UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL ATOMIC ENERGY AGENCY @t}
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LC.T.P.,, P.O. BOX 586, 34100 TRIESYE, ITALY, CABLE: CENTRATOM TRIESTE

E

SMR.1004/12

SUMMER SCHOOL ON ELLIPTIC CURVES
(11- 29 August 1997)

Deformations of Galois Representations

G. Bockle

Institute for Experimental Mathematics
University of Essen
Ellernstrasse 29
D-45326 Essen
Germany

These are preliminary lecture notes, intended only for distribution to participants

MAIN BUILDING  STRADA COSTIERA, 11 TEL. 2240111 TELEFAX 224163 T ELEX 460392 ADRIATICO G UEST HOUSE V1A GRIGNANO, 9 TEL 224241 TELEFAX 224531 TELEX 460449
MICROPROCESSOR LaB. Via BEIRUT. 31 TEL. 2249911 TELEFAX 224600 TELEX 460392 GALILEQGUEST HOUSE V1A BERUT, 7

TEL 2240311 TELEFAX 2240310 TELEX 46(392
ENrICO FERMI BUILDING

Via BEIRUT, 6 {TELEPHONE, Fax anD TELEX THROUGH MAIN BUILRING)



Detormations of Galois Representations

Gebhard Bockle
August 27, 1997

Introduction

The goal here will be to give an introduction to the theory of deformations of Ga-
lois representations. In the first part we shall discuss some conjectures of Gouvea
and Mazur concerning families of modular forms and congruences and their con-
sequences. Then we shall explain the transition from modular forms to Galois
representations. The next step is to introduce the concept of a deformation of a
given Galois representation. Families of modular forms satisfying congruences can
then be naturally interpreted in this context.

As a starting point for our own investigations we shall state a main theorem in
the subject, namely the existence of a universal deformation space. The main goal
will be to discuss conjectures and properties of the universal deformation space.
Qur main theorem will discuss ring-theoretic properties of it, namely we will give
fairly general conditions under which the underlying ring is flat over Z,, a complete
intersection and of relative dimension three, or respectively more general conditions
under which the ring modulo p is a complete intersection of Krull dimension three.
In order to establish this, we shall state a local-to-global theorem for deformations
and discuss local deformation functors.

1 Families of modular forms (and congruences)

A reference for this and for further details is [GoMal]. We fix levels N > 1 and Np
where N and p are relatively prime, and p is a prime, p > 2. By k& we shall denote
weights of spaces of modular forms, by L an extension of (, inside T,. We fix a
valuation v on ©C, such that v(p) = 1. For such an L we define

Se(L) = Su(To(Np), Q) dg L.
We will now decompose this space in p-old and p-new forms,
Si(L) = SR{L)P~o @ S (L)P~rev,

The space Sy (K)?~%? is defined to be the span of the image of Sx(Tq(N), L) under
the maps By and By, ie. sending [ = 3 ang" € Si(To(N), L) to itself inside
Se(L), or to ¥ a,¢"" inside Sk(L). This can all be done over @, and so the space
5777 could be defined as the orthogonal complement via the Petersson inner
product. Equivalently, and this avoids the analytic structure, we define it to be

the subspace inside Si{L) that is in the ), linear span of the eigenforms of S{Q,)
that satisfy f = —pl*k/sz’NPW'pf. Here W, denotes the Atkin-Lehner involution



and the index p, Np of the Hecke operator means that we consider the operator T,
acting on Si([o(Np), L), in order to distinguish it from the operator T, acting on
Se(lCo(N), L) which we denote by T}, n.

1.1 DeEFmvITION. For a normalized eigenform f € 5% (T, ). we define the siope of [
to be

alf) = rluy(f}).

a,( f) being the p-th Fourier coefficient of f.
We now have the following easy proposition concerning slopes.

1.2 PrOPOSITION. Let f be a normalized eigenform in Si(C,). Then o f) > 0 and
we have the following cases.

(i) f is p-old. Then there exists a unique twin f, i.e. a p-old form that satisfies

a,(f) = a,(f) for all primes ¢ # p, such that a(f) + o(f) = k-1 In
particular o f) € [0,k — 1].

(i) [ is p-new. Thenalf)=£k/2-1.

Proor: Part (i) simply follows from our above characterisation of p-new eigen-
forms, on observing that for such forms W, f = £f.

