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Sphitting 2-cocycles related to Q-curves

Jordi Quer

August, 1997

These are notes for a talk to be given in the Summer School on Elliptic Curves (Trieste, August
1997). Some aspects of the theory of elliptic Q-curves are discussed. We find the dimensions and
the endomorphism algebras of the abelian varieties of GLy-type associated to them by explicitly
splitting some related 2-cocycles. We also discuss the parametrization of Q-curves by quotients
of the modular curve Xy(N), and their fields of definition.

The results are joint work with J. Gonzdlez and J.C. Lario, partially supported by Spanish
DGICYT grants PB93-0034 and PB93-0815.

1 Q-curves, abelian varieties of GL.;-type, and modularity

A Q-curve is an elliptic curve defined over  that is isogenous to all its Galois conjugates. Every
elliptic curve isogenous to a Q-curve is also a Q-curve.

Examples:

e Elliptic curves defined over , and the curves isogenous to them.

e Elliptic curves with complex multiplication (Shimura, [L5]).

Parametrization of Q-curves. Let N be a squarefree integer, and let X*({N) be the quotient
curve of the modular curve Xg(N) by the grup of Atkin-Lehner involutions {w;} for 4 | N.
Let Xo(N) = X*(N)} be the corresponding covering. The coordinates of every noncusp point
(7,78} € Xo{N)(Q) projecting onto a point in X*(N)(Q) are j-invariants of Q-curves.

In [1] and, using different techniques, in [L0], it is proved that every Q-curve without complex
multiplication is isogenous to some Q-curve obtained in that way.

in [3] it is shown that:

e There are 43 values of N for which X *(N) has genus zero. They are products of one, two
or three primes.

s There are 38 values of N for which X*(/N) has genus one. They are products of one, two,
three or four primes. For all 38 curves, the rank of the Mordell-Weil group over Q is one.

A general method for computing the j-invariants of the {-curves parametrized by those 81
ciurves X *(N) of genus zero or one is also given in [3].

Elkies [1] conjectured that, for NV large enough, all the rational points of X*(N) should come
from cusps and complex multiplication points. Hence, the previous 81 modular curves would
parametrize the j-invariants of all the Q-curves without complex multiplication except for a
finite number of them.



Abelian varieties of GL,-type. An abelian variety A defined over Q@ is of GLj-type if the
Q-algebra E = Q ® Endg(A) of endomorphisms of A defined over Q is a number field of degree

[E : Q] = dim A.

In particular, such a variety must be Q-simple.

The reason for the name is that for abelian varieties of GLy-type the Tate module Vy(A) =
Q ® Ty(A) is a free module of rank 2 over the algebra Q; @ F, and the Galois action on the
¢-power torsion of A induces a 2-dimensional representation Gg — GL2(Q¢ ® E).

The correspondence. In [9], Ribet proves that an elliptic curve defined over Q is a quotient
of some abelian variety of GLy-type if, and only if, it is a Q-curve.

In [6], Pyle introduces the “building blocks™, higher dimensional analogues of Q-curves, and
characterizes them as the factors over @ of abelian varieties of GL2-type.

Modularity of abelian varieties of GlL,-type. Let f € S3(I'1(/V)) be a normalized new-
form, and let Ey = Q(...,a,,...} be the number field generated over Q by its Fourier coeflicients.
Shimura [14, 16] associates to f an abelian variety: Ay with the following properties:

e Ay is defined over Q and is a Q-simple quotient of J; (N},
o dim Ay = [E; : Q}, and
e Q® Endg(Af) = Ey.

In particular the abelian varieties Ay are of GLy-type.

In fact, as Ribet shows in [8], the jacobian J1 (V) factors over Q, up to isogeny, as a product,
of varieties Ay for newforms f of levels dividing V.

In [9] Ribet proves that Serre’s conjecture [13, (3.2.4-)] on mod p Galois representations
implies that all the abelian varieties of GLj-type are obtained, up to isogeny, from the Shimura,
construction; i.e., that every abelian variety of GLo-type is a Q-simple quotient of some J1 (V).

Modularity of Q-curves. In [5] Mazur says that an elliptic curve C, defined over the field
of the complex numbers, possesses a “hyperbolic uniformization of arithmetic type” if there is
a non-constant analytic map X;{N)¢ — Cg for some N. Any such curve must be defined over
Q and the existence of a uniformization of that type is equivalent to Cg being a factor of the
jacobian Jy (N)@. In that case we just say that C “is modular”.

As a consequence of the characterization of Q-curves as the one-dimensional factors over Q
of abelian varieties of GL,-type, and of his results on the modularity of those varieties, Ribet
obtains in [9] that :

e every modular elliptic curve is a Q-curve, and,

e modulo Serre’s conjecture, every @-curve is modular.



2 Isogenies, 2-cocycles, and twisting

We wark in the category of abelian varieties up to isogeny; i.e., we consider the morphisms to be
elements of Q ¢y Hom(A, B), where Hom{A4, B) are “true” morphisms between abelian varieties.

This makes the jsogenies invertible.

From now on we will only consider Q-curves without complex multiplication. In particular,
for our curves we can identify Q © End{C’) = Q.

