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This is a series of lectures at the ICTP Summer school on rational torsion of elliptic curves
over number fieids, held from 11-29 August, 1997.

Good references for the content of these lectures can be found in the recent article “Mod-
ular forms and modular curves”, by Diamond and Im, in the Canadian Mathematical Society
Conference Proceedings Vol. 17, “Seminar on Fermat's Last Theorem”, V. Kumar Murty (edi-
tor). For example, for sections 1, 2 and 3 one can look in Shimura's book “Introduction to the
arithmetic theory of automorphic forms”, in Serre's “A course in arithmetic”, in Lang's “In-
troduction to modular forms”, in Miyake's “Modular forms”, in Stlverman’s “The arithmetic
of elliptic curves, in Koblitz’s “Introduction to elliptic curves and modular forms”, in Knapp's
“Elliptic curves”, etc. For sections 4 through 7, one might look in the article “Les schémas de
modules des courbes elliptiques” by Deligne and Rapoport, in the book “Arithmetic moduli of
elliptic curves” by Katz and Mazur, in Shimura’s book mentioned above, in Gross's article “A
tameness criterton for Galois representations associated to modular forms mod p”, and in the
article “Finiteness for the group of rational points for some modular varieties” by Kolyvagin
and Logachev.

1 The Riemann surfaces Xy(N) and ¥y(N).

The Riemaun surfaces Yo(N), for integers & > L. are supposed Lo parametvize eliiptic carees
over € with given a cyclic subgroup of order N, up to isomorphism, in some sense. The Np(A)
are then defined to he natural compactifications of the Yo(N). Woe will start with the case
N=1

1.1 The Riemann surface Y;(1).

Let us recall that an elliptic curve over € is an irreducible non-singulsr complex algebraic
curve of genus one, with a given point called 0. [t has been shown in Mestre's lectures that
such a curve can be embedded in P such that the image is given by an cquation of the form
y%z = r3+azxz2+bz® and such that 0 is mapped to (0, 1,0). Such equations are called Weierstrass
equations. A curve given by a Weierstrass equation is non-singular if and only if 4a* + 27h¢
is non-zero. Conversely, every non-singular plane curve given by a Weierstrass cquation with
43 +27h #£ 0, together with the point (0, 1,0), is an elliptic curve. The j-invariant uf the elliptic
cutve given by a Weierstrass equation is defined to be 12%4a™ /(40 + 270%). It was also shown in
Mestre's lectures that two elliptic curves given by Weierstrass equations are isomorphic il and
only if their j-invariants are the same. Therefore, the j-invariant of an elliptic curve is defined,
and gives a bijection from the set Yp(1) of isomorphism classes of complex elliptic curves to €
{it is easy to see that every z in C is the j-invariant of some elliptic curve]. Now we want te
give Y5(1) the structure of a complex analytic variety. One way to da this is to transport that
structure from C to ¥5(1), via the bijection 7. We will now discuss a second way to give Yo(l)
the structure of a complex analytic variety, which is casier to generalize 1o arbitrary N, and
which will turn out to be the same.

This second method uses the complex uniformization of elliptic carves.  For shimplicity,
we will make no distinction between complex elliptic curves (as algebrae curves) and their
associated complex analytic varieties. Recall, from Mestre's lectures, that every elliptic curve
E can be writen as C/A with A some lattice in C, i.e., there exists an R-basis (21, z4) of T such
that A = {az + bz;|a,b € Z}. Moreover, for Ay and Ay two lattices in C, C/A, is isomorphic
o C/A, if and only if there exists A in € such that Ay = AA;. This allows us to parametrize
the set Yy(1) as follows,

Let G be the set of group morphisms ¢: Z? — C such that ¢Z? is a lattice, and such that
¢ gives the orientation (¢,1) on the R-vector space C. For example, G contains the element
(a,b) ~+ ai+b. Then we have a surjective map from G to ¥y(1), that sends ¢ to the isomorphism
class of C/#Z2. This map is the quotient for the two simultaneous and commuting group actions:
C* acts on the left on G: Ag = (A-)ep, and SLy(Z) acts on the right on G: &y = ¢=(g-). Hence
we have:

Yo(1) = C'\G/SLa(Z).

Now view G as an open subset of C? via the map sending ¢ to (¢(1,0}, 9(0. 1)), and let H be



the complex upper half plane {z € C|lm(z) > 0}. Then we have a bijection:

#{1,0)
#(0,1)

Moteover, we have a section from H to G, given by 7 ~ (r,1}. It follows that we have a

C\G—oH ¢r

bijection:
Yo(1) = H/SLo(Z),

where (4 3) in SLy(Z) acts on H by:

ab ar + ¢
T (c d) Thrad
Note that (7' ° ) acts trivially. Usually one finds a siightly different statement: Yy(1) is the
quotient for SLytZ) acting on the left on H, with (23) acting as 7 = (ar + b}/ (cr + d). Of
course, bath stateruents are equivalent, by transforming the right action into a left action via
transposition g -+ g-.

Let p H — H/SL,(Z) be the quotient map. Then H/SL,(Z) has the following structure of
eomplex analytic variety, which makes p into a quatient morphism: a subset U of it is open if
and only if p~'{7 is open in H, a C-valued function f on an open subset is analytic if and only
if fep is analytic. This works because for every v in H the stabilizer SLy(Z), is finite (in fact, of
order 2.4 or 6}, and every 7 in H has an open neighborhood U such that Ug and U are disjoint
if 74 # 7 and are equal if g = 7. (We will verify this in a moment.) If z is a local coordinate
7 then the product of the ze(-g), for ¢ in SLe(Z),/{1, -1}, is a local coordinate at p{r}. From
now on we give Y,(1) this complex analytic structure.

To understand the topology of Y3(1), we construct a fundamental domain for the action
of SEL(Z)Y on H. So let 7 be in B Let 2 be a smallest non-zero element of Z + Z7. Let
A:=z""Z+Z7). Then C/A is isomorphic to C/(Z+Zr), and 1 is a smallest non-zero element
of A. It follows that A is of the form Z + Z+', for a unigue 7° with —1/2 < Re(r') < 1/2, and
that 7°is in 7S81.,{Z). Since 1 is the smallest non-zero element of A, we have |7'| > 1. We define
F to be the set of 7 in H such that —1/2 < Re(r} < 1/2, |7| 2 1, and {r| > 1 if Re{r) > 0.
We elaim that carh SLo(Z)-orbit contains exactly one element of F. Let us first show that
each orbit meets . After the construction above, it remains to show this for the v in H with
|7} = 1 and 0 < Re{r) < 1/2. In that case, —r is a shortest non-zero element of Z + Z7, and
applying the vonstruction above gives us 7 = —1/7, which is in F. Let us now show that each
orbit meets Fin exactly one element. Let 7 be in F, and counsider the orbit of 7. Each 1/ in F
and in the orbit of 7 arises from a shortest non-zero element z of Z + Z7 by the construction
above. If |7} > 1. there are exactly two shortest non-zero elements, namely 1 and —1, both
leading to 7. So suppose now that [r| = 1. If 7 # €2™/3, then there are exactly four shortest
non-zeto elements: 1, -1, 7 and —7; these elements lead to 7, 7, ~1/7 and —1/7, respectively.
But 1/7 is notin £, unless 7 = 1. Finally, if » = ¢¥™*/3 then there are six shortest non-zero
elemnents: the sixth roots of unity, all of which lead to r. We note that our computation shows
moreover that the only 7 in £ with SLy{Z}, not equal to {1, 1} are i and £*™/3, and that

3

their stabilizers are cyelic of order 4 and 6, respectively, and generated by (L: 0‘) and {’1 1]1).
respectively.

The existence of open neighborhoods U as claimed above can now he seen by considering
F and its nine neighboring translates. 3

Let T be the closure of F. Then Yg(1), as a topological space, is obtained from F by some
identifications on the boundary, which make it easy to see that 15(1) is homeomorphic to R
In particular, it is not compact.

Let 7: M — C be the function that sends 7 to the j-invariant of C/(Z + Z7). Then ) is
holomorphic, and its fibres are exactly the Sk(Z)-orbits. From the universal property of the
quotient morphism p: H — Yy(1) we get a bijective morpkism of one-dimensional non-singular
complex analytic varieties from ¥y(1) to €, which is then automatically an isomorphism.

Our arguments prove that, up to isomorphism, there exist exactly two complex elliptic
curves E with |Aut{E)| > 2. These two curves are C/Z[z] and C/Z[e*™"*], with automorpt ism
groups cyclic of order four and six, respectively. They are given by the Weierstrass equat ons
y? =13 — 7 and y? = &% — 1, and have j-invariants 12° = 1728 and 0, respectively.

1.2 The Riemann surfaces Yp(N).

Let us consider a complex elliptic curve £ = C/A. As a group, E is isomorphic to R/Z x R/Z
(choose a Z-basis for A). Let N > 1 be an integer. The kernel E[N] of the multiplication by ¥
map on £ is isomorphic to Z/NZ x Z/NZ, or, more canonically, to N~ TA/A. We define }4(N)
to be the set of isomorphism classes of pairs (E,G), where E is a complex elliptic curve and
G a cyclic subgroup of order N of E. The notion of isomorphism here is as follows: (F. ()
is isomorphic to (Ey, Gy} if there exists an isomorphism f: Ey — Ey such that Gy = f((7)).
We will now describe the set Y3(N) as a quotient of H, and give it a the structure of complex
analytic variety.

So let E = C/A be a complex elliptic eurve and 7 a cyclic subgroup of vrder V. Let A
be the lattice containing A such that A'/A = G Then there exists a Z-basis (2, 2} of A such
that {2, z2/N) is a Z-basis of A’. Multiplication by z; ! shows that (E.&) is isomorphic to
{C/(Z +2+), (1/N})}, where T = 2,/ z; and where (1/N) denotes the subgroup generated by the
point 1/N. This shows that we have a surjective map

G = Yo(N), ¢ (C/(827). ({0, 1})).

This map is invariant under the left-action of C* that we considered before, but, for ¥ > |,
it is not invariant under all of the right-action of SL2(Z). In fact, the subgroup that leaves it

invariant is:

Co(N) = {(‘::) € SLy(Z) [b = 0 mod N} ‘

the inverse image under SLo{Z) — SLy(Z/NZ) of the group of lower triangnlar matrices. The
reduction morphism from SLa(Z) to SLo(Z/NZ) is surjective, and the grouy SLy(Z/NE) acts

'

transitively on the set of cyclic subgroups of order N of (Z/NZ)?, hence it foliows that Yo(N)



is the quotient of G by C* x T'o{N). So we have:
Yo{¥] = H/Tqy(N).

This allows us to give Y3(N) the structure of a complex analytic variety, just as we did for ¥3(1)
{the properties of the SLy(Z)-action that we used for this are still satisfied by all its subgroups).

By coustruction, ¥3{N) is one-dimensional, non-singular and connected, and not compact.
A fundamental domain for the [y(N)-action on H is easy to construct, at least theoretically, be-
cause we already have the fundamental domain F for SLy(Z). Let gy, ..., gm be representatives
in SL3(Z) for SL2(Z)/To(N). Then Fg, U---U Fg,, is a fundamental domain for [o(N). Since
SLa(Z)/T'o(N) can be identified with the set of cyclic subgroups of order N of (Z/NZ)?, and
hence also with the set P'(Z/NZ), one sees that {SLy(Z)/Fo{ N)| = ¢(N}, with 4 the function
from positive integers to Z defined by #(ab) = ¥(a)¥{b} if a and b are relatively prime, and
$(p) = p+ 1 for p prime.

Let us make this more explicit for [y(p) with p prime. Then the subgroups of order p of
(Z/pZ)* = F: are the p + 1 one-dimensional F,-subspaces; they are generated by (0,1}, (1,0),
(1,1},....(1,p— 1). The elements gy, ..., g, can be chosen as follows: gy =1, g, = (°]) for
1 <7< p. In order to make a picture of this fundamental domain F,, it is advisable to make

a picture of F, 1= F, - ( ?] (l]) instead. One finds that:

F;:Fu(F+1)u~--u(F+p—1)uF-(01(1,).

