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NONEQUILIBRIUM DYNAMICS OF INTERFACES AND LINES

Mehran Kardar
Department of Physics

Massachusetts Institute of Technology
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The lectures examine several problems related to non-equilibrium fluctuations of interfaces and flux lines.
We start by introducing the phenomenology of depinning, with particular emphasis on interfaces and contact
lines. The role of the anisotropy of the medium in producing different universality classes is elucidated. We
then focus on the dynamics of lines, where transverse luctuations are also important. We shall demonstrate
how various non-linearities appear in the dynamics of driven flux lines. The universality classes of depinning,
and also dynamic roughening, are illustrated in the contexts of moving flux lines, advancing crack fronts,
and drifting polymers.

1. Depinning of Interfaces

1.1 Introduction and Phenomenology

Depinning is a non-equilibrium critical phenemenon involving an external force and a pinning potential.
When the force is weak the system is stationary, trapped in a metastable state. Beyond a threshold force the
(last) metastable state disappears and the system starts to move. A simple example is provided by a point
mass on a rough table. The mass is stationary until the external force F' exceeds that of static friction F..
Larger forces lead to an initial period of acceleration, before the motion settles to a uniferm velocity due to
viscous forces. In the latter is proportional to velocity, the ultimate velocity of the point close to threshold
behaves as v o (F — Fy).

While there are many other macroscopic mechanical examples, our main interest comes from condensed
matter systems such as Charge Density Waves (CDWs)!, interfaces?, and contact lines®. In CDWs, the
control parameter is the external voltage; a finite CDW current appears only beyond a threshold applied
voltage. Interfaces in porous media, domain walls in random magnets, are stationary unless the applied
force (magnetic field) is sufficiently strong. A key feature of these examples is that they involve the collective
depinning of many degrees of freedom that are elastically coupled. As such, these problems belong to the
realm of collective critical phenomena, characterized by universal scaling laws. We shall introduce these laws
and the corresponding exponents beiow for the depinning of a line (interface or contact line}.
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Figure 1. Geometry of the line in two dimensions.

Cousider a line in two dimensions, oriented along the r direction, and fluctuating along a perpendicular
direction r. The configuration of the line at time t is described by the function r(xz.¢). The function r is
assumed to be single valued, thus excluding configurations with overhangs. In many cases?, where viscous
forces dominate over inertia, the local velocity of a point on the curve is given by

driz.t)
dt

=F+ flx.r}+ K[r]. (1)
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The first term on the right hand side is a uniform applied force which is also the external control parameter.
Fluctuations in the force due to randomness and impurities are represented by the second term. With
the assumption that the medium is on average translationally invariant, the average of f can be set to
zero. The final term in eq.(1)describes the elastic forces between different parts of the line, Short range
interactions can be described by a gradient expansion; for example, a line tension leads to K[r(z)] = V?r or
K[r(g)] = —q*r(q) for the Fourier modes. The surface of a drop of non-wetting liquid terminates at a contact
line on a solid substrate®. Deformations of the contact line are accompanied by distortions of the liquid/gas
surface. As shown by Joanny and de Gennes?, the resulting energy and forces are non-local, described by
Klr(9)] = ~llr(q).

For the case of a surface in three dimensions deformations are described by r{x,, ;). More generally, we
shall consider r(x), where X is a d—dimensional vector. In a similar spirit, we shall generalize the coupling
to K{r(g)} = —ig|°r(g), which interpolates between the above two cases as o changes from one to two. Notc,
however, that the equation of motion need not originate from variations of a Hamiltonian, and may include
non-linear couplings which will be discussed later on,
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Figure 2. Critical behavior of the velocity.

When F is small, the line is trapped in one of many metastable states in which 8r /9t = 0 at all points.
For F larger than a threshold F., the line is depinned from the last metastable state, and moves with an
average velocity v. On approaching the threshold from above, the velocity vanishes as

v = A(F — F,)”, {2)

where 3 is the velocity ezponent, and A is a nonuniversal amplitude. A mean-field estimate for § was
obtained by Fisher in the context of CDWSs®. It corresponds to the limit ¢ = 0, where every point is coupled
to all others, and hence experiences a restoring force proportional to (r(x)) — r(x). The resulting equation
of motion,
dr(x)
dt

= (r{x}) ~ r(x) + F + f{x,r(x)),

has to be supplemented with the condition (r(x)) = vt. The self-consistent solution for the velocity indeed
vanishes as (F — F..})?, with an exponent that depends on the details of the random force. If f{x,r{x}) varies
smoothly with r, the exponent is § = 3/2, while discontinuous jumps in the force (like a saw-tooth) result
in 3 = 1. In fact the latter is a better starting point for depinning in finite dimensions. This is because of
the avalanches in motion (discussed next), which lead to a discontinuous coarse grained force.

The motion just above threshold is not uniform, composed of rapid jumps as large segments of the line
depin from strong pinning centers, superposed on the slower steady advance. These jumps have a power law
distribution in size, cutoff at a correlation length £ which diverges at the transition as

§~(F=F}™ (3)

The jumps are reminiscent of evalanches in other slowly driven systems. In fact, the depinning can be
approached from below F, by monotonically increasing F' in small increments, each sufficient to cause a
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jump to the next metastable state. The size and width of avalanches becomes invariant on approaching F..
For example,

1
Prob{width of avalanche > ) = E—‘ﬁ(f/f_), (4)

where the cutoff £_ diverges as in Eq.(3). The critical line is a self-affine fractal whose correlations satisfy
the dynamic scaling {from

(2. 6) ~ (& ) = (2~ 2')%g ('t—”t—'—) , (5)

|z — 2’|

defining the roughness and dynamic exponents, { and z respectively. {Angular brackets reflect averaging over
all realizations of the random force f.) The scaling function g goes to a constant as its argument approaches
0; ( is the wandering exponent of an instantaneous line profile, and z relates the average lifetime of an
avalanche to its size by 7(£) ~ £7.

Although, the underlying issues of collective depinning for CDWs and interfaces have been around for
some time, only recently a systematic perturbative approach to the problem was developed. This functional
renormalization group (RG) approach to the dynamical equations of motion was originally developed in the
context of CDWs by Narayan and Fisher® (NF), and extended to interfaces by Nattermann et al’. We
shall provide a brief outline of this approach starting from Eq.{1). Before embarking on the details of the
formalism, it is useful to point out some scaling relations amongst the exponents which follow from underlying
symmetries and non-renormalization conditions.

1. As mentioned earlier, the motion of the line close to the threshold is composed of jumps of segments of
size £, Such jumps move the interface forward by £ over a time period £*, Thus the velocity behaves as,

¢
v~ _2._ ~F=FP0 = B=u(z=(). (6)

2. If the elastic couplings are linear, the response of the line to a static perturbation £(z) is obtained simply
by considering

re{z,ty =riz.t) - ,‘C"[s(r)], (7)

where K ! is the inverse kernel. Since, r, satisfies Eq.(1) subject to a force F + e(z) + f(x,r:), r satisfies
the same equation with a force F + f{z,r — K~ ![¢{z)]). As long as the statistical properties of the stochastic
force are not modified by the above change in its argument, 3 (r}/8¢ = 0, and

<61‘e($)> — "K:_l. or <af's(‘?)> — _};-‘ (8)
9e(x) 9<(q) lal
Since it controls the macroscopic response of the line, the kernel K cannot change under RG scaling.

From Eqs.(5) and {3), we can read off the scaling of r(x), and the force §F, which using the above non-
renormalization must be related by the exponent relation

C+%:o. (9)

Note that this identity depends on the statistical invariance of noise under the transformation in Eq.{7). It
is satisfied as long as the force correlations {f(x,r)f(z’.r")) only depend on r — r’. The identity does not
hold if these correlations also depend on the slope dr/0z.

