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Conference Trieste, August 24-29, 1997
On the equation z7 + 7 = 2
Alain Kraus
Introduction

Let p, ¢ and r be three integers > 2. In this text we shall survey the main lines on
works which have been done on the diophantine equation

(1} ' P4yt =2".

It bas & long history in relation with Fermat’s Last Theorem. Of course there are in general
plenty of solutions to this kind of equations. For instance, let p be an odd number and g,
b be two integers. Then taking ¢ = a” + ¥, we have the equality

(ac)® + (be)? = ()2

From an arithmetic point of view, these solutions are not very interesting. That is the
reason why we introduce the following definition : given an integral sclution {a, b, ¢) to the
above equation, we shall say that this solution is proper if a, b, and ¢ are pairwise coprime
and that it is non trivial if abc is non zero. Let us denote by S(p, g,7) the set of the proper
non trivial integral solutions of t.he equation (1).

The main problem related to this equation is the following :
Problem. Describe the set S(p,q,1).

Let us define the characteristic of the equation (1) to be

1 1 1
x(par)==-+>+=-1
r q r

The study of the equation (1) depends on the fact whether x{p,q,r)} is > 0 (the spherical
case), is zero (the euclidean case) or is < 0 (the hyperbolic case). In light of the abc
conjecture, one might expect S(p,q,r) to be empty if the exponents p, ¢ and r are large
encugh. In this way it is tempting to make the folldwing conjecture, which we tnay call the
Asymptotic Generalized Fermat Conjecture (see for instance [7], p. 515 or {10}, p. 2} :

Conjecture 1. The set of triples coprime integers (aP, b, ¢}, such that a® + 4% = " and
x(p,g,7) <0, is finite.

There are only ten known solutions satislying a generalized Fermat equation of the
above type, with the condition x{p,q,7) < 0:

1P+22=3% 2547234 734137 =2° 2T417%=71%, 354114 =122,
177 4 76271° = 210639287, 1414% + 2213459% = 657, 92627 + 15312283% = 1137,
43°% 4 06222% = 300420072, 33° 4 15490342 = 15613°.

The five larger solutions in this list were found by a computer search by F, Beukers and
D. Zagier at Utrecht in 1993 (cf. [3]). In each solution an exponent 2 occurs. This has led

+ Tijdeman and Zagier to raise the following question :

Question. Do there exist integers p, ¢ and r > 3 such that S(p,q,r) is non empty 7

D. Bernardi in 1997, by a computer search as well, has not found any proper non
trivial solution (e, b, ¢} to the equation (1) if the maximum in absolute value of a®, b and
¢ is < 2% and if p, q and r are > 3. )

A. The spherical case .

The possible sets {p,¢q,r} are {2,2,r} with r > 2, {2,3,3}, {2,3,4} and {2,3,5}. In
that case, the proper solutions to the equation (1) correspond to rational points on certain
curves of genus zero (see [7], 7, p. 536). The first result which has long been known is the
following :

Theorem 1. Suppose x(p,q.r) > 0. The set 5{p,q,r) is infinite.
There is in fact the presence of parametrised solutions which do not exist in the

non-spherical cases :

Definition 1. A parametrised solution of the equation (1) is a triple (X, Y, Z) of homoge-
neous polynomials in Q{s, t], with ged(X,Y,Z) = 1 and XY Z # 0, such that X?+Y? = 2",
Two parametrised solutions (X,Y,Z) and (X', Y’, Z") are said to be equivalent if there
exists a matrix A in GL2(Q) such that

X{A(s,8)) = X'(8,t}, Y(A(s,8)) =Y'(s,t) and Z(A(s,t)) = Z'(5,t). -

F. Beukers has shown in 1995, in a more general setting, the following result ([3], th.
1.2}

Theorem 2. Suppose x(p,q,r) > 0. There exists a finite pumber of parametrised solutions
classes, from which all solutions of the equation (1) can be obtained by specialisation of
the variables s and t to rational integral values.
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For argument's sake, let us consider the cquation

