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ABSTRACT

The behavior of a tropical coupled atmosphere/ ocean model is analyzed for a range of different background
states and ocean geometries. The model is essentially that of Cane and Zebiak for the tropical Pacific, except
only temporally constant background states are considered here, For realistic background states and ocean
geometry, the model solutions feature oscillations of period of 3-5 yr. By comparing the full mode! solution
with a linearized version of the model, it is shown that the basic mechanism of the oscillation is contained
within linear theory.

A simple linear analog modei is derived that describes the nature of the interannual variability in the coupled
tropical atmosphere-ocean system. The analog model highiights the properties that produce coupled atmosphere—
ocean instability in the eastern ocean basin, and the equatorial wave dynamics in the western ocean basin that
are responsible for a delayed, negative feedback into this instability growth. The growth rate of the local instability
¢, together with the magnitude b and lag = of the wave-induced processes determine the nature of the interannual
variability displayed in the coupled model. Specifically, these processes determine the growth rate of the coupled
systern and, when the solutions are oscillatory, the period of the oscillation. The terms b, ¢, and 7 are set by
the background state of the atmosphere and ocean, and the geometry of the ocean basin.

The simple analog model is used to design and interpret a set of experiments using the full linear and nonlinear
numerical models of the coupled atmosphere—ocean system in the Pacific. In these experiments, we examine
the effects of the assumed basic state and ocean geometry on the interannual variability of the coupled system,
The simple model is shown to be a remarkably good proxy of the full linear and nonlinear numerical models.
The limiting nonlinearity in the full numerical model is shown to be the dependence of the temperature of the
upwelled water on the thermocline depth. However, we find the essential processes that describe the local
instability growth rate and period of the interannual oscillations in the coupled system are linear. Nonlinearities
primarily act as a bound on the amplitude of the final state oscillations, and decrease the period of the final
state oscillations by about 10 percent from that obtained in the small amplitude regime of the full coupled
modei and the linear analog model. The nonlinear analog model for the full numerical model is derived, and
compared with that proposed by Suarez and Schopf, The numerical and analog models help to explain why
organized, large amplitude, interannual variability is prominent in the tropical Pacific basin, and not in Atlantic
and Indian basins,

1. Introduction

In an earlier study, Battisti { 1988a) identified the
dynamics and thermodynamics that were acting in a
coupled tropical atmosphere—ocean model that exhib-
ited interannual variability similar to El Nifio-South-
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ern Oscillation (ENSO). In that paper, a series of nu-
merical experiments were done to ascertain the pro-
cesses that were central in producing the model
interannual variability. The model used was a simple
coupled ocean~atmosphere model, very similar to that
of Cane and Zebiak (1985) and Zebiak and Cane
(1987). In agreement with the results of Cane and Ze-
biak, warm events are initiated in the spring prior to
the event peak, and appear well described as an insta-
bility of the coupled system. During instability growth,
a positive sea surface temperature (SST) anomaly in
the equatorial eastern Pacific produces westerly wind
anomalies in the equatorial central Pacific which in
turn generates a downwelling Kelvin wave that sup-
presses the pycnocline to the east. SST is very sensitive
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to pycnocline depth in the eastern model Pacific; a
deeper pycnocline induces warmer surface water via
modulation of vertical temperature advection. Thus
the suppression of the pycnocline resulting from the
westerly wind anomalies leads to still larger SST
anomalies.

In this numerical model, oceanic wave dynamics
determines the fate of the growing coupled instability.
The aforementioned westerly wind anomalies also
produce equatorially trapped Rossby waves that prop-
agate freely to the western boundary. These waves re-
flect at the western boundary, sending upwelling equa-
torial Kelvin waves back to the central basin. These
cooling Kelvin waves act to terminate instability growth
and rapidly plunge the coupled system into a cold re-
gime. The western boundary reflection is necessary for
event termination. The system returns from a cold re-
gime via reduced heat flux to the atmosphere and, to
a lesser extent, by wave-induced processes like that
which lead to the warm event termination.

The aforementioned dynamical description of ENSO
evolution is not unigue to the Cane and Zebiak model.
Schopf and Suarez (1988) used a more complicated
numerical model of the coupled tropical atmosphere-
ocean system than Battisti. They described a dynamical
scenario for ENSO events occurring in their model that
is very similar to that Battisti described occurring in
the Cane and Zebiak ( 1985) model. Additionally, there
is preliminary evidence that this dynamical scenario is
relevant to some ENSO events observed in coupled
general circulation models of the atmosphere and ocean
(S. G. H. Philander 1988, personal communication).

With the studies of Zebiak and Cane (1987), Schopf
and Suarez (1988) and Battisti (1988a) in mind, we
will explore in this paper how the local instability op-
erating in the eastern basin interacts with the signal
reflected from the western boundary to set the period
and growth rate displayed by the coupled system. This
is done, in part, by deriving a set of simple analog
models for the coupled tropical atmosphere—ccean
system from the full numerical model of Battisti
(1988a, hereafter B88), due to Zebiak and Cane
(1987). We will find that the essential physics in the
coupled model is described by a linear delayed oscillator
equation, in contrast to the fundamentally nonlinear
delay oscillator equation proposed for ENSO by Schopf
(1987) and Suarez and Schopf (1988). We will use
both the linear analog model and the full numerical
coupled atmosphere-ocean model to examine the be-
havior of the coupled tropical atmosphere—ocean sys-
tem by considering various background states for the
atmosphere or ocean. We will examine the sensitivity
of the interannual variability in the coupled model to
the efficiency of the oceanic wave reflection at the
western oceanic boundary and examine how the nature
of the interannual variability depends on the size of
the oceanic basin. We will identify the important non-
linearity in the full numerical model, and derive the
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leading order nonlinear analog model for ENSQO ap-
propriate for the full coupled numerical model-a non-
linear delayed oscillator equation. The nonlinear an-
alog model, while similar in form to that heuristically
developed for ENSQO by Schopf (1987) and Suarez and
Schopf ( 1988), will highlight a very different balance
in the fundamental processes than in the latter studies.
We will use the nonlinear analog model to examine
the secondary role of nonlinearity in the ENSO cycle
in the full numerical model.

The outhine of the paper is as follows. In section 2,
we derive a simple linear analog model that describes
the behavior of the coupled atmosphere-ocean system
in various “‘basic states,” and use this model as a guide-
line to design and interpret a set of experiments in
which we will explore the effects of the basic state of
the atmosphere and ocean on the resultant interannual
variability. These experiments are presented in section
3. Several nonlinear oscillator models for ENSO events
in the full model is derived in section 4, and compared
to that postulated by Schopf (1987) and Schopf and
Suarez (1988). The conclusions and a discussion are
found in section 5.

2. A simple analog model of the coupled atmosphere-
ocean system

In this section we present a simple stability analysis
of the coupled system that enables a qualitative de-
scription of the behavior of the coupled system with
different basic states. We will include the essential
thermodynamics and dynamics of the system, identi-
fied in B8R, to derive a single, first-order differential
equation for the behavior of the coupled system in
terms of the sea surface temperature anomaly (SST)
in the eastern equatorial Pacific.

a. The linear analog model

We begin by reviewing the geometry of the system.
To lowest order, the sea surface temperature (SST),
zonal wind stress ¥, and pycnocline perturbation A
anomalies change uniformly throughout the eastern
basin in the equatorial band. SST and =~ display an
in-phase relationship with one another, whereas 4 tends
to lead SST and 7~ slightly. In addition, we note that
west of the dateline there is very little signal in the
model SST or in the wind stress anomaly. Analysis of
the ocean modes indicated free wave propagation west
of the dateline. Finally, we will make use of the fact
that the essential ocean physics and thermodynarnics
is contained within the equatorial band (within 5° of
the equator) and that the atmospheri¢ winds outside
of the equatorial band do not affect the overall character
of the interannual variability in the coupled system
(see experiment 10, B8&).