3. A scaling argument related to the Imry—Ma estimate of the lower critical dimension of the random field
Ising model, can be used to estimate the roughness exponents. The elastic force on a segment of length £
scales as €577, If fluctuations in force are uncorrelated in space, they scale as £~(¢+1/2 gver the area of an
avalanche. Assuming that these two forces must be of the same order to initiate the avalanche leads to

20—-1
¢ = O (10)

This last argument is not as rigorous as the previous two. Nonetheless, all three exponent identities can be
established within the RG framework. Thus the only undetermined exponent is the dynamic one, z.
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1.2 Functional Renormalization Group

A field theoretical description of the dynamics of Fiq.(1) can be developed using the formalism of Martin,
Siggia and Rose® (MSR): Generalizing to a d—dimensional interface, an auxiliary field f(x.t) is introduced
to implement the equation of motion as a series of d~functions. Varicus dynamical response and correlation
functions for the field »(x, t) can then be generated from the functional,

Z= /”Dr(x,t)’Df(x.t}J[r} exp(S), (11)

where

S= i/ddxdtf(x,t) {87 — K[r] -~ F = f{x,r({x,t))}. (12)

The Jacobian 7[r] is introduced to ensure that the d-functions integrate to unity. It does not generate any
new relevant terms and will be ignored henceforth.

The disorder-averaged generating functional Z can be evaluated by a saddle-point expansion around
a Mean-Field (MF) solution obtained by setting Kasp[r(x)] = vt — r{x). This amounts to replacing inter-
action forces with Hookean springs connected to the center of mass, which moves with a velocity v. The
corresponding equation of motion is

dryr
dt

:Ut—rMp(t)-{-f[r‘MF(t)]+FMF(U], (13)

where the relationship Far(v) between the external force F' and average velocity v is determined from the
consistency condition {rasr(t)) = vt. The MF solution depends on the type of irregularity®: For smoothly
varying random potentials, Sy r = 3/2, whereas for cusped random potentials, Sy p = 1. Following the
treatment of NF4:1¢ we use the mean field solution for cusped potentials, anticipating jumps with velocity
of O(1), in which case 8y r = 1. After rescaling and averaging over impurity configurations, we arrive at a
generating functional whose low-frequency form is

Z = /-’DR(x,t)Dl—?(x,t)exp(S‘).

5= /ddxdt [F — Farp(v)) R(x, t)
(14)

19q dw
- [ S, —w)—iwp + al") A(a,)

+ ;];-/ddxdt dt’ R{x. ) R(x,t"YC [vt — vt’ + R(x.t} — R(x,t")].

In the above expressions, I and [? are coarse-grained forms of r — vt and ir, respectively. F is adjusted to
satisfy the condition () = 0. The function C(v7) is initially the connected mean-field correlation function
((rase(t)rasp(t + 7))

Ignoring the R-dependent terms in the argument of C, the action becomes Gaussian, and is invariant
under a scale transformation & — br, t — b%t, R = b"~42R 1} & p="942R F -3 b~ 4/1F and v = b~ 4?0,
Other terms in the action, of higher order in I? and R. that result from the expansion of C' [and other terms
not explicitly shown in Eq.{14)], decay away at large length and time scales if d > d. = 20. For d > d,, the
interface is smooth (o < 0) at long length scales, and the depinning exponents take the Gaussian values
Zp = F, Yy = Q/d., ,@0 = 1.

At d = d.. the action § has an infinite number of marginal terms that can be rearranged as a Taylor
series for the function C' vt — o' + R(x.t) — B(x,t")]. when v — 0. The RG is carried out by integrating over
a momentum shell A/D < |q] < A {we set the cutoff wave vector to A = 1 for simplicity) and all frequencies,
followed by a scale transformation z — bx. t — b, B — b°R, and ft = V=91, where b = e*. The resulting
recursion relation for the linear part in the effective action (to all orders in perturbation theory) is

INF — Fup)

T =(z+8)(F — Fasr) + constant, (15)



which imunediately unplies {with a suitable definition of F.}

OF - Fo) _
3¢ —yF(F"'Fc}ﬂ (16)
with the exponent identity
yp-zz-{-g:l/l/ . (17)

The functional renormalization of C{u) in d = 20 — € interface dimensions, computed to one-loop order,
gives the recursion relation,

__acé;(fu) =[e4+204+2(:—a)]C{u)+ Cudi(u)
u (18)
54 d dC(u
- o { e - cop 252,

where §;4 is the surface area of a unit sphere in d dimensions. NF showed that all higher order diagrams
contribute to the renormalization of C' as total derivatives with respect to u, thus, integrating Eq.(18) at the
fixed-point solution 8C* /8¢ = 0, together with Eqs.(9) and {17), gives { = ¢/3 to all orders in ¢, provided that
f C* # 0. This gives Eq.(10) for a one-dimensional interface, as argued earlier. This is a consequence of the
fact that C(u) remains short-ranged upen renormalization, implying the absence of anomalous contributions
to .
. The dynamical exponent z is calculated through the renormalization of p, the term proportional to
R38R, which yields

2 =0 —2/9 4 Ofe?), (19)

and using the exponent identity (6),
G =1=2¢/% + O(*). (20)

Nattermann et. al.” obtain the same results to O(e) by directly averaging the MSR generating function in
Eq.(11), and expanding perturbatively around a rigidly moving interface.

Numerical integration of Eq.{1) for an elastic interface!! (¢ = 2) has yielded critical exponents ( =
0.97 £0.05 and » = 1.05 £ 0.1, in agreement with the theoretical result { = v = 1. The velocity exponent
3 =10.24+40.1 is also consistent with the one-loop theoretical result 1/3; however, a logarithmic dependence
v ~ 1/In(F — F_.), which corresponds to 3 = 0, also describes the numerical data well. In contrast.
experiments and various discrete models of interface growth have resulted in scaling behaviors that differ
from system to system. A number of different experiments on fluid invasion in porous media'? give roughuess
exponents of around 0.8, while imbibition experiments'?1* have resulted in { = 0.6. A discrete model studied
by Leschhorn!®, motivated by Eq.(1) with o = 2, gives a roughness exponent of 1.25 at threshold. Since the
expansion leading to Eq.(1) breaks down when ¢ approaches one, it is not clear how to reconcile the results
of Leschhhorn’s numerical work!® with the coarse-grained description of the RG calculation, especially since
any model with ¢ > 1 cannot have a coarse grained description based on gradient expansions.

1.3 Anisotropy

Amaral, Barabasi, and Stanley {ABS)'® recently pointed out that various models of interface depinning in
141 dimensions fall into twe distinct classes, depending on the tilt dependence of the interface velocity:
1. For models like the random field Ising Model'”?, and some Solid On Solid models, the computed exponents
are cousistent with the exponents given by the RG analysis. It has been suggested', however, that the
roughness exponent is systematically larger than ¢/3, casting doubt on the exactness of the RG result.
2. A number of different models, based on directed percolation (DP)'®:!® give a different roughness exponent,
¢ = 0.63. In these models, pinning sites are randomly distributed with a probability p, which is linearly
related to the force F. The interface is stopped by the boundary of a DP cluster of pinning sites. The critical
exponents at depinning can then be related to the longitudinal and transverse correlation length exponents
vy = L.70 and v = 1.07 of DP. In particular, { = !/H/V_L = 0.63, and 3 = 1y — | = 0.63. in agreement with
experinments.

The main difference of these models can be understood in terms of the dependence of the threshold
force F; to the orientation. To include the possible dependence of the line mobility on its stope, 9,1, we can
generalize the equation of motion to

Or = KO%r 4 wOor + %(8,_.:‘)2 + F+ fleor). (21)
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The isotropic depinning studied by RG corresponds to & = A = 0. Tlie usual mechanisms for generating a
non-zero A arce of kinematic origin!® (A x v) and can be shown to be irrelevant at the depinning threshold
where the velocity v goes to zero'®. However, if A is not proportional to v and stays finite at the transition,
it is a relevant operator and expected to modify the critical behavior. As we shall argue below, anisotropy
in the medium is a possible source of the nonlinearity at the depinning transition.

