufficient range of L for a definitive
test of (116). The most striking conclusion of the RG is that the scaling functions
are those of the nonconserved system. For example, a scaling plot for the structure
factor, i.e. a plot of L25(k, t) against kL should give a non-zero intercept at kL = 0.
For any fixed L, of course, the conservation law requires that .S vanish at k£ = 0, but
in the scaling limit (k — 0, L — oo, with kL fixed) the region of small & where the
conservation law is effective should shrink to zero faster than 1/L as L = oo. There
are indeed indications of this in the small-k data of Iwai and Hayakawa [76], but the
range of L explored in not large enough to reach the true scaling limit. Indeed, this
will always be difficult with growth as slow as (116).

3.2 Spin Glasses within the Droplet Theory

The ‘droplet’ or scaling theory emerged around ten years ago as a coherent, albeit
phenomenological, theory of the ordered phase due to the work of a number of au-
thors {77, 78, 79, 80, 81, 82, 83, 80, 84, 15|. It is based on an alternative scenario to
the mean-field SI{ model for the description of finite-dimensional spin glasses. The
fundamental concept is a ‘generalized stiffness constant’, T, analogous to to the
surface tension of an Ising ferromagnet, or the spin-wave stiffness of a Heisenberg
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ferromagnet: T measures the sensitivity of the free energy to changes in the bound-
ary conditions and provides a useful ‘macroscopic order parameter’ which requires
no knowledge of the underlying spin order.

[n an Ising ferromagnet, the free energy of an interface between domains of op-

posite magnetization scales with the linear dimension L as L=, The (temperature-

dependent) coefficient of L2 is the surface tension o(7). By contrast, for a spin
glass the interfacial free energy scales as LY, with y < d—1 as a consequence of frus-
tration. The exponent y is the fundamental exponent characterizing the spin-glass
phase: all quantities which are dominated by large scale excitations (‘droplets’) are
described by power-laws with exponents related to y, and the sign of y determines
whether the system orders at T > 0 (y > 0) or not (y < 0). It has not proved
possible to determine y analytically except for d = 1 [78, 80]. Note that y is not a
critical exponent, but an exponent associated with the ordered phase, in particular
the T' = 0, or ‘strong-coupling’, RG fixed point. The associated phenomenology is,
therefore, sometimes referred to as ‘zero-temperature scaling’.

3.2.1 Zero-Temperature Scaling

It is instructive to first the simple Ising ferromagnet. Consider a hypercube of
linear dimension L. For periodic boundary conditions, the ground state has all
spins parallel. Now impose antiperiodic boundary conditions in one direction. The
ground state now has a domain wall separating regions of up and down spins, a
shown in Figure 5(a). Each ‘broken bond’ cost energy 2.J relative to the ground
state energy, so the energy of the domain wall is 2JL"!, i.e. the exponent y is d — 1.
For y > 0. i.e. d > 1, the energy required to create large droplets of overturned
spins increases with the size L of the droplets as L¢!, At low temperatures this
energy is not available as thermal energy, and the ordered phase is stable against
the spontaneous creation of large droplets by thermal fluctuations for d > 1. The
‘lower critical dimension of the Ising ferromagnet is d; = 1.

Similar ideas can be applied to Heisenberg (or planar} ferromagnets. Now an-
tiperiodic boundary conditions in one direction induce a smooth twist in the spin
configuration instead of a sharp discontinuity (Figure 5(b)). Since the angle be-
tween neighbouring spins is of order 1/L, the energy cost per horizontal bond scales
as L7% and the total energy cost associated with the antiperiodic boundary condi-
tions scales as L%2. The exponent y is d — 2, and the lower critical dimension is
dy = 2.

In applyving the same idea to spin glasses we note that it is not possible to com-
pute the ground-state energy analytically for either boundary condition (periodic or
antiperiodic), and that the two boundary conditions have equal a priori probability
to give the lower energy (for the case where the distribution P(J) of exchange inter-
actions is symmetric), 1.e. the domain wall energy will be symmetrically distributed
around zero. Therefore one has to consider a large number of samples to construct
the probability distribution of domain wall energies. If E is the energy of a wall,
Pp{E) is the distribution of £ for samples of size L. We consider only the case of
symmelric [i.e. P(J) = P(—J)], continuous (e.g. gaussian) distributions of exchange
couplings. Numerical studies of small systems suggest that Pr(£) approaches, for
large L, the scaling form PL(FE) = (1/E,)f(E/E,), with scale energy E, ~ JLY,
where J is a typical (e.g. rms), exchange interaction. The energy E, could, for ex-
amiple, be the rms wall energy £, = (E?)1/2. These numerical studies give y < 0
for d = 2 (y =& —0.3), while y > 0 for d = 3 (y = 0.2). Thus the lower critical
dimension lies between 2 and 3. These studies also show that the scaling function
f(2) has weight at the origin, 0 < f{z) < oco. This implies that, even for d = 3,
large domains can be thermally excited at a small temperature T, since there is a
small probability, of order 7'/J LY, the domain wall energy is smaller than T.