To further simplify the problem, we will consider a
basic state in the atmosphere and ocean that is constant
in time; the seasonal cycle is replaced with a simple
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annual average. Recall that the seasonal cycle primarily
acts to quantize the period of the interannual vari-
ability, but is not essential to producing the interannual
variability. With a time-mean basic state, the model
displays perfectly periodic behavior (experiment 3 of
B88). We also linearize the ocean thermodynamics and
coupling between the two media. A comparison of so-
Iutions from linear and nonlinear versions of the full
model, presented in section 3, will demonstrate that
the basic mechanism of oscillation is contained within
linear theory.

The aforementioned characteristics of the coupled
system led us to consider the following simple system.
The ocean is approximated as two boxes centered on
the equator. One box represents the “western Pacific,”
spanning from 160°W to ~125°E, where waves are
assumed to propagate freely. In this box, there are no
SST or overlaying wind stress anomalies. In the eastern
box, spanning 160°W to ~80°W, SST and pycnocline
anomalies occur. The SST anomalies drive a zonal
wind stress anomaly, 77, that acts throughout the east-
ern patch of the ocean. Finally, since the pertinent dy-
namics and thermodynamics happen in a thin equa-
torial band, and rather homogeneously throughout the
eastern box, we further reduce the problem by consid-
ering the area averaged quantities {T)and {(7*), where
(*) denotes an area averaging.

The linearized equation for the model SST is

ﬂ"——u VT —u- VT—GA(W)——
at
oT
- H(Ww — — o, T, (2.1)
dz
where
X, >0 I, x>0
A(x) = H{x) =
0, x=<0, 0, x=<0

and T is the SST anomaly, u the horizontal current, w
the upwelling velocity, «, a measure of the thermal
damping rate, and ¢ is time; V is the horizontal operator
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id/0x + jo/dy where x and y are positive east and
north respectively, z is the vertical coordinate, and d a
mixing efficiency coefficient (6 = 0.75). Overbars de-
note time-mean basic state quantities. (Discussion of
the full nonlinear model SST equation are found in
B88 and Zebiak and Cane 1987.) The terms on the
right hand side of (2.1) are, from left to right, advection
of the anomalous horizontal temperature gradient by
the mean currents, advection of the mean horizontal
temperature gradient by the anomalous currents, mean
upwelling acting on the anomalous vertical tempera-
ture gradient, anomalous upwelling on the mean ver-
tical temperature gradient, and thermal damping. The
linearized anomalous vertical temperature gradient is
given by

T _ T-1T;
aZ H1

where T, is an anomalous subsurface temperature that
results from movement of the subsurface pycnocline
and H, is the thickness of the ocean mixed layer [ 7}
is defined in (4.2), and linearized to a(h)# in appen-
dix C]. Constant upwelling, w, onaweakerd(7T + T')/
dz will produce less cooling than in the mean, and
therefore produce anomalous warming. In this model,
the upper layer thickness anomaly £ acts as a proxy
for the pycnocline perturbations, and can be written
in linearized form as T, = a( h) h [see Eq. (4.2)]. Hence
the linearized equation for the SST anomaly in the
eastern box is

T—a(fz)h
H, ’

- Yo Y ay H,
H, oz

The very small term (87/3y)v has been dropped from
(2.2) (see B88, section 2¢).

We now consider the evolution of the SST averaged
over the eastern equatorial Pacific box:

= - (D - w3 )<u>—ni2<r>—s A8 1y + 2 Ca0malhyyh

ox

Since, in general, all the field variables in (2.2) have a
rich horizontal structure, the spatial correlation be-
tween various quantities must be taken into account
when writing (2.3) in terms of the time dependent
variables and the time mean coefficients. This gives
rise to the #; coefficients that are defined, for example,
as

- m(y( ) §)<w> —al(T). (2.3)

(AT
AW (T

These coefficients are somewhat sensitive to the size of
the box in which we spatially average. The sensitivity
of our results to the box size is addressed later on. The
term containing A(W)a(h)h/H, in (2.3) is relatively

s =
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well defined regardless of the latitudinal extent of the
box because A(w)a(h) is sharply peaked on the equa-
tor. Therefore, # in (2.3) is evaluated on the equator
(y = 0), and averaged over the latitudinal extent of
the box. .

The upper-layer depth changes in the model result
directly from wind stress anomalies. In the eastern Pa-
cific, changes in # can be considered due to local pro-
cesses (these include wave reflection on the eastern
boundary) and Kelvin waves propagating into the
eastern basin from the western Pacific. These Kelvin
waves result from Rossby waves that are generated 1n
the central/eastern basin by wind stress anomalies. The
Rossby waves propagate westward and are reflected at
the western ocean boundary. There is little generation
of waves in the western basin (see B88). Hence we can
write A on the equator in terms of the local contribu-
tion, A, , and the remote contribution, Arenected Kelvin:

h = Rrefected Kevin + AL

"ﬂw(f'x([—‘T)>, h[_= aL<Tx>.
(2.4)

Prefiected Kelvin =

The coefficients ay- and a; are well defined for low
frequency motion and depend primarily on the lon-
gitudinal extent of the box and the assumed values of
reduced gravity in the ocean. The value of g, is found
by assuming that, for low frequency motions, there is
a local balance between the zonal wind stress and pres-
sure gradient. ay 1s specified using equatorial, longwave
dynamics and knowledge of the reflective properties of
low frequency Rossby waves on the western ocean
boundary (e.g., see appendix B of B88). Later, we will
come back and address the question of the effects of
western boundaries that are inefficient reflectors on the
interannual variability of the coupled system.

An important aspect of {2.4) is that the zonal wind
stress anomaly {7*) in the eastern box gives rise to a
quick local change h; in the pycnocline depth, and
produces a delayed signal in A that has the opposite
sign of the local response (g, and ay are positive), but
lags the local response by 7: the time it takes for the
gravest mode symmetric Rossby wave to travel from
the forcing region in the central /western basin to the
western boundary and the reflected Kelvin wave to re-
turn from the boundary to the eastern basin. We will
refer to T as the wave transit time, or the transit time.

There are four unknowns in (2.3): {T), h, (u)yand
{ w). The latter three quantities are primarily functions
of the zonal wind stress anomaly. To a high degree of
accuracy h, {u) and {w) can be approximated as
functions of the zonal wind stress anomaly which, in
turn, is directly related to the SST. We make the fol-
lowing assumptions:

() =KT)

w= =%

(2.5)
(2.6)
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__Is ™ N LD
<u> poH, (rsz"’f‘fZ) - poH 15’ (2.7)
In (2.7), f is the Coriolis parameter, p, the density of
water and rs~! a linear damping time (see Zebiak and
Cane 1987). The relation (2.7 ) produces a qualitative
representation of the surface current field in the equa-
torial Pacific band on monthly time scales. The rela-
tions {2.5) and (2.6) are extremely accurate for the
fields {w), (+*)» and (T) (Fig. 1). Inserting the ex-

SST vs STRESS
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FiG. {. (a) A plot of sea surface temperature { T') vs nondimen-
sional zonal wind stress { ¥, averaged over the equatorial box, 2°N
to 2°S, 80° to 180°W, The data is from the full nonlinear coupled
model solutions with a time-mean (seasonless) basic state. A non-
dimensional wind stress of 0.1 corresponds to a wind stress anomaly
of 0.1 dynes cm 2, (b) As in panel (a}, but for anomalous upwelling

rate { w') vs {=*). Units of upwelling are m s ™',
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presssions (2.4),(2.5),(2.6),(2.7)into (2.3), a single
ordinary differential equation for { T") is obtained (the
(*) notation is dropped):

aT

i ~KT+ K(—awBT(t — 1) + arBT)

+ KevBT+ K, T — o, T, (2.8)

where

67!'5

K—Z}-{-:f fA(vF)a(B)dA

KE_%f fH(w)—dA
- (S‘]'l'4

=A—HIJ;fA(M7)dA

r 1
_ ﬁl’s‘ﬂ'z f oT dA
ApoH,

ré+ 12
w3 f
AL, Ja
The values of the coefficients K, K, Kg, K4, 05, 7, aw
and g, are set by the basic state of the model ocean
and atmosphere, and the size of the oceanic basin. The
coefficients -y and B are calculated from the full model
runs, and are surprisingly insensitive to the area over
which we average. Values for these parameters are listed
in Table 1 for an eastern Pacific box that extends from
80°W to the eastern coastline, 2° about the equator.
The range of values cited in the table result from con-
sidering various ocean boxes for averaging.
Equation {2.8) is written more compactly as

K, =
4 axr

oT
= bT(t— 1)+ T |,

= (2.9)

TABLE 1. Values for the model coefficients used in the evaluating
the terms b and ¢ in Eq. (2.9). The basic state coeflictents are derived
from the time-mean equatorial Pacific ocean currents upwelling and
surface wind field. The regression coeflicients are derived from the
full numerical atmosphere/ocean model described in section 2.