S+ =2

In 1993 D. Zagier found three classes of parametrised solutions which yield all integral
solutions to this equation (cf. loc. cit., 7) :
X =0 +6s%2 3, Y =—s+65%2 4314, Z=sst(s? +3t%).
X = (1/4)(s* + 6572 — 3t%), Y = (1/4)(~s* + 657> + 3t%), Z = (3/4)st(s* + 3t%).
X=s"+8st", Y=-dt4at!, 2=4 20" -85
D. Zagier has also found the classes of parametrised solutions which yield all integral
solutions to the equations :

3

? and ':!:‘-f-y’zz .

dty’=z

A complete set of parametrised solutions, that is GLy(Q)-inequivalent, of the equation
2% +y® = 2?, which would yield to all integral proper non trivial solutions, is still unknown.
We only know fifteen of them (cf. loc. cit., 5).

B. The euclidean case

The list of possible sets {p,q,r} are {3,3,3}, {2,4,4}, {2,3,6}. In this case the set
S(p, q,r) corresponds to rational points on certain curves of genus one (see for instance
{7}, 6, p. 534). The situation in this case has long been known, thanks to Fermat, Leibniz,
Bachet and Euler :

Theoremn 3. The only proper non trivial solution in the euclidean case corresponds to
the equality 1+ 2% = 3%,

For instance, one can finds the proofs that the sets §(3,3,3) and 5(4, 4, 2) are empty
in {17], p. 37-45, by mean of arguments using infinite descent.

C. The hyperbolic case

In this case the first fondamental known result is due to H. Darmon and A. Granville
in 1993 (cf. [7], 3, p. 524).

I. Darmon and Granville’s Theorem

This theorem is the following :

Theorem 4. Suppose x{p,q,7) < 0. The set S{p,q,r) is finite.

Let § be an algebraic closure of Q. The proof of this theorem uses the result below
which is based on the Riemann Existence Theorem :

3

Theorem 5. Let p, g and r be three integers > 2 such that x(p,q,v) < 0. There exists
an irreducible smooth curve X defined over Q, whose genus is > 2, and & finite Galois
covering w : X — Py such that :

(i} the covering w in unramified outside {0,1, 00} ;

(ii) the ramification indices of the points 0, 1 and co are p, ¢ and r respectively.

Since the map = is defined over @, it can be defined over some finite extension X of
Q. Let d the degree of «. Define V the set of finite places of I at which the covering 7 has

bad reduction : say that a finite place v belongs to V if the graph of 7 has bad reduction
at v. The set V is finite.

Suppose from now 611_ that we are given a model of X over the ring of integers of K.

* Given a point ¢ in P1(K) — {0, 1, 00}, we define L, to be the field extension of K generated

by the coordonnates of the points P in X(Q) which belong to the fiber x~1(t). Since x is
defined over K, the extension L, of K is Gelois. In other respects the degree of L, over K
is at most d; in fact it divides d.

We need some information about the ramification of the extension L,/X. Let v a non
archimedian place of XK. We define arithmetic intersection numbers

(£.0)y := Max(v(1),0), (t.1)y := Max{v(t <1),0) and (t.co), := Max(v(1/t),0).
The following result describes the ramification of the extension L;/K {cf. [2]and [7]) :

Theorem 6. (Beckmann, Darmon, Granville} Let t be a point in Py (K) — ‘{0, 1,00} and
v & finite place of K which is not in V. If the following congruences are satisfied

(2) (t.0)y =0mod.p, (t1l)y=0mod g and (too), =0 mod.r,

the extension L,/K is unramified at v.

Let us now see how these results imply Darmon and Granville 's theorem. Let us
consider (2,b,¢) a proper non trivial solution to the equation {1). Let us take

aP
Evidently ¢ is distinct from 0, 1 and oo, and the congruences (2) are satisfied. The theorem
6 implies that the extension L;/K is unramified at the finite places which are not in V.
On the other hand the degree of L; over K is < d. We then deduce from the Minkowski's
theorem that there are only finitely many such fields L, which may arise from a proper
solution of the equation (1). So the compositum L of all such fields L, is a finite extension
of K and in particular of Q.