A model flux line (FL) confined to move in a plane'' ?° provides an example where both mechanisms
for the nonlinearity are present. Only the force normal to the FL is responsible for motion, and is composed
of three components: (1) A term proportional to curvature arising from the smoocthening effects of line
tension. (2) The Lorentz force due to a uniform current density perpendicular to the plane acts in the
normal direction and has a uniferm magnitude F (per unit line length). (3) A random force i - f due to
impurities, where f is the unit normal vector?®. Equating viscous dissipation with the work done by the
normal force leads to the equation of motion

ah O2h fr—sfe
Vi | —2 gy e 29
ot ts (14 s2)3/2 e V14 s? (22)

where h(z.t) denotes transverse displacement of the line and s = 9,h. The nonlinearities generated by
V1 + 82 are kinematic in origin'® and irrelevant as v — 0%, as can be seen easily by taking them to the
left hand side of Eq.(22). The shape of the pinned FL is determined by the competition of the terms in the
square brackets. Although there is no explicit simple s? term in this group, it will be generated if the system
is ansotropic.

To illustrate the idea, let us take fy and f. to be independent random fields with amplitudes A,li/z

and Al/z respectively; each correlated isotropically in space within a distance a. For weak disorder. a
deformation of order a in the normal direction fi takes place over a distance L. > a along the line. The
total force due to curvature on this piece of the line is of the order of L.{a/L2), and the pinning force,
[(Lefa)(niAn + n2A,)] /2. Equating the two forces® yields L, = a(n?Aj + n2A,)~Y? and an effective
pinning strength per unit length,

Fo(s)=aL *=a"! (MA_’)?N
I+ 5%

The roughening by impurities thus reduces the effective driving force on the scale L. to F(s) = F — Fy(s).

Therefore, even if initially F is independent of s, such a dependence is generated under coarse graining,

provided that the random force is anisotropic, i.e. Ap # A;. An expansion of ﬁ‘(s) around its maximum

(which defines the hard direction) yields an s? term which is positive and remains finite as v — 0.

The above example indicates the origin of the two types of behavior for Ay = v (s = 0) observed by
ABS!®: Kinematics produces a hoy proportional to v which vanishes at the threshold; anisotropy yields a
nonvanishing (and diverging) Aoy at the depinning transition. An immediate consequence of the latter is that
the depinning threshold F, depends on the average orientation of the line. While anisotropy may generate
other local terms in the effective equation of motion, at a symmetry direction, this term is the only relevant
one in the RG sense, capable of modifying the critical behavior for ¢ < 4. A one-loop RG of Eq.(21) with
the & = 0 was carried out by Stepanow?!. He finds no stable fixed point for 2 € d < 4, but his numerircal
integration of the one loop RG equations in d = 1 yield ¢ = 0.8615 and a dynamiecal exponent z = 1. Due
to the absence of Galilean invariance, there is also a renormalization of A which is related to the diverging
Aer observed in Ref.*®. The nonperturbative nature of the fixed point precludes a gauge of the reliability of
these exponents.

Numerical simutations of Eq.(21} in d = 122, indicate that it shares the characteristics of a class of lattice
models!® ' where the external force is related to the density p of “blocking sites™ by F' = 1 — p. When
D exceeds a critical value of p., blocking sites form a directed percolating path which stops the interface.
For a given geometry. there is a direction along which the first spanning path appears. This defines a hard
direction for depinning where the threshold force F.{s) reaclies maximuwm. Higher densities of blocking
sites are needed to form a spanning path away from this direction, resulting in a lower threshold force
F.(s) for a tilted interface. Thus on a plienoimenological level we helieve that the nonlinear equation, and
directed percolation (DP) models of interface depinning belong to the same universality class of anisofropic
depinmung. This analogy may in fact be generalized to higher dimensions, where the blocking path is veplaced
by a directed blocking surface®®, Unfortunately, little is known analytically about the scaling properties of
such a surface at the percolation threshold.,



As emphasized above, the hallmark of anisotropic depinning is the dependence of the threshold force
F.(s) on the slope s. Above this threshold, we expect v(F,s) to be an analytical function of F and s. In
particular. for F > F.{0), there is a small s expansion v(F.s) = v(F,s = 0) + Aer % /2 + ---. On the other
hand, we can associate a characteristic slope § = £, /§; ~ (8F)*' =€), to DP clusters where dF = F — F.(0),
and v is the correlation length exponent. Scaling then suggests

v(F.s) = (§FYg(s/§F¥1~), (23)

where § = v(z — ¢). Matching Eq.(23) with the small s expansion, we sec that Aeg diverges as (6F)™° (as
defined by ABS'®) with 0 = 2u(1 — () — 8 = v(2— ( — z). In d = 1, the exponents v and ¢ are rvelated to
the correlation length exponents vy and v, of DP? via v = vy = 1.73 and { = v /v = 0.63. while the
dynamical exponent is z = 1. Scaling thus predicts @ = 0.63. in agreement with the numerical result of
0.64 & 0.08 in Ref.!'®. Close to the line F = F.(0)} (but at a finite s}. the dependence of v on 4F drops out
and we have

v{ Feos) o fs|f/+ (1700 (24}

As z = 1ind = 1, the above equation reditces to v  |s|, in agreement with Fig. 1 of Ref.18, Since v(F.,s) =0
at F = F.(s), Eq.(23) suggests
Fe{s) = Fo(0) x —[sf! /71 7¢) (25)

Note that Eqs. {24) and (25) are valid also in higher dimensions. though values of the exponents quoted
above vary with d%3.

An interface tilted away from the hard direction not only has a different depinning threshold, but also
completely different scaling behavior at its transition. This is because, due to the presence of an average
interface gradient s = {Vh), the isotropy in the internal x space is lost. The equation of maotion for
fluctuations, k/(x,t) = h(x,t) — 8 - X, around the average interface position may thus include a non-zero &
in (21). The resulting depinning transition belongs to yet a new universality class with anisotropic response
and correlation functions in directions parallel and perpendicular to s; i.e.

(hix) = hOYP) =y — 2 F (”‘—‘—'>

B J:h]"

Ly — :r:;l|C for x¢ —x =0
|x¢ ~ x’tIC/" for &y — J:’" =0
where 17 is the ansiotropy exponent, and X, denotes the d — 1 directions transverse to s.

A suggestive imapping allows us to deterniine the exponents for depiuning a tilted interface: Consider
the response to a perturbation in which all points along a (d — 1}-dimensional cross section of the interface
at a fixed rj are pushed up by a small amount. This move decreases the slope of the interface uphill but
increases it downhill. Since F.(s) decreases with increasing s. at criticality the perturbation propagates only
a finite distance uphill but causes a downhill avalanche. The disturbance front moves at a constant velocity
(6 o t) and hence z;; = 1. (Such chains of moving sites were indeed seen in simulations of the d = 2 model
discussed below.) Furthermore, the evolution of successive cross sections X, () is expected to he the same
as the evolution in time of a (d — 1)-dimensional interface! The latter is governed by the ardar-Parisi-Zhang
(KPZ) equation'?, whose scaling behavior has been extensively studied. From this analogy we conclude,

Crpzld — 1) 1 .
dy= —— dy = ———m. 26
C( ) Z](pz(d -— 1)’ J]( ) .':l\'pz([l — 1) ( )

In particular, the tilted interface with d = 2 maps to the growth problem in 1+1 dimensions where the
exponents are known exactly, yielding {{2) = 1/3 and n{2) = 2/3. This picture can be made more precise
for a lattice model introduced below, Details will be presented elsewhere.

To get the exponent J for the vanishing of velocity of the tilted interface. we note that since 3 = 1. ¢
scales as the excess slope ds = s — s.(F). The latter controls the density of the above moving fronts: 5.4F)
is the slope of the critical interface at a given driving force F. i.e.. F = Fu(s.). Away from the symuetry
direction, the function F.{s) has a non-vanishing derivative and hence

8F = F — Fu.(s) = F.(sc) — Fu(s) ~ 85 ~ v, (27)

-
i

- NS Y ¥ D

4

- was unminbd Y X



We thus conclude that generically 3 = 1 for tilted interfaces, independent of dimension.