Coeflicient Value Range
Basic state coefficients
K 27X 10°%°*Cm™'s™ 1.5t0 3.0 x 10°®
Ky 25x1072°Cm™! 22t02.8x 1072
K 1.8 x 10757 1.4102.2 % 1077
K, 73x 107857 401080 x 107
an 490 m* N~! 440-540
a; 750 m* N 700-800
a, 9.1 X 107%57"
T 180 days
Regression values
v 33X W0 mP N s 3.0t03.6 X 107*
8 95X 10 Nm™2°C! 9.10 10. X 1073
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where
b= awﬁK c = ﬁaLK+ B‘YKE+ K,
[39] [22] [60] [25] [23]
- K - a
[5.7] [2.9].

The numbers below each term in the definition of b
and ¢ denote the value of each term for the basic state
of the Pacific atmosphere-ocean (units are yr™'). As-
suming a solution of the form T" = Tye” we obtain the
following equation

—be ™ + c. (2.10)

Equation (2.9) describes a delayed oscillator: the char-
acteristics of the solution depend critically on the values
of b and c. For our system, the term b describes the
effects of the Kelvin waves propagating into the eastern
box from the western box. The importance of the wave-
induced effects depends on the amplitude of the in-
coming waves and the lag between wave generation
and arrival in the eastern basin (via reflection off the
western boundary). The term c¢ is the sum of all the
processes that induce local changes in the SST in the
eastern box (all variables are positive), and represent
the following processes:

0'=

Ba, K — K mean upwelling on an anomalous vertical
temperature gradient (local wave ef-
fects are included)

BYKg anomalous upwelling on the mean ver-
tical temperature gradient

K, horizontal advection

o thermal damping

In evaluating the coefficients b and c, it is worthwhile
to note that the relative size of each of the individual
terms that affect local instability growth is consistent
with the analysis of the full model ocean thermody-
namics in B88: the upwelling terms (K and Kf) are
large compared to the horizontal advection terms (K, ).

b. Properties of the delayed oscillator

Equation (2.10) describes, in general, an oscillatory
system experiencing exponential growth or decay. In
the absence of remote processes (b = 0), (2.10) de-
scribes a pure exponential growth or decay rate ¢. If ¢
> 0, the sum effects of upwelling and horizontal ad-
vection dominate the thermal damping and growth will
occur. If ¢ < 0, the thermal damping overwhelms the
growth terms, and exponential decay results.

To consider the behavior of the system when the
growth rates are small, we multiply (2.10) by its com-
plex conjugate and, writing ¢ = ¢, + icy, (g,, o; real),
obtain:

(o, — )2+ (0,)* = b2,

We see that for small growth rates, o, < | c|, in a basic
state dominated by local instability processes, & < | ¢},
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no oscillatory solutions are possible. On the other hand,
for small growth rates (o, <€ 1) in a basic state where
local instability processes sum to be smail compared
to the changes induced by the remote Kelvin waves (b
> |cl) oscillatory motion is possible, the period of
which is

2r 2
Z_(bZ_CZ)IIZ'

Hence even if local instability processes do not favor
growth (¢ < 0), oscillatory, slow growth soiutions can
be found for ¢ > —be™ " because of the “remote™ wave
processes b. For the parameter range of interest, the
relevant oscillatory, growing solution to (2.10) is dis-
played in Fig. 2 for various values of b and ¢. A more
complete discussion of the properties of (2.9) is pre-
sented in appendix A..

LINEAR SOLUTIONS

a—T=—b Ti-x)+cT
ar

GROWTH (1/YR)

PERIOD(YR)

-6 4 2 0 2 ) 6

FiG. 2. The complex solutions to the delayed oscillator equation
{2.10) with a reference value of r = 180 days. The growth rate of
the system (in yr™') vs the strength of the local instability term ¢ (in
yr~!) is plotted in (a), and the period of the oscillation (in yryas a
function of ¢ is plotted in (b). Each curve represents a different value
for b (in yr~'). For b = 1.8 yr~', solutions are pure growth. The
shading indicates the range of values for the coefficients b and ¢ for
the atmosphere—ocean system in the equatorial Pacific.
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¢. Behavior of the analog model near the basic state
parameter values

For the assumed basic state of the ocean and the
atmosphere, the best estimate for the variables » and
cisb=39yr!, ¢=22yr'. Assuming the oceanic
wave speed of 2.9 ms™!, 7 = 180 days. These estimates
for b, ¢, and r set the growth rate and period of oscil-
lation to be ¢,”' = 1.1 yr and 27/ 0o; = 3.0 yr, respec-
tively. Near these reference values for b and ¢, however,
o varies rapidly. The range of ¢ for realistic b and cis
indicated by the shading in Fig. 2. We see that growth
rates may range from weak growth, with period 3to 5
yr, to growth rates of up to 1.3 yr~!, and period of 2.2
to 3.2 yr, depending on the size of the box in which
the averaging is done. For a realistic range of values
for ¢, the period of oscillation may vary from 2.5 to
4.0 yr, and the growth rate from 0.6 to 1.0 yr~!. Note
that (2.4) states that, when there are oscillatory solu-
tions for the coupled system, there is a phase lag be-
tween h and { T'). This lag is given by expression

an-t| Gt aw  far\] o
dry — adw 2 2

1 1

For our reference state (b =39 yr™',¢c=22yr !,
= 180 days) in the simple model, / leads { T by 65
days, in qualitative agreement with the full model re-
sults (about 70 days).

We shall now examine the qualitative behavior of
the analog model near these reference values. For con-
stant lag r and magnitude of remote wave processes
b, processes that increase the local instability strength
¢ will increase the growth rate of the coupled system
and decrease the period of the resultant oscillations.
However, if the basic state is modified so ¢ is greater
than about 3.2 yr !, no oscillations would be possible:
the system would display enhanced exponential growth
from that of the reference state, For basic states with
cless than —1.2 yr ™!, there are no solutions that display
growth. Note that for our basic state, ¢ is the small net
difference between some rather large terms. This is
consistent with the full model calculations of B&8,
where the nature of the interannual variability in the
coupled system was sensitive to the horizontal advective
processes, even though these processes are small com-
pared to the vertical upwelling and thermal damping
processes.

