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Notes for two Lectures at the Summer School on Elliptic Curves
Lecture 1: Overconvergent modular symbols and p-adic L-functions
Lecture 2: p-adic monodromy and families of modular forms.

(lenn Stevens

§0. Statement of results.

Let p be a prime > 2 and let X := Hom(Z,Z}) = Z/(p-1)Z x Z,, with Z embedded
in X diagonally. Let f be a classical newform of level Np where p /N and even weight
ko + 2 > 2 and assume that f is split multiplicative at p. This latter condition means that
f the pth Hecke eigenvalue of f is p¥o/2, i.e. that

fIU = p*/%f

where U is the Atkin-Lehner Hecke operator at p. Under these conditions, Coleman has
defined an L-invariant £(f) which he conjectured should be equal to the L-invariant that
arose in a certain formula conjectured by Mazur, Tate, and Teitelbaum. The purpose of
this note is to outline a proof of Coleman’s conjecture. More precisely, let Ly(f, s) be the
Mazur-Tate-Teitelbaum p-adic L-function associated to a choice of transcendental period
for f, and let L% (f,1 + ko/2) be the normalized algebraic part of the central value of the
complex L-function associated to the same choice of period. Then we prove the following
theorem.

Main Theorem. L,(f, 14 ko/2) = L(f) - L (f, 1 + ko/2).

This was proved by Ralph Greenberg and the author in the special case kg = 0 (weight
2) several years ago. Just as in the weight 2 case, the proof of the general case divides
naturally into two steps (Theorems A and B below).

To state Theorems A and B, we first recall that Robert Coleman has constructed a
p-adic analytic family fi of overconvergent p-adic modular forms passing through our fixed
newform f. This family is defined for k in an open set B C X" containing ky and satisfies
fxo, = f. Coleman’s family is an eigenfamily for the U-operator and we may therefore
consider the eigenvalue a(k) of U acting on fi. The function a(k) is a p-adic analytic
function of k € B so we may consider the derivative of o at the special point kg € B.

Theorem A. Ly(f, 1+ ko/2) =—-2- p~ k2. o/ (ko) - Loo(f, 1+ ko/2).
Theorem B. L(f) = =2 p~%/2. o/ (ko).

The Main Theorem above is clearly an immediate consequence of Theorems A and B.
Lecture 1 will be devoted to the proof of Theorem A, while Lecture 2 will be devoted to
proving Theorem B. These notes will concentrate on the proof of Theorem B.

Just as in the weight two case considered earlier by Greenberg and the author, the
proof of Theoremm A depends on the existence of a two variable p-adic L-function with
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certain properties. The proof of the existence of such a two-variable p-adic L-function in
the higher weight case requires new tools. Namely, for given k& € A we define the space of
weight x overconvergent modular symbols over I'g(Np) to be the space H!(['o(Np), D,) of
modular symbols taking values in the space of {analytic) distributions D, (equipped with a
certain weight & action of ['o(Np)). We show how to associate an overconvergent modular
symbol @ to the split-multiplicative newform f and our choice of a transcendental period.
The “integral” of ®; along the geodesic in the upper half-plane joining ico to 0 is then
an element pf € D,. It is not hard to see that the Mazur-Mellin transform of uy is
the p-adic L-function L,(f,s). On the other hand, using Coleman’s theory of families
of p-adic Banach spaces we can move the overconvergent modular symbol ®¢ in a p-adic
analytic family in some neighborhood of kg in A. This gives us an “analytic family”
$, € HYTo(Np),D,) defined for x in some neighborhood of k¢ in X. Integrating from
ioc to O as before we obtain a family of distributions y, € D.. We define the two-variable
p-adic L-function L,(k,s) as the Mazur-Mellin transform of u.. This function has the
desired properties. With this two-variable p-adic L-function in hand, the proof of theorem
A proceeds exactly as in the weight two case. Lecture 1 will be devoted to describing these
ideas in more detail and to outlining the proof of Theorem A above.

The rest of these notes are dedicated to defining Coleman’s £-invariant and to proving
Theorem B.

§1. Coleman’s L-invariant.

