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1 Diophantine conjectures

In this lecture K is either a number field or a function field in one variable
over a perfect field Kj.

To simplify matters we make a general assumption: Every natural number
which occurs is prime to char(K).

The aim of the talk is to show that there is a close connection between
certain ternary diophantine equations, the arithmetic of elliptic curves and
the operation of the absolute Galois group Gk (= Aut(K,.,/K) on torsion
points of elliptic curves.

We have to fix some notation.

K has two important invariants. The genus g(K) is the genus of the curve
C corresponding to K if K is a function field, and equal to —1/2log | Ak |
with Ax the discriminant of K if A is a number field.

The degree of irrationality d( k) is the degree of K over Q if K is a number



field, and equal to the minimal degree of covering maps from C to the pro-
jective line if A is a function field.

Let £} be the set of places (= equivalence classes of rank-1 valuations of A
over Ky if I is a function field) and Ex the set of non archimedean places of

K. For each p € £ we choose a valuation v, such that the product formula
holds.

Example: If A" = Q take v,(z) = —log | | for the archimedean place and
vp(p) = log(p) for prime numbers.

A divisor of K is a (finite) formal sum D = Eeg, z,p with 2z, € Z.
Let my be a uniformizing element at p. Then deg D = Xz, - vy(m,) and

supp(D) = L, %0p.
For z € K™ define its (projective) height by A(z) := EPGE;‘_(ma:c(O y Up())).

Example: If K = Q and = A/B with relatively prime integers A, B then
h(z) = log(maz(| A, | B1)).

We are now ready to state a fundamental

Conjecture 1.1 There are {effectively computable) constants ¢, d € R de-
pending only on g(K) resp. d(K) such that forallz € K withz-(x —1) #0
we have

h{z) < c-degsupp(x(z—1)) + d

In the case that K = Q we take z = A/B and so z — 1 = C/B with
C = A — B. Hence Conjecture 1.1 states that

ma:c(| A |a| B |a I ¢ |) < d- (leABC p)c'

This is the ABC-conjecture stated by Masser and Qesterlé with a much more
precise prediction of the constants: For every ¢ € R the numbers e =1+ ¢
and d depending only on € should do the job. So we shall call Conjecture 1.1
the ABC-conjecture, too.

It is obvious that this conjecture has strong implications for ternary dio-
phantine equations in which increasing exponents are involved. We shall
give one:



Fix a,b,c€ K™
Los(n)(K) := {(z,y,y) € K®; az™ + by™ = cz"}/ ~ where ~ means pro-
jective equivalence.

Conjecture 1.2 | J. .. Lap(n)(K) consists of triples of bounded projective
height, hence if K is a number field or Ko is finite we get a finite set.

We call this conjecture the Asymptotic Fermat Conjecture.

It is easy to see that the ABC-conjecture together with Faltings’ theorem
about the finiteness of K —rational points on curves of genus at least 2 implies
conjecture 1.2.

Now we relate the ABC-conjecture with the arithmetic of elliptic curves.
Let E be an elliptic curve over K with conductor Ng. Let A(E) be its Falt-
ings height. After a finite extension of K E becomes semi-stable and then
h(E) is essentially h(jg).

Conjecture 1.3 There ezxist constants c;,d; in Rso depending only on g(K)
resp. d(K) such that for all elliptic curves E/K with K/Ko(jg) separable if
K is a function field we have

h(E) < ¢, deg Ng + dy.

We call conjecture 1.3 the height conjecture for elliptic curves.

Remark 1.1 Conjecture 1.3 is a stronger version of Szpiro’s conjecture,

Proposition 1.1 Conjecture 1.3 implies conjecture 1.2 (with constant ¢ =
2C1). )

To prove proposition 1.1 we use the dictionary between solutions of A — B =
C and the elliptic curve E4 g given by the equation

Y2 = X(X — A)(X — B).



Proposition 1.2 If K" is a function field over Ky then conjecture 1.3 is true
with constants ¢y = 1/2 and d = g(K) — 1.

We shall give a very short proof of proposition 1.2 which uses only Hurwitz
genus formula for separable covers of curves. This proof gives no idea how
to attack conjecture 1.3 in the number field case. There is a more involved
proof by Szpiro which uses the theory of algebraic surfaces and especially the
inequality ¢ < 3¢, for Chern classes of such surfaces. There is hope that
one can find analogous inequalities for arithmetical surfaces. (According to
a result of Kani and myself it would suffice to get this for surfaces whose
generic fibre is a curve of genus 2.)

2 Conjectures about Galois representations

Before coming to elliptic curves we shall spend some lines to expose a general
philosophy.

Assume that we have two simple non isogenous abelian varieties A; and A,
over K and K — isogenies A; from A; into a third abelian variety A over K.
Then A,{A;) has a finite intersection with A,(Aj;). How large can this set be
or, in other words how complicated can the internal structure of A be?

To make this question more precise define:

Definition 2.1 A finite K-subgroup scheme H of an abelian variety A/ K is
exceptional if

i} there is no subgroup scheme 0 # Hy of H which is the kernel of an endo-
morphism of A and

it)H is not contained in a proper abelian K-subvariety of A.

Let hyeom(A) be the geometric Faltings height of A. Assume that all isogeny
factors of A have multiplicity 1.

Question 1 Are there numbers N = N(K,dimA) and M = M(K,dimA)
such that | H |[> N implies that hyeom(A) < M ?



To give a flavour of the question we discuss special cases.

1.) Let K be a number field and fix d as well as a finite set Sq of places of K.
Look at abelian varieties over K of dimension d with good reduction outside
of So. Then deep results of Faltings and Masser-Wiistholz imply that such
numbers N, M exist and that they depend on d, Sy, g( K') only.