To see (i), note that as f is p-old, there is a unique oldform g, an eigenform,
such that ag,(g) = a4(f) for all primes ¢ # p and such that f is in the span of Big
and Brg. If g =3 anq", then the two forms are given by 5" a,¢™ and 3 a,¢"". It
is casy to see that the Hecke operator 1), np, on the span of these two forms is given

as
E i N T ’Aﬁ]
paNp = ( ’1"\ IU )

Diagonalizing this and calculating the corresponding eigenvectors and eigenvalues,
gives f and its twin and their respective p-th Fourier coeflicients. u

We can now state a conjecture of Gouvéa and Mazur - for more conjectures and
examples see [GoMal].

1.3 CONJECTURE. Suppose for some kg and some « such that 0 < o < kg—1 there
exists a unique normalized eigenform fi, € Sk(Q,) of slope a. Then there exists
an integer n > « and an arithmetic progression K — {ko + mp™(p — 1)+ m € My}
such that in each of the spaces S5,(Q,) there is a unique normalized cigenform fi
of slope a. Furthermore the functions fi satisfy

fe = fry  (mod p"th),

ie. ag(f) = ag(fi,) {mod p™*!) for all k € K and primes g.



If we assume the conjecture, and if we are given fi, as in it of slope «, we can
construct the following ‘fern’ of eigenforms congruent modulo p™*! where ng is the
least integer greater as a.

First there is the arithmetic progression of slope o, fi,, fi,, Sizs o .. We follow
it, say to fi, where k,/2 — 1 > a. At this point we must have a p-oldform by the
above proposition - for p-newforms one must have k,/2 — 1 = . So there is a twin
fin of slope & = k—1 —a > o. But then we can use it to start a new family. We can
move along this family and then do the same thing again, etc. So we constructed
a huge family of modular forms f for which we have a,(f) = aof fi, ) modulo pet!
for all ¢ # p. Translating this to the associated Galois representation will make the
congruences even nicer!

. .

2  From modular forms to Galois Representations

Let f be a normalized eigenform in S.(L), where L/Q, is finite. @ shall denote
its ring of integers, 7, a uniformizing parameter. One has the following theorem
due to Eichler, Shimura, Deligne and Serre.

2.1 THEOREM. For any normalized cigenform f € Si{L) there is a unique repre-
sentation py : Gos = GL2(L), where § is the set of all places of Q@ dividing Np
enlarged by infinity, Gg s is the Galois group of the mazimal outside S unramified
extension of Q, and py satisfies

Tr(ps(Froby)) = a,(f) VYgfNp (1)
det{ps(Frob,)) = ¢ =+E""q) vgfNp. (2}

Note that this means that the representation is unramified outside S. Also note that
py applied to any complex conjugation in Gy = Gal{Q/Q) gives a matriz conjugate
to ([1) ° ) We call such representations odd.

It is possible to choose an O, lattice in L? stable under the Galois action, so that
one has up to base change a representation py : Gg s — GL2(OL), and by reduction
modulo 71, if we denote Op/ny, by F, a representation p; Go,s — GLo(F). If py

3



is absolutely irrcducible, e the representation to Oy is unique up to isomorphisin,
i Jor all Galois stable Tattioes onc obtains the same representalion. We will also

denote of by py.

By the Cebotarov density theorem it is not hard to see that in fact the images
of the Frobenius elements for all primes ¢ f Np determine py completely in the case
that gy is absolutely irreducible. So now we can interprete the fern construction
in a different way. We assume that fy, is as in the fern construction and that
further py,  is absolutely irreducible. Then each element f in the fern gives rise
toa ps: Ggs — GLy(Q,) and so that all the representations agree modulo pmo+!!
This motivates the definition of a deformation in the following section.

3 A good environment to grow ferns

We assume that we are given the following data, S a finite set of places of @
containing {p,oc}, F a finite field of characteristic p, § : Gg,s = GLz(F} an odd
absolutely irreducible Galois representation, W (F) the ring of Witt vectors of F.

Let C be the category of complete noetherian local W{F)-algebras ( R, mg) with
a given surjective map R — F, and where the homomorphisms are local homomor-
phisms that induce the identity on F. We define the following functor.

3.1 DEFINITION.
Defy s :C = (Sets) : B {lifts p : Ggs = GL2(R) of p}/ =

where 2 stands for strict equivalence. We say that two lifts p, p’ are strictly equiv-
alent iff there exists an M in the kernel of the map from GLy(R) to GL2(F) such
that p = M~ 'p’M. We call the elements in Def; s(#) deformations from of 5 to £.

We note that one can make this definition under much more general assumptions
over arbitrary number fields instead of @ and without the assumption that 5 is odd,
or absolutely irreducible.

The following will be crucial for the investigations to come.

3.2 TueOREM. Under the assumptions made in this section, the functor Del, 5 is
representable. By {[ps), Rs) we shall denote a pair representing it, in particular
this means that ps: Gg s = GL2(Rs).