For d = 2 there is a phase transition at T' = 0 and, within the droplet theory,
the exponent y determines the ‘critical exponents’ for this transition. We have
argued that, since y < 0 for d = 2, there can be no ordered phase for any T > 0
since arbitrarily large domains will be thermally excited. There will, however, be
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short-range order since domains (or ‘droplets’) of size L such that JLY > T will
not be thermally excited, i.e. the system will be ordered on length scales shorter
than & ~ (J/T)YM. Hence £ is the correlation length for this ‘zero-temperature
transition’, and diverges for T — 0 as T~*, with v = 1/|y]|.

The above arguments can be rephrased can be rephrased in RG language. The
typical domain-wall energy becomes a scale-dependent, or ‘running’, coupling con-
stant, i.e. Pr(J) becomes the distribution of effective couplings for a system which
has been coarse-grained at scale L. The scale-width of the distribution, J, ~ JL¥,
scales to infinity (‘strong coupling’) with increasing L if y > 0, and to zero (‘weak
coupling’) if y < 0. Thus, at infinitesimal 7', the system looks ‘more ordered’ at
large length scales if y > 0, and ‘more disordered’ if y < 0. Since physical properties
only depend on the dimensionless ratios {J;;/T'}, we can reinterpret the flow of the
characteristic coupling under coarse graining as a flow of temperature: an initially
small T decreases (increases) with increasing length scale for y > 0 (y < 0). The
T = 0 fixed point is stable (unstable) for y > 0 (y < 0). Schematic RG flows are
shown in Figure 6.

The concept of a domain-wall energy can be be generalized to T > 0 as a
domain-wall free energy. Since, for all T < T, the system flows to T' = 0 under
coarse-graining, the distribution of domain-wall free energies should approach, for
large L, the same fixed shape as at T = 0. The scale width F; (e.g. the rms value)
varies as LY, but with a T-dependent prefactor: F, = T(T)L¥. The generalized
stiffness Y(7') has its maximum value at 7' = 0 and vanishes at T = T..

’

3.2.2 Statics

Here we use the ideas developed above to obtain a qualitative description of the
ordered phase of an Ising spin glass within the droplet model. We first discuss the
spin correlations in the ordered phase, and then address the role of an external
magnetic field.

For a particular sample one can define the ‘connected’ correlation functions

Cij = {S:iS;)r ~ (Si)r(Si)r, (117)

where {...)7 indicates a thermal average. Since Cy; varies randomly from sample to
sample, and from one spin pair (¢, 7) to another, it is convenient to compute instead
an average over samples. The first moment, [Cijlay, vanishes by symmetry for a
bond distribution symmetric about J = 0. Therefore, one usually considers the

second moment
G(Tfi) = [C;?j]av- (118)

Consider first a system at infinitesimal temperature. The correlation Cj; is zero for
most pairs (2, ), since the pairs are locked into the ground-state configuration and
the second term in (117) cancels the first. Non-zero contributions to G(r) come from
those pairs (i,7) which can be enclosed by a domain wall whose energy £ is small
compared to T'. For such a pair |C;;| = 1, since 5;5; is invariant under a reversal
of the domain while S; and S; separately change sign. For E <« T, the domain
(or droplet) is completely thermalized, i.e. equally likely to be in either of its two
configurations, giving (S;)r = 0 = (S;)r, while |(5;5;)r| = 1. The probability that
the pair (7,7) belong to such a thermalized droplet is of order T'/Jr¥ (where Jr¥
is an estimate of the excitation energy of the droplet, and r is the separation of
the spins). Since |Cy;| is of order unity for such pairs, and zero otherwise, these
arguments give [83)

G(ry ~T)JrY, T <&T. (119)

This result may equivalently be derived [80] using the RG ideas outlined above.
After coarse-graining at a scale comparable to the spin separation r, the distribution
of effective exchange interactions has a width of order Jr¥. At the same time, the
spins S; and S; become members of the same ‘block spin’ o, giving G(r) = 1 —
[{6)2].s. Non-zero contributions to G(r) come from block spins which are thermally
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decoupled from their neighbours, in the sense that the net field due to the neighbours
1s small compared to T. A fraction of order T'/Jr? of the block spins satisfies this
condition, giving G(r) ~ T/Jr¥ as before. Note that fluctuations on length scales
smaller than » have not been considered in this argument. These play a role when
general temperatures T < T, are considered. They lead to a reduction factor /g in
the effective size of the block spin, where ¢ = [{5;)%],, is the Edwards-Anderson order
parameter. In addition, the scale width of the distribution of effective couplings
contalns, at general T, the factor T(T'). Putting these factors together yields [80, 83]