To check the above predictions, we performed simulations of the parallelized version of a previously
studied percolation model of interface depinning'®. A solid-on-solid (SOS) interface is described by a set of
integer heights {h;} where i is a group of d integers. With cach configuration is associated a random set
of pinning forces {m; € [0.1}}. The heights are updated in parallel according to the following rules: h; is
increased by one if (i} h; < hy — 2 for at least one j which is a nearest neighbor of i, or (ii} 5y < F for a
pre-selected uniform force F. If k; is increased, the associated random force r; is also updated, i.e. replaced
by a new random number in the interval [0,1). Otherwise, h; and n; are unchanged. The simulation is
started with initial conditions h;(t == () = Int[si,], and boundary conditions hiyy, = Int{sL] + h; are enforced
throughout. The CPU time is greatly reduced by only keeping track of active sites.

The above model has a simple analogy to a resistor-diode percolation problem®®. Condition (i} ensures
that, once a site (i, 1) is wet (i.e., on or behind the interface), all neighboring celumns of i must be wet up to
height h — 1. Thus there is always “conduction” from a site at height A to sites in the neighboring columuns at
height fii—1. This relation can be represented by diodes pointing diagenally downward. Condition (ii} implies
that “conduction™ may also occur upward. Hence a fraction F of vertical bonds are turned into resistors
which allow for two-way conduction. Note that, due to the SOS condition, vertical downward conduction is
always possible. For F < F.. conducting sites connected to a point lead at the origin, form a cone whose hull
is the interface separating wet and dry regions. The opening angle of the cone increases with F, reaching
180° at F = F_, beyond which percolation in the entire space takes place, so that all sites are eventually
wet, If instead of a point, we start with a planar lead defining the initial surface, the percolation threshold
depends on the surface orientation, with the highest threshold for the untilted one.

Our simulations of lattices of 65536 sites in d = 1 and of 512 x 512 and 840 x 840 sites in d = 2 confirm
the exponents for depinning in the hard direction. For a tilted surface in d = 1 the roughness exponent
determined from the height-height correlation function is consistent with the predicted value of ¢ = 1/2 and
different from ¢ = 0.63 of the untilted one. The dependence of the depinning threshold on slope is clearly
seen in the figure below, where the average velocity is plotted against the driving force for s = 0 (open) and
s = 1/2 (solid). The s = 0 data can be fitted to a power-law v ~ (F = F.)? where F, = 0.461, 3 = 0.63+£0.04
ford =1, and F, = 0.201, 3 = 0.72 £ 0.04 for d = 2. Data at s = 1/2 are consistent with Eq.(27) close to
the threshold.
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Figure 3. Average interface velocity v versus the driving force F,
for d = 1, s = 0 {open circles), d = 1, s = 1/2 (solid circles), d = 2,
s = 0 {open squares}, and d = 2, s = 1/2 (solid squares).

We also measured height-height correlation functions at the depinning transition. For a tilted surface
in d = 2, the height fluctuations and corresponding dynamic behaviors are different parallel and transverse
to the tilt. The next figure shows a scaling plot of (a) C(r.t) = ({h(z) + ry,xe,t) — h{zy, 2., 1)]?) and (b)
Ci(rit) = {(Map oz + 7o t) — h(z:”,.rt,t}]?) against the scaled distances at the depinning threshold of an
s = 1/2 mterface. Each curve shows data at a given t = 32, 64, - ... 1024, averaged over 50 realizations of the
disorder. The data collapse is in agreement with the mapping to the KPZ equation in one less dimension.

In summary, critical behavior at the depinning of an interface depends on the symmetries of the under-
lying medium. Different universality classes can be distinguished from the dependence of the threshold force
(or velocity) on the slope, which is reminiscent of simtlar dependence in a maodel of resistor-diode percolation.
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Figure 4. Height-height correlation functions (a) along and (b)
transverse to the tilt for an 8407 system at different times 32 < ¢t <
1024. The interface at t = 0 is flat; d = 2, s = 1/2, and F = 0.144.

In addition to isotropic depinning, we have so far identified two classes of anisotropic depinning: along a
{hard) axis of inversion symmetry in the plane, and tilted away from it. We have no analytical results in the
former case, but suggest a number of scaling relations that are validated by simulations. In the latter (more
generic) case we have obtained ezact information from a mapping to moving interfaces, and confirmed them
by simulations in d = 1 and d = 2. As it is quite common to encounter {intrinsic or artificially fabricated)
anisotropy for flux lines in superconductors, domain walls in magnets, and interfaces in porous media, we
expect our results to have important experimental ramifications.

Another form of anisotropy is also possible for interfaces in 241 dimensions. If the directions x and y
on the surface are not related by symmetry, the non-linear term in the KPZ equation can be generalized,
leading to the depinning equation

8h = K, 9% + K,8%r + %(6,,:*)2 + i\%(ayr)z + F 4+ f(z,y,1). (28)

In fact the difference between K, and K, is not important as long as both are positive. It was first
pointed out by Dietrich Wolf?? that different signs of A, and A, lead to a different universality class for
the case of annealed noise. More recently it was demonstrated by Jeong et al?® that, with quenched noise,
eq.(28)describes a new universality class of depinning transitions with 8 = 0.80(1), and anisotropic roughness
exponents in the z and y directions.

2 Fluctuating Lines

2.1 Fluz Line Depinning

The pinning of flux lines (FLs) in Type-II superconducters is of fundamental importance to many
technological applications that require large critical currents?®, Upon application of an external current
density J, the motion of FLs due to the Lorentz force causes undesirable dissipation of supercurrents. Major
increases in the critical current density J. of a sample are achieved when the FLs are pinned to impurities.
There are many recent studies, both experimental?”'?% and theoretical?®3®, on collective pinning of FL’s
to point or columnar defects. Another consequence of impurities is the strongly nonlinear behavior of the
current slightly above the depinning threshold, as the FLs start to move across the sample. Recent numerical
simulations have concentrated on the low temperature behavior of a single FL near depinning®!-!! 2% mostly
ignoring fluctuations transverse to the plane defined by the magnetic field and the Lorentz force. Common
signatures of the depinning transition from J < J. to J > J. include a broad band (f~° type) voltage noise
spectrum, and self-similar Auctuations of the FL profile.

The FL provides yet another example of a depinning transition. We now extend the methods of the
previous section to the full three-dimensional dynamics of a single FL at low temperatures. The shape of
the FL at a given time ¢ is described by r(z,t), where z is along the magnetic field B, and the unit vector ¢
is along the Lorentz force F. Point impurities are modeled by a random potential V{x,r), with zero mean
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Figure 5. Geometry of the line in three dimensions.

and shoert-range correlations. In the presence of impurities and a bulk Lorentz force F, the energy of a FL
with small fluctuations is,

H = fdx {%(a:r}z +V (z,r(z,t)) — r(z,t) - F} : (29)

The simplest possible Langevin equation for the FL, consistent with local, dissipative dynamacs, is

1_1%=—55—?:=@§r+f(a:,r(:r,t))+l?, (30)
where y is the mobility of the FL, and f = — V. V. The potential V{z,r) nced not be isotropic. For example,
in a single crystal of ceramic superconductors with the field along the oxide planes, it will be easier to
move the FL along the planes. This leads to a pinning threshold that depends on the orientation of the
force. Anisotropy also modifies the line tension, and the elastic term in Eq.(30) is in general multiplied by
a non-diagonal matrix A, 3. The random force f(z,r), can be taken to have zero mean with correlations

(fa("v’r}f‘r('rr'rf)) ZJ("E—'E’)A(}?(I‘_IJ)' (31)

We shall focus mostly on the isotropic case, with A, (r —r') = J,,A(lr — r’]). where A is a function that
decays rapidly for large values of its argument.