In this section, after some remarks on isogenies between elliptic curves, we introduce the
2-cocycle associated to a Q-curve by Ribet. We will also study the effect of twisting and show
that, after twisting the curve, the isogenies between conjugate curves can be defined over the
field obtained adjoining the square root of the degree.

Isogenies between elliptic curves. Let ¢ : C' — C be an isogeny between two elliptic
curves over ). Then, fixing Weierstrass models for C and ", we can write an equation for ¢ of
the form

B(X,Y) = (F(X), ¥ F'(X))

for some rational function F(X) € Q(X) and a nonzero A € Q. The constant A is also determined
by the identity
g‘fr*(’tl?(j) =X\ W,

where we = (dX)/(2Y) is the differential invariant. The following properties are easily seen:
e the constants A are muliplicative for the composition of isogenies,
e the constant for the isogeny “¢ is A,
e if m € Z, the constant for the multiplication-by-m isogeny is A = 1,

e if (; is the dual isogeny, and A is the corresponding constant, M=d= deg ¢.

Fields of definition of isogenies. Assume that the two curves C' and 7 are defined over
a number field &. Then, for every ¢ € Gy, 7¢ : " — C is an isogeny of the same degree and,
since we assume no complex multiplication, ¢ — 4¢. We have in this way an action of Gy on
the set {+¢}. The isogeny ¢ is defined over & if, and only if, that action is trivial and, if not, it
is defined over a quadratic extension of that field.

In particular, since

1 1
Y YIOF(X)) = (F(X), :I:X Y FI(X)) = 2¢(X,Y),
we see that the rational function Fis always defined over &, and that the isogeny is defined over
the field k{X), with A? € k=,

THXY) = (TF(X)

Locally constant sets of isogenies. Let (' be a Q-curve. For every o € (G we choose an
isogeny i, : 7C" — ' in such a way that the set {u,} is locally constant; i.e., there is a finite
Galois extension &/ such that g, = g whenever ¢ and 7 restrict to the same automorphism
of k. The smallest possible field & is the Galois closure of the field of definition of the curve C.
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2-cocycles. For every pair o, 7, the two maps jt, © 7 fir and s, are isogenies 77C — ' and,
in absence of complex multiplication, they must differ by a nonzero rational number (e, 7),

po 0ty = €(0,T) O flgr.
Then, the map ¢ : Gg x Gg — Q" is a 2-cocycle for the trivial action of Gg on Q*. A change in
the choice of the isogenies i, modifies the cocycle ¢ by a coboundary. Hence, the cohomology

class [c] € H%(Gg, Q") depends only on the curve (', and not on the isogenies.
If A, is the constant associated to yi,, we have the corresponding formula

Ao PAr=c¢lo,T) Agr.
Let K denote a finite Galois extension of Q, containing &, such that all the isogenies u,
are defined over K. Then ¢ is the inflation of some cocycle defined over Gal(K/Q). The

smallest possible K is k{{X;}}, that is an extension of type (2,.. .,2) of k. From the identity
TN\, = c(o, 7)A,-A; ! we see that this field is Galois over Q.

The degree map. For every o € G let d, € Q" denote the degree of the isogeny p,. Then
from the formula defining the 2-cocycle, we get

d, d, = c(o, Vd,,

and the map
§:Gg=- Q' /Q*% o~ d, (mod Q)
is a group homomorphism. This map does not depend on the locally constant set of isogenies

chosen, but only on the curve C.
Its kernel fixes a subfield of the field k of type (2,...,2). We denote it ko.

Isogenous Q-curves. Let ¢ : C' — C be an isogeny between @-curves. Then we have
isogenies

o ¢ o Be c e c

giving a correspondence
{1} & {uy = ¢~ 0 i 07 ¢}
between the locally constant sets of isogenies for C' and for C'. If M, Az, A are the constants
associated to p, i, and ¢,
A=A A Ah

The 2-cocycle associated to the curve C from the locally constant set {tto } is the same than
that associated to C from the set {u’}. Hence, the cohomology class [c] € H%(Gg, Q") is an
invariant of the isogeny class of the curve.

Since deg i/, = deg j1,, the previous correspondence maintains the degrees of the isogenies.
In particular, the map 6 : Gg — Q*/Q*? and the field ko are also invariants of the isogeny class.

Note that in the tower of fields

QCko CkC K,

the field ko depends on the isogeny class of C', the field k on the curve C, and the field K on

the locally constant set of isogenies {fiq}.
A consequence of results in [1} or [9] is that every Q-curve is isogenous to one already defined

over the field kg.



The effect of twisting. Let v be a nonzero element of k. We denote by C., the twisted curve
over k(,/¥). and by ¢, : €, — C an isomorphism.