G(r)y ~T¢*/TrY, T <T. (120)

To discuss the effect of an applied magnetic field, we use simple ideas based on
droplet energetics, along the lines of the Imry-Ma argument for random magnetic
fields in ferromagnets [86]. The alternative approach based on RG ideas gives the
same results. ‘

Consider first T = 0. The idea is that in the presence of the field, it may
be energetically favourable for the zero-field ground state to break up into large
domains that independently align with the field [79, 83]. This will happen if the
energy cost of the domain walls formed is smaller than the Zeeman energy gained
by aligning the domains with the field. Suppose the domains have typical linear
dimension L. Then the wall energy of a domain is of order E,.y ~ JLY. Since
the spins in the unperturbed ground state are randomly oriented with respect to
the external field A, the magnetization M of a domain is of order L2, leading to
a Zeeman energy of order Ezeeman ~ —hL¥? Provided y < d/2, the volume term
will dominate at sufficiently large L, and the zero-field ground state will be unstable
against large-scale reorientation of domains. Since the number of domains per site
is of order L™¢, the change in the energy per spin due to domain formation is of
order §E ~ JL¥% — h [=%2, Minimizing with respect to L yields

L ~ (J/h)¥ (@2, (121)

These arguments can be used to compute the macroscopic magnetization induced by
the field. Each domain has a magnetization of order L%/2, and hence a magnetization
per site of order

m o~ LY~ (R J)H -2 (122)

Since the domains independently align with the field, this is also the macroscopic
magnetization per site. Eq. (122) shows that the magnetization is nen-analytic in the
field in the ordered phase [79]. Actually, (122) gives the singular part of the response.
There is also a regular contribution of the form m,.., = x/ due to isolated spins and
finite clusters overturning in the field, i.e. to small-scale reorientations induced by
the field. By contrast, the singular contribution is due to large-scale reorientations
(note that L — oo as h — 0). The generalization to T > 0 is accomplished through
the replacements J — T, A — h,/q, accounting for the reduction in the interfacial
stiflness and the domain magnetization respectively due to thermal fluctuations [80].

An important consequence of these arguments is that, within the droplet model,
a magnetic field removes the spin-glass phase transition. In RG terminology, the
magnetic field is a ‘relevant perturbation’ for d/2 > y. Since the domains align
independently with the field, there are no long-range spin correlations for non-zero
field. Indeed, the equilibrium domain size L can be interpreted as a field-dependent
correlation length (/). The ‘Almeida-Thouless linre’, which in SK model marks
the onset of spin-glass order in a field [85], is absent from the ‘droplet model’.
There should, however, be a ‘dynamic AT line’, observable in experiments with
fixed timescales or frequencies.

3.2.3 Dynamics

Assuming that the dynamics of the ordered phase is described by activation over bar-
riers, Fisher and Huse [83] introduced a scale-dependent barrier height B(L) ~ bL¥,
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The corresponding scale-dependent relaxation time is given by the Arrhenius form
In[r(L)}/70) ~ (b/T)L¥, with 75 a microscopic timescale. In a magnetic field 4, there
is a maximum relaxation time, associated with length scales of the order of the cor-
relation length £(k). Using (121) for £(k) yields In(Tmaz/T0) ~ (b/T)(J/h)h?¥/1d=2),
This result is for infinitesimal T. The temperature-dependence can be inserted
through the replacements J — Y(T'), h — ./Gh as before, and b — &(T'). For
T -— T, one can express g(T'), T(T) and d(T) in terms of conventional critical ex-
ponents: ¢ « (T, — T)?, T o (T, — T)¥, and b o (T. — T)¥*, where the last
two follow from the assumption that interfacial energies and free-energy barriers are
scale invariant at T,. With these replacements, one obtains

B2 T2 ~ [In(reap10)) /¥ (1 — T/T2)° (123)

for the dynamic AT line on experimental time scale 7.,,. Here ¢ = 3+ is the usual
crossover exponent associated with A%, and the scaling law dv = 20 + v has been
used. Eq. (123) has the form predicted by conventional critical scaling, but with a
prefactor that depends on the experimental time scale. Thus the dependence of the
position of an apparent AT line on experimental time scale or frequency determines
the exponent combination (d—2y)/4 within the droplet model. Indeed, the existence
or nonexistence of an equilibrium AT line is a key discriminant between the rival
theories of the spin-glass ordered phase.