We adopt Coleman’s notations as in [A p-adic Shimura isomorphism and p-adic periods
of modular forms, in p-Adic monodromy and the Birch and Swinnerton-Dyer conjecture,
Contemporary Math 165, (1994) 21-52} with only one modification. Namely, we will add
full level 2 structure to the moduli space. This rigidifies the setup and simplifies the
calculation in (2) of Proposition 1 in section 2. We fix a tame level N (the tame level of
the newform f) and let X be the modular curve X (Np, 2) with level Np structure (a cyclic
subgroup of order Np) plus full level 2 structure. (If 2| N we assume that the additional
level 2 structure extends the 2-part of the level NV structure.) The rigid analytic space X"
underlying X is decomposed into the union of three disjoint parts, namely,

Xan:ZOOUWUZO

where Z,, and Zg are affinoids containing the co and 0-cusps respectively, and W is the
union of the supersingular annuli. Following Coleman, we write Wy, = Z, U W and
Wo = Zo UW.

Let Y = Y (N, p) denote X with the cusps deleted. Let £/Y be the universal elliptic
curve with level structure over Y and let H be the relative de Rham cohomology sheaf
over X with log singularities at the cusps. Then H is a coherent O-module locally free of
rank 2 over X. For any nonnegative integer k we let

Hy, := Symm*(H).
The Gauss-Manin connection V : H — H ® Q0 induces a connection

V: iHy — Hip®0
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for each integer k > 0, which we also call the Gauss-Manin connection.

The Deligne-Tate map preserves Z,, and extends to a wide open neighborhood of Z
properly contained in W,,. Accordingly, the Gauss-Manin connection is endowed with a
natural frobenius structure over some sufficiently small wide open neighborhood of Z.
Katz spells out precisely how big this neighborhood can be, but this is a technical point
that we will not need. It will be convenient to simplify the notation and write Z, to denote
such a sufficiently small wide open neighborhood of Z,, with the additional property that
the intersection of Z! with any supersingular annulus is a concentric subannulus.

We recall Coleman’s definition of the L-invariant L£(f) of a split multiplicative p-
newform f of weight k + 2 > 2. Let H} denote the complex of sheaves associated to

He X, Hi @ and consider the hypercohomology H(X, H};) with respect to the covering
{Weu, Wy} of X. The Hecke operators act on this space and the systems of eigenvalues
that occur in it are the same as those that occur in the space of classical modular forms of
weight k and corresponding level. In particular, letting K be the field generated over Qp
by the eigenvalues of the Hecke operators acting on f, we obtain a Q,-subspace H(f) C
H!(X,H;) endowed with an action of the field K with the property that H (f) is a 2-
dimensional K-vector space on which the Hecke operators act as scalars according to the
eigenvalues of f. Now what Coleman is able to do, using his theory of p-adic integration,
is to endow H(f) with a natural monodromy module structure in which the monodromy
is non-trivial. Every two dimensional monodromy module with non-trivial monodromy
has a well-definde C-invariant. Thus Coleman’s £-invariant can be defined simply as the
L-invariant of Coleman’s monodromy module.

We will use the more concrete definition that Coleman gives in his paper in the
BU monodromy proceedings volume. For simplicity, we assume k£ > 0 so that there are
no nonzero sections of Hy defined on all of Wy, nor on all of Wy, i.e. HY(W,, H};) =
HO%(Wy,H;) = 0. On the other hand there are plenty of horizontal sections of Hy on
W = W, N Wy. Indeed, Coleman constructs two maps

0, p: Myyy — HO(W, M)

defined on the space Mj, 2 of classical modular forms of weight £ +2 and appropriate level.
The map o is defined using Coleman’s integration theory while the map p is defined in
terms of residues.

For k£ an integer, let M ,‘: 4o denote the space of overconvergent p-adic modular forms
of weight k + 2 and appropriate level. If k > 0 we let
K: M,I+2 — Hy @ UZL)
be the Kodoaira Spencer map. There is also a Qp-linear map
vi M He(Z1)
satisfying the equation

V(v(g)) = x(651g) € Hi @ Q(ZL)
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for any g € M_4.

We now turn to the definitions of ¢ and p. Let & > 0 and f € My 2 be a classical
Hecke eigenform. Let o be the eigenvalue of the U-operator acting on f. We suppose
a # 0. The differential form wy := &(f) € Hi ® (Wy) represents a cohomology class

[wy] € H}(Ws, Hi) and the Frobenius operator ® acts on w; and also on [wy]. Indeed,

we have ®([wy]) = LJ:—I - [wf]l. Now Coleman’s integration theory gives us a well-defined
flabby antiderivative I, (f) defined on all of W, which is analytic on the ordinary residue
disks, is log-analytic on the supersingular annuli and satisfies the differential equation

V{Io(f)) =wy on We.