It is quite easy to make the identifications on the boundary explicit. Consider, for 1 <a < p
the point @ + 7. In the way we have set things up, this point corresponds to the elliptic curve
C/Z[i] with the subgroup generated by (a + i)/p. Multiplication by —i gives an isomorphism
with (C/Z[s], {(} — at)/p}), which is the same as (C/Z[s], ((b + i)/p)) if ab = ~1 in F,. This
tells us how the p — 1 arcs passing through the a + i are identified. The only two remaining
arcs at (0 are identified which each other.

1.3 The Riemann surfaces Xo(N).

As we have already seen, the Yy(/N) are not compact. In order to make the Yo( V) into algebraic
abjects, it is important to compactify them. Again, we hegin with Y3(1). The non-compactness
of Y5(1) is raused by the fact that the fundamental domain F is not bounded. So we have to
study what happens “at infinity”. Let U C H be the set of  with Im{r} > 1. The argument
that we nsed to show that F is a fundamental dotnain also shows that two elements  and 7 of
{7 are in the same SLo(Z)-orbit if and only if 7’ is in 7 + Z. Hence the map from U7 to ¥5(1) is
the quatient by the group Z, acting by translation. But this quotient is realized by the function

gH—C, e,

Note that gl/ = {z € C|0 < |z| < "%}, so this punctured disk is an open subvariety of ¥3{1}.
We compactify Y5(1) by replacing this punctured disk by the disk {z € C|lzl < 72"} itgelf.

o

The resulting complex analytic variety of this procedure will be denoted by Np{1): it is by
construction a compact non-singular connected one-dimensional complex analytic variety. As i
topological space, it is homeomorphic to the two-sphere, henee, by the classification of eompact
connected non-singular one-dimensional analytic varieties, it is isomorphic 1o the projective
line P*(C). In fact, such an isomorphism is realized by the function j, becanse it has a Laurent
series expansion of the form j = ¢=' + 744 + 196884¢ + - -, and hence a nule of onder vne at
the point we added. The point we added is called the cusp oo

Let us now consider the problem of compactifying the ¥5(N). To do this, we use the
morphism f: Ya(N) — Y5(1), and our compactification Xo(1) of ¥y(1}. By construction, f is
proper (i.e., the inverse image of a compact subset of ¥y(1) is compact), arwl of degree ¢(N)
Also, we know that ramification can only occur at points with j-invariart i or 1728, Tet [F
be the punctured disk gt/ described above. Then f: f'D* = D* is an unramitied cov. ring of
degree 9(N}. Up to isemorphism, the only connected uncamified covering of degree no with
n > 1, of D* is the map D% — D, with D), = {z € C|0 < |z| < ¢ ¥}, sending & — 2"
It follows that f~'D* is, as a covering of D, a disjoint union of copies of such D5 -» D"
Each D7, has the natural compactification Dy := {z € Cl|:| < e We detine X (V) 1o
be the compactification of Yy{N) obtained like this. The points of Xo(N} - Y,(.V) are called
the cusps of Xo(NV). By construction, the morphism Y3(N) — 1g(1) extewds 1o a morphism
Xo(N) = Xo{1). If we know the ramification of this morphism, we can compute the genus of
Xo{ V) using Hurwitz’s formula. So we will study the cusps in some more detail.

Recall that the stabilizer of {/ in SLy(Z) is the subgroup {:t(r’1 (I’] j1r € Z1}. This is exactly
the stabilizer SLz(Z ) of the point 0o = {1,0) in P/{Q} = PY{Z), for the maural right-action
of SLo(Z). In fact, the element oo of P'((Q) is directly related to our fundamental domain I
as follows. We can view H as a subset of C, and hence as a subset of P'{C). As such. the
boundary of H is P!(R}, which contains P*(Q). It turns out that the closure of £ in PHC)
meets P'R) exactly in the point oo. If Fiy is a fundamental domain for [y(N) acting on H s
constructed above, then the closure of Fyy in PY{C) meets P'(R) in the points sogy. .. 20geiny
of P'(Q). Let g be one of the g, Then SLy(Z)ey = 9 'SLa(Z)oy, and benre glo(N)oouy
is a subgroup of finite index of SLy{Z)s containing ~1, hence of the form {,-t("'" ll') j¢ € Z}
for some unique n > 1. This means that glp(N)oeg ' acts on U as the group of translations
over nZ. The quotient for this action is the morphism ¢'/%: U — Dy, sending 7 to o770
This makes our abstract construction more explicit. 14 shows that the set of cusps of Ny(V)
is the set P'(Q)/To(N) (use that SLy(Z} acts transitively on P'{Q)). We van choose our g, in
order to have the property that if oog; and cog; are mapped to the same cusp in Xo(N], then
oog; = oog;. In this case, the cusps of Xy(V) are in hijection with the points of P'{Q) that arein
the closure of Fy, and the ramification index n at a cusp of Xo(N) is then simply the number of
translates of ' in Fy whose closure contains that cusp. A purely group theoretical description
of the set, of cusps of Xo(N) is the set (! N\SLy(Z)/To(N), simply because £(!{N\SLy(Z) i
P! (). But this also means that the set of cusps is the quotient set for the action of (l?
the set of cyclic subgroups of order N of (Z/NZ)% in this description, the ramification index

J on

n of a cusp is the number of elements in the corresponding (1 ?)-nrl)it.



1.4 Some examples.

As an example, we will now compute, for p prime, the ramification of the morphism f: Xo(p} —
No(1), and the penus of Xo{p). We have already seen that f has degree p + 1, and that it s
unramified away from B, 12 and oo (here we view Xg{1) as PH{C}). The ramification over o
van be seen directly from the fundamental domain we constructed: Xy(p) has two cusps, called
£) and oo, the ramification indices at these cusps are p and 1, respectively.

Let ux now consider the ramification over 0. The 7 in H with j(7) = 0 form precisely
the SLy(Z)-orbit of 2 = ¢ which is isomorphic, as SLa(Z)-set, with {§)\SEe(Z), with
g: | ]' "] ). 1t follows that the ramification over () is given, in the same way as at the cusps, in
ter s of the action of (g} on the set of one-dimensional subspaces of]Pf,. More precisely: the set
£ N0) is in bijection with {g)\P*(F,}, and the ramification index of a point is the order of the
corresponding {(gy-orbit. Let us now do the computation. Note that g has order three, as well
as s image in S1u(F, ). Hence we may consider g as an element of SLy(F, ); its characteristic
polvnomial is o + r + 1. Suppose that p # 3. Then ¢ has two distinct eigenvalues in an
algebraic closure Fy, of F,, namely the roots of unity of order three. If these roots of unity are
in F,, then g has exactly two fixed points in P!(F,) (the eigenspaces). If these roots are not in
F,. then 4 has no fixed points. Whether or not the roots of unity of order three are in F, is
equivalent 10 whether or not three divides p— 1. Suppose now that p = 3. Then g is conjugate
1o (('J : ), henee it has exactly one fixed point on PU(F;). It follows that all points in f'0 have
ramification index 3. except two of them if p — 1 = 0 miod 3, and except one of them if p = 3.

The study of the ramification over 123 is completely analogous to the previous arguments.
One finds that all points in f '12* have ramification index 2, except two of them if p~1=10
maod 4, and except one of them if p = 2.

Hurwitz's formula then tells us that the genus of Xy(p) is zero if p is 2 or 3, and that it is
(p - 3312 (p -3 12, (p—T)/120r (p+ 1)/12if p =1, 5, 7 or 11 mod 12, respectively.

1.5 Differential forms on Xy(N).

The aim of this section ts to shew that holomorphic differential forms on Xy (N} correspond,
in a natural way, to ensp forns of weight two for the group Fa(V), as defined in Frey’s first
lecture. S let w be a global holomorphic 1-form on Xy(N). For U/ an open subset of Xy(N)
and 2 a coordinate on 7, we have w|y = fdz for a unique holomorphic function f on U. Let
¢:H — Y,{N} denote the quotient morphism. Then we have the 1-form g"w on H. Since z is
a global coardinate on H, we have ¢"w = fdz, for a unique holomorphic f on H. Since g is
invariant under the action of [a(V}), we have, for each g in [p(N), the identity :

fdz = () (fdz) = (fo-g)d(z--9).

Let us write this om for g = (‘:3) in Ty(/N) (recall that in this text this means that b = 0

moed N1, The function ze-g sends 7 to {a7 +¢)/(br + &), hence we have zo-g = (az +¢)/(bz + 4},

aned ilso:
+ e 1
Hrog) = (az ):W '
degl=d | Z0 ) = e ae

-1

Substituting this in the identity above mves:

f (E.ﬁ) = (b7 + d¥f(r), forall 7in H, and ail (¢ ;} 1 SLo(Z) with b = 0 mod N,
br 4 d

This is exactly the invariance property for weight two mudular functions on Fal VT as in Frey's

first lecture,

Conversely, assume now that frH - € is holomorphic, and satisfies the last formula. We
claim that then there exists a unigue holomorphic 1-forin o on (V) suweh that ¢*w = fdz.
The existence and uniqueness of w is clear at all peints of Yp(N} at which ¢ 15 an unramibivd
cover, namely, such points have an open neighborhood U such that ¢ 17 is a disjoint union of
copies of /. In general, each point of Y3(N} has a neighborhood {7 that is isomorphic to the
unit disk D, and such that ¢~ 'l is a disjoint union of copies of D. mapping to [ via 1= 0",
for some n > 1. Hence it suffices to analvze what happens for one such a disk. So let > 1
and consider the morphism q: D' — D, = =2 ™. Let z and w be the coordinates on ) and
I, respectively. The morphism g is the quotient for the action of the group ju, of nth roots
of unity by multiplication on £, A simple power series computation then shows thiat pulling
back holomorphic 1-forms from D to D identifies those on I with the invariant ones on .

At this point we know that holomorphic 1-forms on 15{.¥) correspond to I N)-invariant
hotomorphic 1-forms on H, and hence to holomorphic functions on H satisfving the invariance
property above. We would like to understand, in terms of functions on H, what it means
that a 1-form on Y3{N} is holomorphic at the cusps. Let us first describe the situation at the
cusp 0o, Let w be a Iform on Y3(N) and let f be defined by q'w = fdz. Then we have
flr + 1y = fir) for all 7 in H, because I'y(V) contains {:T)A Hewce [ is a Laurent series in
g=e" ie, [ =T,z aag" for certain a, in C Note that 2medz = g 'dq. and recall that g

is the coordinate of the disk of which oo is the center. The identity:

i o dy
gt —

shows that w is holomorphie at co if and only if @, = 0 for all » << 0. The sitiation at the
other eusps of Xy(/V) is similar. If one goes back 1o our compactification procedure, one sees
that w is holomorphic at all the cusps, if and only if for ali (22 in SLy(Z), the function:

1 f (ru’ + r')
ey —— | — -
(br +d)? 7 \br 4+ d
from H to C has its Laurent series expansion in g'/", where n is the ramification index of the
cusp oo z). of the form .15, am@™™. This means that the holomorphic 1-forms on Xo(iV) are

precisely the cusp forms of weight two on [g{N) as defined in Frey's lecture. As a consequence,
it follows that the dimension of the space So{['o(V}) is equal to the genus of (V).



2 Hecke correspondences.

The aim of this section is Lo give a geometric interpretation, in terms of 1-forms on Xg{N), of
the Hecke operators, degeneracy maps and Atkin-Lehner involutions on S3(Tp(V)) defined in
Frey’s second lecture.