While the flux line is pinned by impurities when F < F,, for F slightly above threshold, we expect
the average velocity v = |v| to scale as in Eq.(23). Superposed on the steady advance of the FL are rapid
“jumps” as portions of the line depin from strong pinning centers. The cut off length £ on avalanche sizes
diverges on approaching the threshold as £ ~ (F~ F.)™". At length scales up to £, the correlated Auctuations
satisfy the dynamic scaling forms,

([, £) = vy (0,007 =[[*W gy (¢/|2[*),

32
([rafz,t) = ri(0.0)) =[x[*+gui(t/|x|*), V2
where (, and z, are the roughness and dynamic exponents, respectively. The scaling functions g, go to a
constant as their arguments approach 0. Beyond the length scale £, different regions of the FL depin more
or less independently and the system crosses over to a moving state, described by different exponents, which
will be considered in the next section.
The major difference of this model from the previously studicd interface is that the position of the flux
line, r(x,t), is now a 2-dimensional vector instead of a scalar; fluctuating along both ey and e directions.
One consequenceis that a “no passing” rule®?, applicable to CDWs and interfaces, does not apply to FLs. Tt is
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possible to have coexistence of moving and stationary FLs in particular realizations of the random potential.
How do these transverse fluctuations scale near the depinning transition, and do they in turn influence the
critical dynamics of longitudinal fluctuations near threshold? The answer to the second question can be
obtained by the following qualitative argument: Consider Eq.(30) for a particular realization of randomness
f(z,r). Assuming that portions of the FL always move in the forward direction, there is a unique point
r1(z,ry;) that is visited by the line for given coordinates (z‘ r). We construct a new force field f' on a two
dimensional space (z,ry) through f'(z.r) = f; (zyry,ro(z, ri)). It is then clear that the dynamics of the
longitudinal component r{z,t) in a given force field f(z,r) is identical to the dynamics of ry(z, t) in a force
field f'(z,r}, with r) set to zero. It is quite plausible that, after averaging over all f, the correlations in f'
will also be short-ranged, albeit different from those of f. Thus, the scaling of longitudinal fluctuations of
the depinning FL will not change upon taking into account transverse fluctuations. However, the question
of how these transverse fluctuations scale still remains.

Certain statistical symmetries of the system restrict the form of response and correlation functions. For
example, Eq.(30) has statistical space- and time-translational invariance, which enables us to work in Fourier
space, i.e. (z,t) =+ (g,w). For an isotropic medium, F and v are parallel to each other, i.e., v(F) = v(F)F,
where F' is the unit vector along F. Furthermore, all expectation values involving odd powers of a transvelse
component are identically zero due to the statistical invariance under the transformatien r; - =r . Thus,
linear response and two-point correlation functions are diagonal. The introduced critical exponents are then
related through scaling identities. These can be derived from the linear response to an infinitesimal external

force field «(g,w),
aro(q’w)>
a W)= E(sa alg. W), 33
Xas(q,w) <6€ﬂ(q,w) 8Xxa(q,w) (33)

in the (g,w) = (0,0) limit. Eq.{30) is statistically invariant under the transformation F — F+:2(q), r(q,w) —
r(q,w) + g 2e(g). Thus, the static linear response has the form yy(¢,w =0) = x 1 {q,w = 0) = g~%. Since g
scales like the applied force, the form of the linear response at the correlation length £ gives the exponent

identity
¢+ 1/v=2 (34)

Considering the transverse linear response seems to imply {1 = (. However, the static part of the
transverse linear response is irrelevant at the critical RG fixed point, since 2, > z, as shown below. When
a slowly varying uniform external force () is applied, the FL responds as if the instantaneous external force
F + ¢ is a constant, acquiring an average velocity,

Jug .
oF,” "

(Oira) = va(F + ¢} = va{F) +

Substituting Qv /0F = dv/dF and dv, fOF) = v/F, and Fourier transforming, gives

1
~ Sio(dv/dF)" + O(w?)
1

xalg=0w) = = T o)

xjilg =0,w)
(35)

Combining these with the static response, we see that the characteristic relaxation times of Auctuations with
wavelength £ are

Tu(q=€*l}~( :;) ~ EHHB=DLY o,

- v -! L z
=€~ (i)~ e

which, using Eq.(34), vield the scaling relations

3=z = Qv

36)
.‘:L:z“-%-l/r/. (

We already see that the dynamic relaxation of transverse fluctuations is much slower than longitudinal ones.

All critical exponents can be calculated from ¢, (1, and zj, by using Eqs(34), and (36).
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Equation {30) can he analyzed using the formalism of Martin, Siggia, and Rose {MSR)?. Ignoring
transverse fluctuations, and generalizing to d dimensional internal coordinates x € R, leads to an interface
depinning model which was studied by Nattermann, Stepanow, Tang, and Leschhorn {NSTL)?, and by
Narayan and Fisher (NF}'?. The RG treatment indicates that impurity disorder becomes relevant for
dimensions d < 4, and the critical exponents in d = 4 — ¢ dimensions are given to one-loop order as
¢ =¢€/3, 2 =2—2¢/9. NSTL obtained this result by directly averaging the MSR generating functional Z,
and calculating the renormalization of the force-force correlation function A(r), perturbatively around the
freely moving interface (A{r) = 0)]. NF. on the other hand, used a perturbative expansion of Z, around
a saddle point corresponding to a mean-feld approximation to E«q.(30)%3, which involved temporal force-
force correlations C'(vt). They argue that a conventional low-frequency analysis is not sufficient to determine
critical exponents. They also suggest that the roughness exponent is equal to €/3 to all orders in perturbation
theory.

Following the approach of NF, we employ a perturbative expansion of the disorder-averaged MSR par-
tition function around a mean-field solution for cusped impurity potentials'®. All terms in the expansion
involving longitudinal fluctuations are identical to the interface case, thus we obtain the same critical expo-
nents for longitudinal fluctuations, i.e., {; = ¢/3, z; = 2~ 2¢/9+O{e?). Furthermore, for isotropic potentials,
the renormalization of transverse temporal force-force correlations €' (vt) yields a transverse roughness ex-
ponent (1 = 3¢;/2 — 2. to all orders in perturbation theory. For the FL (¢ = 3), the critical exponents are
then given by

Q=1 z=4/3, v=1,

(37)
Bm=1/3, (L=1/2, 2z, =7/3
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Figure 6. A plot of average velocity versus external force for a sys-
tem of 2048 points. Statistical errors are smaller than symboal sizes.
Both fits have three adjustable parameters: The threshold force, the
exponent, and an overall multiplicative constant.

To test the scaling forms and exponents predicted by Eqgs.(23) and (32}, we numerically integrated
Eq.(30), discretized in coordinates x and t. Free houndary conditions were used for system sizes of up to
2048, with a grid spacing Az = 1 and a time step At = 0.02. Time averages were evaluated after the
system reached steady state. Periodic boundary conditions gave similar results, but with larger finite size
effects. Smaller grid sizes did not change the results considerably. The behavior of v(F'} scems to fit the
scaling form of Eq.(23) with an exponent 3 = .3, but is also consistent with a logarithmic dependence on
the reduced force, i.e., 3 = 0. The same behavior was observed by Dong ¢t af. in a recent simulation of the
1 + 1 dimensional geometry'!. Since zj, and consequently 3, is known only to first order in ¢, higher order
corrections are expected. By looking at equal tiime correlation functions, we find that transverse fluctuations
are strongly suppressed, and that the roughness exponents are equal to our theoretical estimates within
statistical accuracy. The excellent agreement for € = 3 suggests that the theoretical estimates are indeed
exact.

The potential pinning the FL in a single superconducting crystal is likely to be higlly anisotropic. For
example, consider a magnetic field parallel to the copper oxide planes of a ceramic superconductor. The
threshold force then depends on its orientation, with depinning easiest along the copper oxide planes. In

12
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Figure 7. A plot of equal time correlation functions versus sepa-
ration, for the system shown in Fig.G, at F = 0.95. The observed
roughness exponents very closely follow the theoretical predictions
of {y =1, (1 = 0.5, which are shown as solid lines for comparison.

general, the average velocity may depend on the orientations of the external force and the FL. The most
general gradient expansion for the equation of motion is then,

Ory . 1
% = ’jngpg + Kagazf'g + 1\0363"'3 + EAQ'ﬁTazrﬂazr-y + fa (I,l‘(I, t)) + -, (38)
with

{falz, ) fa(z' 1)) = 6(z ~ 2'}Caplr — ') (39)

Depending on the presence or absence of various terms allowed by the symmetries of the system, the above
set of equations encompasses many distinct universality classes. For example, consider the situation where
v depends on F, but not on the orientation of the line. Eqgs.{35) have to be modified, since v and F
are no longer parallel (except along the axes with r & —r symmetry), and the linear response function
is not diagonal. The RG analysis is more cumbersome: For depinning along a non-symmetric direction,
the longitudinal exponents are not modified {in agreement with the argument presented earlier), while the
transverse fluctuations are further suppressed to (i = 2{; — 2 (equal to zero for { = 1)¥. Relaxation
of transverse modes are still characterized by z. = z; + 1/v, and the exponent identity (34) also holds.
Surprisingly, the exponents for depinning along axes of reflection symmetry are the same as the isotropic
case.