7 IE (" is given by a Weierstrass equation Y = X% 4+ AX + B, then C, has equation Y* =
X2+ 42AX ++4°B, and ¢,{X,Y) = (Xv 1, Y57%2), Hence, the constant A associated to o I8

v and, under the previous correspondence for locally constant sets of isogenies, we have
’ a -1
Ar =AYV

The twisted curve. Let (' be a Q-curve. Choose a locally constant set of isogenies {,}.
Dividing the two equalities

d, d, = (;(o’, T}zdmr, and /\iaAg = C(O’, T)z)\z

FT?

we obtailn

ds P d, dor
SrSviS v

and the map o — d,/A2 is a l-cocycle on Gg with values in &*. In fact, it comes by inflation
from a l-cocycle defined in Gal{k/Q). By Hilbert’s 90 theorem there exist an element v € &

such that
dy

:\'—ﬁ_:

o -1

Yy
Then for the twisted curve (', we have

M= ALy = d,
and we have proved the:

Theorem 1 Let ' be a Q-curve defined over a Galois extension k/Q. Then, there is a v € k*
and a locally constant set of isogenies {ul,} for the twisted curve C., such that every !, is defined

over k(vd,) and has X, = \/d,.

In particular, the field K for the twisted curve is the composition of k and the field Q({/d,})
generated over Q@ by the square roots of the degrees of the isogenies between conjugates. Com-
bining this with the results of Elkies and Ribet on the fields of definition of Q-curves, we see
that evey Q-curve is isogenous to a curve for which the field K of definition of the curve and
the isogenies is of type (2,...,2).

3 Splitting the cocycles

The abelian varieties of GLy-type having as a quotient a given Q-curve are in correspondence
with the splitting functions of the cocycle ¢, In this section we deseribe that correspondence
and reduce the splitting of the cocycles to an equality between Brauer classes.

(a4
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Splitting functions. A splitting function for the 2-cocycle ¢ is a locally constant map
B:Gg—TQ

such that

c(o, 7y = B(o)B(r)B{aT) .
A theorem by Tate [12] shows that these splitting functions must always exist. It is clear that
two splitting functions 3 and 3’ for the same cocycle ¢ must differ in a Galois character

.8":)081 XG@-'}@‘

If we start with another cocycle ¢ corresponding to a different choice of isogenies for the
same curve, the splitting functions for both cocycles differ in a locally constant map Gg — Q.

Normalization. Consider the locally constant map o + +/d,, and let ¢; be the cocycle
differing from ¢ on its coboundary; i.e.,

Vi
ci(o,7) = (o, T)W

The new, normalized 2-cocycle e, takes its values into {£1}. We define the splitting functions
By for it in the same way, c(0,7) = ﬁl(a)ﬂl(r)ﬂl(ar)‘l. Then the splitting functions 3 for ¢
and 3 for e are related by the identity

Blo) = Bi(o)ds.
Splitting characters. Let 3; be a splitting function for the normalized 2-cocycle ¢;. Since

(o}s(r)Bi(er) ! = ei(o,7) € {£1},
the following map is a Galois character
£ =p3, e:Gg—Q .

A character of the form ¢ = 3% for some splitting function will be called a splitting character
for the cocycle ¢;.

Let L/Q be the cyclic extension fixed by the kernel of €. We will call it a splitting field for
the cocycle ¢;. The degree [L : Q] is the order of ¢.

Since a splitting function is determined by ¢) only up to multiplying by a Galois character,
a splitting character is determined only up to the square of some Galois character.

Minimality. If the character £ has order n, the splitting function B take its values into the
In-th roots of unity. We define the index of §; as the maximum order of the roots of unity in
its image.

It is easy to see that the minimal index for a splitting function Gq is a power of 2, hence the
minimal splitting characters ¢ (resp. splitting fields L} have order (resp. degree) a power of 2.

There exist splitting functions with odd index if, and only if, the cocycle ¢ is trivial, ¢{a, 7} =
1. If ¢ is nontrivial, then the index of a minimal splitting function is 2™ for some m = 1 and
the order of a minimal splitting character is 9m=1_ Moreover, in this case, the index of any 3
is always twice the order of ¢ = a2



Endomorphism algebras of abelian varieties of GL,-type. If 8 is a splitting function
for ¢, let

Es = Q({3{0)})

be the field obtained adjoining to Q the values taken by 3. In Ribet {9} and, with a more general
and precise formulation, in the thesis of Pyle [6], they show that:

e For every 3 there exists an abelian variety Ag of GLy-type, having C as a quotient, with
endomorphism algebra Q @ Endg({44) = Ej.

e BEvery abelian variety of GLy-type having €' as a quotient is isogenous over Q to one of
the varieties 4.

Proposition 2 Let L be a splitting field of degree n corresponding to o splitting function 3. Let
C2n denote a primitive 2n-th root of unity.

o [fLMkg=0Q, let {dy,...,d.} be a basis of 3(Gg). Then,
Es = Q{Can, Vdi, Vdo, ..., V).

o If L Vky is a quadratic field, let 0 € Gg be any element restricting to a generator of
Gal(L/Q), dy = deg s, and dy,...,d, a basis of §(Gr). Then,

Eﬁ = Q(C?n\/ﬁu \/d_?la tey \/(i—r}

Proor: Consider the equality
B(e) = hie)Vd,.

The value of v/d, up to rational numbers depends only on the restriction of & to ky, and the
value of 3y (o) is, up to {£1}, determined by its square £(¢), that depends only on the restriction
of o to L.