2.1 Degeneration morphisms.

Let N, M and r be positive integers, such that rM divides N. We will define a map By 7, also
denoted B, from the set Y3(NV) to the set ¥Y{M). After that we will show that it is a morphism
of complex analytic varieties, that extends to 2 morphism B, from Xy(N) to Xo(M). Recall
that Yy(N} is the set of isomorphism classes of pairs (F, ), with E a complex elliptic curve
and G C E a cyclic subgroup of order N. To such a pair we associate the pair (E/G|r}, G|M]),
where G[r| denotes the kernel of multiplication by r in G, and where G denotes the image of
G in E/G[r]. The pair (E/G[r],G]M]) defines a point of Y;{M), since G[M] is indeed cyclic
of order M. The definition is clearly compatible with isomorphisms of pairs (E, ), hence we
have indeed defined our map B, from ¥p(N} to Ya{M). Let us now verify that this map is
a morphism of complex analytic varieties. For this we will use the universal property of the
quotient morphisms H — Y3(V) and H — Yp(M). So let 7 be in . The image of 7 in Y3(N)
is the isomorphism class of (E,G) = (C/(Z+Zr), (1/N)). The group G|r} is generated by 1/r,
hence E/G[r|is C/(Z1/r + Z7), and the subgroup G[M)| is generated by 1/r M. Multiplication
by r on C induces an isomorphism from (E/G|r], G|M]) to (C/(Z + Zrt), (1/M)). Tt follows
that we have a commutative diagram:

Yo(N) = Yo{M)

in which the map from H to H is multiplication by r, in which the vertical arrows are the
quotient morphisms, and in which the map from Ya(NV) to Yy{M) is B,. The universal property
of the quotient morphism H — Yo(N) implies that B, is a morphism. Let us now argue that
B, extends to a morphism from Xo{N)} to Xo{M). The automorphism “r" of H is induced by
the element. ([')ll’) of GL,{R)* (the action of SLy{Z) on H is in fact the restriction of the action
of GLz(R}* on it). Via this isomorphism, the action of [o{N} on H becomes the action of
its conjugate [' .= (5?)"‘FD(N)(")‘1}), which is a subgroup of I'g(M) (it is in fact the subgroup
of ('::) of 5Ly(Z) with ¢ = 0 mod r and b = 0 mod N/r). So -r induces an iscmorphism
from Y3(N) to H/I". The compactification procedure that we used for To{N) works in fact for
all subgroups of finite index of SLy(Z), hence also for I, and one can see that .7 extends to
an isomorphism from Xo(N) to H/T, and that the canonical morphism from H/T to Ys(M)
extends to a morphism from ﬁ-ff to XNo(Af).

The morphism B, gives, by pullback, a map from the space of holomorphic 1-forms 2 X¢{M))

on Xo{M) to Q{XNo(N)). Let w be in Q{XNo{ M), and write g3jw = 35 eny” dyfy, where gy is
the quotient map from H to Yo{Af). Then B} {w) is detennined by: gy Blw = 30, . ang™ dyfy

On the other hand, B, also gives, by a kind of trace map, a map from QXA 1o
Q{Xy(M)). The easiest way to describe that map in our context is as follows. Let o he
in Q{Xo(N)), let w be its pullback to H, and let wy be the 1-form it gives ou H via the
isomorphism -r; then wy is T-invariant. Let gy,....g, be representatives for Ty(A)/I° Then
Grwa+ o+ gown is To(M)-invariant, and corresponds to an element By, of Q{ X)) A quite
different way to describe the map B;, is as {ollows. Let U be a small open subset of XNy(M),
with a coordinate z. Then the C-algebra QB '/} of holomorphic funetions on B 17 is free of
rank the degree of B, as a module over O(U). This gives us a trace map tr: O{B,_ ') -~ O(1),
Let w be an element of Q(B7'U), and write it as fd{z-B,), with f meromorphic o 83, 't
Then Br.w = tr(f}dz on /. There is probably not a simple forinula for B, just in cerios of
the g-expansion of w because of the g in the first description, or. equivalently, hecause there is
in general more than one cusp of Xp(N) mapped by B, to the cusp oo of Xo{A).

2.2 Atkin-Lehner involutions.

Let NV > 1 be an integer, and r > 1 adivisor of ¥ such that r and N/r are relatively prime. Let.r
be a point of YU(N) say the isomorphism class of a pair (£, 7). Then te (E.(7) we associate the
pair w, (E, G} == (E/G[r), E[r] + G), giving a point w.(x) of Ya(N). This construction defines
a map w, from Yy(N) to itself. Multiplication by r un £ gives an issnorphisin hetween (£, (7}
and w, (w,(E,G)) (to see this, it is useful to note that G is the direct sum of G| and GIN/r]).
Therefore, w, is an involution of the set Yo( V), called an Atkin-Lehner involution. Note that
the set of divisors r of N such that r and ¥V are relatively prime form a hoole algelra with 2"
elements, where n is the number of prime numbers dividing V. It is casy to verify that the
w, commute among each other, and that the group they generate is the additive group of the
boole algebra just mentioned. To be explicit: wrw, = Unengr.sy) gedira)-

We will now prove that w, is an automarphism of the complex analytic variety Yo{N), and
that as such it extends to Xg{N). The strategy is the same as for the B, So let 7 be in H,
and (E, ) the pair associated to 7, ie,, E = C/(Z +Z7) and G = (I/N). Then Glv] = {1/r),
hence E/G[r] = C/(Z 1/r + Z7), and E[r] + G = (7/r + 1/N) (note that 7/r and 1/N have
order r and N/r, respectively, in E/G[r]. We define:

7= N(r/r + I/N) = (N/rir + r(1/7).

Choose integers a and b such that ar — b(N/r) = 1, and define 7, := ar + b(1/r). Then 7
and m form a Z-basis for Z1/r + Z7, and division by n, shows that w.(F. (r') is isomorphic
to (C/(Z + Z1'),{1/N}), with 7" = »p/ry = 7(° My = rD) a MMy Let g (Y My the fact
that the image of g in Yp{NV) is well-defined implies that g normalizes Fo{N) (one can verify
this via a silly matrix computation, but, of course, one doesn't need to). Form this it follows
that -g defines an automorphism of Yy(N), which is, by comstruction, w,, and it follows that
w, extends to an automorphism of Xg(N). This finishes the proof that e, is an involution of

the complex analytic variety Xq(N).
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Since the w, do not necessarily fix the cusp oc, one cannot expect to have simple formulas
in ters of g-expansions for their action on Q{Xy(N)). It is certainly possible to describe all
relations hetween degeneracy maps and Atkin-Lehner involutions, but I don’t see the need to

do it at this morent

2.3 Hecke correspondences.

As we have seen above, there are many morphisms among the curves Xo(/V}, along which one
can push and pull differential forms. One way to exploit the existence of all the induced maps
among the Q{.X,(V)) is 10 say that all these maps come in some sense from the action of SLo{()
on H, and to constder the action on the direct limit of the {3 X'}, where X ranges over through
the system of all modular curves. This leads to using the representation theory of sz(z @ Q).
This point of view is very important in order to understand the details of the relations hetween
modular forms and Galois representations. However, we will not take this point of view in these
lectures, for the simple reason that we need to know some other kind of properties of Xg(/N)
and its jaccebian variety.

The fact that the [o(N)-action on H is in fact the restriction of an action of GL,(R}*
leads, by a completely group theoretical construction involving the set Fo(N)\GLy(Q) /To{V)
of double cosets, to certain operators T, (n > 1), catled Hecke operators, on $2( Xp(N)). A more
direct and nseful way for us will be to construct these operators via the modular interpretation
of Yo (), and isogenies between elliptic curves.

Let us fix ¥ > 1. Foreach n > 1 and = (E, (?})) in Y,{N} we define:

Talr) =3 _(E/G,(P)),
o

where (¢ runs through the set of subgroups of order n of E that have trivial intersection with {P}.
By definition, T, () is an element of the Z-module Div{Yo{N}} of divisors on ¥Yy(N}. It is clear
that T, extends in a nnique way to an endomorphism of Div(Yp(/N)}. As such, it multiplies the
degree of divisors by an integer that is easily computed. For example, for p prime, T, multiplies
the degree by p+ 1 1f p does not divide N, and by p if p divides N. Our next objective is to
show that the T, are in fact holomorphic correspondences that extend to Xy(N), and to study
their action on QXe{N}). To do that, it is a good idea to express all T;, in terms of the T,
with p prime. [t is a good exercise to show that:

Tl = Tam i gedin,m) =1,
and that for p prime:
Tpenn if p divides NV
TFTP' =93 - . -
Torsr + pTyr s if p does not divide N.

These identities imply that the T, with p prime generate all T,,, that all T, commute among
fach other, and that ene has the following identity of formal Dirichlet series:

Z Tﬂ”—s — H(l _ Tpp..s)—l H(l _ TFP—-s +pl—23)—l_
phv

nl pIN
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In order Lo show that the T, are holomurphic correspomlences, 1t is now enough to show it fur
the T, with p prime. So let p be a prime, and & in YN, Pick 7 in H such that ris the image
of = under the quotient map. Then z = (C/(Z + Z7). (1/N}). Recall that Elp| has F,-basis
1/p, 7/p. Hence the possible subgroups (v of order p are (ifpy if p does not divide ¥, and the
{{r +)/p) for § <4 < p 1t foliows that Ty(x) is the image of pr + 3,07 + 1)/ paf pdoes not
divide N, and of 5,{r + ¢)/p if p divides N. In other words, T, is induced by the operator:

T pr + ZDS,Q(T +1}/p if p does not divide N
’ Tocieplm Hil/p if p divides N.

It follows from this that T,(z) = BB, '(x), whether p divides N or not. In other words. T,
extends to the holomorphic correspondence:

Xo(pN)

e N
X(](IV] ‘\'n(."\!)

If p does not divide N, then B, = Bjeuwy,, which shows that in that case T, is a svinnetrie
correspondence.

We let the T, act on Q{Xg{V)) via pullback, i.c.. as B,..B7. The formula above for Tpr
then gives the result that for w = ¥ a,q" dg/q in (X)) ane has

T Y {pasp + nplg” dg/g if p does not divide N
= Ylanp)q" da/q if p does divide N,

with the convention that anz = 0if #/p is not an integer. Combining the formulas above, vne
can finally obtain the following result: for w = T ang" dg/q in Q{X¢(N)) and m > 1, one has
Tn(w) = 5 bug™ dg/q, with:
h, = Z & gt -
dlin,m}

(a.N¥)=1

In particular, we have, in the notation above:
b = tm.

which implies that if w is an eigenform for all T, say with eigenvalues A, then a, = A,a for
all n. Hence the common eigenspaces for the T, acting on 2'{X(N}} have dimension one.
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3 The Xy{N) as complex algebraic curves.

Every compact Riemann surface is the analytic variety associated to some projective algebraic
curve. In the case of the Xo(/N) we will make this a hit more explicit.

3.1 General results for compact Riemann surfaces.

In otder to be precise, we have to say what we will mean by a complex algebraic variety. So here
is our definition, which is very close to the one in Serre’s “Faisceaux algébriques cohérents”.

3.1.1 Definition. A complex algebraic variety is a pair (X, Ox) with X 2 topological space,
Ox a sheaf of C-valued functions on X, such that X has a cover by open subsets U such that
(U, Oxiiy) is isomorphic to some pair (Z,0z) with Z a Zariski closed subset of C* for some
n, endowed with the Zariski topology and the sheaf Oz of regular functions. The notion of
isomorphism here means that there is a homeomorphism ¢:UU = Z under which the regular
functions on open subsets of Z correspond to the functions in Ox. A morphism of complex
algebrajc varieties f: X — Y is a continuous map such that for all U C Y open and ¢ in Oy (L)),
gof isin Ox(f~'U7).

We can now describe how one associates, to a complex algebraic variety X, a complex analytic
variety X°". As a set, X™ is just X. A subbasis for the topology of X* is given by sets U
that one obtains as follows: take a Zariski open subset V of X, and a regular function f on V',
then U .= {« € 1"|[f(z)] < 1}. Finally, the analytic functions are those that can locaily be
written as a power series in a finite number of regular functions. This construction is clearly a
functor. If X is a non-singular complex algebraic curve, then X*" is a Riemann surface, which
is compact if X is projective. Serre's GAGA theory says that the functor X = X® gives an
equivalence between the projective varieties on both sides.