If the velocity also depends on the tilt, there will be additional relevant terms in the MSR partition
function, which invalidate the arguments leading to Eq.(34). The analogy to FLs in a planes suggests that the
longitudinal exponents for d = 1 are controlled by DP clusters!®:!3, with ¢ & 0.63. Since no perturbative
fixed point is present in this case, it is not clear how to explore the behavior of transverse fluctuations
systematically. '

2.2 Dynamac Fluctuations of an Unpinned Fluz Line

So far,w investigated the dynamics of a Flux Line near the depinning transition. Now, we would like to
consider its behavior in a different regime, when the external driving force is large, and the impurities appear
as weak barriers that deflect portions of the line without impeding its overall drift. In such non—equilibrium
systems, one can regard the evolution equations as more fundamental, and proceed by constructing the most
general equations consistent with the symmetries and conservation laws of the situation under study?®. Even
in a system with isotropic randomness, which we will discuss here, the average drift velocity, v, breaks the
symmetry between forward and backward motions, and allows introduction of nonlinearities in the equations
of motion36:35.

Let us first concentrate on an interface in two dimensions. (Fig.1.) By contracting up to two spatial
derivatives of r, and keeping terms that are relevant, one obtains the Kardar-Parisi-Zhang!'* (KPZ) equation,

Oyr(z.t) = uF + K&r(a,t) + % [O:r(z, )]° + f(z, 1), {40)
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with random force correlations
(flz. ) f{z' t')) = 2Té(x — x")o(t ~ th. (41)

For a moving line, the term proportional to the external force can be absorbed without loss of generality by
considering a suitable Galilean transformation, r — r —at, to a moving frame. A large number of stochastic
nonequilibrium growth models, like the Eden Model and various ballistic deposition models are known to
be well described. at large length scales and times, by this equation, which is intimately related to several
other problems. For example, the transformation v(z,t} = —Ad.r(z,t) maps Eq.(40) to the randomly stirred
Burgers’ equation for fluid How?™ 3%,

Bev + v9,v = KNO%u — A0 flz,t). (42)

The correlations of the line profile still satisfy the dynamic scaling form in Eq.(5), nevertheless with
different scaling exponents ¢, z and scaling function g. This self-affine scaling is not critical, i.e., not obtained
by fine tuning an external parameter like the force, and is quite different in nature than the critical scaling
of the line near the depinning transition, which ceases beyond the correlation length scale €.

Two important nonperturbative properties of Eq.(40) help us determine these exponents exactly in 1+1
dimensions:

1. Galilean Invariance {GI): Eq.(40) is statistically invariant under the infinitesimal reparametrization

'

r=rter, ' =mr4 At t =1, (43)

provided that the random force f does not have temporal correlations®®, Since the parameter A appears
both in the transformation and Eq.(40), it is not renormalized under any RG procedure that preserves this

invariance. This implies the exponent identity®® 3%
(+z=2 {44)

2. Fluctuation-Dissipation (FD) Theorem: Eqs.(40) and (41) lead to a Fokker-Planck equation for the
evolution of the joint probability P [r{z)l,

&P 5P .
P = /dl‘ (m & + TW) . (40)
It is easy to check that P has a stationary selution
P = ex £[d(a ) 40}
=exp| — T T (O, . (

If P converges to this solution. the long-time behavior of the correlation functions in Eq.(5) can be directly
read off Eq.{(46), giving ( = 1/2.

Combining these two results, the roughness and dynamic exponerts are exactly determined for the line
in two dimensions as

C=1/2, =z=3/2 (47)

Many direct numerical siinulations and discrete growth models have verified these exponents to a very good
accuracy. Exact exponents for the isotropic KPZ equation are not known in higher dimensions, since the
FD property is only valid in two dimensions. These results have been summarized in a number of recent
reviewsi0-41.42.43

As an aside we remark that some exact information is available for the anisolropic KPZ equation in
241 dimensions. Using a perturbative RG approach, Wolf showed?* that in the equation

Ao, + flzoat), (48)

. Ar .
gr =KV + -2—(0;1')2 + >
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the nonlinearities {A;. Ay } renormalize to zero if they initially have opposite signs. This suggests logarithmic
fluctuations for the resulting interface, as in the case of the linear Langevin equation. In fact, it is straight-
forward to demonstrate that eq.(48) also satisfies a Fluctuation Dissipation condition if A; = —A,. When
this condition is satisfied, the associated Fokker-Planck equation has a steady state solution

P =exp (—% -/d:cdy(Vr)z) . {49)

This is a non-perturbative result which again indicates the logarithmic fluctuations resulting from eq.(48)in
this context, it is interesting to note that the steady state distribution for an exactly solvable discrete model
of surface growth belonging to the above universality class has also been obtained*!

Let us now turn to the case of a line in three dimensions (Fig.5). Fluctuations of the line can be indicated
by a a two dimensional vector r. Even in an isotropic medium. the drift velocity v breaks the isotropy in r
by selecting a direction. A gradient expansion up to second order for the equation of motion gives*®

Gira =[K805 + Ko Vabg] 831",3

a 7',(?61-’" 1 (50)
+ [Al (50;3”7 + ‘507'0;3) + Az Ua‘5,6—7 + A3 1’r.rU3v-y] _z""‘;""‘l + fa
with random force correlations
{falz, ) fa(2' ) = 2[T1 b0 + Tovausld(x — x')d(t — ¢'). (31)

Higher order nonlinearities can be similarly constructed but are in fact irrelevant. In terms of components
parallel and perpendicular to the velocity, the equations are

; A A
6!:»” =K nair" + —;)ﬂ(azr”)"’ + T"(a,rl)" + f"(:c,t)

, (52)
Gr =K 0%, + ALOerOpry + fi(zx,t)
with

(Filz )l 1)) =27 6(x — z)é(t ~ t')
(53)

(fr(z. ) fo(z' 4")y =2T 8(x — 2")6(t — ')

The noise-averaged correlations have a dynamic scaling formn like Eq.(32),

[N YA n2g It' _ trl
{[ryz. ) = (@ O)F) = e = 2" P0gy [ — ).
le — 2|

{54)

{(Irufet) —ro(2' t))) = [z — 2"+ g (M) .

lz — 2’|

In the absence of nonlinearities (A = Ax = Ay =0), Eqs.(52) can easily be solved to give Gy=¢L=1/2
and zy = 2, = 2. Simple dimensional counting indicates that all three nonlinear terms are relevant and
may modify the exponents in Eq.(54). Studies of related stochastic equations?® 24 indicate that interesting
dynamic phase diagrams may emerge from the competition between nonlinearities. Let us assume that Al
is positive and finite (its sign can be changed by ry —* —ry), and focus on the dependence of the scaling
exponents on the ratios Ay /A and A /Ay, as depicted in Fig.8. (It is more convenient to set the vertical
axis to A« AyT) /A K Ty}

The properties discussed for the KPZ equation can be extended to this higher dimensional case:

1. Galilean Invariance (GI): Consider the infinitesimal reparametrization

{r’:.n-}-)\“et, =t

’— ‘f_
W =rptexr,ry =r .
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Figure 8. A projection of RG flows in the parameter space, forn = 1
transverse components.