Similar arguments involving relaxation over barriers have been used to determine
the behaviour of temporal correlation functions in equilibrium {83]. For example,
the equilibrium spin-spin autocorrelation function

C(t —t') = [(S(t)S:(t'))r — (St r{Si(t)) 7)o (124)

is dominated by excitations which just fail to relax on time scale t. Such excita-
tions have length scale L(t) ~ {(T/b)In(t/7)}/¥, and the probability that such an
excitation is thermalized (so that {S;(¢))7 = 0) is of order T/TL(%)Y, giving

C(t) ~ (Tq/TY{(T/6) In(t/70)} ¥/, (125)

a logarithmically slow decay which leads to 1/ f noise (up to Jogarithmic corrections)
in the power spectrum of the equilibrium magnetization fluctuations [83]). However,
the dynamics is so slow in the ordered phase that equilibrium correlations are in
practice unobservable. Instead, one must consider nonequilibrium correlations.

3.2.4 Coarsening

From the scale-dependence of the (free-}energy barriers, B(L) ~ bL¥, it follows that

the coarsening length scale in a spin glass grows as L(t) ~ (Int)/*. The ‘domains’
consist of the two ‘pure phases’ (one being the global inverse of the other) of the
droplet model. In contrast to ferromagnetic systems, however, the domain walls
are believed to be fractal, i.e. the interfacial length of a section of wall of linear

dimension L scales as L%, with d — 1 < d, < d. Measurements of d, through
numerical studies give d, = 1.26 for d = 2 [87], and = 2.2 for d = 3 [88]. It follows
that the domain-wall density scales as

p(t) ~ L(t)~ | (126)

for spin glasses, instead of L(¢)™!.

Huse [88] has measured p(t) by looking at the overlap between two replicas (i.e.
systems with identical bonds) coarsening from independent random initial condi-
tions. He defines the local overlap Q;(t) = o}(¢)o?(t), where the superscripts are
replica indices and o (t) = sgn[X_; -,/ S7(7)] is a time-averaged local magnetization
intended to average over short-term thermal fluctuations. If one defines ‘domains’
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for € as regions where 1; has a given sign, then these domains should coarsen in
much the same way as the ‘real’ domains of the underlying replicas, since { has a
domain walls wherever either {(but not both) of the replicas has a wall. The aver-
age domain size L(t) was found from looking at the distance from each site to the
nearest wall along the lattice axes, and averaging over axes and sites. Monte Carlo
simulations in d = 3 gave a result consistent with (126), with d — d, ~ 0.83, 1.e.
ds 7~ 2.17. The dependence of L(t) on Int suggested an exponent ¢ a little less than
unity.

The reasonable fit to a power-law decay of p(¢), suggesting that p(¢) vanishes for
t — o0, is consistent with the droplet theory: at ¢ = oo, both replicas would either
be in the same phase or different phases, so ; would be 1 or —1 everywhere, with
no domain walls. In the alternative scenario, based on Parisi’s solution of the SK
model, there are many pure phases. If the two replicas settle into different phases
(unrelated by symmetry), the overlap function {; would exhibit domain walls (where
the two phases differ) even in equilibrium, and p(t) would saturate at some non-zero
limiting value. Since p(t) only decays by a factor of two in the simulations, however,
the present data should not be seen as conclusive. It may be worth repeating
these simulations, using Derrida’s method [89] of eliminating the effects of thermal
fluctuations, rather than the crude time-averaging adopted by Huse.

[Finally we note that aging phenomena in spin glasses can also be discussed within
the droplet model. Since this goes beyond the scope of the present lectures, I refer
the interested reader to the paper by Fisher and Huse [15].

-

4 Persistence in Coarsening Processes

4.1 What is Persistence?

In addition to the exponents z and A which describe the growth of the domain scale

(L{t) ~ t/7) and the decay of autocorrelations (A(t) ~ L(t)™*) respectively, there
lhas been recent interest in a new exponent 8 which describes the ‘persistence’ of local
degrees of freedom (e.g. spins) in the coarsening state. The ‘persistence’ probability,
p{t1.12), is the probability that the order parameter ¢(x,t), or the spin S(t), for a
particular point x or site 7, has not changed sign between times ¢, and {; (where ¢,
is often taken to be the quench time, ¢; = 0). For coarsening at T = 0, one expects
that this probability will have the scaling form p(ty,12) = f(t;;(tl) when both times
correspond to the asymptotic scaling state. The function f(z) is generically found
to have a power-law tail, f(z) ~ =%, for  — oo, i.e. p(t),12) decays as i3 for fixed
{;. The exponent # has been called the ‘persistence exponent’.