The theorern of Riemann-Roch implies that every compact Riemann surface is projective,
henee the GAGA theory says that category of compact Riemann surfaces is equivalent to that
of non-singular projective complex algebraic curves. Hence to a compact Riemann surface X
One can associate a projective algebraic curve X8, Let us describe explicitly how this works.
As a set, N¥ s X. The topology of X is the Zariski topology: the open sets are the cofinite
sets, and the empty set. The regular functions on a non-empty Zariski open set I/ are the
holomorphic functions on U that extend to a meromorphic function on X. In order to prove
that the pair (X*k O) just defined is in fact a non-singular projective algebraic curve, one
proceeds as [ollows. One first reduces to the case where X is connected. Let U/ € X be Zariski
open, not empty, and not X itself. By Riemann-Roch, there exists a surjective morphism
S X — PY{C) such that ! = f~'C. Using Riemann-Roch again, one shows that O(U) is a
finitely generated C[f]-module. It follows that O(U) is integral over €[f] and that the function
field C(X) of meromorphic functions on X is of the form C(f, g) with g algebraic over C(f).
Then one proceeds to show that X*# is the non-singular algebraic curve that corresponds to
the function field C{X). For example, for P in U/ one can take g in O{U/) such that g has a
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simple zero at P and no zere at the other points in the fibre of I under f:then £ oand g deline a

morphistn [rom X ¢ to Pg x Pt that gives & closed immersion over a neighborhood of ({7, 0).

3.2 The case Xp(V).

For Xy(N) one can make the construction at the end of the previous section more explicit, using
the two degeneracy morphisms By and By from Xg(N) to Xo(1) = PHC). Solet j, o= j=B; and
Jn = joB; 7, and jn are then meromorphic functions on Xo(NV). Let us show that these two
functions generate C(X{N}). Let &y in C(j; ){y] be the minimum polynowmial of yu over Gy )
We know that the degree of B, is ¥/(/N), so we have to show that $ has degree 2{N). For that
it is enough to find one elliptic curve E over C such that U GLE)) has exactly ¢ N) elements,
on which jn takes distinct values. Let us take E such that the endomorphism ring of s Z
{for example, take E = C/(Z + Z7) with 7 in H not quadratic over Q). Then, first of all. £
has automorphism group {1, —1}, hence its pumber of cyclic subgroups ¢ of vrder N, up to
isomorphism, is exactly ¢?(N). The values of jy on j7'(F(E)) are the j(E/G). Suppose now
that &, and G are two cyclic subgroups of order N of £, and that o E/(; -+ E/Gy is an
isomorphism. Let p, and p; be the quotient morphisms from E to E/G) and £/, and let g,
be the morphism from E/G; to E such that goepe = N. Then geeaep, is an endomorphism ¢
of E, hence multiplication by some integer. Since ¢ has degree N?, ¢ = +¥. After replacing
o by —o, if necessary, we have ¢ = N. But then g:0:p, = gu=p, which implies that oopy = py
{since the kernel of g, is finite, and E connected}. Hence G, = Gy, We have now proved that
C(Xo(N)) = Cldr, iw)-
The reader is referred to Qesterlé’s notes for proofs of the following statements:

1. ju is integral over C[j; ],

2. the morphism (5, jn): Yo(N) = € sends P = (E,G) to asingnlar point of the carve Y
defined by ® if and only if E has an endomorphisin of degree ¥, whose kernel contains
G and is not E[N],

3. ®y is in Z[z,y], symmetric, and irreducible in Clz, y],

4. Yp(N)*® is the normalization of Y.



4  Xy(N) over Z{1/N] and its moduli interpretation.

The fact that the &y are actually polynomials with coefficients in Z shows that the Xq(N)c,
the complex algebraic curves associated to the Riemann surfaces Xo(N), are naturally defined
over . Mare precisely, we will say that a model over Q@ of a complex algebraic variety X is
a variety ¥ over  {which is for us a Qrscheme of finite type that is separated and reduced),
togesher with an isumorphism from Yg to X, where ¥ denotes the complex algebraic variety
obtained from Y by extending scalars from Q to €. Let Yy be the closed subvariety I]’é) * ]P(l)
that is defined by @y, and let Xy(N)g be the normalization of ¥x. Then Xo(N)g, with the
natural isomorphism from (Xo(N)gle to Xo{N)g, is a model over Q of Xop(N)e. In the same
way, one obtains a model Xz(N)z over Z. This definition of the Xy(N)g is good enough to
study rationality questions of points and of morphisms between the Xo(N)g; this is the point of
view taken in Oesterlé’s notes. However, in the end we will want to know that Xq(/V)z has good
reduction at all primes not dividing N. In order to prove such results, it is more convenient to
have a better interpretation of Xo{N)z, say at least over Z[1/N], as a moduli space. This is
the puint of view that we will take in the lectures that foilow. Unfortunately, in order to even
define what. a moduli space is, we have to be morte technical than we have been until now. In

particular, we will use the language of schemes, categories and functors.

4.1 The main categories and functors.

We denote by Sch the category of schemes. People who are afraid of schemes can keep in
mind that a scheme is just something that one obtains by glueing affine schemes, and that the
category of affine schemes is anti-equivalent to the category of commutative rings, and that all
commutative rings are of the form Z]generators|/relations.

For a scheme S, we let Sch/S be the category of S-schemes, ie., the objects are schemes
N together with a morphism f: X — S, and a morphism from f:X 5 Stwoglt o Sisa
morphisi of seherses b X — ¥ that is compatible with f and g.

Let S be a scheme, and X an S-scheme. We define a contravariant functor hy: Sch — Set
as follows. For any S-scheme T, we put hyx (T") = Homg (T, X), the set of morphisms from T to
X in Sch/S; we wili aiso denote this set by X (T), and call it the set of T-valued points of X/§.
For f:T) = T) a morphism of S-schemes, hx(f) sends g in X (T3} to gof in X{T1).

For example, let § := Spec(§}), X := Spec(Qfz,y]/(z" + y" — 1)), for some n, and T :=
Spec(A) with 4 a Qalgebra. Then X (A} := X(T) is the set of pairs [, b) with a and b elements
of A satisfving «” + 0% = L.

Another example that shows that this functorial point of view is useful is as follows. Let
again § be u scheme. A group scheme G over S is then nothing else but an S-scheme G,
together with a factorization of the functor Ag: Sch/S — Set through the forget functor from
the category of groups Grp to Set. In more simple terms, this means that every G{T) has been
given the structure of a group, in a compatible way for varving T.

Of course, this kind of construction, associating hy to X, can be done for arbitrary cate-

gories. A fundamental and trivial result (Yoneda's lemma) about this construction is that for
C a category, b: X — hx defines a fully faithful covariant functor from C to the category ¢ of
contravariant fun('tors from € to Set. In other words, h identifies C with a full subcategory of C.
The F: € —= Set in C ¢ that are isomorphic to some hy with X in C are called the representable
functors. A detailed discription of this matter can be found at the beginning of EGA 1 (the
Springer-Verlag edition).

Before we go back to our schemes, one more generality concerning fibered products. Let
f-X — Sand ¢:Y — S be morphisms in some category C. A fibered product of f and g
is then a triple (Z, f',g"), with f©Z — ¥ and ¢ Z — X, such that feg = gef', such that
if (27, /", ¢"} also is such a triple, then there exists a unique f: Z' -+ Z with f'sh = f" and
g'-h = ¢". Fibered proucts do not always exist, but if one exists, it is unique up to unigque
isomorphismn, and denoted (X xx Y, px,py); px and py are called the projections to X and Y.
If S is a final object, then X xg ¥ is called the product of X and 17, and is denoted X x Y. 1t
is a good exercise to show that hxusy = hx x hy.

For the following fundamental results on elliptic curves over arbitrary schemes, the hook

“Arithmetic moduli of elliptic curves” by Katz and Mazur, provides an excelient reference.

4.1.1 Definition. Let S be a scheme An elliptic curve E over S is then a proper smaooth

curve with geometrically connected fibres of genus one, together with a point G in E{S).

For f: E — § an elliptic curve, we define Pic’(£} to he the subgroup of Pic{ E'} consisting of
isomorphism classes of invertible Og-modules £ whose restrictions to the fibres of £/5 have
degree zero. We define Pic®(E/S) to be Pic"(E)/ f PiclS

4.1.2 Proposition. Let E be an elliptic curve over a schere §. For every S-scheme T the map
from E{T} = Er{T} to Pic®{Ex/T) that sends P to the class of [(Pr) ' @ I{0) is a bijection.

It follows that £(T) has the structure of abelian group, functorially in 7. Hence E/S is an

abelian group scheme.

4.1.3 Proposition. Let E/S be an elliptic curve. Then, Zariski locally on S, E/S can be
embedded in P%, with the image given by a Welerstrass equation. All the formulas of Mestre's
lectures concerning ai,. . ., as, etc., are valid in this context. [n particular, the properties af A
show that the invertible Os-module (0*(2g;5)®'? is canonically trivial

4.1.4 Remark. Let § be a scheme and E/S an elliptic curve. A necessary condition for
E/S to be given by a Weierstrass equation is that the invertible Os-module 0"(25,4 be trivial.
Suppose that this is so. Then, if § is affine. or if 6 is invertible on S, E/S does admit a
Weierstrass equation. 1 do not know whether every elliptic curve E/S5 with trivial 0°Q,4
admits a Weierstrass equation. O

A morphism of schemes {1 X — Y is called finite if for every affine open Spec(d) of ¥ the
inverse image f'Spec(A) is affine, say Spec(B), with B an A-module of finite type. A finite
morphism f: X — Y is ealled localiy free if for all A4 and B as above, B s locally free as
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A-madule. A morphism f: X — Y is called finite etale if it is finite, locally free, and has
geometrically reduced fibres (this last condition is equivalent to saying that Q;m,- =0). If 4
is a local ring, and B is a local A-algebra, then B is finite etale over A if and only if it is of
the form Alz]/(f), with f monic, and irreducible and separable over the residue field of 4. For
example, if A is local and complete, with separably closed residue field, then the finite etale
A-algebras are the A", n > (.

4.1.5 Proposition. Let E/S be an elliptic curve, Forn in Z let [n]: E —+ E be the map that
sends P to nP in the group faw. Let n # 0. Then [n} is finite and locally free of rank n?. If
n is invertible on S, then the kernel En] = ker([n]) = S xg E (with E — E given by [n]} is
finite étale over S, and, after a suitable surjective finite etale base change T — S, isomorphic
to the group scheme (Z/nZ)%.

4.1.6 Definition. Let N > 1. A To{N)}-structure on elliptic curve E over a Z[1/N]-scheme
5 is a subgroup scheme G of E which is, after a suitable surjective finite etale base change
T — 5, isomorphic to (Z/NZ}y. For § a Z[1/N|-scheme, let Fy(5) be the set of isomorphism
classes of pairs (E/S,G), where E Is an elliptic curve over S and G a T'o{ N)-structure on E/S.
For f: 58" — 5, let Fn(f): Fn(S) = Fn(S5') be the map given by base change via f. Then
Fn:Sch/Z{1/N] — Set is a contravariant functor.

4.2 Xo(N)zpn as a coarse moduli space.

A natural way to demand that a Z[1/N]-scheme X parametrizes elliptic curves with a cyclic
subgroup of order ¥ is to ask for an isomorphism of functors Fy — hy, since this would mean
that over X there is a universal pair (Eyny, Guniv) from which every (E, G) is obtained by base
change via a unique morphism S — X. In that case, X, together with (Eyniv, Guniv}, would be
called a fine moduli space. Unfortunately, such X do not exist, for any N. This is due to the
fact that the ohjects we are classifying have non-trivial automorphisms (minus the identity, for
example), which cause the existence of so-called twists.

Explicitly (N = 1): let q, b and d > 0 in @ with d not a square, and with 4a’ + 276 # 0,
then y? = " +ax + b and dy? = 1%+ azx + b define elliptic curves over QQ that are not isomorphic
over @, but become isomorphic after base change to Q(v/d). If X would be a fine moduli space
for Fy, then the map X(Q) — X{Q{(v/d)) would not be injective, while this map is injective
for any scheme. This argument also shows that the morphism j: F; — AL that sends E/S to
HE/S) in Og(S) = Homsen (S, A}) is not an isomorphism. But still it is this kind of map that
we want to generalize to arbitrary N. One can prove that this morphism j is universal for all
morphisms from F} to schemes, which means, by the following definition, that A} is a coarse
moduli space for Fy.