Eqgs.(52) are invariant under this transformation provided that Ay = A. Thus along this line in Fig.8 there
is GI, which once more implies the exponent identity

Cn + Z” = 2. (56)

2. Fluctuation-Dissipation (FD) Condition: The Fokker-Planck equation for the evolution of the joint
probability P [r"{:n),m_(.r)] has a stationary solution

I\'H

Pa o exp (—[d:v [m(azfuf + %(azi‘ﬂ2]) ) (57)

provided that A, T = AR T. Thus for this special choice of parameters, depicted by a starred line in
Fig.8, if P converges to this solution, the long-time behavior of the correlation functions in Eq.(54) can be
directly read off Eq.{57), giving {y = (1 = 1/2.-

3. The Cole-Hopf (CH) Transformation is an important method for the exact study of solutions of the one
component nonlinear diffusion equation’’. Here we generalize this transformation to the complex plane by

defining, for A, <0,
Mrlr, ) i/ —AAxr iz, t
P{x.t)= exp( ket (Axr Lz )>.

2K (58)

The linear diffusion equation
8, ¥ = K2 + p{x, t)¥,

then leads to Eqs.(52)if iy = K1 = Kand Ay = AL, [Here Re(s) = Ay fy/2h and Im(u) = [=AyAx fL/2K ]
This transformation enables an exact solution of the deterministic equation, and further allows us to write
the solution to the stochastic equation in the form of a path integral

(z.t) t
V(x,t) = /(n ) Dair)exp {—/ﬂ dr [21;; + plx, r}] } . (39)
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Eq.(59) has been extensively studied in connection with quantum tunneling in a disordered medium*’, with
¥ representing the wave function. In particular, results for the tunneling probability [¥|? suggest 2 = 3/2
and ¢y = 1/2. The transverse fluctuations correspond to the phase in the quantum problem which is not an
observable. Hence this mapping does not provide any information on (. and z; which are in fact observable
for the moving line.

At the point A; = A, = 0, ry and r; decouple, and z; = 2 while zy = 3/2. However, in general
2y = z1 = z unless the effective A is zero. For example at the intersection of the subspaces with GI and FD
the exponents zy = 2, = 3/2 are obtained from the exponent identities. Dynamic RG recursion relations

can be computed to one-loop order?®48, by standard methods of momentwmn-shell dynamic RG3339,
The renormalization of the seven parameters in Eqs.(52), generalized to n transverse directions, give
the recursion reiations

d['f“ N PP l /\ﬁT” n_I- ALAT,
P72 4[\'ﬁ T 4Ky K2 |
N1 el g g DALOSTL/EL) + A Ty/ Ky))
de + AN (K| + K)
l[\’J_ - I\'“ AJ_((/\KT_[_/I\'_L) - (/\_LTH/I{H))
Tl + I\'" Ki{h, + I\'") !
a3 0] 1ar
e =T [2—24"“”;@;7 IR (60)
dT, 1 ALT)
g =T [Z “He-l+ 2 KKK+ Ky’
dxy
=z =M l+z2-2,
di | 1 Ap—Ag .
= = z=2- 0 = - KNt
a7 AJ_ [C"-f- 71'(11'_,_+I{”)2 ((/\XTJ_/I&J_) (/\J_T“/ 1”))
dA 1 /\"I\'_;_ — A_LI&'" .
= A - - 24 = A i
a0 =M [2“ Wtz =2t T (Ko 4 Ry (T L)

(AT /)]

The projections of the RG flows on the two parameter subspace shown in Fig.8 are indicated by trajec-
tories. They naturally satisfy the constraints imposed by the non-perturbative results: the subspace of GI
is closed under RG, while the FD condition appears as a fized line. The RG flows, and the corresponding
exponents, are different in each quadrant of Fig.8, which implies that the scaling behavior is determined by
the relative signs of the three nonlinearities. This was confirmed by numerical integrations**#® of Eqs.(52)
performed for different sets of parameters. A summary of the computed exponents are given in Table .

The analysis of analytical and numerical results can be summarized as follows:

ALAx > 0 In this region, the scaling behavior is understood best. The RG flows terminate on the
fixed line where FD conditions apply, hence i = ¢L = 1/2. All along this line, the one loop RG exponent
is z = 3/2. These results are consistent with the numerical simulations. The measured exponents rapidly
converge to these values, except when A, or A, are small.

Ay = 0: In this case the equation for rip is the KPZ equation (40), thus {, = 1/2 and z = 3/2. The
fluctuations in ry| act as a strong (multiplicative and correlated) noise on r, . The one-loop RG yields the
exponents z; = 3/2, (4, = 0.75 for A, > 0, while a negative A, scales to 0 suggesting z, > z|. Simulations
are consistent with the RG calculations for A; > 0, yielding ¢ = 0.72, surprisingly close to the one-loop
RG value. For A, < 0, simulations indicate z, =~ 2 and (1 = 2/3 along with the expected values for the
longitudinal exponents.

Al = 0: The transverse fluctuations satisfy a simple diffusion equation with (| = 1/2 and z, = 2.
Through the term A, (8.1 )?/2, these fluctuations act as a correlated noise®® for the longitudinal mode. A
naive application of the results of this reference?®® give { = 2/3 and 2y = 4/3. Quite surprisingly, simulations
indicate different behavior depending on the sign of Ax. For Ay < 0, zy = 3/2 and (| = 1/2 whereas for
Ax > 0, longitudinal fluctuations are much stronger, resulting in z; &~ 1.18 and (; =~ 0.84. Actually, o
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increases steadily with system size, suggesting a breakdown of dynamiic scaling, due to a change of sign
in A A.. This dependence on the sign of A, may reflect the fundamental difference between behavior in

quadrants IT and IV of Fig.8.

TABLE [. Numerical estimates of the scaling exponents. for various val-
ues of model parameters for n = 1. In all cases. Ky = K. = 1 and
Ty =T, =00L unless indicated otherwise. Typical error bars are +0.03
for ¢. +£0.1 for z/¢. Entries in brackets are thieoretical results. Exact values

are given in fractional form.

Ay Ax Ay ¢4 71/ QL 2z /L
20 20 20 0.48 3.0 (.48 3.0
(1/2) (3) (1/2) (3)
20 20 2.5 0.75 1.7 0.50 3.7
20 5 25 (.51 3.4 0.36 2.9
5 5 -5 0.83 unstable 0.44 36
{No tixed point for finite (. z)
20 -20 =20 0.30 3.1 0.30 2.9
{1/2) {3) (1/2) (3)
) -3 3 0.52 3.3 0.57 3.4
(1/2) (3) {Strong coupling)
20 0 20 0.49 3.1 0.72 22
(1/2) (3} (0.75) (2)
20 0 -20 0.48 3.0 0.65 3.1
(1/2) (3) (zL > 3y)
20 20 0 0.84 1.4 .50 4.0
(2 < 21 (1/2) (4)
20 -20 0 0.55 2.9 0.51 4.0
(7 < z)} {1/2} 1)

A, < 0and Ax > 0: The analysis of this region (II) is the most difficult in that the RG flows do
not converge upon a finite fixed point and Ayg = 0, which may signal the breakdown of dynamic scaling.
Simulations indicate strong longitudinal fluctuations that lead to instabilities in the discrete integration
scheme, excluding the possibility of measuring the exponents reliably.

AL > 0 and A« < 0: The projected RG flows in this quadrant (IV) converge to the point Ay /Ay =1 and
MTLR /Ty = -1 This is actually not a fixed point, as Ky and Iy scale to infinity. The applicability
of the CH transformation to this point implies zy = 3/2 and {y = 1/2. Since A, is finite, zy = 3 = 3/2is
expected, but this does not give any information on (1. Sunulations indicate strong transverse fluctuations
and suffer from difficulties similar to those in region I1.

Eqs.(52) are the simplest nonlinear. local, and dissipative equations that govern the Auctuations of a
moving line in a random medium. They can be easily generalized to describe the time evolution of a manifold
with arbitrary internal (x € R*) and external (r € R"*1) dimensions, and to the motion of curves that are
not necessarily stretched in a particular direction. Since the derivation only involves general symmetry
arguments, the given results are widely applicable to a number of scemingly unrelated systems. We will
discuss one application to drifting polymers i1 more detail in the next lecture, explicitly demonstrating the
origin of the nonlinear terms starting from more fundamental hydrodynamic equations. A simple model of
crack front propagation in three dimensions® also arrives at Eqs.(52), implying the self-affine structure of
the crack surface after the front has passed.