The additional property that characterizes I, (f) uniquely is that, though I, (f) need not
be rigid analytic on Wy, (or even on Z.,), the section

(8]

Ioo(f) = WQ(Iw(f))

is rigid analytic on ZI_ (i.e. not only on Z.,, but also on some wide open neighborhood
of Zy). Similar considerations give rise to a well-defined flabby solution Iy(f) of the

differential equation
V(Io(f)) =ws on Wo.

Now both Iy(f) and I (f) are defined on the overlap W = Wy, N Wy. Coleman makes
the following definition.

Definition 1. If f € My, is a classical Hecke eigenform then we define o(f) € HY(W, H})
to be the horizontal section of Hx on W given by

o(f) = Lo (f)lw — Io(F)lw.

The residue map p : Mo — HO(W, H}) is easier to define. Indeed, p is defined on
all overconvergent modular forms. Let

Res : Hy ® Q(Z]) — HO(W, H})

be defined by Res(w) := the unique horizontal section of Hy on W whose restriction to
Z!l. N W is the residue of w restricted to this disjoint union of oriented annuli. Given

fe Ml , welet wp:=k(f) € Hy x (2%} and define p(f) as follows.
Definition 2. Given f € ML? we define

p(f) = Res(wy).

Definition 3. Coleman’s £-invariant of a split multiplicative newform f € My, 5 is defined
to be the unique element £(f)} € K for which

o(f) = L{f) - p(f).
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The existence and uniqueness of such an L-invariant was, of course, proved by Coleman.

§2. Some families of modular forms.

First of all we have the Eisenstein family. For each integer k there is an overconvergent
p-adic modular form Ej of weight k whose g-expansion is given by

Ey = 1+20(1— k)™ ) op(n)g™
k>1

Here (,(s) is the Kubota-Leopoldt p-adic zeta function and when k£ = 0 the above equality
is understood to mean Ey = 1. (Recall {,(s) has a simple pole at s = 1). For integral
k > (0 we set

1
tk = Ecp(]. + k) . E._k

Gi = 5Gp(—1 = k) Bisa
Then t; € MI . is an overconvergent modular form of weight —k and G € Mgz is a
classical modular form of weight k 4+ 2. The family ¢, extends to a meromorphic family
of Eisenstein series for k € X with a simple pole at kK = 0 and Gy, defines a meromorphic
family with a simple pole at k = —2. Moreover Gy =t_2_—k. The special point k = 0 will
play a crucial role in the proof of Theorem B.

Proposition 1.
1. The family tg, k € X, has a simple pole at k = O with residue given by

1 1
lim ke = & - (1-_).
k—0 2 P
2. The residue of Go along any supersingular annulus is 1/2:

o(Go) = 3.

Proof. The first assertion is an immediété consequence of the well-known fact that the
Kuboeta-Leopoldt p-adic zeta function {,(s) has a simple pole at s = 1 and that the residue

at s = 1 is given by
1

tim (5~ 1650 = (1= 3.

To prove the second assertion, we first consider the special case N = 1. Then nn =
x(Gq) is a section of {1 over Y which extends to a meromorphic section over X with simple
poles along the cusps. We want to compute

Res(n) € H*(W).
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We remark first of all that since the eigenvalues of the Hecke operators acting on 7 are
known, they are also known on Res(n). Indeed, the eigenvalues are the same as those acting
on constant functions on W. Hence Res(n) is a constant. To determine what the constant
is we use the fact that the sum of all of the residues along the supersingular annuli and
around the cusps contained in W, is equal to zero. Now there are a total of three cusps
in Wy, corresponding to the three cusps of X(2). The constant terms of Gy are the same
at all of these cusps since Gy is modular of level p. Since the natural map X — Xo(p) is
ramified of order 2 at each of these cusps and since the constant term of Gg at the infinity
cusp is (1 — p)/24 we conclude that the sum of the residues along the cusps is (1 — p)/4.
Hence the sum of the residues along the supersingular annuli is (p — 1)/4. But a simple
calculation shows that the number of supersingular annuli in X is (p — 1)/2. Hence the
residue along any supersingular anmilus is 1/2. This proves (2) when N = 1.

The general case follows at once since for arbitrary N, the map X(Np, 2} — X(p,2)
is unramified over the supersingular annuli. This completes the proof of the proposition.