4.2.1 Definition. Let S be a scheme, F:Sch/S5 — Set a contravariant functor, and ®: F — hy
a morphism of functors. Then (X, ®) is called a coarse moduli space for F if:

1. for every S-scheme Spec{k) with k an algebraically closed field, ®(k}: F(k) — X(k) is
bijective, and
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2 for every S-scheme Y and every morphism W. F = hy, there exists @ nnigue morphism
F: X 2 Y such that ¥ = h( f)-®.

We remark that if such a pair {X,®) exists, then it is unique up to unique somorphism by
the second property. Recall that Yoneda's lemma says that A: Hom(X. Yy = How{fiy, by s
bijctive, hence to demand, in the secand property, a morphism from X to Y or from £y ta ly,
is equivalent. Note that if ® is an isomorphism, then X is a fine moduli schewe for £

4.2.2 Theorem. (Igusa) Let N > 1. Then there exists a coarse moduli scheme Yy(N )im
for F. The Z[1/N]-scheme Yo(N)zpyw) is an affine smooth curve, with geametrivally irre-
ducible fibres. The natural bifection between Yy (N)z/nv{C) and H/TyiN) is an isomorphism
of complex algebraic curves.

The fact that Yo(N)z,m) is a coarse moduli scheme for Fy implies that every pair (E/S, (7),
with S a Z[1/N)-scheme, E/S an elliptic curve and G a Tp(N) structure on E/S. gives a
morphism § — Y{N)z;~}, such that, for k an algebraically closed field. two A-valued puints
of S have the same image if and only if they define isomorphic elliptic curves with [y(V)-
structures over k. Furthermore, the universal property of coarse maduli spaces implies that
every construction, that associates, functorially, to pairs (E/A, 7) an elemeat of A, arises from
a regular function on Yo{N)zjiyv For example, this defines the j-map from Yo(Nigp ) to A}

4.3 Description of Igusa's proof.

The proof of Igusa's theorem starts with the construction, completely by hand, of two fiue
moduli schemes that have to do with points of order 2 and 3 ([gusa actually used 3 and 4; we
follow Katz and Mazur, and correct a mistake they make on page 112).

Let us consider the Legendre elliptic curve E/8 with § = Spec(Z]A, (2A(A - 1)) ']) and E
given by the equation 32 = x(z — 1}{x — A). Let P:= (0,0), @ := (1,0} and w = (—dr)/2y.
Then Qg = Opw, 2P = 2Q = 0, and 0, P and Q are disjoint. We put ¢ == 0"w in /o
Then ¢ is a parameter at 0, up to first order, with x=' = % in [{0)3/1(0)%, and =% = #*
in 7(0)3/1(0)".

Now suppose that A is a Z[1/2|-algebra, that E/A is an elliptic curve, that P and { are
elements of E(S) with 2P = 2¢} = 0 and with 0, P and €} disjoint, and that w is a generator
of Q. We put ¢ := 0"w. Then, by a generalization of the argument that was done over fiells
in Mestre’s lectures,  is given by a unique Weierstrass equation y* = % 4 a23% + a.x + a5, with
ol = ¢2in J0}}/F(0)*, y~! = 2 in 1(0)%/1(0}, and z(P) = 0. The facts that 0. P, ¢} and P+¢}
are distinct, and that 2P = 2Q = 0, imply that 23+ ax? +auz+ag = o{z~c(Q)) (r—2(P+Q)).
Now we say that w is adapted to P and Q if moreover x() = 1, and we define a Legeudre
structure on E/A to be the data of P, @ and w with P, Q@ in E(A4) with 2P = 2Q = 0 and
0, P and @ disjoint, and w a generator of Q!E,IA that is adapted to P and ). Note that . ¢}
and w as above define a Legendre structure on E/S. Suppose now that w on £ is adapted to 7
and @. Then (E/A, P,Q,w) is obtained frem (E/S, P,Q,w) in a unique way, i.e., there exists
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a unique morphism from Spec{4) to 8, and a unique isomorphism from E to the pullback of E
to Spec{A), such that the data P, ¢ and w on E are transformed into those on E. This implies
that § is a fine moduli space for the contravariant functor L:Sch/Z{1/2] — Set, that sends 5

to the set of isomorphism classes of elliptic curves over S with a Legendre structure.

4.3.1 Remark. Note that the above property of the Legendre curve with its Legendre structure
is actually a bit stronger than what we need: in addition to having a unique morphism from
T to §. we even get a unique isomorphism from E to the pullback of E. This praperty can
be conveniently phrased by saying that {E/S, P, Q,w) is a final object in the category whose

objects are (£/5, P (},w) as above, and whose morphisms are cartesian diagrams:

E - F
1 1
5 = &

that are compatible with the Legendre structures on both sides. (Recall that such a diagram is
called cartesian if it is a fibred product.} Such categories are called stacks in the book by Katz
and Mazur, and in the article by Deligne and Rapoport. &)

On page 112 of the book by Katz and Mazur it is claimed that he universal property of
(E/S, P.(}, ) above gives an action hy the group GLy(F;) x {+1} cn E/S: for g in this group
there is unigque diagram:

E 24 E

{ l

s 44 g
that transforms ((2,Q), wiy on the left to (P, Q,w) on the right. The problem with this is
that w is not necessarily adapted to for example (£, P + ). A simple computation shows in
fact that for all ¢ # 1 in GL(F,) there does not exist a diagram as above, simply because
31 E is a non-trivial twist of E. In order to deal with this problem, we introduce the notion
of a complete Legendre structure. For /S an elliptic curve over a Z[1/2]-algebra, a complete
Legendre structure is a pair (¢,w), with ¢: (F2)% — E[2] an isomorphism of S-group schemes,
and wGL,(Fy) — Qo (E) a map such that for all g in GLy(F,) the differential w(g) is adapted
10 gy it the sense that it is adapted to (¢eg{ ]}, qf:og{?)).

Let €7 e the semi-direct product of GLy(F) by {+1}5L3(F2) defined by the action of GL(F,)
ot itself Ly right-translations. For & in {£1}592F2) and g in GL;(F;), let (¢, g) denote the cor-
respotding clement in G, and define, for (E/S, ¢,w) an elliptic curve with a completc Legendre
structure;

(E/S, ¢.w) (e,g) ;= (E/S, ¢eg,€ - weg),
where « - oo sends boto e (h)w(gh) (note that e(h)w(gh} is indeed adapted to ¢-gh).

A basic example of a complete Legendre structure is the following:
Ty = SpeclZ[1/2, A, (A(A - 1)) i VA VA 1)),
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E is given by 4% = £{z — Dl Al o)) = (0,0) and &((} = {10},

and
w: (:](:) - owy e (dr) /2y
((l]:) 3 \/3\1»‘1
(?é} - dun
0D = VA=1w
(i}]) = 1V Aun
(9 = VA= L.

If (E/S/Z(1/2), $,w) is a complete Legendre structure, then (E/S/Z{l1/2], ¢, w( ') is obtained
from (E/S, P, Q,w) in a unique way. Moreover, we get square roots VA V- Land VA -1on S
from: u,(‘l):) = vAw(1), u((l’(],) = v Aw(1) and w(?i) = v Aw(1). This gives a unigue worphism
from S to Ty which is compatible with the w(g} for g different from (:(']) and (J“]’). So we get.
a universal elliptic curve with a complete Legendre structure (E/T, 4, w) by taking T a d sjoint
union of four copies of Ty, over which E and ¢ are as above, and w is changed by all pssible
combinations of signs at {! 2} and () ).

By coustruction, we have an action by G on E/T: for g in & there is a unigue iagram:

E U g
b i
T 24 71

that transforms {¢eg, cwsg) on the left to (@, «) on the right.

We can now quickly construct the restriction of Yo{Nlzpw to Z{1/2N]. Let T from now on
denote Tzy/2n), and E its restriction to the new T. For each M dividing N, E[M] is a closed
subscheme of E[/V], but since both are fnite etale over T, it is also open (in fact, it is enough
to note that ({(T) in E[N/M] is open, and that follows from the Bnite etaleness of E[N/M)|
aver T). So let X be the complement in E[N] of the union of the E|Af] with M dividing ¥
and M # M. Then X is the fine moduli space for elliptic curves over a Z[1/2N]-scheme with
a complete Legendre level structure, and a point /” that has arder N in every fibre. On X we
have an action of the group G' 1= G x (Z/NZ)*" We let Y5(N)zp 2n) be the quotient X/G Tt
is then actually not so hard to show that this gives us a coarse moduli space over Z[V /2N for
the functor Fx defined above (restricted to Z[1/2NV]-schemes, of course).

A word about quotients. If a finite group @ acts on a scheme X, then we define X/G to be
the quotient in the category of locally ringed spaces. It is a good exercise to show that for X
affine, say Spec(A), one has X/G = Spec(A?), with A” denoting the subring of G-invariants
of A. Tt then follows that, in the general case, X/(+ is a scheme if every G-orbit s contained
in an open affine. In the situation above, X is an affine curve, hence the quotient is a scheme
The fact that X is smooth implies the same for the quotient.

In the same way, and without extra effort, one can construct Y (N )gpijzn and Y (M) zpsang
which are even fine moduli spaces for N > 4 and N > 3, respectively.

Actually, it turns cut that it is much simpler to work with trivializations of the full 4-torsion

instead of the two-torsion and differential forms. Namely, it is very easy to construct by hand a
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universal elliptic curve with a point of order four, over Z[1/2}-schemes. Here is the construetion.
Suppose that E' is an elliptic curve over a Z{1/2]-scheme S, and that P in E(S) has order four
in all fibres. Locally on S, choose arbitrary Weierstrass equations for E/S. These equations are
unique up to the usual u, r, s and t. Now use r to get that £(P) = 0; this is possible, and in a
unique way of course, because z{F) is a regular function (note that in all fibres P # 0). There
exists a unique rational function f on E, of the form z? + ay + 8z + v, with divisor 4(P) — 4(0).
The element ¢ is a unit, because, in all fibres, the divisor 4(P} - 4(0} is not symmetric. Now
use 5 and t in order to get § = v = 0; there are unique s and ¢ to get that. Finally use u to
get o = —1; the required u is unique. By construction, substituting y = z? in the Weierstrass
equation must give the equation x* = 0. This implies that there is a unique o such that E and
P are given by:
Exy* +zy+ay=2*+az’, P={(0,0).

A simple computation shows that A = a*(1 — 16a). Our construction shows that the elliptic
curve E given by the equation above, over the scheme:

¥:(4)z(1/2 = Spec(Z[1/2, e, (a(l - 16a))~']}

with its paint P := (0,0}, is universal. From this it is a simple matter to construct Y (4)z(1/2).
the base of the universal curve with a full level four structure, i.e., with a trivialization of E[4].
One takes the open and closed subscheme of E{4] on which the universal point Q) gives, together
with the point P, gives a Z/4Z-basis of E[4]. By construction, the group GLy(Z/4Z) acts on
E/Y (znsa

What we have done up to now, using complete Legendre structures, or full level four struc-
tures over Z{1/2], can be imitated over Z[1/3] with full level three structures, which are, for E
an elliptic curve over a Z[1/3]-scheme, nothing but isomorphisms from (Z/32)% to E[3]. The
group 7 is then replaced by GLp(Z/3Z). The universal elliptic curve is in this case given by
the equation z° + * + z° — 3uzyez, over the ring Z{1/3, ¢, p, (4* — 137*). For other formulas
see the book by Katz and Mazur.

So then we have our coarse moduli space for Fy both over Z[1/2N] and over Z[1/3N]. The
universal property gives an isomorphism between the two restrictions over Z[1/6N], by which
one can glue them. The result of this glueing is then a coarse moduli space for Fiy over Z[1/N].