The power-law tail is restricted to coarsening at T = 0, since thermal activation
at T > 0 will lead to an exponential decay of the persistence probability. For
T > 0, one needs to define persistence in a generalized way as the probability that a
particular point in space has remained in the same phase for t; < ¢ < 1;. A method
of measuring, in numerical simulations, persistence defined this way has recently
heen proposed by Derrida [89]. In the present notes, we will restrict discussion to
coarsening at T = 0 and, for simplicity, we will model the coarsening through the
approximate OJK theory for a nonconserved scalar field discussed in section 2.3.3.
Recall that the auxiliary field m is gaussian within this approximation, and obeys the
simple diffusion equation. Since m and the order parameter ¢ have the same zeros,
we can conveniently discuss persistence in terms of the field m. Given the ubiquity
of the diffusion equation in physics, the results will be of interest beyond the field
of phase-ordering kinetics considered here. In the following, we use the symbol ¢ to
represent the diffusion field. It should be borne in mind that, in the phase-ordering
context, ¢ now represents the gaussian field m, not the order parameter field. The
results presented below were derived independently by two groups [90, 91].
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4.2 Persistence in the Diffusion Equation

The diffusion equation, d,¢ = V2¢, is one of the fundamental equations of classical
physics. The exact solution of this simple equation, for an arbitrary initial con-
dition ¢(x,0), can be written down explicitly: ¢(x,t) = [d% G(x — x',t)¢(x’,0),
where G(x,t) = (47t)~%/? exp(—z?/4t) is the Green’s function (or ‘heat kernel’) in
d dimensions. The solution is characterized by a single growing length scale, the
‘diffusion length’ L(t) ~ t'/2. It is somewhat surprising, therefore, to discover that
there is a nontrivial exponent associated with this simple process.

In the following we point out that the solutions of the diffusion equation exhibit
some unexpected properties associated with their time evolution, and to present
a simple theory which accounts for this behavior. We consider specifically a class
of initial conditions where ¢(x,0) is a gaussian random variable with zero mean.
Our basic question is the following. What is the probability py(?) that the field
¢ at a particular point x has not changed sign up to time {7 Precise numerical
simulations in d = 1 and 2, discussed below, demonstrate a power-law decay of
the form po(t) ~ t~%, with & = 0.1207 £ 0.0005 for d = 1, and 0.1875 £ 0.0010
for d = 2. We will present a simple analytic treatment which gives results in
extraordinarily good agreement with the simulations. Furthermore, the analysis
gives the more general result p,(t1,%2) ~ [In(¢2/t1)]* (t,/t2)~? for the probability
that the field changes sign n times between t; and t,, for ¢, > t;. The key idea
underlying these results is that the gaussian process ¢(x,t) is a gaussian stationary
process in terms of a new time variable T = Int. The central assumption in the
analysis is that the intervals between successive zeros of ¢(x,T") can be treated as
independent.

Exponents # analogous to that introduced above have recently excited much
interest in a variety of contexts [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103].
The simplest such system is the d = 1 Ising model at temperature T = 0. For
evolution under Glauber dynamics from a random initial state , the probability that
a given spin has not flipped up to time ¢ decays as t~%, with @ = 3/8, though the proof
of this is surprisingly subtle [97]. This d = 1 method is difficult to extend to higher
dimensions, although values for # have been obtained numerically [92, 94, 95, 98]. An
approximate method for general dimensions has recently been developed [98], whose
predictions are consistent with simulation results. In general, the non-triviality of
po(t) is a consequence of the fact that it probes the entire history of a non-Markovian
process.

We begin by presenting the theoretical approach and the numerical simulation
results. Experimental ramifications will be discussed briefly. Other contexts in
which a nontrivial exponent & might be expected will also be discussed.

The starting point for the discussion of the diffusion equation is the expression

for the autocorrelation function of the variable X (¢) = ¢(x,t)/{{¢(x, t)]?)/2 for some
fixed point x. For ‘white noise’ initial conditions, (¢(x, 0)¢(x’,0)) = 6%(x — x’), this
takes the form

aty, t2) = (X(t1) X (t2)) = [4t1t2/(f1 +12)7)Y4. (127)

More generally, this form is asymptotically correct provided the initial condition
correlator is sufficiently short-ranged (it must decrease faster than |x — x/|~%).
Introducing the new time variable 7' = In{, one sees that the autocorrelation
function becomes a(Ty, Ty) = f(T) — T2), where f(T) = [sech(T/2)}%/%. Thus the
process X (T} is stationary (the gaussian nature of the process ensures that all higher-
order correlators are also time-translation invariant). This is an important simpli-
fication. Note that the anticipated form of the probability of X(¢) having no zeros
between t; and f2, po(t1,t2) ~ (£1/t2)? for o > t;, becomes an exponential decay,
po ~ exp[—8(Ty — T1)], in the new time variable. This reduces the calculation of an
exponent to the calculation of a decay rate[98]. The only approximation we shall
make is that the intervals between successive zeros of X(T') are statistically indepen-
dent. This ‘independent interval approximation’ (IIA) was introduced in another
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context some forty years ago [104]. We shall show that it is an extraordinarily good
approximation for the diffusion equation.