Now we hold the local instability terms constant (¢
= 2.2 yr™"), and consider a coupled system in which
the amplitude of the incoming Kelvin waves is different
from that of our reference state. The simple model in-
dicates that by decreasing the amplitude of the Kelvin
waves incoming from the western boundary, the period
of the oscillations will be longer than for the reference
state, and the growth rate of the coupled instability will
decrease. Similarly, increasing the remote wave effects
acts to increase the growth rate of the system and de-
crease the period of oscillation.
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Finally, we wish to consider the effects of the transit
time 7 on a basic state ocean and atmosphere with the
same magnitude of local instability strength and remote
wave amplitude. In this manner, we can consider the
effects of the ocean basin size on the behavior of the
coupled system. [Here we are actually changing the
width of the western box. All the action in wind stress
and SST is still occurring in the fixed width eastern
box.] In Fig. 3, the growth rate and period of the cou-
pled system are plotted as a function of the time lag 7
for b = 3.9 yr~!. Each curve represents a different value
of basic state ¢. For lags greater than 7 = 7z = 180
days, the simple model indicates that both the growth
rate and the period of oscillation should increase, while
for lags smaller than 7z, the growth rate and period
should both decrease. For basic states that have much
stronger net local instability growth rates (¢> 2.2 yr '),
increasing 7 has little effect on the growth rate of the
coupled system, but changes the period markedly, We
note for a wide range of values for ¢ there is a minimum
value of r that instability growth for the coupled system
is possible. For our reference state, this is about 120
days. Assuming a gravest mode ocean speed of 2.9 m
s~ ! and realistic values for b, this implies ocean basins
that are smaller than about 13 000 km will not be able
to host coupled ocean-atmosphere interanual vari-
ability of the kind found in our coupled numerical
model.

3. Studies of the full coupled atmosphere—ocean model
with various “basic states”

In this section we use the results of section 2 as a
guideline to anticipate the behavior of the interannual
variability in a coupled tropical atmosphere-ocean
model. The coupled model we will use follows closely
that described by Cane and Zebiak (1985) and Zebiak
and Cane (1987), and is briefly described below. The
ocean component of the model we will use consists of
an upper layer, topped by a fixed depth surface (mixed)
layer, overlaying a deep motionless layer. SST is cal-
culated separately and does not directly affect the ocean
dynamics. The surface currents are driven by the wind
stress and retarded by Rayleigh friction. SST is changed
by (nonlinear ) advection by surface currents, upwelling
and heat fluxes to the atmosphere. The upwelling is
prescribed in terms of the divergence of the mixed layer
currents and represents the entrainment into the sur-
face layer. The upper layer, which includes the surface
layer, is governed by linear shallow water wave dy-
namics. The atmospheric component of the model is
the simple linear reduced gravity Gill { 1980) model of
a thermally forced tropical atmosphere. The forcing of
the atmosphere depends on the total atmospheric con-
vergence and the initial SST perturbation and is cal-
culated iteratively (Zebiak 1986). There is no explicit
time dependence in the equations that define the at-
mospheric variables; the atmosphere is treated as being
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in steady state on the time scale of the ocean changes.
The ocean is forced by the anomalous wind stress and
the atmosphere is forced by latent heat release, which
is a function of the convergence of the wind field and
the SST anomaly. Both of the forcing terms are non-
linear. The ocean model domain is a rectangular basin
(30°N to 30°S, 124°E to 80°W); the atmosphere is
modeled on an equatorial 8-plane. For a complete
model description, see Zebiak and Cane ( 1987) or B88.

The coupled model is an anomaly model. The ref-
erence state, used to calculate the coefficients of section
2, is the time-mean (seasonless) annual current, up-
welling, SST and surface wind field for the equatorial
Pacific. Since we are principally interested in the growth
rate and period of the variability in the coupled system,
and since the simple analog model is linear, we have
developed a linearized version of the nonlinear coupled
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model, and will compare the behavior of the simple
analog with that for both the linearized and nonlinear
versions of the full coupled model. Details of the lin-
earization are given in appendix B. Both the full linear
and nonlinear models are initialized with small per-
turbations and then left to run free from any external
forcing. The character of the solutions are independent
of the form of the prescribed initial perturbation. We
note that the full linear model solution is very similar
to that of the full nonlinear model, except that the
amplitude of the oscillation grows exponentially, with-
out bound (Fig. 4). The full nonlinear model presently
equilibrates (Fig. 5). When overall exponential growth
is removed from the linear model results, the evolution
of equatorial fields for the full linear model closely re-
sembiles that for the equilibrated nonlinear model (Figs.
6-8). In particular, large SST anomalies (Fig. 6) are
restricted to the eastern basin, and largest windstress
anomalies (Fig. 8) occur around 140°-150°W. The
SST and windstress anomalies appear to develop and
decay essentially in situ. Both models give a period of
about 3.5 yr. The horizontal structure of the linear and
nonlinear solutions are also very similar (Fig. 9). The
similarity of behavior indicates the oscillation mech-
anism is contained within linear theory, and that, to
first order, the period is set by linear processes. The
main role of the nonlinearities appears to be to limit
the growth of the osciliations.

It is worth noting from section 2¢ that we anticipate
that near the reference basic state the growth rate of
the coupled system will be generally comparable to the
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growth rate of the local instability, and the e-folding
time for this growth is larger than the period of the
resultant oscillations. In terms of the analysis of section
2, ¢,7 is comparable to ¢, and ¢;7! < ¢,/ 27. Hence for
wind perturbations of realistic amplitude the coupled
system will quickly reach a state where nonlinearities
are important, and the theory of section 2 will not di-
rectly apply. The important nonlinear process is iden-
tified in section 4a.

a. The effects of remote wave processes on the inter-
annual variability displayed by the coupled system

The strength of the equatorial Kelvin waves ema-
nating from the western boundary reflection of the
Rossby waves forced earlier in the eastern basin is rep-
resented by the parameter b in the simple analog model.
We now consider the effects of an ocean medium that
affords either larger kinetic damping of the waves, or
an ocean geometry of basic state that reduces the am-
plitude of the returning Kelvin waves. This is done in
the full numerical model by reducing the reflection
efficiency of the Rossby mass flux incident on the west-
ern boundary; ' the reference state and ocean geometry

! The formulation of the ocean model is such that the amplitude
of the Kelvin mode generated by western boundary reflection is ex-
plicitly calculated {see Cane and Patton 1984). At the frequencies
of interest, the amplitude of the Kelvin mode at the western boundary
is proportional to the western boundary reflection efficiency.
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are otherwise left unchanged. The results of these ex-
periments are summarized in Fig. 10, along with es-
timates derived from the analog model as b is varied
while ¢ and 7 are set at the reference values (¢ = 2.2
yr~!, 7 = 0.5 yr). By reducing the strength of the re-
flected signal in the linear and nonlinear numerical
models, the growth rate of the coupled system de-
creases, as long as the system is oscillatory. This result
is somewhat surprising, but is in qualitative agreement
with the simple analog model as b is decreased. (For
a further discussion on growth rate as a function of b,
see appendix A.) Decreasing the remote wave ampli-
tude increases the period of the oscillations in the nu-
merical models, a result also supported by the analog
model. By reducing the remote wave amplitude by
more than about 55%, the coupled system can no
longer support periodic solutions. The growth rate of
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the system increases dramatically and, as b = 0, is
approximately the growth rate specified by the local
instability process?, ¢, = ¢ = 2.2 yr~!. Again, the tran-
sition point to pure growth solutions in the linear and
nonlinear numerical models is in agreement with the
analog model.

b. Sensitivity of the variability of the coupled system
to the local growth rate

We explore this effects of changing the local growth
rate in the simplest manner; changing the thermal dis-
sipation time ag~! of the ocean. In addition to the ref-

? The small amplitude growth rates plotted in Figs. 10~13 for the
oscillatery nonlinear solutions are those from peak of warm event
to peak of the next warm event, or likewise from cold event to cold
event. Such provides an overall growth rate for the coupled system;
the growth rate into a warm event is somewhat larger than into a
cold event due to a kink in the 7, profile at # = 0 [see Eq. (4.2) and
appendix B]. The small amplitude growth rates for zero frequency
solutions, however, are those for warming events and thus represent
the maximum coupled growth rate.