We can remove Euler factors at p using the operator V on overconvergent modular
forms defined on g-expansions by the formula V{(f)(¢) = f(g?). If F is an eigenform, then
we let F© denote the eigenform obtained by removing the Euler factor at p. Thus, we have
the families

t 1=ty — V(tr)
Gg = Gk - V(Gk)
12 5= fi— eV (fe)

For k > 0 we let ny = &(Gk) and 73 := k(G}) where K : Mg o — Hi @ is the
Kodaira-Spencer map. We also set gi := v(tx) and g9 := v(¢2). Then since §5+1¢ = G
it follows that

Vigk) = G}.

Finally, for each integer £ > 0 we may let s; := I{(fi) be the Coleman integral
of fx defined in section 1. Then s, is a flabby section of Hy over W,,. This section is
characterized by the property that

0 a(k)

Sk = Sk~ ET - ®(sk)

is a rigid analytic section of Hy over Z] . Hence there is an overconvergent modular form
qﬁ?c e Mik such that

v(dR) = si-
Hence 65*1(¢9) = f2. Finally, set

wk = K(fr),

wy = K(f).
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§3. Some Pairings.

As in the introduction, we fix an integer ky > 0. For each integer k¥ > 0 cup product on
the de Rham cohomology of the fibers of E/X induces a natural pairing

] Hie X Hiprg — He,-
This pairing induces natural pairings

[-,-] : Hi % Higro @ 0 — Hi, R Y
[-,-} s Hey @0 x Hitko — Hko ® €L

Proposition 2. These pairings satisfy the following identity for allx € Hy, andy € Heik,

Viz,y] = [z, Vy] + [Vz,y].

Proof. The proof follows from the product formula for differentiation.
We will attach a superscript | to denote over convergent section of a sheaf. For
example, H = Hi(Z1,). We may then define pairings
o L X My, ® QT — HO(W, H)
() HE @O x Heypng — HO (W, HL)
by defining {z,y) := Res([z, y]) where Res : ’H};O — HY(W, Hy,) is the residue map.

We next record some basic properties of the Frobenius operator @, the involution W,
and the operator U. Here we normalize W so that it is an involution on Hi(W): hence
W = p~*0/2y where w is the operator used by Coleman. We first remark that & = w on
horizontal sections on the supersingular annuli. Hence ® = p*/2W on HY(W, Hy,).

Proposition 3.
k
1. Forany z € ’HL and w € ’HL_kD ® Q! we have (z, ®(w)) = pF+ T+ W(({U(z),w));

2. Foranyn¢€ ’HL RQ and y € H}c+ko we have {n, ®(y)) = ,r,,,k+%‘l WU, v).
Proof. A simple calculation confirms the identities
Uz, ®(w))) = p*HHett - (U(z),w)
U((n, ®(y))) = p*** - ({U(n),y).

But Uo® = p*o on Hy,, hence also on the finite dimensional space H O(W, Hg, )- Therefore
® o U = p*o on HY(W, Hy,). Hence applying ® to the above identities gives us

(z,@(w)) = p"*1 - d((U(z),w))
(n, ®(y)) = p* - 2((U(n), ¥)).
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But & = p*/2. W on H°(W, Hy,) so proposition 3 follows.

$4. Some Lemmas.

The operator W is an involution on H*(W, H,). We let superscript + denote pro-
jection to the +-component under the action of W. Consider the function v : ¥ —
HO(W, Hy, )t defined by

Wik) = p(tR farry) T € HO(W, He, )"

Since tQ f¢, 1. is an analytic family of overconvergent modular forms of weight ko we see
at once that (k) is an analytic function of k& defined on a neighborhood of 0 in X. For
the proof of Theorem B we will calculate 4(0) in two ways. First, by direct calculation we
express 1(0) in terms of p(f). Then we apply the product rule (Proposition 2) to express
¥(0) in terms of o(f). Comparing these two expressions, Theorem B follows.

Define u(k) := p~%¢/2. a(k), the “unit part” of a(k).

Lemma 1. We have

9(0) = —5- (1= 1) (ko) - p(1).

Proof. For an arbitrary integer £ > 0 we have

+
Wk)y=p (t?cf£+ko) = (ggv“’2+ko>+-
We also have

(ggiw2+kq> = (gk)wg—l-ko)
O!(k + kg)
= <9‘k, Whtko ™ WT‘I’(WHM)

= (gts wreia) = W (U (g0) v

= (gk, Wktko) — U(k + ko) - W{{gk, Wk+ko))-

The first equality above follows from three facts: (1) gf — gx is in the image of ®; (2)
w +ko 18 10 the kernel of U; and (3) the image of ® is perpendicular to the kernel of U by
proposition 2. The last equality above follows from the fact that the Eisenstein series ¢4
is an eigenform for the U-operator with eigenvalue 1, hence U(gi) = g&.