Let Y5(N)c denote the pullback of Y3(N)z;1,x) to C. By construction, the set Y5({N)(C) of
its C-valued points is the set of isomorphism classes of elliptic curves with a cyclic subgroup of
order V, which gives a bijection with H/I'y (V). Let us sketch a proof that this bijection is an
isonorphism of Riemann surfaces. Let X be as above, in the construction of Yo(N)z1/2n). Over
X we have the elliptic curve E with a complete Legendre structure, and a point that has order
N everywhere. Extending scalars to C, and passing to analytic varieties, we get similar analytic
objects over X{C). Let x be in X{C). For U a small enough neighborhood of z, O-Qé,'x is
trivial on {/, say generated by some w, and the restriction of E{(C) to U/ is homeomorphic to
S!' x §' x U as a topological space over {/ {in fact there is an isomorphism of real analytic Lie
groups over U; use that all the Eln] are finite etale, hence trivial over I7). Integrating w, in the
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fibres, over the two standard 1-cycles of §' x §' shows that E(C)|;r arises from pullback fron
the elliptic curve over H whose fibre at 7 is C/(Z + Z7), in a compatible way with the extra
structures we have on both sides. The universal property of the quotient map from X{C) to
Yo(N}HEC) shows that the map from Yg(N)(C) to H/Tp(N) is analytic at the image of £

4.4 Compactification of Yo(N)z[/n.

We have seen that the Yo(N )z n) are affine. We will construct a projective smooth Xo( Ve v
that contains Ya(V)z1/~| as an open subscheme, whose complement is finite etale over Z[1/NVj.
The method we use is completely analogous to the one we used to compactify H/ T, (V)

We have the morphism j from Yu(N)zpw) to PL. We simply define Xo{N)z to be the
normalization of P} in the function field of Y3(N)z/n). Coneretely, this means that X (Vg is
finite over PL, and that the inverse image of an affine open Spec(4) of P} is Spec($3). for 13 the
integral closure, also called the normalization, of A in the function field of YNz (such
a construction does indeed “glue” because normalization commutes with localization). Since
Yo(N)zpyw is regular, and finite over Aé[l,m]' it is the inverse image of Ay, o in Yo(N]z

To study what happens “at oo" we use Abhyankar’s lemma {see SGA 1, XIII for general
statements), which is an algebraic and higher dimensional version of the classification of unran-
ified covers of the punctured disk that we considered when compactifying 1u{V)(C) In order
to apply Abhyankar’s lemma, we note that the j-morphism Yo(N)z(i,m — A'imm] is finite etale
over the complement of the closed subscheme defined by j(7 — 1728}, henee over a neighborhiood
around oo in Aé[l.le' Abhyankar's lemma then tells us that every point - in se{Spec{Z}} has
an open neighborhood U/, and a finite etale cover Spec(A) = U' = U, such that the A-scheme
X', that is obtained from Xo(N)z - P} by pullback to U7, is a disjoint union of A-schemes of
the form Spec(A[t]/(t* ~ 77')), with n dividing V.

It follows from this local description that Xg{N)z is smooth over Z[1/N], and that its
reduced closed subscheme Cusps(Xo{N}z) := Xo{N)z ~ Yp{N)z is finite etale over Z[1/N]. By
construction, Xo(N)z is finite over P}, hence projective over Z.
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5 Hecke action on the Jy(N)az[1/N].

5.1 Atkin-Lehner involutions.

Let r and N be positive integers, with v dividing & and with 7 and N/r relatively prime.
Suppose that (£/5, (7} is an elliptic curve with a Ty N)-structure {with S necessarily a Z{1/N]-
sehene). Then we get an elliptic curve with a [g(N)-structure, (E/G, E|N}/G), where E/G
is the gnotient of E by its closed finite etale subgroup scheme G {locally finite etale on 5 the
guotient can be constructed as the quotient by a the action of a finite group, and one performs
a descent to get it on S itself; of course, 1 am not going to provide all the details here). This
comstruction is a morphism w, of functors from F to itself, and, in fact, an involution. By the
universal property of coarse moduli schemes, induces an involution uy of Yo{N)z(i,m) \’Ve; will
now argue that this morphism extends, uniquely of course, to an involution wy of Xo(N)zp/w

Let X o= Ng(Nzpiw) and let Z be the closure in X x X of the graph of w, on ¥ =
Yol )z n) Sinee w, extends to an involution of Xg, just because Xg is a proper and smooth
curve, the two projections from Z to X are isomorphisms over certain cofinite open subsets
of X Tt follows that the two projections from Z to X are quasi finite, hence finite (here we
nse the properness of X over Z[1/N]). Finally, since X is normal, both projections from Z to

X are isomorphisms,

5.2 Degeneration morphisms.

Let &, Af and « be positive integers with dM dividing N. Suppose that (E/S5 G) is an
elliptic curve with a To{N)-structure. Then we get an elliptie curve with a Ty{ M }-structure,
(E/C[d]. GIM)), where E/G|d} is the quotient of E by its closed finite etale subgroup scheme
G4, and where & is the image of G in E/G[d]. This construction is a morphism of functors
from F to Fy;. hence, by the universal property of coarse moduli schemes, induces a morphism
By Vol Nz ons = Yol Mzpyw) We will now argue that this morphism extends, uniquely of
course, to a morphism Be Xo{N)zpw) — Xo{M)zpyw). For d = 1 this follows directly from
the construction. For general d, the morphism joBy from Yo{NV)g:;n to A;“,.N] i5 equal to
Jerwgeldy, where By goes from Yo(N)zyay to Ya(d)zp,w), we from Yo{d)z,m to itself, and ;
from Yo(d)zy,w) to Aé[u.\']- We already know that these last three morphisms extend to the
compactifications, so we know that joB, extends to a morphism from Xo{N)zpswy to Plzp,w]‘
Both morphisms § and j+8, from Xo(N)zpwy and Xo(M)zjm to ]Pi“'w] are finite. It follows
that the morphisin By from Yu(N)zpw to Yo{M}z;i/n) extends to a finite morphism from
Xo{Nzpin 10 Xo(M)zm)
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5.3 Hecke correspondences.

Lot N be a positive integer, and p a prime number. As we bave just seen that the degeneration

morphisms extend to ont compactifications, we have the Hecke correspundenee;

,‘((J(IMV )“UP-’”

s ~ M
4 Y

Xo(Nzj/pn No{M)z[em)

B,

5.4 The jacobian Jo{N)zun)-

To start, we want to have a Z[1/N}-valued point of Xo{V)z;;n). We haveseen before that the set
of cusps of Xg(N)(C) is naturally isomorphic to (}OWPYZ/NZ), with ac and 0 corresponding

wl

to (?) and (ll)), respectively. We have also seen that the ramification index of 4 cusp s the
cardinality of the orbit that it corresponds to. Then it follows that {0 is the only cusp with
ramification index N, hence it is Q-rational. Since oo = wy (), the cusp oo 15 also Q-rational.
The fact that Xu{V)z is projective over Z implies that oo In Xo(N)z(Q) extends uniquely to
an element oo in Xo{N)z{Z). As explained in the talks by Schoof, the contravariant functor
from Z|1/N]-schemes to the category of abelian groups given by 5 PicP (X (N)s)/Pic(S) is
represented by an abelian scheme that we will denote Jo(N)ziim)-

We will now see how the morphisms in the previous sections give morphisms between these
jacobians. Let us start with the Atkin-Lehner involutions. So let V and r be positive integers,
with r dividing ¥, and such that v and N/r are relatively prime Then we have the isomorphism
uy of Xo(N)zpw) We let it act, for every Z{1/N]-scheme S, on Jo( Nz wi(S), by the rule
£ v wy L. Since this is functorial'in S, it defines an antomorphisin wy of Jo{N}bajiin

Let us now consider degeneracy morphisms. So let ¥, M and d be positive integers with
dM dividing N. Then, for every Z[1/N]-scheme 5, we have a map B from Jo(M)gpats) to
Jo{M)zim(5) given by £ — BiL. Likewise, we want to define a morphism By, in the other
direction, as a kind of trace or norm map. In order to do that, it is good to note that the
morphism By from Xo{N)z[:/n) to Xo(M)gp/w) is finite and locally free, We have already seen
that it is finite; the fact that it is locally free follows from the general result in commutative
algebra that says that for A a noetherian regular local ring, every local regutar A-algebra that
is finite over A and of the same dimension as A is free as 4-module. A reference for this result
can be found in the book by Katz and Mazur, where the result is used many times.

So suppose that f: X — Y is a finite locally free morphism of schemes. Then the Oy -algebra
F.Ox is locally free as Oy-module, so that we have a norm map f.O% — OF. We get a map
f. from Pic(X) to Pic(Y) as follows:

Pic(X) = H'(X. @) = H'{Y, £.0%) - H(Y,0}) = Pie(}).

where the second equality can be found somewhere m EGA 11 {ene just needs to know that
every invertible (7x-module is trivial on open neighborhoods of the fibres of f, which is i fact

a simple consequence of the Chinese remainder theorem).
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Let us go back to our degeneracy morphism By. For every Z[1/N]-scheme §, we have Bg,
from Pic{Xo(V)s) to Pie(Xq(M)s. This gives a morphism By, from Jo(N)zpsm to JolM)zjw).
One easily verifies that By.-B] is multiplication by the degree of 5, on Jo Mz (1w

Having these degeneracy morphisms act on jacobians by both Picard and Albanese func-
toriality, it is now a simple thing to define the action of Hecke correspondences. So let N be
a positive integer, and p a prime number. We define T}, to be the endomorphism Bi.sB; of
Jo(N)z(1pn1, and we define the T, in End(Jy(N}g)} for all n > 1 to be the endomorphisms given
in terms of the T, as in the second talk.

Let us remark that it is actually pessible to extend the correspondences T, over Z[1/N], at
least if p does not divide N, and have the T, act on Jo(N)zpw)-

5.5 The cotangent space Coto(Jy(N)q).

Let i: Xo(N)g — Jo(/N)g be the embedding that is normalized by #{co) = 0. Pullback of global
one-forms then gives an isomorphism from (' (Jo{¥)g) to ' (X¢{N}y). Since global one-forms
on an abelian variety are translation invariant, evaluation at zero gives an isomorphism from
Q{Jy(V)g)} to Cote(Jy(N)g). So, combined, this gives us an isomorphism from Cotg(Jo(N)g)
to (' (Xo(N)g). On both these Q-vector spaces we have defined endomorphisms T}, forall n > 1
{actually, the definition on §2*(Xy(N)g) has not been given, but we take the definition we have
over C and replace C by Q in it). We want to know that the isomorphism just mentioned is
compatible with the T,,, and with the B; and the w,. In order to do this, we recall some results
about curves and their jacobians.

S0 suppose that X and Y are smooth projective geometrically irreducible curves over a field
k, with given points r in X (k) and y in ¥ (k). Then we have the embeddings i,: X — Jx and
ty: ¥ = Jy of X and Y into their jacobians, that send a point P in X or ¥ to the class of the
divisor (P) ~ (x} or (P} — (y}. Suppose moreover that f: X — Y is a finite morphism. This
gives us the following maps on cotangent spaces:

fordx = Jy induces (f,)": Coty(Jy) — Cota(Jx),
and
frody = Jx induces (f*)*: Coto(Jx) — Coto(Jy).

We claim that, under the isomorphisms above, (f.)" is compatible with the map f*Q'(Y) —
Q'(Y), and that (f*)* is compatible with f,: Q'(X) — Qi(Y). The first assertion follows
directly from cconsideration of pullback of globai one-forms in the commutative diagram:

X = Jx

{ 1

Y = J)'

in which the horizontal maps are :; and 1,, and the vertical maps f and f,. The second
assertion seems somewhat harder to prove. A consideration of line bundles on Xy (e? =0)
whose restriction to X is trivial, gives an isemorphism from H'(X Ox) to Tang(Jx). Since we
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have already an isomorphism from Coty{Jx) to (LX), we get a perfect pairing between $2'{.V)
and H' (X Ox). This pairing is, up to a sigt that depends on various conventions, Serre duality.
For Serre duality it is known that f, and f* are adjoint to each other (note thar the possible
sign does not matter, because in the compatibility it cceurs twice). (However, it is a good
exercise to make all definitions explicit, and to determine the sign. If [ were to <o i, 1 would
start with an elliptic curve.)

So we know now that 73, on Coto(Jo{N)g} is compatible with T, on G'{ Xy(N)g). We have

an isomorphism:
C@ N (Xo(Nlg) = D Xo(N)e) -+ STl N},

which is compatible with T,, everywhere. This means that we can use the results from Frev's
lectures on the action of the T, on S;(I'y(N))c in order to study the action on Coty{Jy(Ng).