Suppose now that the set S(p, g,r) is infinite. In this case, there would exist infinitely
many elements ¢ of K of the form (3). Those elements would then lead to infinitely many
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points of the curve X rational over L. But since the genus of X is > 2, the set X(L) is
finite by Falting's theorem. We so get a contradiction and then obtain the theorem.

Remark. It is in general very difficult to find an explicit covering » : X — P as above.
Anyway the proof of the previous theorem shows that we may deduce the description of
the set S(p,q,r), by analysing the set of the rational points of an algebraic curve defined
over some number field (which is not easy at all). H. Darmon gave another formulation of
this fact in terms of, what he calls, the M-curves (see [10]).

II. The known results towards the Asymptotic Generalized Fermat
Conjecture

They all use the known results on the Taniyama.-Weil conjecture (cf. 12}, [23]and [21]) :
an elliptic curve defined over @ which is semi-stable at 2 and 3 is modular. Moreover, it
seems that recently, Conrad, Diamond and Taylor have extended this result : an elliptic
curve defined over } whose conductor is not divisible by 27 is modular.

The first result in the direction of the Aéymptotic Generalized Fermat Conjecture is
the Last Fermat's Theorem proved by Wiles and Ribet (cf. [18Jand [23]) :

Theorem 7. Let n be an integer > 3. The set S(n,n,n} is empty.

The next theorem has been proved by H. Darmon and L. Merel in 1996 (cf. [6], [9]),
at least if n is prime > 7. The cases of various small exponents n < 9 have been treated
by Poonen :

Theorem 8. a) Let n be an integer > 4. The set $(n,n,2) is empty.
b) Let n be an integer > 3. If the Thaniyama-Weil conjecture is true, S(n,n,3) is empty.

The theorem below is a consequence of the results obtained in [5]and [9] :
Theorem 9. Let n be an integer > 2. The set S(4,n,4)} is empty.

I proved in 1997 the following result at least if p is prime-l?_ 17 {cf. [14]}; the case
3 < p <13 can in fact be treated by ad hoc arguments :
Theorem 10. a} Let p be a prime number such that 3 € p < 10%. The set §(3,3,p) is
empty.
b) Let n and m be two integers > 2 and p be & prime number > 3. The sets S(3n 3m,p)
and §{3n,p, 3m) are empty.

For the proof of the theorem 10, we essumed in [14] that the Taniyama.-Weil conjecture
is true. Thanks to the recent result of Conrad, Diamond and Taylor this statement is now
unconditional.

Actually, if p is explicitly given, we dispose of an algorithm, which allows one often

in practice to prove that the set $(3,3,p) is empty (cf. loc. cit.). This is for instance the
case if p = 479909, which is the forty thousandth prime number.

III. The key ingredients to obtain such results

All the arguments used to prove thesé results are of modular type. The nature of these
arguments can be divided into three parts :

a) the recent results obtained on the Taniyama-Weil conjecture;
b) the construction of, what we usually call, Frey curves;
c) Galois properties of the division points of elliptic curves.

From now on, for the sake of simplicity, we will suppose that n = p is & prime number
which is > 7. Let @ be an algebraic closure of @, say the one which is contained in C.

Let us now explain the general method which was used to prove the above theorems
for the exponent p. At first, we consider a propet non trivial solution (a, b, c) to one of the
equations below :

P4y =P, PP =2, P HyF =20, at-pt=2, PB4y =2r

Then we construct an elliptic curve F = F(a, b, c) defined over Q such that the following
conditions are satisfied :

(i) the curve F' has semi-stable reduction at p, and the exponent at p in its minimal
discriminant is divisible by p; ) -
(if) the representation pf : Gal(Q/Q) — Aut(F[p]), of the Galois group Gal{(Q/Q) in the
p-division points of F' is irreducible ; moreover pp i3 unramified outslde aset TU{p},
T being contained in {2,3}; .
(iii) there exists a prime number at which F has multiplicative reduction.