2.3 Drifting Polymers

The dynamics of polymers in fluids is of much theoretical interest and has been extensively studied®”®!.
The combination of polymer flexibility, interactions, and hydrodynamics make a first, principles approach to
the problem quite difficult. There are, however, a number of phenomenological studies that describe various
aspects of this problem®?.

One of the simplest is the Rouse model®: The configuration of the polymer at time t is described by a
vector R{z.t), where r € [0, N] is a continuous variable replacing the discrete monomer index (see Fig.9).

Ignoring inertial effects. the relaxation of the polymer in a viscous medium is approximated by

O R(z.t) = pF(R(x.1)) = KIIR(z.t) + nlx. 1), (61)
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x=0 E

Figure 9. The configuration of a polymer.

where 4 is the mobility. The force F has a contribution from interactions with near neighbors that are
treated as springs. Steric and other interactions are ignored. The effect of the medium is represented by
the random forces  with zero mean. The Rouse model is a linear Langevin equation that is easily solved.
It predicts that the mean square radius of gyration, R} = (IR — (R}[?), is proportional to the polymer size
N, and the largest relaxation times scale as the fourth power of the wave number, (i.e., in dynamic light
scattering experiments, the half width at half maximum of the scattering amplitude scales as the fourth
power of the scattering wave vector q). These results can be summarized as Ry ~ N¥ and T'(q) ~ ¢*, where
v and z are called the swelling and dynamic exponents, respectively®®, Thus, for the Rouse Model, v = 1/2
and z = 4,

The Rouse model ignores hydrodynamic interactions mediated by the fluid. These effects were originally
considered by Kirkwood and Risemann®® and later on by Zimm®®. The basic idea is that the motion of each
monomer modifies the flow field at large distances. Consequently, each monomer experiences an additional

velocit;
Y 1y,.2 4
] FRLACH LR JCORE 7 L f dr'—__a?R (62)
EEEIa )

ez |® -z

SudR(z,t) =

Ty

where ryz» = R{z) — R(z') and the final approximation is obtained by replacing the actual distance between
two monomers by their average value. The modified equation is still linear in R and easily solved. The main
result is the speeding up of the relaxation dynamics as the exponent = changes from 4 to 3. Most experiments
on polymer dynamics®’ indeed measure exponents close to 3. Rouse dynamics is still important in other
circumstances, such as diffusion of a polymer in a solid matrix, stress and viscoelasticity in concentrated
polymer solutions, and is also applicable to relaxation times in Monte Carlo simulations.

Since both of these models are linear, the dynamics remains invariant in the center of mass coordinates
upoen the application of a uniform external force. Hence the results for a drifting polymer are identical to a
stationary one. This conclusion is in fact not correct due to the hydrodynamic interactions. For example,
consider a rodlike conformation of the polymer with monomer length by where 8, R, = bgt, everywhere on
the polymer. so that the elastic (Rouse) force vanishes. If a uniform force E per inonomer acts on this rod,
the velocity of the rod can be solved using Kirkwood Theory, and the result is®®

(—Ink)
= mE'[I+tt]. (63)
In the above equation, n, is the solvent viscosity, t is the unit tangent vector, K = 2b/by NV is the ratio of the
width b to the half length baN/2 of the polymer. A more detailed calculation of the velocity in the more
general case of an arbitrarily shaped slender body by Khayat and Cox®® shows that nonlocal contributions to
the hydrodynamic force, which depend on the whole shape of the polymer rather than the local orientation,
are O(1/(Ink}*). Therefore, corrections to Eq.(63) are small when N > b/b,.
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Incorporating this tilt dependence of polymer mobility requires adding terms nonlinear in the tilt, .1,
to a local equation of motion, Since the overall force (or velocity) is the only vector breaking the isotropy of
the fluid, the structure of these noulinear terms must be identical to eq.(50). Thusin terms of the fluctuations
paraliel and perpendicular to the average drift, we again recover the equations,

. ) A D
ARy = Uy + KOty + ?“(3,12”)2 + T"Z(a:nh)z + g2, 1),
1=

(64)
B;RM = [\'ic'ﬁl?h + )\Lc')zRHOIRL,- -+ t)L,'(,J:‘ I)_

where {Li} refers to the 2 transverse coordinates of the monomer positions. The noise is assumed to be
white and gaussian but need not be isotropic, i.e.

(i iy’ t')) = 2Ty6(x — 25t~ 1),

(65)
(nuiz mpuja’ ) = 2T1d:,8(x — (e —t).

At zero average velocity, the system becomes isotropic and the cquations of motion must coincide with the
Rouse model. Thercfore, {A, Ax, AL, U Ky — K, Ty—T.}areall proportional to E for small forces. The
relevance of these nonlinear terms are determined by the dimensionless scaling variable

A UN i
”“(U*)N‘

where U is a characteristic microscopic velocity associated with monomer motion and is roughly 10-20 m/s
for polystyrene in benzene. The variable y is proportional to another dimensionless parameter, the Reynolds
number Re, which determines the breakdown of hydrodynamic equations and onset of turbulence. However,
typically Re < y, and the hydrodynamic equations are valid for moderately large y. Eqs. (64) describe the
static and dynamical scaling properties of the nonlinear and anisotropic regime when U > U*N—H2

Eq.(64) is just a slight variation from (52), with two transverse components instead of one. Thus, the
results discussed in the previous lecture apply. A more detailed calculation of the nenlinear terms from
hydmClynamicss'9 shows that all three nonlinearities are positive for small driving forces. In this case, the
asymptotic scaling exponents are isotropic, with v = 1/2 and 2z = 3. However, the fixed points of the
RG transformation are in general anisotropic, which implies a kinetically induced form birefringence in the
absence of external velocity gradients. This is in marked contrast with standard theories of polymer dynamics
where a uniform driving force has essentially no effect on the internal modes of the polymer.

When one of the nonlinearities approaches to zero. the swelling exponents may become anisotropic and
the polymer elongates or compresses along the longitudinal direction. However, the experimental path in
the parameter space as a function of E is not known and not all of the different scaling regimes correspoud
to actual physical situations. The scaling results found by the RG analysis are verified by direct integration
of equations, as mentioned in the earlier lectures. A more detailed discussion of the analysis and results can
be found in our earlier work*®. .

In constructing equations (64), we only altowed for local cffects, and ignored the nonlocalities that are
the hallmark of hydrodynamics. One consequernice of hydredynamic interactions is the back-flow velocity n
Eq.(62) that can be added to the evolution equations (64). Dimensional analysis gives the recursion relation

Oy
= yjpz - 1—{d—2}u]+()(‘rz). (66)
N
which implies that, at the nonlinear fixed point, this additional term is surprisingly irrelevant for d > 3,
and z = 3 due to the nonlinearities. For d <3, 2 = d due to hydrodynamics, and the nonlinear terms are
irrelevant. The situation in three dimensious is unclear. but a change in the exponents is unlikely. Similarly,
one could consider the effect of self-avoidance by including the force generated Ly a softly repulsive contact
potential
b -
;/d.rd:n:’V(r(:r)—r(:L")). {(G7)

The relevance of this term is also controlled by the scaling dimension yp = vz —1— {d—2)r. and therefore this
effect is marginal in three dimensions at the nonlinear fixed point, in contrast with both Rouse and Zinun
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models where self-avoidance becomes relevant below four dimensions. Unfortunately, one is ultimately forced
to consider non-local and nonlinear terms based on similar grounds, and such terms are indeed relevant below
four dimensions. In some cases, local or global arclength conservation may be an important consideration in
writing down a dynamics for the system. However, a local description is likely to be more correct in a more
complicated system with screening effects (motion in a gel that screens hydrodynamic interactions) where
a first principles approach becomes even more intractable. Therefore, this model is an important starting

point towards understanding the scaling behavior of polymers under a uniform drift, a problem with great
technological importance.
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