4.2.1 The Independent Interval Approximation

As a preliminary step, we introduce the ‘clipped’ variable ¢ = sign (X), which
chaunges sign at the zeros of X{t). Clearly, the correlator A(T) = (c(0)o(T)) is
determined solely by the distribution P(T) of the intervals between zeros. The
strategy is to determine P(T') from A(T), and po{T) from P(T). To this end we
note first that

A(T) = %sin‘l[( (T)] = 2sm ([sech (T/2)]d/2) , (128)

where the first equality holds for any gaussian process.
Next one expresses A(T') in terms of the interval-size distribution P(T). Clearly

o

A(T) = 3 (~1)pu(T), (129)

n=0

where p,(7T) is the probability that the interval T contains n zeros of X(7T). We
define Q(T') to be the probability that an interval of size 7" to the right or left of
a zero contains no further zeros. Then P(T) = —@Q(T). For n > 1 one obtains
immediately

T T T
]i”(T‘) = <T>_1/(; dTl T, dT? e /" 1 dTn Q(TI)P(TZ_Tl) e P(Tn‘—Tn—l)Q(T—Tn):

) (130)
where (T} is the mean interval size. One has made the IIA by writing the joint
distribution of n successive zero-crossing intervals as the product of the distribution

of single intervals. Taking Laplace transforms gives pn(s) = [Q(s)P[P(s) 1 (T,
But P(T) = —Q'(T) implies P(s) = 1 —s{(s), where we have used Q(0} = 1. Using
this to eliminate ((s) gives the final result

Pa(s) = (1) (1-}5(3))2(15(3))""‘, n>1, (131)
1

- T ((Tys =1+ P(s)), n=0, (132)

where the result for po( ) follows from the normalization condition 20, pa(t) = 1,
which gives 327, pa(s) = 1/s.

Finally the Laplace transform of (129) gives Als) = Yomo(=1)"Pa(s).
the sum employing (131) and (132), and using the result to express P(s) in terms
of A(s) gives the desired result

P(s) = [2— F(s)l/F(s), (133)

Performing

where

F(s) =14 ((T)/2)s[1 — sA(s)]. (134)

Equations (131-134) are a general consequence of the independent interval ap-
proximation. The function F(s), defined by {134), is completely determined by the
autocorrelation function A(T), and contains all the information needed to compute
the probabilities p,{T). We have in mind, of course, to apply this approach to the
diffusion equation, where A(T) is given by (128). For this case the mean interval
size (T'), required in (134), can be simply evaluated. For T — 0, the probability
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to find a zero in the interval T is just T/{T), so A(T) — 1 — 27 /{(T). This gives

(TY = —2/A'(0) = =\/8/d, using (128) in the final step.

We note a very important point at this stage. The fact that A4’(0) is finite (i.e.
f(0) = 0 and f"(0) # 0) is special to the diffusion equation, which allows us to
use the IIA. Physically this means that the density of zeros is a finite number.
However, for many Gaussian stationary processes f'(0) # 0, implying that .1’(0)
diverges. In this case, the I1A cannot be used. For such processes, the variational and
perturbative methods developed in Ref.[98, 103] give reasonably accurate results.

The asymptotics of po(7') are controlled by the singularity of po(s) with the
largest real part, i.e. [from (132)] by the corresponding singularity of P(s). The
expectation that po(T) ~ exp(—~8T) suggests that this singularity is a simple pole,
i.e. that F(s) has a simple zero at s = —f. Using (128) in (134), and inserting

(T) = n\/S/_d, gives

F(s)=1+m (%)1/2-3 [1 -~ 2?3/000 dT exp(—sT)sin™! (sechd’(2 (g))] (135)

Clearly F(0) = 1, while F(s)} diverges to —oo for s — —d/4. Between these two
points F(s) is monotonic, implying a single zero in the interval (—d/4,0). Solving
(135) numerically for this zero, and identifying the result with —#8, gives the values
of 8 shown in table 2. For future reference, we note from (133) that the residue R of
the corresponding pole of P(s) is R = 2/F'(—8). The values of R, which controls the
amplitude of the asymptotic decay of p,(T'), are also given in table 2. Recall that
the behavior po(T') ~ exp(—07T) translates in ‘real’ time to a decay law po(t) ~ t~*
for the probability that ¢ at a given point has not changed sign. It is also easy
to extract the large-d behaviour of § from Eq. (9): we find, to leading order in d,