Definition 2. We shall call such a curve F' & Frey curve associated to (a,b,c).

Let us denote by
an(F)
= Z n* °’
nxl

the Hasse-Weil L function of F. To such a representation pp, J.-P. Serre associates two
integers : a weight k whichis > 2and a conductor N=N (p, } which is prime to p (cf. (20]).
These invariants measure the ramification of ;. In our cases we have k = 2 (condition (i))
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and the prime numbers which may divide N are 2 or 3. If F' is modular, which is known
to be always the case, except perhaps if {g, b, ¢} belongs to S{p, p,3), it is now proved that
the following condition holds (¢f. [21], 2.2, Remarques 2))

there exists & newform in S3°“(N), that is a cusp newform of weight 2 and of trivial
character for the congruence subgroup I'o(NN), in the sense of [1}, whose the g-expansion
at infinity is
F=g+2 anq"  (q=exp(2mir)),
nx2
and a prime ideal 7 above p of the ring of the algebraic integers, such that, for almost all
prime !, we have the congruence :

ai(F) = a; mod. P.

In our situation, we are in one of the following cases :

(c1) the dimension over C of §§¥(N) is zero, so that f, and then (a,b,¢), cannot exist;
(c2) the Fourier coefficients a,, of f are rational integers.

In the case (cz), there exists an elliptic modular curve £ defined over @, of conductor
N, whose Galois representation in its p division points is isomorphic to pﬁ' . In fact, in this
case, if (a, b, ) belongs to one of the sets S(p,p, 2), 5(p,p, 3) or 5(4, p,4), the elliptic curve
E has compler muitiplications and has a point of order two or three rational over (. Then
by mean of arguments concerning the Galois properties of the division points of elliptic
curves (see below IV.1), we are then led to a contradiction for the existence of the solution
(a,b,c).

We have to notice the important fact that in all the above treated cases, it has been
possible to construct a Frey curve for each proper solution of the equations considered.
This has been done by H. Darmon. It is nowdays really a crucial step in the direction of
proving that a generalized Fermat equation z¥ + y9 == 2" has no proper non trivial integer
solution.

IV. The main arguments of the demonstrations

Let us begin by stating the Galois properties of the p-division points of elliptic curves
over @ we need for the proofs. Let us recall that, from now on, the letter p, if there is no
supplementary precision, refers to a prime number > 7.

IV.1. Two results on the division points of elliptic curves

Let E be an elliptic defined over Q. Let

pp : Gal{Q/Q) — Aut(E[p))

the representation given by its p-division points. In [19], J.-P. Serre has described all the
possibilities for the image of p,. For our purpose, we are essentially faced with the problem
of knowing if there exists an elliptic E' qver @, non isogenous over Q to E, such that
the Galois representations given by the p-division points of E and E'are isomorphic : this
problem addresses & question raised by B. Mazur in 1978 (cf. [15], p. 133).

iV.1.1. The case of a normalizer of a split Cartan subgroup

Let us suppose that the image of pp is contained in the normalizer of a split Cartan
subgroup (cf. [19], p. 278-283). For instance, this is such the case if £ has complex multi-
plications by an order of a quadratic field K and if p splits in K. In 1984 F. Momose has
proved the following theorem ([16), prop. (3.1)) :

Theorem 11. Suppose p is > 11 and distinct from 13. Let | be an odd prime number.
Then E has potentially good reduction at .

As a consequence of this theorem, in the direction of the above question raised by
Mazur, we have the result below ([13}, th. 1) :

Theorem 12. Suppose p is > 11 and distinct from 13. Let E' be an elliptic curve over
@ such that the Galois representations given by the p-division points of E and E' are
isomorphic. Then the conductors of E and E' are equal.