2.) Take d = 1. Hence we look for exceptional subgroups of elliptic curves
which have to be cyclic. So our question becomes

Conjecture 2.1 There are numbers M , N such that for elliptic curves E
over K with K—rational cyclic isogeny of degree > N we have h(jg) < M,
Moreover N and M should depend only on g(K) resp. d(K).

The local arithmetic of elliptic curves shows that conjecture 2.1 follows from
the height conjecture for elliptic curves and hence 1t 1s true over function
fields.

But this can be seen in a more elementary way: Each non constant point
on the modular curve Xo(n) which is A —rational induces an embedding of
the function field of Xo(n) into K over Ky and hence d(Xg(n)) < d(K) and
g9(Xo(n)) < g(K), and since both d{(Xo(n) and g(Xo(n)) are of the size O(n)
the assertion follows.

Now we come to the special case to which the first part of the title of the
lecture refers.

3.) Take A = E; x E; where F; and E, are non isogenous elliptic curves
over K. Assume that H is exceptional in A . After the discussion in 2.) we
can assume that H does not contain a Galois invariant cyclic subgroup and
that it is isomorphic to Z/n x Z/n for n € N. Since it is not contained in E;
we get a (g —isomorphism

a: El[n] — E,[n]

such that H is the graph of a.
In other words: Let pg, . be the representation of G’k induced by its action
on Ei[n]. Then pg, , is equivalent to pg, ..

A question of Mazur in his I[HES-paper on the Eisenstein ideal was whether
such a thing could occur over Q. Now there are many examples of pairs
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of elliptic curves over Q with isomorphic representations found (by Kraus,
Cremona, Muller,..) up to n = 13(7).

I stated the

Conjecture 2.2 Fir Eo/K. There is a number N = N(g(K), Ey) resp.
N = N(d(K), Eo) such that for elliptic curves E/K and numbers n > N
with pg, n ~ pE . it follows that E is isogenous to Ey.

Again conjecture 2.2 follows from the height conjecture for elliptic curves
and hence is true in the function field case. So we see already a connection
between representation theory and arithmetical properties of elliptic curves.
But more is frue:

Proposition 2.1 Let K be a number field. Then conjecture 1.2 (the Asymp-
totic Fermat conjecture) implies conjecture 2.2 for even numbers n.

The proof uses again the local arithmetic of elliptic curves and the dictionary
between A — B = (C and E4 .

For fixed n the curve £ with pg ., ~ pg,» corresponds to a K —rational point
on a twisted modular curve Xg (n) and hence conjecture 2.2 is a conjecture
about rational points on the union of such curves.

A much keener conjecture goes back to Darmon in the number field case and
states:

Conjecture 2.3 There are numbers N = N(g(K)),M = M(g(K)) resp.
N = N(d(K)),M = M(d(K)) such that for all elliptic curves E; over K
with

PE,n ™~ PE,n for some n > N it follows that either E; is isogenous to E; or
that the geometric Faltings height of both curves is bounded by M.

There is a modular interpretation for this conjecture. Let X (n) be the mod-
ular curve corresponding to I'(n). Its group of automorphisms is equal to
PSI2,Z[/n). Let

o El[n] — Eg[n]



be a Gg-isomorphism. Then (£, £;, a) gives rise to a K —rational point on
Zne = (a(PSU2,Z[n))\ (X(n) x X(n)
with a diagonal embedding
o, : PSI(2,Z[n) = (PSI(2,Z/n))*

induced by a with € = det(a).
Zn.c 1s a diagonal surface which was investigated recently by Kani, Schanz
and Herrmann.

Result: For n > 12 the surface Z, . is of general type. For n < 12 rational
or K3—surfaces occur, for instance Zr,. is rational, and this explains why
there are lots of numerical examples of elliptic curves with isomorphic Galois
torsion structure for small n.

Now recall Lang’s conjecture: If X is a surface of general type then the
K —rational points have either small height (depending on K') or lie on curves
of genus < 2 on X.

So assuming this conjecture the conjecture 2.3 is implied by the following
conjecture stated by Kani:

Conjecture 2.4 For n > 22 the only curves of genus < 2 on Z,. are re-
lated to (twisted) Hecke correspondances and hence points on these curves
correspond to pairs of isogenous elliptic curves and isomorphisms o induced
by isogenies.

An especially interesting case is ¢ = —1. It leads to curves of genus 2 with
elliptic differentials. I shall not go to details but refer to [Frey-Kani: Curves
of genus 2 covering elliptic curves and a diophantine application, in Progr.
Math.89,1991,153-175, resp. Frey: On elliptic curves with isomorphic torsion
structures and corresponding curves of genus 2, in Conf.on Elliptic Curves
and Modular Forms, Hong Kong, I[P 1995, 79-98].

To end we specialize to K = Q.
We know already that the Asymptotic Fermat conjecture implies conjecture
2.2 for elliptic curves whose points of order 2 are Q—rational.



Theorem 2.1 Conjecture 1.2 is equivalent with conjecture 2.2 with even n
and Ey[2] € E(Q).

More precisely:

a) Fix Fy . Assume thal the asymptotic Fermat conjecture holdsover Q. The
set of all elliptic curves E/Q with E[2) € E(Q) and such that there is a
number n > 4 with pg, . ~ pg.n is finite.

b) Assume that conjecture 2.3 holds for all even n and for all elliptic curves
Eo whose conductor divides 2° - N with 6 < 4 and depending on N. Then the
Asymtotic Fermat conjecture is true for all a,b,c € Z with supp(abc) | N.

Remark 2.1 If for given N (for instance N = 1) there is no elliptic curve
with conductor dividing 2% - N then the Asymptotic Fermat conjecture is true
for corresponding coefficients a,b,c.