8 = 0.145486+/d.

d O, Bsim R

1 0.1203 0.1207 £ 0.0005 0.1277
2 0.1862 0.1875 £ G.0010 0.2226
3 0.2358 0.2380 & 0.0015™ 0.2940
4 0.2769 - 0.3527
5 0.3128 - 0.4033

Table 2: Exponents # from theory ;1) and simulations (8, ), and the value of
the residue R (see text), for various spatial dimensions d. The ‘d = 3’ simulation
result (*) refers to a d = 1 simulation with correlated initial conditions (see text).

4.2.2 Simulations

The predicted values of # were tested in d = 1 and 2 by numerical simulations. The
diffusion equation was discretized in space and time in the form

Bilt+1) = (1) + a X850 — ()], (136)

where j runs over the nearest neighbors of 7 on a linear (d = 1) or square (d = 2)
lattice. A stability analysis shows that the solution is unstable for a > a. = 1/(2d).
Preliminary studies showed that the asymptotic exponent is independent of a for
a < a., but that a value a = a./2 seems to give the quickest onset of the asymptotic
behavior. This value was therefore used in all simulations reported here. Systems
of 2% (2%4) sites were studied in d = 1 (d = 2), for times up to 2'7 (2'2). Data
for longer times in d = 2 suffer from noticeable finite-size effects. The initial values
of ¢; were chosen independently from a gaussian distribution of zero mean. Using
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a rectangular distribution gave the same asymptotic exponent within the errors.
Several random number generators were tried: All gave consistent results (within
the errors).

The simulation results are presented in table 2 (see [90] for more details of the
simulations). The agreement with the theoretical predictions is quite remarkable,
showing that the IIA is an extraordinarily good approximation in this context.

The case of correlated initial conditions is also of interest. If the Fourier-space
correlations are {¢x(0)¢p_k(0)) ~ &7 for k -+ 0 (¢ > —d), the autocorrelation func-
tion of X (#) still has the form (127), but with d replaced by d + o. Therefore, the
dependence of # on d and ¢ enters only through the combination d + o. Results
for d =3 (and uncorrelated initial conditions) were obtained by simulating a d = 1
system with ¢ = 2, noting that ¢ = 2 corresponds in real space to differentiating
uncorrelated initial conditions (or taking finite differences on a lattice). The result

was = 0.2380 4 0.0015, close to the predicted result 0.2358 from the IIA.

4.2.3 n-Flip Probabilities

The asymptotics of the probability p,(t1, ;) for having n zeros between times ¢; and
t, are also readily calculable within the IIA. From (131) and (132), the singularity

in p.(s) as s = —0 is an (n + 1)™"-order pole of strength R"*! /{162, where R is the

strength of the simple pole in 15(5) Inverting the Laplace transform, and retaining
only the leading large-T behavior, gives (for all n)

R (RI)y

-

exp(—60T). (137)

With T = In(¢;/t,), one obtains

Palty,ta) = (R /(T)0%) [In(t/t1)]" (1 /t2)°. (138)

When the time ¢; corresponds to the initial condition, one has to set {; equal to
a constant of order unity, as was implicit in the earlier treatment of po(t). Setting
t; = t one then gets p,(¢) ~ (Int)*¢t~?. Simulations are consistent with this form,
at least for » not too large [108].

4.3 Discussion

We turn to a brief discussion of the experimental relevance of our results. The
ubiquity of the diffusion equation in physics implies that applications will be many
and varied. Qur first example is the coarsening dynamics of a nonconserved scalar
order parameter, which was our original motivation. The twisted nematic liquid
crystal film provides a convenient experimental realization. The exponent theta for
this d = 2 system has recently been measured, with the result § = 0.19 &£ 0.03
[105], in good agreement with the result § ~ 0.19 from the OJK theory (table 2).
Actually, the agreement is better than might be expected: a measurement of the
autocorrelation exponent A on the same system gave A ~ 1.25 [17], quite different

from the prediction A = d/2 =1 of the OJK theory.