We would like of course to conclude that E and E’ are isogenous. This is actually true
if F has complex multiplications, at least if its medular invariant is distinct from 0 and

1728 (ef. loc. cit.).
IV.1.2. The case of a normalizer of a non split Cartan subgroup

Let us suppose now that the image of p, is contained in the normalizer of a non split
Cartan subgroup (cf. [19], p. 278-283). This is for instance the situation if E hds complex
multiplications by an order of a quadratic field K and if p remains prime in K, The theorem
below is crucial for the above results ([9], th. 8.1) :

Theorem 13. Suppose p > 5, and that the following conditions are satisfied :
a) the curve E has a Q-rational subgroup of erder two or three;
b) the image of p, is a normalizer of a non split Cartan subgroup.

Then the modular invariant of E belongs to Z[%].
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The assumption a} is essential : let E be the elliptic curve of equation
v =z + 27786 z + 30624566 (cf. (7], p. 531).

This curve has no Q-rational subgroup of order two or three. The image of the Galois
representation in the 7-division points of E is a normalizer of a non split Cartan subgroup,
and the modular invariant j of £ is

. 20.3%.118.4213
oy

IV.2. Last Fermat's Theorem

Let us be given an element (g, b,c) belonging to the set S(p,p,p). Then it is now a
classical fact that the elliptic curve of equation

¥ =z — aP)(z + ),

is a Frey modular curve. The conductor of its mod p representation is 2. This contradicts
the existence of {a, b, ¢) because the dimension of the vector space 53¢%(2) is zero.

IV.3. The equatlon z? + P = z*

Let us be given a triple of integers {a,,c) belonging to the set S{p,p,2). At first we
are faced to the problem of constructing a Frey curve associated to (a, b, ¢). In accordance
with the definition of & Frey curve (def. 2}, we have to search for an elliptic curve over Q
with the most possible pth powers in its minimal discriminant. For this aim, let us consider
two indeterminates u and v and the elliptic curve over the field Q(u, v) of equation

V= +tuzltvz

It arises from the universal family over the modular curve Xy(2), which parametrises the
elliptic curves with a rational point of order two. The standard invariants associated to
this equation are (cf. {22]) :

e =16(u? —3v) et A = 16v%(u® - 4v).

Thanks to the equality a? + 8 = ¢?, we then can hope to comtruét a Frey curve associated
to (a,b,c). This is such the case : let F be the elliptic curve of equation

F: =2 +2a*+a" =
Let A(F) its discriminant. We have
A(F) = 28,0777,

9

This curve is a Frey modular curve with T = {2}. Actually, we can normalize (a, b, ¢) such
that the conductor N defined by Serre of the mod p representation pf divides 32, Since
the dimension of the vector spaces SP=(2*) is zero if 0 < k < 4, we can actually suppose
that we have N = 32. But there is just one normalized newform of weight 2 and level 32 :
it corresponds to the elliptic curve E of conductor 32, noted 32A in Cremona’s tables ({4,
p. 91), of equation
E: y*=z%_3.

The curve E has complex multiplications by the ring of Gaussian integers Z[#). Let pf its
mod p representation. The representations pf and pf are isomorphic. The image of of pf
is a normalizer of a split Cartan subgroup if p = 1 mod. 4, and is a normalizer of a non

- gplit Cartan subgroup if p = 3 mod. 4. We then obtain a contradiction to the existence of

{a,b,¢) in the following way :

1) suppose p = 1 mod. 4 and p > 17. Using the theorem 12, we see that the conductor
of the curve F' must necessarily be 32, contradicting the fact that F is a Frey curve
(condition (iit)). Let us mention that we can also tackle this case using a result of Kamienny
on Eisenstein quotients over imaginary quadratic fields (see [6], prop. 1.6). The case p = 13
can be treated by mean of ad hoc arguments.

2} Suppose p = 3 mod. 4. In this case it is easy to obtain a contradiction for the
existence of (a,b,¢) from the theorem 13, by showing that p cannot divide ab.