5.6 Decomposition of Jy(N)q.

Let N be a positive integer. We let T (or T{N)} if N needs to be specified} be the subring
of End{Jp(N)g) that is generated by all T,, n > 1. We let T' be the subring of T generated
by the T, with n prime to N. Since the endomorphism ring of an abelian variety is free of
finite rank as a Z-module, T and ‘T’ are both free Z-modules of finite rank. The action of T
on Coto(Jo(N)g) is faithful (Q has characteristic zera), hence we can view Ty 0= C @ T as the
sub-C-algebra of Endc(S2(Fo(N))¢) generated by the T5,. Since the T, with n relatively prime
to NV are self-adjoint for the Petersson scalar product, T¢ is isomorphic to a product of copies
of C. But then T, being a commutative Q-algebra of finite dimension, mmst be isomorphic to
a product of fields, say K| x - -- K, with each K a finite extension of Q. Morcover, T' itself is
a subring of finite index in the product of the maximal orders of the A,

For M > 1, let S3(Cp(M))&™ be the subspace of newforms in S, (I (A))¢: it is the inter-
section of the kernels of the By, for all d and M’ with dAf" dividing M and A7 # M. Ths
motivates us to define a quotient Jy(M)gurew of Jo{N)g by:

D W(Mig 25 I{M)g — Jol Miguew — 0.
dM' | M
MIEM

By construction, Coto{Jo (M }g new ) 18 then S2{To(M))2*. The Atkin-Lehner theory of newforms
tells us that the morphism:

J(Ne S P JoiM)gnew

AM|N

is an isogeny. Anyway, T' acts on Jo{N)gunew. 58y with image of finite index in the maxi-
mal order of K, x --- x K,. Each factor K; of K|, x --- x K, defines an isogeny factor 4,
of Jo{¥)gnew. The multiplicity one result for the action of Tg on Sy(Co[N])¢ implies that each
A, has dimension K : Q). We have an isogeny:

JO{N)O,new - A[ X% Ay
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The theorem of Kolyvagin and Logachev says that A,(Q) is finite if there exists an embedding
of K, into € such that the unique normalized newform f = T 0.q" with a, equal to the image
of T, in € for all p not dividing N satisfies L(f,1) # 0. OFf course, this theorem is a big step n

proving the Birch-Swinnerton-Dyer conjecture for the abelian varieties Jo(N)g.

6 Tangent spaces.

Let N be a positive integer, and p a prime not dividing N. Let S := Spec(Z|L/N]), X =
Xo(Nys and J = Jy(N)s. Let = denote the morphism from X to S, We have already seen
that # is projective and smooth, and that the cusp oc in X{C) defines an S-valued point oc
in X{S). Using Abhyankar’s lemma, we have seen that Cusps( X} = (3700 e 18 finite and
etale over §. It then follows that Cusps{X) is the disjoint union of co(5) and anuther apen
and closed subscheme. [t follows that, in a neighborhood of co(S}, § “1is generator of the wdeal
of co(S}.

Let 0o, be oo composed with the morphism Spec(F,) — S. Then g, is in X{F;), and
Ox m, 18 a regular local ring in which {p, j71) is a system of parameters. Let X, be the fibre
of X over F,. Then the completion O% . of Ox,.cc, With respect to the maximal ideal is
canonically isomorphic to F,[[57']], and cahence to Fy{lg)], where q and j are related in the
usual way (j = 1/g + 744 + --). Let Coty, (Xp) denote the cotangent space of X, at ooy
this is a one-dimensional Fy-vector space, with hasis dg. Let 8 in Tany,(.X;) be the basis
dual to dg. Then @ is the derivation on F,[g]] that sends 32 ang" to a), the derivative at zero.
By construction, 3(3 .5, ang" dg/q} = ai. This gives us a good understanding of the tangent
space of X at 0op. ()u; next objctive is to do the same for Cotg(J,)- As always for a smooth

projective geometrically connected curve and its jacobian, we have:
i r
Cotg(Jp) = Q2 {X}).
6.1 Proposition. X, is connected, and hence frreducible because non-singnfar.

Proof. Grothendieck’s theorem on formai functions (see Hartshorne, 11 11.1} says that the
map:

W@ Ox(X) = O, (Xw) = lim Oxy. (Xu ),
where W is the rinng of Witt vectors of Fp, and W, = W/p"W, is an isomorphism of W'-
algebras. Let K be the fraction field of W. Then W & (X)) 15 asubring of K ® Ox(X) =
Oy, (Xx), which is equal to K since Ac, and hence Xg. are irreducible. Hence 0 and 1 are
the only idempotents in the inverse limit of the Ox, {(Xw,), which means precisely that Xg,

is connected. 0O

6.2 Proposition. The genus of Xc is equal to that of X,

Proof. Since X, is smooth, projective, and geometrically connected, we have Ox {Xp) = Fp.
Since X — S5 is projective and smooth (hence fiat), the Euler characteristic of Oy on the fibres
is a constant function on S (see Hartshorne, II1, 9.9). Hence the dimension of the Fy-vector
space H'(X,Oy,) is that of the C-vector space HY(X¢Ox, ). Serre duality shows that ('(X})
and §2*(X¢) have the same dimension. |

6.3 Proposition. We have Q(X,) =F, @ 2" (X}.
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Proof. We consider the map £1'(X) — Q'(X,), and we note that Q},,S is an invertible Oy -
module. On X we have the short exact sequence of @y-modules:

Or—}OX _p+ OX—POXP“-“PO.

Since Qﬁ(,s is locally free, tensoring this exact sequence by it gives an exact sequence. Since
the formation of {2}, ¢ (for general X and S) commutes with base change on S, we have an
exact sequence:
1 v 1 1
0— Qs — Oy — Qg —0

Passing to global sections shows that the map from F, @ Q'{X} to (2'(X,) is injective. Since
Q'{X) is a Z[1/N]|-submodule of finite type in {1'(Xg), with the property that Q ® Q'(X) =
QY Xg), ' (X) is a free Z|1/N]-module. It follows that our injection of F,-vector spaces is an
isomorphism, because both spaces are of the same dimension, a

Let us recall the definition of S3(T'o(N))g, for R any subring of C: it is the R-module of elements
F in 5{Tp(N))¢ whose g-expansion has coeffients in R.

6.4 Proposition. The two sub-Q-vector spaces (1'{Xg) and 5,(To(N))g of 52(Te{N))c are
equal.

Proof. Of course, it follows directly from the definitions that the g-expansion map from
Q' Xg) to Sp{To(N))c has image in S2([h({N))g. So it remains to prove the other inclusion.
So let T a,q™ be in 53{[o(N))g, and let w = ¥ a,g" dg/q in ' (X¢) be its associated one-form.
The fact that Q2'{X¢) = C® O (Xgq) implies that 3 e.q" is actually in the subring C @ Ql[q]!
of C{lg]]. Let us consider the following commutative diagram:

0 - Q2(Xg) — C8OMXg) — (C/QRD(Xg) — O
1 l 1
0 = Q)] - CoQjl - (C/QeQpq] - o

The three vertical arrows are injective, simply because the functor {C/Q) ® — is exact. The
statement is now obvious. O

6.5 Proposition. The two Z[1/N]-submodules (' (X) and S2(To(N}zi1ym of Sa(To(N))g are
equal.

Proof. As in the previous proof, the inclusion Q'(X) € S3(To{N))z(yn) is clear. So let us
suppose that 3- a,q" is in S(To(N))z(usm1, and let w be the corresponding element in Q'(Xg).
This means that w is a rational section of the invertible Ox-module was. Since X is projective
and smooth over S, it has all the properties one needs to work with divisors of rational sections
of invertible Oy-modules. In particular, the notions of Weil divisors and Cartier divisors are
equivalent. The prime divisors of X are the following: the closures of the closed points of
Xo{N)g, and the irreducible components of the fibres over closed points of S. But since we
know that all fibres are irreducible, the prime divisors of the last type are principal divisors:
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X, is the divisor of the funftion p. Let D be the divisor of w. The fact that w has ne poles on
X¢ means that all prime divisors of the first type have a multiplicity = 1. Let p be a prime
number, and consider the point oo, as before. We claim that the multiplicity £ of X in Dis
exactly the minimum m, of the vp{a.), where v, is the p-adic valuation on Q. normalized by
v,(p) = 1. Obviously, m, and D; behave the same when one replaces w by po. Henee, in order
to verify the claim, we may suppose that both D, and m, are > 0. Recall that the completion
of Ox o, With respect to its maximal ideal is Z,/[g]]. Now, the ideal in Z,{[¢]| defized by o is
the ideal generated by p™», and also the ideal generated by p™ 1t follows that wmy, and I,
are equal. It is now clear that the divisor of the w we started with is effective, hence that w s
in QUX). a

Combining the results above, we have:
]Fp @ SQ(FU(N))ZIUN] = Q‘(X,,) = COta(Jp) — C()tmﬂ(.\—,,].

In the dual of Coty,, (X,) we have our element 8, inducing ¥ ang" — @1 on B, @52 (FoliV )z iens
We will also denote by & the element i,,.0 of Tang(Jp), and we will write T, for F, & T

6.6 Theorem. The tangent space Tano(Jp) is a free Tp-module, with basis é).
Proof. The statement is equivalent to saying that the pairing:
Corgldp) x T, = Fp,  (w, t) = a{tw),

is perfect. Note that both sides are Fy-vector spaces of the same dimension {the genus of X}
Suppose that w in Cotg(J,) has the property that @ {fw) = 0 for all t in T. Then. for all n > 1,
anlw) = a (Tow) = 0, which implies that w is zero. 0
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7 The structure of X,(N)z along the cusps.

In this section we state some resuits on the completion of Xo{V)z along the cusps, without
justifying the computations. Sc let ¥ > 1 be an integer, let X := X(N)z, and let X* be the
completion of X along Cusps(X). In other words, X" is the fibered product:

X" = Spec(Z{lg]) xpy X.

Let Tate(q) denote the Tate elliptic curve over Z((g)), as defined in the talks by Mestre. It
foliows from the construction of the Tate curve that we have:

Tate(q)[N)(Q((¢))} = {CRg"" la.b € Z/NZ},

where (v is a root of unity of order N, and ¢!/ a formal N-th root of g. One sees that
the N-torsion of Tate(g) is rational over the extension Q(¢n}((¢"/¥)) of Q({g)). Let G be the
Gajols group of this extension. Then G is the semi-direct product of (Z/NZ)* by py, with u
in (Z/NZ) acting on ux by z — 2% Let Cy denote the set of cyclic subgroups of order N
of 'Ihto(q)[,’\"](@r(jﬂ) Then we have:

Cn = {CR"™ |, b) in (Z/NE)? of order N}/(Z/NZ)".

Define Y hy:
¥ = SpeciZ((q)) Xps X.

Some thinking shows that we have:

- O—
(Vg = [T Spec{(Q@ Z[a]((g ¥} 05),
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where {1, h) denotes an element of Cy, and G(‘E,T) its stabilizer in G. This is quite useful, since
it allows one 1o compute X, via:

X7 is the normalization of Spec(Z[[g])) in (¥*)g.

We note that the set Oy is identified with PH(Z/NZ), simply by associating (a, b) to (E¢*V.
Hence we see that the set of cusps of Xg is the set () 2)\P'(Z/NZ). We have already seen that
the set of cusps of Xy is ((', TINPHZ/NZ); the difference between the two is of course the action
of the Galois gronp (Z/NZ)".