Then we just write the abelian extension kyL as a product of L and of linearly disjoint
quadratic extensions. From the corresponding decomposition of Gal(koL/Q) as a product of
cyclie groups, it is then easy to compute the values of (o). |

This proposition shows that the endomorphism algebras s depend only on the splitting
field L or, what amounts the same, on the splitting character £. In particular, if 2° denotes
the degree of a minimal splitting character, then the smallest dimension of an abelian variety of
GLg-type having 7 as a quotient is

) 2r+5‘71 or 2r‘+:s

depending on whether there exist splitting fields L of degree 2° with L Nky # Q or not, and also
on whether one of the isogenies between conjugate curves has degree 2, since Q{(y,) contains
V2 for 1 large enough.
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Characterization of splitting characters. In order to determine the abelian varieties of
GLs-type attached to a given elliptic curve, we must know which characters are splitting char-
acters for a given cocycle ¢;.
Let ¢ : Gg — Q  be any Galois character whose kernel fixes the field L. Consider the
diagram
Go

&7
£

Where the map Q@ — Q in the exact sequence is @ — a?.

Let \/z € H*(Gg, {£1}) be the element corresponding to the pullback of the exact sequence
by . It can be interpreted as the obstruction to the existence of a Galois character &€ commuting
the diagram (a square root of the character €} or also as the obstruction to embedding the cyclic
extension L/Q into a cyclic extension of twice its degree.

Theorem 3 A Galois character £ is a splitting character for the cocycle ¢y if, and only if,

Ve=[a] m H(Go {£1}).

Proor: Let Gal(K/Q) = G, and denote by 7 : Gg — G the natural projection. Then the
2-cocycle ¢, is obtained by inflation from a 2-cocycle defined over Gal{/(/Q) that, abusing of
the notation, we also call ¢;. Consider the cohomology class [e1] € Hz(G,@), where Q" is
considered as a G-module with trivial action, and let GG be the corresponding central group
extension. Then we have a diagram

1 Q G G—1

where the (continuous) group homomorphisms 7 commuting the diagram are called liftings of
7. An easy computation shows that:

Lemma 4 Lets: G — G, g s, be a section of the epimorphism in the previous eract sequence
such that sysp = (g, h)sgr Vg, h € G. Then

=~ -1
7o) = Bi(o) Sp(a)
gives a correspondence between splitling functions for ¢ and liftings of 7.

The cohomology class [¢;] € H?(Gg, {£1}) is then the obstruction to the existence of some
lifting ™ whose 3; has trivial character. The situation is analogous to that in the computation
by Tate [12, Sections 6.1, 6.3, and 6.4] of the obstruction to the existence of linear liftings of
projective Galois representations, and the proof given there can he adapted to our case.

There is also an alternative approach that works over any base field 7, and not only over
Q, based in the theory of Galois embedding problems and its cohomological obstructions. If M



denotes the field fixed by the kernel of a lifting 7, we have a diagram of field extensions

M

KL
L \
\ ;
KnL
F
Where the extension M/K L is of degree 1 or 2. Then one identifies the obstructions for the two
embedding problems corresponding to the two exact sequences

| —= Gal(M/K) —= Gal(M/F) — Gal{K/F) — 1,

and
| — Gal(M/KL) —— GalM/F} — Gal(KL/F) — 1.

[t can be proved that the obstruction to the solvability of the second embedding problem for a
given cyclic extension L/F is the product of the cohomology class [c1] € H*(Gp, {£1}} and the
obstruction to embedding L/F into a cyclic extension of twice its degree. g

Local components and Brauer group. The restriction to the decomposition groups give a
monomorplitsm

H* (G {£1}) - [ H*(Ga,, {+1})

For every & € H*((g, {£1}) and a (finite or infinite) prime p, we denote by &, its local compo-
nents. Then, global equality is equivalent to local equality for every p.

We recall the usual identification of H*(Gg, {£1}) with the 2-component of the Brauer group
Bry(Q), corresponding to central simple algebras that are split under quadratic extension.

If a,b e Q7, we denote by (a, b) € Bry(Q) the corresponding quaternion algebra. For a local
field Q,, if we identify Bry(Q,) = {%1}, then the local component {a,b), is given by the Hilbert
symbol.

4 Galois characters with given /=

For general fields £ the obstruction to embedding a cyclic extension L/ F into a cyclic extension of
twice its degree can be very difficult to compute. There are known formulas giving it as a product
of quaternion algebras in the Brauer group Bry(F) only for L of small degree. Fortunately, class
field theory enables a very easy computation for the case of F'= Q.

9
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Local components of /z. Let¢:Ggp— Q" be a Galois character. Via class field theory we
identify it with an idele class character or with a Dirichlet character. Denote by ¢, its restriction
to @} or to (Z/p Z}~ if p* is the p-power factor of the conductor of €.

Then, the local component (/Z), is the obstruction to the existence of a square root of the
character £,, and it is given by its parity; i.e.,

(Ve)p = p(—1).

For every finite prime p we define

u(p) = 1, p=2,
P2 lorda(p— 1), p#2.

The number of roots of unity of order a power of 2 contained in the field Q, 1s 2u(?) . For odd p,
a character of Q3 is odd if, and only if, it has order divisible by 2u{r}, For p = 2 there exist odd
characters of any even order.