IV.4. The equation zP + yP = 2%

To construct a Frey curve associated to a proper non trivial solution (a, b, ¢) of this
equation, one may think about the modular curve X1(3), which parametrises the ellip-
tic curves with a rational point of order three. To be more precise, if u and v are two
indeterminates, we can consider the elliptic curve over the field Q(u, v) of equation

y2+uxy+vy=x3.
It has a rational point of order 3 : the point (0, 0).The standard invariants associated to

this equation are
co = u{u® — 24v) and A =?(u® —27v).

Then one can consider the elliptic curve F' of equation
F: ¢*43czy4bPy=22
The discriminant A(F) of this equation is
A(F) = 3% a7 5P,
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The elliptic curve F is a Frey curve with T = {3}, and the conductor of its mod p
representation divides 27. Since the dimension of the vector spaces S3“(3*) is zero if

0 £ k < 2, we can actually suppose that we have N = 27. The dimension of the vector
space ST*¥(27) is one, and the normalized basis corresponds to the elliptic curve E of
conductor 27, noted 27A in Cremona's tables ([4], p. 91), of equation

E: ylty=z3

The curve E has complex multiplications by the ring Z{(], ¢ being a cubic root of unity.
Next, if we assume that F is modular, which is not known to be true in this case, we

contradict the existence of (a,b,¢) by modular arguments in the same way of those used
in the section IV.3. '

IV.5. The equation z% — y* = 2*

Let (a,b,c) be an element belonging to 5(4,p,4). In this case, to construct a Frey
curve, we use the identity

{a+b)(a—b)a*+b%) = c*.
Let us put .
A=(a+b)? B=(a-bP® and C=a®+1%
We notice that A4 B — 2C = 0. The elliptic curve of equation y* = z(z + A)(z — B), that
) y? =27 +4dab 22 — (a® - %) 2,
is then a Frey modular curve with T = {2}. We can normalize (a,b,¢) such that the

conductor of its mod p representation divides 32, and we are led again to a contradiction
(cf. section IV.2).

IV.6. The equation 7% +4° = 2P
From now on, we consider an element (a, b, c) of the set 5(3,3, p).
IV.6.1. The Frey curve

Let £ be a cubic root of unity. In order to find a Frey curve associated to (a, b, ¢} we
use the identity

{a+b)(a+Eb)(a +£%) = .
We then notice that putting

A=Ea+€b) and B=£a+£%),

we have the equality A+ B+ (a+1b) = 0. Next, we consider the elliptic curve over Q(v/—3)
given by the equation
¥ = z(z — A}z + B).

11

After twisting that equation over Q(v/=3) by (~3)3, we obtain the ellipic curve defined
over ( of equation )

y* =2 4+ 3abz 4+ b —a®.
It is a Frey modular curve with the set T = {2,3} (cf. [7], p. 530 and [14]). In fact we can
normalize (a, b, c) such that the conductor of its mod p representation divides 72.

The assertion b} of the theorem 10 is a direct consequence of the following proposition,
which can be obtained by modular arguments, applied with the Frey curve above, analogue

to those already mentioned (cf. [14], th. &:1) :

Proposition 1. The number ¢ is odd and ab is not divisible by 4, so that the 2-adic

_ valuation of ab is 1.

1V.6.2. The algorithm

Let us describe now an algorithm which allow one often in practice to prove that the
set 5(3,3,p) is empty.

We have to consider the elliptic curve E over Q of equation
V=x*+6x-7.

It is the curve numbered 72A in Cremona’s tables. Its conductor is 72. If I is a prime
number > 5, let us denote by n;(E} the number of points rational over the field Fy, of the
curve E deduced from E by mod [ reduction. Let us then put

aI(E) = 1] ‘m(E).
The first two conditions that must be fulfilled in our algorithm is to find an integer
n = 1 such that ¢ = np+ 1 is prime and that p does not divide a,(E)? — 4. Suppose we get

such an integer (which is very easy to get}), then we have to consider the subset A(n,q) of
the nth roots of unity in F, of the elements { such that the following condition is satisfied :

1
the element — 3 + 36¢ is a square in F,.
If ¢ is an element in A(n, g), let §; be the least integer > 0 such that
82 mod. g = —~ + 36¢
A . g = - 3 .
We associate to ¢ the Weierstrass affine equation over F, : '

(W() Y2=X3+l-:§2LCX + 5((2.‘;37().