Now project the above identity to the +-component for W to get

(k) = (1 — u(k + ko)) - (gr, wWtko)

1—ulk+k
= TRkt fua,)
Setting k = 0, using (1) of propostion, and noting that p(f)* = p(f) we obtain
5O = —2 (12 2) ko) - ol
-3 P ~w {ko) - p(f)
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and the lemma is proved.

Let Coo := Z} \ Zoo. Then Cy is a union of concentric annuli in the supersingular
annuli. Note that the pairings (z,y) are well-defined so long as z,y are rigid on Coo. In
particular we have a well-defined pairing

('! ) : QI(COO) X Hko(coo) - Hko(W)v'

defined by (w,h) = Resw (hw), where this latter is defined to be the unique horizontal
section on W extending Resc_ (hw).

Lemma 2. Let e € Ojfi9(Woo) be any Colernan integral of no (well-defined up to a
constant). Restrict e to the supersingular annuli W and let h = e — Wie) € Oiog(W). Let
z2=h p(f) € Hi, (W), and let 2° := z — p717%/28(2) € Hy(Co). Then 2,20 have the
following properties.

(1) 2° is rigid on Cuo-

(2) sk, — z is rigid on W.

(3) (770’ ZD) =0.

(4) W(z)+ z = 0 on the supersingular annuli W.

Proofs. (1) Since e is a Coleman integral of 7y, we have e® := e~ p~1®(e) is rigid on Z},.
Since W (o) = —1p we have W(e) + e is constant, and it follows that RO :=h - p~'®(h)
is also rigid on Cwe. On the other hand, ®(p(f)) = pko/2p(f). Hence 2° = A? - p(f), which
is rigid on Cu.

(2) By definition, V(sg,) = (f). Hence, Resw (V(sk,)) = p(f). On the other hand,
Resw (V(2)) = Resw (dh) - p(f). But dh = 219 and we have shown Resw (o) = 1/2, hence
Resw (V(2)) = p(f). We therefore have Resw (V{sk, —2) = 0 and it follows that sx, — 2
is rigid on W, as claimed.

(3) We have (ng, 2%) = (19, h%) - p(f). Moreover, (g, h%) = (19, h°) because the image
of ® is orthogonal to the kernel of U. But, (3, %) = Resw (h®n8) = jResw (h°dh°) =0,
since h%dh® is an exact differential on Cuo.

(4) Since W (p(f)) = p(f), this follows immediately from the definition of 2.

This completes the proof of Lemma 2.

Lemma 3.

oy =1 (1-3) o

Proof. As in the first line of the proof of lemma 1 we have

¥(0) = (g0, wik,) -

But w) is an exact differential, indeed Vsi, = wh,- Moreover, Vgl = n). Hence, by

lemma 1 we have
v[gg’ 820] = [ng’sgo] + [g87w20]'

9



Taking residues of both sides of this equality along the supersingular annuli we obtain

Hence 4(0)

0
0 = (ng, Sho) + {90, Wi, )-

= —(ng,sp,)*. Now we just calculate as before, but in the second line we

replace sk, by sk, — 2. This gives us:

(ng’ 320) =

(7?0’320)
- (7?0,320 - ZD>
= (o, (Sky ~ 2) ~ W B(sk, — 2))
1
= (nOySko - Z) - EW“T]D& Skg — Z))

= (N0, Skp — 2) — EW(<770a3ko -

! 2)

Projecting to the +-component for W we obtain

¥(0) = (1 - %) {10, Sk — 2) 7
On the other hand, we have
(nOaSko _Z)+ = ( M0y Sko — +W((T]015ko hZ}))
- ( M sk0 = 2) = (W (m), W sk, =)

Finally, we use (2) of proposition 1 to conclude that (ng, o{f)}
1. o(f} and lemma 3 is proved.

Mi»—awl»—lwir—a toir—-' tolr—l [\Jlr-d

(Mow Sko — ) + {02 W (5o — z»)

(770: (skc - Z) + W(Sko - z))
(105 Sko + W (Sko))

(no,ff(f»

a(f). Hence ¥(0) =

L
2

Proof of Theorem B. Combining lemma 1 and lemma 3 we obtain

Hence £(f) = -2 -u'(ko) =

—2

P

—2-u/(ko) - p(f) = o(f).

kg
-k

o' (ko) and Theorem B is proved.
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