DAVID S. BATTISTI AND ANTHONY C. HIRST

1697

erence value ag™! = 125 days, we have made model
runs with damping times ranging from 60 days to in-
finity (no thermal damping). Note, changing as has
no effect on the remote wave processes. These results
are displayed in Fig. 11, along with the estimates de-
rived from the analog model as ¢ is varied while b and
T are set at reference values. The qualitative agreement
between the full model results and the simple model
calculations is good. By increasing (decreasing) the
thermal dissipation rate, the frequency of the oscilla-
tions increases {decreases). For small amplitude os-
cillations in the nonlinear and fully linearized models,
the growth rates estimated from the numerical models
are close to that calculated by the analog model, with
larger (smaller) thermal damping rates ag less (more)
supportive of growth in the coupled system.

In decreasing the damping ay, the linear, nonlinear
and analog models undergo a transition from oscilla-
tory, growing solutions to pure exponential growth. At
large amplitude in the nonlinear model, oscillating so-
lutions are obtained (Fig. 11) with small values of as.
These events are now significantly modified by the
nonlinearities associated with horizontal advection of
SST rather than upwelling. The structure and evolution
of these super model ENSO events becomes dissimilar
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to that assumed in the analog model, which no longer
contains the essential physics for these large, unrealistic
ENSO events.

c. The effects of the time lag T on the variability in the
coupled system

An increase in the longitudinal extent of the ocean
domain, or the speed that the ocean waves propagate
will change the time lag 7 associated with the wave-
induced processes #. Some full model runs are made
with various size basins to examine the sensitivity of
the coupled model interannual variability to . This is
done by extending the ocean basin westward, and set-
ting windstress and atmospheric heating to zero over
this ocean extension. We have also reduced the ocean
kinetic damping rate to (250 yr)~! to ensure a constant
b. Since there are insignificant changes in SST in the
model west of about 160°E, we retain the horizontal
structure in the coupled model solutions, and effectively
have only increased 7, leaving remote wave strength
and local instability growth rate unchanged. The results
of these experiments are displayed in Fig. 12. Increasing
the time lag 7 allows the system more time to grow
through local instability processes (¢) before the mod-
erating remote wave processes { b) can act. Hence the

1 " ! i L N 1
= 10 d
E(i 3 final nonlin. o
8 o
g _: . /¥_,-B— T - :_
S 5
| 3 S r
& 4 7 C
< 2 : 3
— O ‘: l 1 1 2 1 :_
'w - |
-~ L i S
~ 29 4 analog Foll - [
= 1 C
E ]
- 1.0 4 , full linearf-
= ] ;T smail amp. i
(@] 1 /o nontin.
&, 00 -, f T T L
© 4 J ] t 1 1
~ 063 . E
T I b
5 0.5 E ll \\ " analog E
> 047 1 AC : 3
% 0.9 4 { ) final nanlin. E
ZSPNE I _ :
o029 | T T o
@ 0.1 4 | : w<— small amp. E
= ] }' full linear ) nonlin
00 T L] T T i A v 1
-11 0 11 23 34
WESTWARD OCEAN EXTENSION ( 103 km )
0.0 0.5 1.0 1.5 2.0
T {yr)

F1G. 12. Behavior of the coupled models as a function of r, the
wave transit time (see text). The vertical dotted line denotes the
reference vaiue for =, 180 days. Curves are as in Fig. 10.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No, 12

period and growth rate of the resultant variability in-
creases with increasing r. At very large 7 in the full
linear model, solutions feature pure exponential growth
(7> 1.2 yr; o1 a basin sizc twice the size of the Pacific).
The “small amplitude™ regime of the full nonlinear
model also displays pure growth at approximately the
local growth rate ¢, whereas the nonlinear full model
oscillates at large amplitude because nonlinearity in
the system does not allow unchecked growth. In these
global-size ocean basins nonlinearity stabilizes the lo-
calized growing event in the eastern Pacific prior to
the arrival of the remote waves. The remote signal does
eventually enter the eastern basin, assuring the coupled
system will oscillate. The resulting oscillation, however,
appears very unrealistic, featuring very large amplitudes
and long warm events separated by abrupt, brief cold
events. The reader is refered to section 4 for further
discussion.

d. Model behavior under reference states from different
seasons

There has been considerable speculation about the
variation in the degree of coupled ocean-atmosphere
instability during the annual cycle (e.g., Philander et
al. 1984; Cane and Zebiak 1985; Hirst 1986; B88).
Here we address the issue by running the full models
with reference states that represent perpetual January-
February, March-April, . . . , November—December
climatic conditions, as obtained from the annual cycle
used in B88. In each case, the full linear solution dis-
plays oscillations that grow with time. Growth rates
and frequencies are shown in Fig. 13; growth rates are
largest for July-August and smallest for November-
December and January-February. Periods are in the
range 3-5 yr. The full nonlinear solutions also display
oscillations which, with the exception of the January-
February case, grow until amplitudes given in Fig. 13
are reached. The small amplitude growth rates are sim-
ilar to, or slightly less than, the corresponding linear
model growth rates. The nonlinear January-February
solution features an oscillation which slowly decays.?
Periods for the nonlinear solutions are very similar to
those for the corresponding linear solutions. Clearly,
the background state is unstable with respect to small
amplitude perturbations during most of the seasonal
cycle.

The characteristics of the oscillation in each case
broadly resemble that for the annual mean, with SST
anomalies developing and decaying in situ and reaching
largest magnitudes in the eastern basin. The retarded-
oscillator mechanism is again responsible for the os-

3 This apparent discrepancy between the linearized and small am-
plitude numerical model is primarily due to the kink in the
T,(a(h)}profile at & = 0 [see Eq. (4.2)], which introduces nonlinear
effects at small amplitude. These nonlinear effects are most prominent
when mean upwelling is the weakest (early boreal spring).
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cillations; setting the western-boundary reflection ef-
ficiency to zero leads in each case to pure exponential
growth in the linear model and growth to some rather
large perpetual warm state in the nonlinear model. The
linear model growth rates so obtained are shown Fig.
13, and may be considered a measure of “local insta-
bility” ¢. Such growth rates are much larger than those
for solutions when western boundary reflections are
permitted, but otherwise display a similar seasonal
pattern.

In order to gain some insight into the seasonal vari-
ation of local instability, the ocean thermodynamics
for each of the no-west-boundary linear solutions are
decomposed to yield values for the parameters listed
in Table I for basic states given by the two month
averaged fields, January-February, March-April, etc.
The box 2°N to 2°S, 180° to B0°W is used for spatial
averages of the various ratios (v, f, #;'s). The ratios
remain constant with time because of the pure expo-
nential growth, hence no correlation analysis is
necessary. We defme K% = {aT, + T, + T
+ T WOy /< T> K* gives a more accurate reprcsentatlon
of the contribution of advective processes to local in-
stability than does the heuristic K; of section 2a. To
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calculate a; (={h.)/{7*)), we use for h; the model
determined 4 field. Finally, we define the local insta-
bility growth rate

c=Pa, K+ ByKe + K% — K — a,

[note that our use of the no-west-boundary linear so-
lutions to define the various ratios guarantees that val-
ues of ¢ are identical to the (pure exponential ) growth
rates of those solutions and introduces some variation
in the analog model coeflicients from those obtained
in section 2 with the fully nonlinear model].

Figures 14 and 15 show the variation with season of
various parameters important in the determination of
local instability growth rate. It can be seen that while
individual parameters undergo pronounced annual
cycles, these fluctuations partly cancel to leave only
relatively small changes in ¢. A comparison between
March-April and July-August conditions provides il-
lustration. Relative to July~-August, the March-April
background state features weak equatorial upwelling
(small X} and weak SST gradients and surface currents

{ deBressed K%). The relatively weak equatorial up-
welling in March-April results, however, in weakened

thermal damping (small K). Also, the band of equa-
torial convergence lies close to, or over, the equator in
March-April, and convergence feedback is effective in
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FiG. 14. Values of quantities important in the calculation of the
analog model parameter ¢ {3, K, v and K} calculated for the six
different background states based on two-month seasonal average
fields (JF = January-February, etc.) from the no-western-boundary,
linearized coupled numerical model.
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Fic. 15. As for Fig. 10, except for fa, K, 8vKg, K*, K,.
Also shown are the resulting values for c and b.

enhancing the atmospheric response to a given SST;
consequently 8 is large. In July-August, the back-
ground atmospheric convergence zone lies well north
of the equator, and 3 is small (see also Philander et al.
1984). In net, the local instability growth rates for
March-April and July-August are not very different
(see Fig. 15).