12



The discriminant of (W) is —29.33.¢2, It is in particular non zero, and (We) is an elliptic
curve defined over Fy; let ng(() its number of rational points over F, . We put

a(()=g¢+1- ng(()-

Then the statement of the algorithm is the following :

Theorem 14. Let p be a prime number > 5. Suppose there exists an integer n > 1 such
that the following conditions are satisfied :

a) the number g = np + 1 is prime;

b) we have ag(E)? # 4 mod. p;

¢} for all element ¢ belonging to A(n,q), we have a,(¢)? # a,(E)? mod. p.
Then the set §(3,3,p) is empty.

We deduce from this result the assertion a) of the theorem 10 with the software
celculus PARI. For instance we see that the set $(3,3,479909) is empty by applying the
above theorem with n = 14 (it is the least possible integer n).

V. Connection with another conjecture on elliptic curves

Let us fix two prime numbers which I shall note ! and g such that Ig > 6. Let us
consider the set F(I,9) of the prime numbers p such that S(I, g, p} is not empty. Of course
we would like to prove the following conjecture :

Conjecture 2. The set F(l,q) is finite.

There does not exist any example of pair (I, ) for which F{l, ¢) is known to be finite
(or infinite). As we noticed, we just dispose of some fragments of information in the case
(Lha)=(3,3). ;

It would.be interesting to connect the conjecture above with other more structured
conjectures. For this aim, it is tempting to evoke the following one which I shall call the
Frey-Mazur conjecture :

Conjecture 3. Let E be an elliptic curve defined over Q. Let AE be the set of the prime
numbers p such that the condition below is realised :

there exists an elliptic curve E?} over Q, non isogenous to E, such that the Galois
modules of the p-division points of £ and E'P} are iscmorphic.
Then the set Ag is finite.

In fact we can prove that this conjecture is a consequence of a Szpire’s conjecture
on elliptic curves over Q. We do not know any elliptic curve E satisfying (or not) this
conjecture. Using the theorem 12, we just dispose of some partials results when E has
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complex multiplications. For instance let us take for E the curve of equation §? = z% — =z :
if a prime p > 17 belongs to Ag then 4 divides p + 1 (cf. th. 12). We have the following
result :

Proposition 2. If the Frey-Mazur conjecture is true, the sets F(3,3), F(5,5) and F(7,7)
are finite ; if furthermore we suppose the Taniyama-Weil conjecture is true, the set F(2,3)
is also finite.

The reason of this implication is the following : let us be given a prime p > 11 belonging
to one of the sets F(l,q} in the statement of the above proposition. Let (a,b,c) be an
element of S(I,¢,p). Then there exists & Frey curve F' = F(a,b¢) over Q associated
to (a,b,¢) (def. 2) apart from the fact that the mod p representation p:' is unramified
cutside a set TU {p}, T being contained in {2, 3,5, 7} (and not necessarily in {2,3}). The
construction of F' has been done recently by H. Darmon {cf. [10]).

The Frey-Mazur conjecture is of course very difficult to prove. But it is not hopeless
that in a more or less future, someone succeeds to prove it. For that reason it would be
very interesting to be able to construct Frey curves for many pairs (I, g). Unfortunately,
in a certain sense to be precised, it seems not very promising {(cf. {11]). Perhaps then one
would have to replace the base field by other numbers fields, that is to construct "Frey
curves” over numbers fields other than (). We dispose of one example in this direction in
the section 4 below, although one of the exponents (I,¢) is not prime.

We are now giving the equations of the Frey curves which allow one to prove the above
proposition. Below the letter p refers to a prime number > 11.

Frey Curves

1. The equation 22 4% = 2°

Let (a,b,¢) be an element of S(2,3,p). Let F be the elliptic curve of equation’

y* =2% 4+ 3bz 4 2a
The discriminant of F is .
A=-3328c0:

1t is a Frey curve with T = {2,3} (cf. [7], p. 530).