Suppase now that N = p", with p a prime number. We choose the following representatives
for (é:)\E"(Z/;\'Z). (0.1}, (1,p") for 1 €4 < n. One computes that G5y is the group (é?)‘
which gives a copy of Spec(Z[{g'/7"]]) in X*. Over this part, the given cyclic subgroup of the
Tate curve is generated by g'*" | which, in the way we have set things up, corresponds to 7 /p"
in B, heuve to the cusp zero.

uver which une has the subgroup generated by (n of the Tate curve. Obviously, this is the

conpletion of X along 2.
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Suppose now that | < 1 < n, and let j := n — 1. One cumputes that G = ((1] . +P';+3-‘JU).
with # and y ranging over Z/p"Z. For 1 > n/2, this gives a copy of Spec(Z[G][lg)]) in X"
over which one has the subgroup generated by {png'/" of the Tate curve. In terms of H. this
corresponds to 1/p™ + 7/p'. For i < n/2 one gets a copy of the normalization of Spec(Z|(g]})
in Z[Cp.]((c;lq‘f"pz‘)), One can compute this normalization explicitly {sce an article by myself
in the Annales de 'lnstitut Fourier), but we know, using the Atkin-Lehuner involution, that as

a scheme it will be isomorphic to Spec(Z|(.][lg]]) (but not as a Z|[g]]-scheme).



8 Some results from commutative algebra.

The aim of this section is to prove some results that were used in the previous sections, such
as Abhyankar’s lemma, and the fact that finite morphisins between regular schemes that are
everywhere of the same dimension are locally free, using only results that the author of these
notes himself fully understands. We only give a complete proof of Abhyankar’s lemma in the
case of dimension two. For the fact that certain finite morphisms f: X — Y were finite and
locally free, fet us note that we only used this when X and ¥ were smooth projective curves
over some base. The fatness then follows from the fibre-wise criterion for flatness (see EGA).

8.1 Theorem. Let A be a local ring which is noetherian, normal, and of dimension at least
two. Let B be the intersection, in the field of fractions K of A, of the localizations of A at its
prime ideals of height one. Then B = A.

Proof. Let M ¢ B be a finitely generated A-module containing A4, and let M = M/A. By
induction on dim(A) we know that the support of M is contained in {m}, where m is the
maximal ideal of A (localize at the non-maximal prime ideals of A). Hence M is annihilated
by m" for some n > . For each i > 0, let N, 1= {a € K |e-m™ C A}. Then we have:

A=NyCN C---C Ny, and M C Ny,

Consider N, We have either Nym = A or Nym = m. Suppose that Nym = A. Then there
exists n in A, and a in A such that na = 1. Krull’s Hauptidealsatz gives us a prime ideal y of
height one such that v,{a) > 0 (v, is the valuation associated to y), hence with vy(n) < 0. Now
take b in m, such that b is not in y; then v, (b} = 0, and, because b is in m, nb is in A. This is
a contradicion, hecause v, (nb) = v,(n) + y,(b) < 0.

Hence we know that Nym = m. But then NyN;m = Nym = m C A, which implies that
NN, C N.. So Ny is an A-sub-algebra of K, which is finitely generated as A-module, hence

equal to A because A is normal. Now note that mN, C N,_,, for i > 1, which gives N; = A for
all: > 1. ]

8.2 Theorem. Let A be a local noetherian normal ring. Let X := Spec(A), let ¥ be a closed
subset of X of codimension at least two, let I/ :== X — Y and let j:U — X be the inclusion.
Finally, let F be a locally free Oy-module of finite rank. Then F(U) is a finitely generated
A-module, and j,F is the coherent Ox-module associated to it.

Proof. We note first that j,% is quasi-coherent, because j is quasi-compact and separated
{note that the ideal of Y is finitely generated, and see Hartshorne, II, 5.8). It follows that
J.F is the quasi-coherent (Jx-module associated to the A-module F(U). It remains to show
that F(I) is finitely generated. We first prove this for Oy itself. But, in the notation of the
preceding theorem, O (I/) is contained in B, hence equal to A. Let FY denote the Op-linear
dual of F. If we can show that FY is a quotient of OF for some n, then F is a sub-Oy-module
of @ for that n, which implies that F(U/) is an A-submodule of A", hence finitely generated.

33

We claim that in fact any coherent Op-module G is a quotient of some O Here is the proof
First of all, j.G is quasi-coherent by the same argument as above for F; heonee 3.4 1s the quasi
coherent Ox-module associated to the 4-module N = Gy, Let oy, o, be a systemn of
generators for the ideal of Y. Forl <i<rlet g, | <j<n, bea finite set of generators for
the A -module N; . After multiplying the g,, by suitable powers of ;. we nay assime that
the g, are in N. It is clear that the g,, generate the Op-module G. L

8.3 Theorem. Let A be a noetherian regular local ring of dimension two. Let X o= Spece(:),
£ in X the closed point and j:U = X — {z} = X the inclusion. Let F be a locally free
Oy -module of finite rank. Then $.F is a free Ox-module of finite rank.

Proof. According to the previous theorem, j,F is the quasi-coherent. O y-module asseolated
to the finitely generated A-module M := F(U). Let k be the restdue fietd of 4. It remins to
be shown that the dimension over k of k®4 M is (at most] the rank of F. Let b e a system
of generators of the maximal ideal of A. Let V be the closed subscheme of Lf defined by the
equation a = 0, and let & V — 7 denote the closed immersion. We bave an exact sequence ol
Oy-modules:

00— 0Oy 5 Oy — iy — 0.

Since F is locally free, tensoring by it gives an exact sequence:
0—F 5 F— i F 0
Passing to sections over [/ gives an exact sequence:
00— M 2 M-— [TF)V),

which shows that M/aM is a sub-A/aA-madule of (" FYV). Now note that 4/ad is a discrete
valuation ring with uniformizer b, and that (*F}(V') is a vector space over its field of fractions
of dimension the rank of F. It follows that M/aM is torsion free as A/nA-module, hence {ree
of rank at most the rank of F. Hence M/(ad + bM) is of dimension at must the rank of F.
0

8.4 Remark. The condition that A is of dimension two, in the previous theorem, is really
necessary. In fact, the only dimensions in which such a result is true are zero and two. For
example, for & a field and d > 3, indecomposable vector bundles of rank at least two on Py~
give counterexamples by pulling them back to A ~ {0} € AL O

8.5 Theorem. Let A be a noetherian strictly henselian regular local ring of dimension two
{for example, W1([t]], with W a complete discrete vauation ring with separably closed residue
field). Let X := Spec(A), z the closed point of X, and U its complement. Let f:U" —= 17 he
finite etale, and let X' — X be the normalization of X in U/ Then X' = X is finite etale.
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Proof. Let ;117 — X be the inclusion. Note that f,0; is a locally free Oy -module, By
the previons theorem, j. f,Oy is a tocally free Ox-module, with an Ox-algebra structure. Put
B i=4.f,0u(XN), and X' = Spec(B). Then X' = X extends U’ -+ U as a finite free morphism.
The ramification locus of this morphism is defined by one equation, the discriminant. But then
this discrinsinast nuust be a unit, since otherwise f would be ramified at a point of codimension

one, and those are in [/ 0

8.6 Remark. The theorem above is called the purity theorem of Nagata and Zariski, in di-
mension twe. The result is actually true in all dimensions 4 > 2. For a proof see SGA 2, X, 3.4.
The idea of the proof is to do induction on the dimension by passing to a closed subscheme of
A of the form V(1) with ¢ a parameter of A. Then one compares the finite etale covers of L',
X, % N and V{t}, where U and X are the completions of I/ and X along V() N/ and
V'(t), respectively. Al

In order to state Abhyankar's lemma, we need some terminology. Let X be a regular noetherian
scheme, [ a reduced effective divisor on X, and IJ .= X — . Let I/ = U/ be finite etale,
and let X7 - X" be the normalization of X in {7, Let i be the generic point of an irreducible
component of {2, and let 7 be a point of X’ that maps to 7. Then U7 is said to be tamely
ramifiedd at 7' if the extension of discrete valuation rings Ox g — Oxr 4y is tamely ramified, i.e.,
if the residue field extension k() — k(') is separable, and the ramification index invertible
i k(). The cover {7 of U is said to be tamely ramified over D if it is tamely ramified at
all combinations (3, 77). Naete that if all k(n) are of characteristic zero, then every finite etale
' 17 s tame

8.7 Theorem. Let 4 be a noetherian complete regular local ring with separably closed residue
field. Let t,. | f, he a set of parameters in A, i.e., the t; are in the maximal ideal m of A,
with lincarly independent images in the k := A/m-vector space m/m? Let D = V{t, --t,),

7= X - D, and U — U/ finite etale and tamely ramified over D). Let X' be the normalization
of X in I Then, as an X -scheme, X' is isomorphic to a disjoint union of schemes of the form:

Spec{Alz,, ..., 5[/} —t1,. .., 27 —t,))/C,

with the n, invertible in A, and G a subgroup of ., % -+ x .. In particular, if r = 1, then
X' s isomorphic to a disjoint union of copies of Alz|/(z™ — t), with the n invertible in A.

Proof. First we do some reductions in the general case, and then finish the proof in the case
of dimension at most two. A proof of the general case can be found in SGA 1, XIIi, £5.

Let 8 — 5 be a finite etale morphism, with S connected and § — 5 surjective. A
construction that is analogous to the construction of a splitting field for a polynomial shows
that 5° = S is dominated by a finite etale cover $ — 5 that is Galois over 5 in the following
sense: one has a group G acting freety of 5", such that §" — S is the quotient morphism. The
morphisn 5" — 5" is then the quotient for some subgroup H of G. We apply this construction

e

te a connected component of U', and get a U”, a G and an H as above. We claim that we can

choose U to be tame over 7. In fact, we claim that there is a maximal tane cover [ between
U" and 7. To construct it, let N C (7 be the subgroup generated by the elements g of € that
act trvially on some Ox» o /m2,, where X" is the normalization of X in (7", 7" the generic
point of an trreducible component of the inverse image D7 of D in X, Then NV is a normal
subgroup of G, and U* := U//N has the desired properties. Se, from now on, we assume that
U™ — U is Galois, with group G, and tame, and that 7/ = U"/H.

Let n; be the ramification index of U" over U at the generic point of D, :=17(¢,), and define:

Y :=Spec{Alz,, ...,z )/ (=P — 4, ...z = t)),

and let ¥” be the normalization of ¥ in ¥ xx /", Let 1V and V" be the inverse iinages of U7

in ¥ and Y, respectively. We claim that ¥” — Y is finite etale. This is so by constriction
over V', since ¥V — U is finite etale. Once we know that 1 is finite etale uver ¥ at the generic
points of the V{z;), we know it ove all of ¥ by the purity theorem above (that we have | roved
in the case of dimension two}. So let 5 be the generic point of some V' (#,), and n” an elen ut of
the fibre of X" — X over n. Let n be the ramification iudex at 5. Let G,y e the stabilizer in
G of 7", and let I+ be the kernel for the action of Gy on k(7). Then OF | is (O%. )% the
ring of (7-invariants in the completion of Oxn e with respect to its maximal ideal my,.. The
subgroup Ip» acts on my. fml, via an isomorphism x- fp» — palk{n”)). Let 7 be & uniformizer
of Oxw . After replacing 7 by 32, x{g)~'gn. with ¢ ranging over I, we have g7 = (g7
for all g in [,», i.e., we have linearized the action. It is then clear that =" = #u,, with u,
a unit in (Oj}.,‘w,,)IW”, which is unramified over 0% . For simplicity, let us put 8 = O%,,
C = Q% and t:=¢;. Put B := Blz]/(z" — t;), and let " be the normalization of B' @5 .
Then €' is obtained from C by first doing an unramified extension ", and then normalizing
C"|yl/{y™ — zu). Tt is easy to see that this is also unramified. This calenlation finishes the
proof that ¥ — VY is finite etale at the generic points of the V{#,).

Now we know that V" is finite etale over V. But since Y is itself the spectrum of a
noetherian complete regular local ring with separable closed residue field, Y7 is a disjoint union

T

of copies of Y itself, This gives us a morphism from Y to X", over X. Hence Y dominates
the X' we were interested in. Now note that ¥ has ar obvious action by the X-group scheme
G := piy, X -+ X jtn,, which makes ¥ into a G-torsor over X. The fact that ¥ -+ X is tamely
ramified implies that all n, are invertible on X, for, if not, the action of some g, on V{z;)
would cause a non-tivial inseparable sub-extension in the funtion fields of V'(¢,) and V(z,). {1
am aware that more details would be welcome here.} Hence, in fact, the group scheme (' is

just constant, and the proof is finished. o
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