Global characters with given local conditions. Given £ € Bry(Q), let

u(€) = max{ u(p) | &= -1}

where we consider the local components &, for all finite primes p. We define u(€) = 0 in case
that £ = 1 in Bry(Q). The following proposition can be found in [7]:

Proposition 5 Let £ € Bro(Q). There exist Galois characlers ¢ of order n with
vE=¢

if, and only if, n is a multiple of gule},
Let k1 /Q be a quadratic extension, corresponding to a Galois character £,. Then, there extst
Galois characters € of order n with

Ve=E and k CL
if, and only if, the following conditions are satisfied:

o For every odd prime p,
- ¢, =-1andp ramifiedink; = u(p) = ordg{n).
- &=-1 and p unramified ink; = u(p) < ordy(n),
— &= landp ramifiedink, = u(p) > ordz(n},
o and, for p= 12,
—&=—lande(-1)=-1 = ordy(n) =1
—&=-lande(—1})= 1 = ordy(n)>1,
&= 1 = &(-1)=1

i0



For some £ and ky, there are no characters satisfying the two conditions /¢ = & and k; C L
but, when some such character does exist, then there are two possibilities for the orders of the
set of characters satisfying them:

e their orders are the numbers n with ordy(n) = u(£), or

e their orders are the numbers n with

W(€) < ordyn < m = {oo, only 2 ramifies in &,

min{u{p} | p odd, ramified in k;}, otherwise.

5 Computation of [¢|]

In this section we compute the element [¢;] € Bry(Q). The computation is done step by step,
starting from the easiest case of Q-curves over quadratic fields, until we arrive to the general
case, for which an extra auxiliary twisting is nedded in order to do the computation.

Theorem 6 Let ' be a Q-curve. Let kg = Q(\/ay, .. ., V@) be the field fized by the kernel of
the & map. For every i, let o; € Gg be an element acting on ky by

U:\/a‘j: _\/ﬂ._j, J:L,
Vi i

and let d; be the degree of the corresponding isogeny pi,,. Then,
[e1] = (a1, di){az. da) - - - (ar, d.)} € Bry(Q).

Proor: We may change our curve by an isogenous curve that is already defined over & = ky
and for which the constants A, are \/d,, since the a;, o; and d; are the same for booth curves,
and also [e] is the same.

Quadratic Q-curves. Assume first that k is a quadratic field, k = Q(/a).
Let d be the degree of a nontrivial isogeny g : 7C' = O, with A = /d. Let K = Q(y/a, Vvd)

denote, as always, the field of definition of the isogeny.
As locally coustant set of isogenies for the curve €' we may take:

i, air # 1,
%:{ e #

i, aly = 1.

The case d = a. In this case K = k is a quadratic field. Let s denote the nontrivial automor-
phisin. Then, the 2-cocycles are given in the following tables

The element [¢,] € H*{Gg, {£1})is well known to be the obstruction to embedding the quadratic
field K/Q into a cyclic gquartic extension, and this obstruction is equal to

(a,—1) = {a,a) = (a,d) € Brz(Q).

il
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a % A

The case d # a. In this case K/Q is a quartic extension of Klein type. Let s and ¢t denote
the generators of Gal(K/Q) defined by

s Vi —va, and t: var .
WA= Ve, L \WVde =V

Then, the 2-cocycles are given in the following tables

c | 1 s t st ) | 1 s t st
111 1 1 1 11 11 1
s |1 d 1 d s |1 11 1
b1 -1 1 -1 ¢l -1 1 -1
stil —d 1 —d st!l -1 1 -1

The element [c;] € H2(Gg, {£1}) is well known to be the obstruction to embedding the field K/Q
into a dihedral extension of degree 8 cyclic over the quadratic field Q(vad). This obstruction is
given by the quaternion algebra

(a,d) € Brz(Q).
The case of k linearly disjoint from Q({\/d,}). We assume in this paragraph that

Q(Way, .. .. Va,) NQ(Vdi,...,Vd.) =Q

Then K/Q is an extension of type (2,...,2) of degree 227 and we can choose a basis for

Gal(K/Q) = Gal(k/Q) x Gal(Q({v/d,})}/Q)

in the following way:
First, we choose s, ..., s, that are a basis for Gal(k/Q) and are trivial on the other compo-
nent of the group Gal(K/Q). Let

= Q(van - Qa)

be the corresponding decomposition as a product of linearly disjoint quadratic extensions; i.e.,
each s; restricts to the nontrivial automorphism on the component Q(y/4;) and to the identity
on the others.