Finally, we investigate the behavior of the analog
model when the parameters b and ¢ are given values
appropriate to each of the six seasonal states. We set ¢
equal to the no-west-boundary growth rate for the linear
model and calculate b as per section 2 using the re-
spective value of 3 and the respective background field
w, and ay = 490 m?® N~'. The values of b and ¢ are
shown in Fig. 15; 7 has the value 0.5 yr throughout.
Growth rates and frequencies of the resulting analog
solutions are shown in Fig. 13. In each case, the value
of b is large enough for the analog model to oscillate.
Further, the variation in analog frequency somewhat
resembles that for the full models. The analog fre-
quencies tend to be too high, though, as for the annual-
mean background. The analog growth rates are much
reduced from the respective local instability growth
rates, and have magnitudes comparable to those for
the full linear model with total west-boundary reflec-
tion.
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4. Nonlinear analog models

In this section we will identify the leading order
nonlinearity in the full coupled numerical model which
was used to derive the linear-delayed oscillator analog
model in section 2 and perform the expennments de-
scribed in section 3. We will derive the nonlinear analog
model appropnate for the full numerical model which,
in its simplest form, is contrasted to the nonlinear de-
layed oscillator model for ENSO postulated by Schopf
(1987) and Suarez and Schopf ( 1988). We will show
that nonlinearity in the full numerical model primarily
acts to bound the amplitude of the oscillations, while
the fundamental frequency (and growth rate} of ENSO
events is determined by linear processes.

a. The nonlinear processes

The full coupled model behavior is, in general, char-
acterized by finite amplitude oscillations. The period
associated with the final state oscillations is typically
15% shorter than that observed in the initial stages of
integration, when the system is well described by the
linear full model equations. In all three sets of exper-
iments, 3a-c, the changes in final state oscillation
periods are in the same sense as that in the small am-
plitude regime of the full model, and predicted by the
analog model. However, the final state solution is in-
deed nonlinear. When the full coupled atmosphere-
ocean model is fully linearized, unbounded growth
must and does occur.

There are three sources of nonlinearittes in the cou-
pled model: (i) the forcing of the atmosphere is a non-
linear function of the surface moisture convergence,
(ii) the wind stress forcing of the ocean is a quadratic
function of surface wind velocity, and (iii) the ocean
SST anomaly depends on nonlinear horizontal advec-
tion terms and nonlinear vertical upwetling/mixing
processes. A series of experiments have been run with
the full model and various basic states that all lead to
the following conclusions. The essential nonlinearity
that moderates the exponential growth of the linearized
system is the vertical upwelling processes that affect
SST. Simply stated, the first limits on the amplitude
of the growing coupled instability are set by the finite
rate the ocean can cool or warm through changes in
the pycnocline depth and the total upwelling rate. The
nonlinearities associated with the forcing of the at-
mosphere, wind stress formulation and oceanic hori-
zontal advection terms are not responsible for limiting
the coupled atmosphere-ocean solutions. By elimi-
nating each of these nonlinearities, in any combination,
we obtain finite amplitude solutions. As long as the
nonlinearity associated with vertical upwelling is re-
tained, the solutions agree quantitatively with the so-
lutions using the fully nonlinear model. Whenever this
nonlinearity is eliminated, the final state oscillations
display amplitudes that are unrealistically large.
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b. The nonlinear analog models

In this section we will derive the nonlinear oscillator
model based on the limiting nonlinearity in the full
coupled model: the finite rate of heating of the surface
layer through the pycnocline perturbations, This non-
linearity is captured in the parameterization of the
subsurface temperature anomaly, 7. In the model, the
heating rate due to this term is [see Eq. (2.1}]

_.ar . I—-T
—BA(W)—£=—6A(W) 77 ;

T, is parameterized in terms of the pycnocline depth
T, = 6(h)[tanh(A (A + 1.5|k])) — tanh(\R)], (4.2)

where © = 28°K and A~! = 80 m for £ > 0, and ©
=—40°Kand A™!' = 33 m for £ < 0. In(4.2), ks the
pycnocline perturbation (overbar denotes a time
mean). The expression for T is due to Cane and Zebiak
(1985}, with one slight modification, and results from
fitting (4.2) to the observed thermal structure across
the equatorial Pacific Ocean (for further discussion,
see Zebiak 1986). The nonlinear function (4.2) is the
limiting nonlinearity in the full model. Elimination of
all nonlinearities except (4.2) in the full model yields
similar results as in the complete calculation, whereas
very different oscillations result if we remove only the
nonlinearity (4.2 ) from the full model, e.g., final state
temperature perturbations of about 9°C.

Using (4.2) as our expression for T, we can now
go through the same procedure outlined in section 3,
in which we obtained the simple linear oscillator. This
yields the following equation describing the eastern
Pacific averaged SST

(4.1)

aT _

o (4.3)

ET+Hil<A(VTJ)T,> :

where T is given by (4.2), Aby (2.4) and
E=KeyB+K—K~a,=c—Ba; K~ —38yr .

To understand the moderating effects of the nonlin-
earity (4.2 ) on the simple linear-delayed oscillator sys-
tem (2.9), we will first consider simpter forms of the
nonlinearity, based on (4.2).

We can formally expand (4.2) in terms of the pyc-
nocline anomaly about the mean depth A. The discon-
tinuity at 4 = 0 prevents this expansion in simple terms,
however, and introduces a symmetric component in
the expansion of 7, that is small compared to the
asymmetric nonlinearities. These symmetric nonlin-
earities do not significantly change the response of the
system, and will be ignored. Thus the expansion of
(4.2) about A yields

T, = a(h)h — e*h> + O(A°). (4.4)
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The value for the coefficient e* is obtained in appendix
C, and is only a qualitative estimate for this crude two-
box model. Truncation of the expansion of (4.2) at
the cubic limits the magnitude of possible / pertur-
bations we may consider to about 40 meters. Substi-
tuting the approximation (4.4) into (4.3), and using
(2.4) and (2.5), we obtain a simple relevant nonlinear
equation for T

% = —KT + K(—awBT(t — 1) + aBT) + KevBT

+ K, T— a,T — Re*(Ba.)’[T — rT(t — 7)]°,
(4.5)

where r = ay/a;. Equation (4.5), with e* = 0, is ex-
actly the linear oscillator equation (2.8). Rearranging
(4.5), we obtain the first order correction to the linear
oscillator:

%? =—bpTUt—1)+cT—efT—rT(t— 17 1,

(4.6)

where ¢ = K(B8a.)?e*. For the tropical eastern Pacific,
e =~ 0.07°C 2 yr~! and r = 0.66. The ¢ = 0 solution
is the linear-delayed oscillator equation that has, in
general, exponential, oscillating solutions. Hence in the
small amplitude regime, we expect (4.6) to reproduce
the linear oscillator results of section 3, and thus de-
scribe the small amplitude regime of the full coupled
atmosphere-ocean model. We will find that the delayed
cubic term is an important term in describing the
quantitative behavior of the coupled atmosphere—ocean
system only when the system reaches full nonlinear
amplitude (final state).

It is useful to consider the behavior of (4.6) when
the nonlinear damping depends only on the instanta-
neous temperature T(¢). Note that this is not a phys-
ically based assumption, since in the model the cubic
nonlinearity results from 43, and £ is a function of the
local and lagged temperature. Dropping the final lagged
term in (4.6) yields

9T —bT(t —7)+cT—eT?