1.1. How was found that Frey curve ?

It is fairly easy if we think about the elliptic curve, defined over the two indeterminates
field Q(x, v), of equation
V=2 tuxrtw,

for which the discriminant is —16{4u? + 27v2).
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2. The equation z% + % = 2°
Let (a, b, ¢) be an element of 5(5,5,p). Let F be the elliptic curve of equation

5 15

2 3 2, 42y .2 e’ tb
= 5 b 5 .
y z+(a+)z+(a+b)x

Its discriminant is
& = 2453 (a + b)) PP,

It is a Frey modular curve with T = {2, 5}.

2.1. How was found that Frey curve 7

let us choose v/5 a square root of 5 and define
~1++6 __-1-+5
W= ——en. and W= —.
2 2
We have -
a® +b° = (a + b)(6? +wab + b*)(a® + @ab + b?).
We then wish to derive from this factorisation two numbers A and B in Q(v/5) such that
the product AB(A + B) is a pth power. For that we can choose the numbers
A=w(o® +wab+b?) and B =w(e®+oab+5?).
‘We then have the equality
A+B+(a+b?=0.
Now we consider the "usual” Frey curve F of equation
Y? = X{X — A)(X + B).
We verify that the equation of Fis

5 5
Y2 = X% 4+ V5(a? +4%) X2 4 (“a j:: ) X.

Its twist over @(v/5) by 5/ is then the curve F.

3. The equation z7 47 = 2P
Let (e, b c) be an element of ${7,7,p}. Let F be the elliptic curve of equation
y2 =m3'+ag .;1724'64 z + ag,
with
ag = ~(a—b)%, a4 =—2"+5a% — 5b%? + ba — 2b%,
ag = a® — 6ba® + 8b%a* — 13670 + 8b%a? - 66%a 4 1°.

The discriminant of F is .
A=272 M
i Swriral I
It is a Frey modular curve with T = {2,7}.
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3.1. How was found that Frey curve 7
let ¢ be a primitive 7th root of unity. Define
w=C+(" W=+ and wy=Ct (7
We have w) + w3 +wy = ~1, wywawy = 1 and wwg + wawy + waeh = —2. We verify that

a” + b = (a+b)(a® + wiab + b¥){a® + waab + b7} (a® + waab + b7).

Let us define
A1 = (wa —w2){a® +wiab +1?), Az = (w1 — w3)(a® +waab + %),
Az = (w2 —w1)(a® +waab + b?).

We have
A+ A2+ A3=0

Let Q{u7) be the field of the 7th roots of unity. We now search for three integers u,, usz
and u3 in Q{ur), which are conjugate by the Galois group Gal(Q(u7)/Q), such that

A1=’u3--1.tg, A2=‘U.1—’U3 and A3=ug—u1.
We can choose
— 2 . 2 _ 2 2
Uy = wha’ —wawiab + wab®, Uz = w3a’ — wowiab + wib?,
- 2 2
u; = wa® — wawqaad + wib®.

Our curve F is then the elliptic curve of equation

¥? = (z — wmz — uz)(z — ua).

4. Some attempts for the equation 2% + y* = 2#

Let (a,b,c) be an element of §(2,4,p). I would like just mentioned the fact that one
can associates a "Frey curve” F to (a,,c) which is unfortunately not defined over , but
over Q(i} (cf. [8], 4). The equation of F is

y? = 2%+ 2(1 4+ )b ¥ 4 i(H® + da) .

Its discriminant is 2%.cP.(a — ib?). The curve F has the particularity to be a Q-curve, that
is a curve which is isogenous over Q(i) to its conjugate. This allows one to construct a
2-dimensional representation of Gal{({)/Q) in characteristic p, whose Serre's conductor is
small ; this leave perhaps some hope to derive this way a contradiction for the existence of
{a,b,¢) (cf. loc. cit.).
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