For every 1, let d; = deg p;,, and let ¢; be the antomorphism of & that acts trivially on the

field k and by v/d; = —/d; on the field Q{{+/d,}). In fact, we have:

Va; = =, - Ve, = Vg, i,
st (Ve Ve, TF and i Vdi— =V,

Now, let’s compute the cocycle. Every element z € Gal(K/Q) is uniguely written as
o= 00 gl ) el a(s) 2 (8) € {0, 1),
12



Then, the element A, satisfies

Vo= VL = [[VE™ (mod @)
i=1

and the Galois action of an element y € GG on it ts given by

r

e = (JJ(-ptautay s,

i—=1

The values of the cocycle ¢ are

r d
ez, y) = A Ay Ay = (H(—u“s-)y("’})M

i=1 dry ’
and the coeycle ¢y is given by the formula
-
1o, ) = [J(=1)2toomted,
1=1

Define K; = Q( /a, vd;). The fields K; are of Klein type, linearly disjoint, and K =
Ky---K,. It is clear from the last expression that ¢ is a product of cocycles defined over
the A, each of which is equal to the cocycle we already encountered in the quadratic case,
corresponding to embedding a Klein extension into a dihedral extension of degree 8 in a certain
way, whose obstruction is equal to (a;,d;). Then, the obstruction we are computing is the
product of quaternion algebras

e} = (ar, di)(ag, dy) - - -(ar, d,) € Bry(Q).

The general case (last twist). For computing the obstruction in the general case, we will
work in a different twist of the curve in order to avoid the “mixing” between the field of definition
of the curve and the field of the square roots of the degrees of the isogenies.

We start with a curve and a locally constant set of isogenies {u,} as before. Let sy,...,s,
be a basis of Gal{k/Q}, and let

k=ky -k =Q(/a1) - Q(/ar)

be the corresponding decomposition as a product of linearly disjoint quadratic extensions. For
every #, choose a rational prime number p; that is a norm of the extension k;/Q, and z; € k; an
element with :
Nl = 2%z = pi.

We may, and do, choose the prime numbers p; to be different of each other and relatively prime

to the product ay - - -a,.
For every # € Gal(k/Q}, written as & = 7' --- 557 ; € {0,1}, let

T r
I . _ T
Pr:”pi" and 21.—”/,:“.

=1 =1

13



Then, since for every pair z;,y, € {0,1}

N _{p-g, 2=y =1

F—Pi$'+y‘ (mod 2) z.?:,+y. {mad 2) 1, otherwise,

3

we obtain the following equality for every z,y € Gal(k/Q)

V Pz /Py \/sz_l = erzy Z;yl'
Let v = [1i_, z. Consider the twisted curve C'y and the locally constant set of isogenies
{u.} obtained from the {u,} as explained in Section 2. Let A, be the constants associated to
the p! . Then, for every z € Gal(k/Q),

1 -2

z -1 _
=d; Zr 2y — dz'pxzr

AL =dy Py T

hence
' da:pa:

Zx

Ar =

and the field of definition of the isogenies u, is

K= k‘({\/ drp,;}) =k Q({V dxp:v})'

Now, the fields k& and Q({\/d;p-}} are linearly disjoint and we proceed as in the previous
paragraph: We fix a basis {s1,...,8p,t1,...,t.} for Gal(K/Q) in the same way, and denote by
z(s;), z(t;) € {0,1} the coordinates of an element z.

Now, the element A, satisfies

Ao r Tz (s:)
= zPo = [Lizy vip: (mod Q)

Zp Zy

Ae

and the Galois action of an element y € (¢ on it is given by

: TeT Ty Y dw T
VA, = (H(_l)l( ;)'y(t-)) "ﬂzp .
=1 ®

Then, the values of the cocycle c are

e(z, y) = A "M As) = (ﬁ(—l)x(ﬁ)y(h)) V&uPay/dypy 20y _ (ﬁ(_l)x(si)y(ti)) \/E\/E;,
| s i=1 V. d:r.‘ypa:y 2p Yy i1 \/d_m;

the cocycle ¢y is given by the same formula

.
er(z,y) = [T,
i=1

and the obstruction is

r

er] = [ [ (@i, dipe)-

=1
From the choice of the primes p;, each (a;, p;) is trivial and the obstruction is, in fact, given by
the same formula than before. O

14



6 Quadratic (J-curves

Let N be a squarefree integer > 2. We say that a Q-curve is quadratic of degree N when the
image of the § map is generated by N. We also assume that C is defined over a quadratic field;
i.e., that its field of definition is kg = k.

Endomorphism algebras. Let A denote an abelian variety of GLy-type having the quadratic
Q-curve (' as a quotient, and let F denote the algebra of its Q-endomorphisms. Let [¢;] =
(a, N} € Br(Q), and v = u((a, N)) as defined in Section 4. Then,

® The smallest dimension for A is 2* or 2%1!, depending on the existence of a splitting fieid
L with special properties (see end of Section 4), and also on whether N = 2 or not.

o The smallest dimension for A is 2 if, and only if, ane of (a, N) or (a, ~N) is trivial in

Bra(Q).

~ There exist A with £ = Q(v/N} if, and only if, (¢, N) = 1.
— There exist A with £ = Q(v/—N) if, and only if, (e, —N) = 1.

e For every n with ord;(n) > u there exist A with F = Q((y, \/TV—)

e Given n, there exist A with F = Q((3,VN) if, and only if, there is a splitting field L of
degree n containing k as a subfield.

Parametrization of quadratic Q-curves. The quadratic Q-curves of degree N can be
parametrized by the rational points of the curve Xy quotient of Xo(N) by the Atkin-Lehner
involution Wy.