3t (4.7)

We have now formed three equations to examine the
nonlinear effects in the simple analog models for the
coupled atmosphere-ocean system. With increasing
complexity and accuracy, these are given in (4.7), (4.6)
and (4.3). The solutions to these equations are dis-
cussed in the next section.
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c. The effect of nonlinearity in the delayed oscillator
model

The nature of the solutions to (4.7) depends on the
values of the coefficients b, ¢, ¢, and 7. Schopf (1987)
and Suarez and Schopf ( 1988, hereafter S§) have pos-
tulated (4.7) as a simple mode] of ENSO, with similar
physical processes attached to each term. However,
Schopf and SS assume the dominant balance in (4.7)
is between the linear and nonlinear local instability
terms, and delayed effects play a secondary role. Spe-
cificaily, SS assume b < ¢ and ¢ > 0 (denoted domain
R)), and examine the behavior of the oscillations for
various parameter changes. With the values S5 choose,
they find the system oscillates between two stable outer
solutions

H

e +[C _ b]uz.

e

the La Nifia and El Niiio states, if you will. For this
parameter range the presence of the cubic term is fun-
damental for oscillatory, finite amplitude solutions.
Setting ¢ = 0 in (4.7) with parameter range R, one
obtains nonoscillatory, infinite growth solutions.

Evaluation of the full coupled atmosphere—ocean
model yields b = 3.9 yr', ¢ = 2.2 yr™!, 7 = 180 4,
and ¢ = 0.07°C 2 yr~'. These values fall in a domain
R,, defined by b > ¢, where the essential physics and
behavior of (4.7) is quite different than in the domain
considered in SS. In this regime the fundamental phys-
ics describes a (linear) interaction between the local
instability growth and the delayed wave effects; non-
linearity ( T*) plays a secondary role in the oscillations.
As in R,, the domain R, yields finite amplitude oscil-
lations for r = oo . In the parameter range R,, however,
there are no steady outer solutions. The system oscil-
lates about a single, unstable zero basic state. There
are no permanent La Nifia or El Nifio states in R,.
Additionally, setting e = 0 in (4.7) still allows oscil-
latory growing solutions, albeit to infinite amplitude,
as r = co. In domain R,, it is not possible to examine
small amplitude oscillations over more than one cycle.
In domain R,, however, small amplitude solutions are
possible. These are given by the linearized version of
(4.7), which was found in section 3 to simulate the
behavior of the full coupled atmosphere—ocean model.
A more complete discussion of the linear regime in
domain R, is presented in appendix A and SS.

We recall from section 3 that the primary effect of
the nontinearities in the full coupled model was to limit
the final state oscillation amplitude T, and increase
the frequency of the final state oscillations from the
frequency measured in the small amplitude state (by
about 10%). We will first analyze (4.7), the simplified
form of (4.6) to obtain the qualitative effects of damp-
ing on the linear system, and then address the more
appropriate nonlinearity (4.6), and finally (4.3), the
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most complete form of nonlinear damping in the
model.

Analytic final state solutions to (4.7) can be obtained
in the following manner. First we write T in terms of
a harmonic solution T = Toe°’ where ¢ = ig, is pure
imaginary, and expand the 7 term to obtain

T3 = % T2 T + higher harmonics.

Insertion into (4.7) yields, ignoring the higher har-
MOonics,

o= —be" + c*, (4.8)

where ¢* = ¢ — 3¢T,?/4. Since we desire the final state
solution, we seek the neutral growth solutions to (4.8),
i.e., the solutions with Re{¢) = 0. Equating the real
and imaginary parts of {4.8), we obtain

a; = bsin(ar,-‘r) (4.93)
172

To == i (¢~ bcos(o;T)) ,

= (4.9b)

where g, is the frequency of oscillation. The solution
(4.9)to (4.7) is displayed in Figs. 16 and 17. It should
be noted that (4.9) is a very accurate approximation
to the solution of (4.7) in domain R; (less than 2%
error in g;, Tp). In domain R, the oscillations tend
to be more square wave-like (cf., SS): neglect of the
higher harmonics in the expansion of 77 is not possible.
In domain R,, the domain of the coupled atmosphere-
ocean system, (4.9) is a very good approximation to
the solution of (4.7).

The solution {4.9) in Figs. 16 and 17 is the nonlinear
equivalent to the linear solutions displayed in Figs. 2
and 3. Now, the final state temperature T is akin to
the growth rate in the linear system. We note the fol-
lowing consistencies between the linear and nonlinear
systems:

e For a given strength of remote effects b, the system
growth rate (final temperature 7,) increases with in-
creasing local growth rate c. For decreasing b at a con-
stant ¢, the growth rate (7) in the coupled system
decreases (cf., Figs. 2a and 16a).

e In domain R,, positive growth solutions (nonzero
final state amplitude T,) are possible only for some
minimum frequency o, that depends on values of both
b and ¢, and is independent of the strength of the non-
linearity e.

e For a fixed local growth rate ¢, increasing the re-
mote restoring effects b decreases the period of the os-
cillations (cf., Figs. 2b and 16b). The minimum ¢ for
oscillatory solutions (¢ = ¢.q) decreases with increasing
b. ¢ is independent of the strength of the nonlinearity
e*, as is the frequency of oscillations at ¢y, For any
given b, however, as ¢ increases from ccq, the effect of
the nonlinearities is to decrease the period of the os-
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FiG, 6. The solutions to the delayed oscillator equauon {4.7}with
a reference value of 7 = 180 days, and e = 0.07 C~? yr~!, The final
state amplitude, T, of the system (in degrees C) vs the strength of
the local instability term ¢ is plotted in (a), and the period of the
oscillation as a function of ¢ is plotted in {b}. Each curve represents
a different value for b. Variables b and c are in units of yr~'.

cillation from that obtained in the linear system to o
at Cop- .

¢ For set values of & and c, the growth rate of the
oscillations ( 7T) increases with increasing lag time 7.
The cutoff lag time for oscillatory solutions in the linear
solution is the same as in the nonlinear system (cf,,
Figs. 3a and 17a).

¢ For constant b, the period of the oscillation in-
creases with increasing .

The behavior of the full model at the final state am-
plitude mimics that of both the small amplitude results
in the full model, and the linear analog model in all
three experiments of section 3 (Figs. 10-12). The so-
lutions to Eq. (4.7) display the same qualitative be-
havior as the full model at final state amphtude except
it does not allow the final state period to increase as ¢
increases on a constant b (cf., Fig. 16b with Fig. 11).
This result is due to neglecting the lagged component
T(t — 7) in the cubic term of (4.6), and can be un-
derstood as follows. For small local growth rate ¢, the
frequency of the linear oscillations is large (Fig. 2b)
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and o7 isalarge enoughdelaythat T —rT(t ~7) =~ T
and (4.7) is a good approximation to (4.6). However,
as ¢ increases, the wave effects take longer to overcome
the local instability and the frequency of the linear os-
cillation decreases. As ¢ gets very large, at large am-
plitude T the damping term is severely overestimated
if the delayed term is ignored in the cubic [for ¢ — 0,
T—7rT(t—7)y—=> (1 = r)T = 0.337). Hence the
noniinear final state frequency calculated from (4.7)
will be increasingly overestimated with increasing c.
A measure of the overestimation of the period short-
ening with increasing c is obtained by retaining the full
nonlinear correction term to the linear oscillator [Eq.
(4.6)]. Unfortunately, we could not find simple ana-

NONLINEAR SOLUTIONS
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FIG. 17. The final state amplitude, T, (in °C) (a)and period (yr)
(b) of the coupled system vs time lag 7, for b=39yr !, e=007
C~2yr~'. Each curve is for a different rcference value for ¢ {in yr '},
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Fic. 18. Solutions for the delayed oscillator equation (4.6),
with r = 0.66 (see Fig. 16).