Again we note that this can be done much more generally. The main hypothesis is
that the centralizer of the image of p in GL2{(F) is the set of homotethies. This is
clearly satisfied if 7 is absolutely irreducible.

We apply this to the case where p = jy, isasin the previous section, generating
a fern. Then any f in the fern gives rise to a representation py € Def; s(Q,). Note
that as the representations are all congruent to each other certainly modulo p. one

can always take the same residue field F. Also

Def; 5(Q,) = HOMW(F)—algebras(RS: Q) = closed points of Spec(Rs[1/p]).



and so the modular points correspond to prime ideals of Rg, i.e. elements of
Spec(Rs).

Using recent results of Coleman and the infinite fern construction Gouvéa and
Mazur were able to prove the following [GoMa2].

3.3 THEOREM. If [ is as the fi, in the fern construction. if p = p; is absolutely
irreducible, N = 1, 5 = {p, oo} and Def; s is unobstructed - which we will define
below -, then the set of modular points is Zariski dense in Spec(Rs), where Rg =
W (F){[X, X2, X3]].

Furthermore they show that the above Rs can be viewed naturally as a certain
Hecke algebra.

We will now turn the attention to properties of Rs which is our main interest
of study.

4 Properties of Ry

We assume that we are given g : G 5 — GL3(F) as at the beginning of the previous
section.

A The basic theorem and conjecture

We define ad; as the representation of Gg s on M;(F) defined as the composite of
p with the conjugation action of GLy(F}) on M(F). ad) is the subrepresentation
on trace zero matrices.

We define & = dimp H*((/g s.ad;). Note that the §' depend on S. We call 5
unobstructed (for S} if 6% = 0.

4.1 THEOREM. In all cases one has a presentalion
01— F{[Xy,...,Xn]] = Rs/(p) = 0

where I is generated by at most 62 elements, and 8! — §2 = 3.
if p is unobstructed, then Rg = W(F)[[X,, X2, X3]].
If p is tame, i.e. the order of the image of p is not divisible by p, then on has a
presentation
0= 71— W(F)[[X,...,Xs5,]] > Rs >0

where [ is generated by at most §° elements.

The first two claims are shown in [Maz1], the third one follows from the material
presented below and can be found in {Boe2].
We now want to discuss the following conjecture by Mazur

4.2 CoNJECTURE. Rgs/(p) is flat over W(F), and dim Rs/(p) = 3.

What we shall prove is the following theorem, which in some cases has been
sketched by Mazur in [Maz2, Maz3] and a [ull prove is given in [Boe3].



4.3 THEOREM. If p is ordinary - to be defined below -, and if p is modular, i.e.
equal to some py for some cusp eigenform f, then

(i} If p is tame, then Rg is flat over W(F), of relative dimension three and a
complete intersection.

(e} If det(p) is ramified at p, then dim Rg/(p) = 3.

B Fixing the determinant

In a first step, we decompose Rg by splitting off the part that is related to the
determinant, i.e. to abelian representations and thus to class field theory.

We suppose that we are given pg € Def,; s(W({F)) (or pp € Def; 5(K), K a
finite totally ramified extension of W({F)}}, and define n = det(pg). Note that if p
is tame, then such a pg always exists. We can define a functor Defg.'s by

Def? 5(R) = {[p] € Defs,s(R) : det(p) = n}.

is again representable. [f the representing ring is called

4.4 PROPOSITION. Defg s

R?;, then one has

Rs = LW (F)([T¥]).
Here l"%b is the Galois group of the mazximal abelian pro-p extension of Q unramified
outside S, and from class field theory it follows easily that W (F){[[¥]] is finite flat
over some appropriately defined W(F}[[X]].

We note that this decomposition may seem unnatural if one thinks of modular
forms, as fixing the determinant means that one fixes the weight and hence one
shouid expect at most a finite set of modular forms for given weight. Yet for our
deformation theoretic studies this decomposition is well-suited.

C Ordinary deformations

Next we define ordinary representations.

4.5 DEFINITION. A representation p : Gy — GL2(R) for R € C is called ordinary
if the restriction of p|;,, I, a chosen inertia group at p, can be conjugated to lie
inside the set of matrices of the type (L]J ’:), and if further (p {(mod mg}}|,, is not
the trivial representation.

If pis ordinary, we can define a deformation functor for ordinary deformations
(and for ordinary deformations with fixed determinant, if one has a pg as above).
This functor is representable and the deformation ring will be called R¥? (resp.
R?'d'n). The following theorem which was crucial in the proof of Fermat’s last
theorem can be found in [Wil], [TaWil, and [Dia].