Using the ideas of [3] one can compute the corresponding j-invariants in case that Xy has
genus zero or one. For example, consider the case N = 2. Then, G = (n(2)/n(22))** is a function
on Xy(2) and t = G + 2'?/G is a rational hauptmodul on X,. We can express the symmetric
functions 7 + 72 and j - j, as polynomials on t, and compute

1 ‘
j= 5 (—6()'56+49t+t2 + (47 + £) \/(—128+t)(128+t)) :

Fields of definition when Xy has genus zero. Suppose that Xy has genus zero, and let
g denote the genus of Xo(N}. Then, the fields of definition of the quadratic Q-curves of degree
N are the quadratic fields in the set

Q(vPW), teo

for some squarefree polynomial P(t) € Q[t] of degree 2g + 2.
If Xo(N} has genus zero, one computes the following polynomials

15
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The other cases correspond to Xo(N) elliptic or hyperelliptic with hyperelliptic involution
Wp. The corresponding values of N are

N =11,17,19,23,29,31,41,47,59. 71, 14,15, 21,26, 35,39,

and we can take as polynomials P(t) the polynomials P(F) in the tables of {2] {warning: for
N = 31 the coefficient of F° must be 44 instead of —4). For example,

N =19, P(t)= —48-T6¢~ 32" +1t*,
N=20, P(t)= -4—232t-83t2 666> —17¢*+20° +1°
N=35 P)=1+4t—662+483-09t" 415 -6 -4t +1°

Fields of definition when Xo(N) has genus zero. The fields of definition of quadratic
Q-curves of degrees N = 2,3,5,6,7,10, 13 are the k = Q{y/a) with

e any afor N =2,3,7,
e (a, Ny=1for N =5,13,
e (a,2)=1for N =6, and,
e (a,5)=1for N =10.

This conditions affect the endomorphism algebras of the abelian varieties of GLy-type attached
to the curves. In particular,

o There exist quadratic Q-curves of degrees N = 3,6 and 7 for which the smallest abelian
variety A has dimension bigger than any given number. For example if p is a prime number
=2 (mod 3) and =1 (mod 2*), then the smallest A corresponding to a Q-curve of degree
3 defined over Q(,/p) is 2*.

e For N =2 -. . every quadratic Q-curve of degree N is the quotient of some abelian
variety of GLy-type of dimension 2 or 4 with endomorphism algebra

Q(vY), Q(V=2) or Qi,v2)
e For N = 5 and 13, every quadratic Q-curve of degree N is the quotient of an abelian
variety of dimension 2 with endomorphism algebra Q(VN).

Assuming the modularity of the Q-curves, the examples of degrees 3, 6 and 7 imply the
existence of modular forms with many inner twists (see [8]) in a strong sense; i.e., all the twists
of the modular form by Dirichlet characters have more inner twists than any given number.

Restrictions to the existence of quadratic Q-curves. The conditions on the quadratic
fields for the existence of a Q-curve of given degree that we observed in the case that Xo{N)
has genus zero can be generalized to necessary conditions for general NV as follows:

Proposition 7 If there ezists a quadratic Q-curve of degree N defined over the quadratic field
k, then every divisor Ny | N such that

Ni=1 {mod4) or Ny even and N/Ny=3 (mod 1)

is a norm of k.

16



ProoF: Let N = NyN; be a nontrivial factorization of N {when it exists).

1t is known (see [2],[31) that the following three functions (¢ are functions on Xo(N). In fact
they belong to the Newman group of functions on the curve AXo(N}. It is also known that the
action of the involution Wa on them is as given:

: n{z) A 12/(12,8-1) L
Gz} = | —= ; G =N T
(<) (n(Nz)) Wy G

Giz) = (M)“/(%’(N“‘)‘NHI))
Ui

24 /1 _ 1
G — N4 (N 1)(N2+1))__
(N1z) (N 2) wy = N

] G?
and, if d= (N = 1,N, = Ny), a=(N=1)/d, B=(Ny-N)/d,

n{z)* n(Ny2)?

_ nlatB)/2p(a-g)/2 1
Wy =N —.
n(Nyz)f (N z)e' Clwy : N,

G(z) = e

Now, let z be a point on the upper half plane such that 7{z) is the invariant of a Q-curve of
degree N defined over k. Then, G(z) is an element of k£ whose conjugate is G|w, (), and has

norm
A 12/(12,N 1)

NGNS ek /2 ()2

depending on the function & we use. The result is then consequence of that:
o If ¥ =1 {mod 4), the exponent in N12/02ZN=1} i odd.
o If N= NNy and Ny =1 (mod 4), then:
— If N3 is odd, the exponent in 1\"124/(24’(1\[”1)(%“)) is odd.

— Ny is even, dis odd, (o + 5}/2 = (N1 + 1)(N2 — 1)/2d is odd and (o — 8)/2 =
(N1 — 1)(Ny + 1}/2d is even.

® If N = NNy, Nyis even and Ny =3 (mod 4), d is odd, (o + 8)/2 = (N, + (N, —1}/2d
is odd and (o — 3)/2 = (Ny ~ 1){Ny 4+ 1)/2d is even.

O

As an immediate corollary we obtain that every quadratic Q-curve of degree N = | (mod 4)
is the quotient of an abelian variety of GLy-type of dimension 2 with algebra of Q-endomorphisms

equal to Q(vVN).