As a second example consider the reaction-diffusion process A+ B ~+ ', where C
is inert and immobile. The corres?onding rate equations for the concentrations are
dny/dt = V?n4— R, dng/dt = V*ng — R, and dn¢c/dt = R, where R is the reaction
rate per unit volume (R « nang for d > 2 [106]). The concentration difference,
An = n4 — ng, obeys the diffusion equation exactly. If the A and B species are
randomly mixed at ¢ = 0 the system evolves, for d < d, = 4, to a coarsening state
in which the two species segregate into domains [107], separated by domain walls
whose locations are defined by An = 0. Subsequent production of the inert species
' is slaved to the motion of the domain walls, which are zeros of the diffusion
field An. The fraction of space not infected by the C species will therefore decay

asymptotically as ¢77,



We conclude with some other examples of non-trivial exponents 8 that have
recently been discussed. The first is associated with the dynamics of the global order
parameter M () {e.g. the total magnetization of an Ising ferromagnet) at a critical
point T, following a quench to 7, from the high-temperature phase. The quench
prepares the system in a state with random initial conditions. In the subsequent
evolution (now stochastic, rather than deterministic), the probability that A7(¢} has

not changed sign since ¢ = 0 decays as ¢7%, where 8. is a new critical exponent
[102, IOSE For reasons similar to those given for the diffusion problem, we expect &,
to be an independent exponent, i.e. not related by any scaling law to the usual static
and dynamic exponents. As a second example, one can consider M(t) for a quench
to T = 0 from high temperature. In this case, po(t) ~ ™%, where o differs from the
corresponding exponent for single spins. For the d = 1 Glauber model, for example,
the probability that M(t) has not changed sign decays with an exponent fo = 1/4
[102], which differs from the exponent 3/8 obtained for the zero-flip probability of a
given spin [97].

As a final example, consider the generalised one-dimensional random-walk equa-
tion d™x/dt" = £(t), where £ is gaussian white noise. The cases n = 1,2,... corre-
spond to a random velocity (the usual random walk), random acceleration, etc. The
first two §,, are §; = 1/2 and 0, = 1/4 [109], but larger n have not been considered be-
fore to our knowledge. Application of the independent interval approximation [108]

gives equations of the same structure as for the diffusion process, but with sech®(T/2)
in (128) and (135) replaced by (2 — 1/n)exp(—T/2)2F1[1,1 — n;1 + n;exp(=T1)],
where 5 F is the hypergeometric function. This approach gives 8;.= 0.2647 (instead
of 1/4) while, for larger n, 6, approaches a limiting value 0, = 0.1862. .., 1.e. the
same exponent as the d = 2 diffusion equation! In fact, the equality of the exponents
for the n = oo process and d = 2 diffusion can be proved exactly [108], implying a
limiting exponent 0.1875 & 0.0010 (from table 2) for the former.

To summarize, we have discussed persistence in the context of the diffusion
equation or, equivalently, the OJK theory of ordering kinetics. The key factor
underlying the nontriviality of 8 is that the dynamics of ¢(x) for a particular point
x is non-Markovian. (The autocorrelation function A(T) of any gaussian Markov
process, expressed in the stationary variable T, is a simple exponential: A(T) =
exp(—uT). For this case one can show that the persistence probability is p(7') =
(2/7)sin" {A(T)] exactly, i.e. § = p for a gaussian Markov process. Any non-
exponential form for A(T') implies a non-Markov process.) We have introduced the
Independent Interval Approximation as a useful tool for estimating € in cases where
the density of zeros is finite. When the density is infinite, other techniques are
necessary. A recent preprint [110] introduces a variety of such techniques in the
context of the dynamics of fluctuating interfaces.

As a final remark we note that, quite generally, the set of persistent sites is a
fractal set, with fractal dimension D = d—8/z, up to the coarsening scale L{t} ~ /=,
Consider two points a distance r apart, with the first point chosen from the persistent
set. Let p(r,t) be the probability that the second point also belongs to the persistent

set. For r > L(t}, the two points are uncorrelated, giving p(t) ~ t~%. For general
r and t, scaling implies p(r,t) = t~%g(r/t'/%). But for r <« ¢}/, p should become

independent of ¢, so g(z) ~ z7%* for z — 0. Tt follows that p(r,t) ~ r=9% for
r < L(t). The number of persistent sites within a radius R of a given persistent

site is therefore of order R¥™%/%, for R « Lgt), giving the fractal dimension as
D = d — 6/z. This result has been confirmed for the diffusion equation (z = 2) in

one [111] and two [112] dimensions.
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FIGURES

Figure ' Monte Carlo simulation of domain growth in the 4 = 2 Ising model at T= 0 (taken
from Kissner [8]). The system size is 256 X 256, and the snapshots correspond 10 5, 15,
60 and 200 Monte Carlo steps per spin after a quench from 7= o=,

N
k)

0

T
Figure l Schematic RG flow diagram, with fixed points at T=0, Tcand =. All T> Tc are
equivalent to T= = and all 7<T7¢ to T=0, as far as large length-scale properties are
concerned.
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