4.6 THEOREM. [f p is modular, absolutely irreducible and ordinary, then ROSM’” 15

finite flat over W(F) for some appropriate n.



D Local deformation problems

In the next step we shall consider local deformation problems, i.e. deformations of
a given 7 : G, = GL2(F) where [ is any prime equal to p or not. Usually 7 will
be ﬁl(‘;@i.

We note that in any case 7 will have solvable image, and as we think of it as a
restriction of p to Gy, the image will usually be rather small. So the crucial condi-
tion for the representability of the deformation functor, CGL2(F}(Im(T)) equals the
set of homotethies will usually not be satisfied. This problem can be remedied by
defining a slightly different local deformation functor Def; of which one can show
that there is a map Defz s — D.ef;, if r= ﬁ!Gm‘

We indicate the definition of Def]. By U we denote the unique p-Sylow subgroup
of Im(7) - it could be trivial. We let H be the quotient of Im(7) modulo U/. One
can show there is a section and so we shall also regard H inside Im(7). As H is
ptritne to p, one can choose a lift of H C Im(r) C GLy(F) to GL,(W(F)).

We denote by F the fixed field of #=1(U) and by Gr(p) the Galois group of
the maximal pro-p extension of F. By ¢, ..., g; we shall denote elements of Gg(p)
whose images under 7 generate U/ as a group. We shall assume without loss of
generality that U is inside the matrices of type ((1) “f), that ¢, maps to (é % ),

and the other g; to ((1) # ) Now we define

Defi(R) = {ae€ Homp{Gri{p), I'2(R)) : «(g,) has (1,2) entry equal to 1,
alg:) = (é B ) (mod m) for all i}

The following theorem is a combination of [Bos|, [Boel] and [Boe2] for the cases
[ # p and can be found in [Boe3] for the cases [ = p. Special cases for | = p were
treated in [Maz2].

4.7 THEOREM. The local functors Def; are representable, and so are their varianis

Def], Def; ™, Def? ™"

one has presentations

The respective rings will be denoted by R}'. Furthermore

0= I = W(F)[X1,..., Xn]] = Rt — 1

where n; = dimp HY(Gy,, ads), I is generated by ezactly dimp HZ(G@“ad;) ele-
ments, and the rings R; are finite flat over W(F) and complete intersection. One
has similar presentations for R? with ad;J replacing ad;. Finally the kernel of the
surjective map R} — R;"d'” is generated by at most two elements.

E A local-to-global principle

The next fact we need is a local-to-global principle. Here we shall make the as-
sumption that
H*(Gqzs,ad;) - [[ H?(Gq, ad;)
gES
is injective. This is not necessary and one can use auxiliary primes as in {TaWi] to
overcome this problem. Under our assumption however one has the following,.



4.8 THEOREM. Let O = W(F) if p is tame and O = F otherwise. Let
O{[Xl: e 'sX'n]] — RS & o

be a surjection with kernel I'. Then there is ¢ map

I wEX.. .. X0 — 0lX,, ... X

geES

such that 1 is the ideal generated by the wmages of the I, for ¢ ¢ 5. The same
theorem holds for RL where the numbers n; have to be replaced by the respective
numbers for R} and the I; by the ideals in a presentation for Ry.

This and the previous theorem prove easily the missing part in theorem 4.1.

F The proof of theorem 4.3 in the case that p is tame

By the the first fixing the determinant, it suffices to show that R% is flal over
W {F) of relative dimension 2, and a complete intersection, where n = det(py). By
theorem 4.1, adjusted to R, we have a presentation

0= I' = W(EF)[[X,....X,]] * RE =0

where I’ is generated by at most n — 2 elements, call them ry,...,r,—2 where we
allow r; = 0 if I is generated by less then n — 2 elements.

From the local considerations concerning R;"d'” and R} it is easy to see that

the kernel of the surjection R% — R%rd’n is generated by at most two elements, call

them r,_(, rs.

By theorem 4.6, RY is finite flat over W(F). Hence the elements ry,..
must, form a regular sequence, and by flatness of the latter ring, also the clements
Py 1, P So the same is true for any permutation and any subsequence, as
W(F}[[X,,..., X,]] is local. Hence ry,...,rn_g,p form a regular sequence. This
easily implies the result in the tame casc in theorem 4.3.

-3 Ty

4.9 REMARK. Similar results based on the work of Fujiwara, [Fuji], instead of Di-
amond, Taylor, Wiles can be obtained for totally odd representations over certain
totally real fields instead of . Also the local to global principle and the local
considerations work in general for arbitrary number fields respectively local fields -
though certain explicit numbers we gave will obviously differ in the general cases.
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