7 Examples over bigger fields

In this section we just give some examples of Q-curves with more than one nontrivial isogeny.

Biguadratic Q-curves of degrees dividing 6. Consider the functions

(BN
G‘(n(zz)n(ﬁz))’ P=GHE/G

17
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Then, t is a rational hauptmodul of X*(6), and we can express any symmetric polynomial on
4,42, j3 and jg as a polynomial on t. After some computations, we obtain the following expression
for the j-invariants of the Q-curves parametrized by X"(6).

j= =( (1730592 + 472644 ¢ — 1941202 — 8415¢% — 234 + 2407 +1°) +

| =

(=2 4+ £) (9 + ) (~3416 — 169t + 19t + %) /(18 + ) (14 + £) +
(=24 ) (9+1) (14 4+ 1) (=215 4+ 3t + £*) /(=18 + ) (18 + 1) +
(109116 + 22868 t — 2673 ¢% — 3601% + 8% +1°) /(14 + ) (18 + 1) ).

And the fields of definition of these curves are the biquadratic

k=Q (\/(T+ 14)(t = 18), /{t + 18)( - 18)) .

Moreover, the involutions W, and W3 correspond to change the sign of one root and leave the
other fixed, in the given order. We write down the information about the abelian varieties of
GL,-type associated to the Q-curves corresponding to some values of t € Q:

et=0, k=QNT.vD),

j=54 (8012+4515i+ (3031 + 1708 ) \/?) ‘

E = Q(Gzn, V2, V3) for ords(n) 2 1,
minimal A of dimension 8 with E = Q(4,v2, v3).

o t=—1, k=Q(/=247,/=323),

1
i=3 ( 1246694 + 83942 /221 + 77496 v/~ 247 + 67704 \/—323) :

E = Q((zn, v2,V/3) for ordy(n) 2 4,
minimal A of dimension 32 with E = Q((az, V3.

o t=-2, k=Q(/-15,v-5),
j=8 (24079+ 13916 v/3 + 18228/ =5 + 10535 \/—15) ,

E = Q(C2n, v/2,v/3) for ordy(n) > 1, and also Q((2nv2, VB) for ordy(n) = 1,
minimal A of dimension 4 with £ = Q(+~/=2, /).

e t=14, k=Q(-7.v-2),
j=-8 (221873 — 44436/—2 — 23667V T + 59332 \/1_4) ,
E = Q{(n, \/‘E, \/i) for all m», and also Q(anﬁ, \/5) for ordy(n) = 1,
minimal A of dimension 4 with E = Q(v2,V3).

Assuming modularity of Q-curves, only the last one is a quotient of Jo(N) for some N. The
other three come from Q-simple factors of J;(N)} corresponding to newforms with nontrivial
nebentypus.
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Triquadratic Q-curves of degrees dividing 30. Consider the functions

. _lz) n(3z2) n{5z) n(152) _
S e ) n10s) 0z LT T

Then, t is a rational hauptmodul of X*(30), and we can express any symmetric polynomial on
the jy for d | 30 as a polynomial on t. After some computations, we obtain the j-invariants of

the Q-curves parametrized by X*(30) as an algebraic expression in t. The fields of definition for
the corresponding Q-curves are the triquadratic

F=Q(VIF -0, VI B+ DE+ 00 -0, VE+ 5+ D0E- 1),

and the involutions Wz, W3 and Wi correspond to changing the sign of one of the three square
roots, leaving fixed the other two, in the given order. We make some computations for a couple
of examples:

e t=1, k=Q(/~15 V-5 +v-1),

j= "'_I{i (1 + 1) { (1520448042 + 9908421603 i) + (877849349 + 5720577044 1) v/3 +
(679965303 + 4431181206 1) V5 + (392585740 + 2558319455 ) /15 ).

E = Q((zn. V2, \/E, \/g) for ordz(n) = 1, Q(Czﬂ\/?, \/5, \/6) for ordy(n) = 1,

and Q((onv2, V3, V10) for ordy(n) = 1,
minimal A of dimension 8 with E = Q(v/=2,v/5,v6) or Q(+/=2,+/3, v10).

o 1 =8, k=Q(v3 V39,126,
J = 1728 (53078663323348498838784l + 375322827722565360648868 /2 +
306449805579600563915580 v3 + 2166927356 18639705873760 V6 +
147213724804 167984850620 v/13 + 10409582309275986557 L840 V26 +
84993883644095857937520 V39 + 60099751484119167158004 /78 ),
B = Q(C‘Zn) \/‘Zy \/§~ \/g) for OrdZ(n) ; 2? Q(C?n‘\/gg ﬂs \/3-) for OI'dz(’n) = 2)
Q((‘Zﬁ,\/i: \/‘F): \/6) for OI‘dQ(n) =2 a.nd, ﬁﬂa”yu Q(CZn\/i; \/gv \/IU) for 0rd2(ﬂ') 2 3!

minimal A of dimension 16 with

E = Q(CS\/S) \/Qa \/g) or Q(CS\/§~ \/S—a \/6)1 or also Q(CS: \/57 \/5)
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