lytic solutions to (4.6), as the higher harmonics are
important in describing these oscillations. Equation
(4.6) does have periodic solutions, although not si-
nusoidal. The nonzero finite amplitude solutions to
(4.6) are obtained by numerical integration, and dis-
played in Fig. 18. The nature of the solutions to {4.6)
are identical to that of (4.7), only now the final state
period is indeed increased with increasing ¢, in agree-
ment with the full numerical model results.* An ex-
ample of the solution to (4.6) is displayed in Fig. 19
for the standard model derived values: b =39 yr™', ¢
=22vyr!, e=007°C ?yr !, and with r = 0.66. The
period of the oscillations (2.4 yr) has now increased
from that obtained from the solution to (4.7) (1.7 yr),
and the final temperature perturbations have decreased
to 4.1°C from 7.5°C. We again note that, for the basic
state b and ¢ in the tropical Pacific, Eq. (4.6) does not
exhibit steady outer solutions, but describes an un-
steady oscillation about the mean (zero) state.
Finally, we would like to consider the complete form
of the nonlinearity (4.2) in the simple model (4.3).
Again, in (4.2) h is related to { T through (2.4) and
(2.5). Since we are interested in the qualitative behavior

4 Note the lines of constant b cross in the upper right hand corner
- of Fig. 18a because the curves for small b are now in region R,.
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of (4.2), we have chosen % in (4.2) to be the value at
the center of the eastern box (140°W, 0°N), and ap-
proximate (4.3) as:

9 5
— = ¢T+ KT,
ot

(4.10)
where K is defined in section 2.° The time lag is implicit
in T, { =funct[h, h(t —7)]1}.The integration of (4.10)
is displayed in Fig. 20 for the basic state Pacific coef-
ficients. The three experiments done in section 3 with
the full model and the simple analog model have been
repeated with (4.10) {decreasing the reflection coefhi-
cient is equivalent to decreasing r), with similar results.
Figure 20 is also useful, however, in explaining another
aspect of the full coupled modeli solutions: the small
time averaged warm temperature. This comes about
primarily because of the asymmetry about the mean
J of the nonlinearity in T;. Since the depth of the mean
thermocline increases from east to west on the equator,
for a constant & perturbation along the equator the
equatorial subsurface temperature changes will decay
to the west. For the same h perturbation, with larger A
in (4.2), the subsurface temperature perturbations de-
crease in amplitude and are increasingly confined to
the east. Therefore, the cold T; anomalies (7 < 0) are
not as strong as the warm T, produced by the equivalent
positive /4 perturbation, hence the tendency for a net
warm 7 in the full model. In the simple model (4.10),
choosing % to be that at 140°W exaggerates this effect,
since the subsurface cooling produced by pycnocline
is only significant in the far eastern basin.

In conclusion, the limiting nonlinearity in the full
coupled atmosphere-ocean model has been identified
as the finite rate at which the upwelling processes can
heat the surface layer. The primary effect of the non-
linearity is to bound the amplitude of the oscillations;
the essential physics is contained in the linear oscillator
equation, (2.9). The nonlinearities are not critical for
oscillatory solutions, and account for only small cor-
rections to the frequency from that in the linear, small
amplitude oscillations. The form of this nonlinearity
in the simple delayed oscillator model is derived. The
nonlinear oscillator appropriate for our coupled at-
mosphere-ocean model does not have stable, steady
solutions, but describes one bounded, unstable state,
consistent with the linear results of section 3. In its
simplest form, the nonlinear analog model is contrasted
to that proposed by Schopf (1987) and S5. Although
the physical processes invoked in these studies is similar
to ours, the fundamental balance of terms is very dif-
ferent to what we find relevant for the coupled nu-
merical model used in this study.

5 Formally, K includes the spatial correlation between wand T
rather than between wand T,. Within the box for averaging, however,
T and T, are relatively flat compared to w. Thus, these correlations
are very similar.
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5. Conclusion and discussion

An analog model is developed to describe the nature
of the interannual variability observed in the coupled
atmosphere~ocean model with various basic state
backgrounds for the ocean and atmosphere. The model
is cast in terms of the sea surface temperature (SST)
anomaly in an equatorial box (denoted 7') in the east-
ern portion of the ocean basin, and includes all of the
essential processes that regulate the SST in the equa-
torial eastern Pacific, identified by examing the full nu-
merical model of the coupled tropical Pacific atmo-
sphere—ocean system (see Battisti 1988a).

The analog model reduces to a linear-delayed oscil-
lator equation for the SST averaged in the eastern
equatorial Pacific,

oT

= —hT(t— 1) +cT
5 = T =T +cT,

which has the solution of the form, T = ¢/, where ¢
must satisfy

o= —bhe " + ¢.

Here, t represents time, b the “remote” wave-induced
processes that affect SST, r a time lag, ¢ the sum of the
local instability processes acting in the eastern basin
equatorial box, and ¢ = &, + iog;, where o, and o; are
real, represent the growth rate and frequency of the
coupled atmosphere—ocean system. The local processes
¢ acting in the eastern basin give essentially instanta-
neous changes in 7, and these local changes force
changes in 7 of the opposite sense, delayed by a time
7. The local processes that set ¢ are the following:
changes in the SST due to horizontal advection, anom-
alous upwelling, ocean vertical thermal structure, and
heat loss to the atmosphere. The remote process, b,
results because, in the model, cceanic waves are forced
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FIG. 20. Integration of (4.10) with the basic state values & = —3.9 yro!', K=57yr ', and ~
= 180 days. Temperature (in °C; solid curve) and thermocline perturbations (in tens of meters;
dashed line) are plotted vs time (days) for r = 0.66.

in the eastern basin by (locally induced} changes in
SST that in turn force wind stress anomalies. The wind
stress anomalies, largely confined to the central and
eastern basin, generate Rossby waves that propagate
west and reflect off the western ocean boundary, gen-
erating Kelvin wave signal that enters the eastern basin
at some time 7 (= 180 days) after the initial wave gen-
eration. The moderation of the local instability growth
by these remote processes produces periodic oscillations
with growth rates substantially slower than the coupled
local instability ¢, = ¢.

This simple analog model, with values of b, cand 7
representative of the tropical Pacific has a solution that
is consistent with the fully nonlinear numerical model
discussed in Battisti ( 1988a). In particular, the full and
analog model display similar growth rates for the cou-
pled system interannual variability to be 0.6 and 0.9
yr~! respectively. The analog model estimates a period

of oscillation at 3.0 yr, whereas the full nonlinear model
displays interannual variability with a period of 3.4 yr.
Finally, the analog model suggests the pycnocline
changes should lead the SST changes in the castern
Pacific by about 65 days, compared to the full model
result of 70 days.

We have vsed the analog model to predict the be-
havior of the interannual variability displayed in “basic
states” that are somewhat different from that in the
Pacific, the reference basic state. The behavior of the
full numerical model with these new basic states is in
qualitative agreement with that predicted from the
simple analog model. Specifically, when the basic state
is changed from the reference state so the local insta-
bility growth rate ¢ is altered without changing the re-
mote wave-induced processes, both models indicate
that increases (decreases) in the local instability growth
rate will substantially increase (decrease) the growth
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rate and period of the interannual variability. For ¢
large enough, no oscillatory solutions are possible and
pure growth is supported. For ¢ small enough, no
growth is supported.

If the basic state changes are such that the local in-
stability process and wave transit time remain at the
reference values but the remote wave induced processes
are reduced, the period of the resultant oscillations in-
creases and, in a somewhat surprising result, the growth
rate decreases. If b is sufficiently reduced in amplitude,
no oscillations are possible and pure growth ensues. In
the last set of experiments, we keep the strength of the
processes b and ¢ at the reference state values, and in-
crease the basin width, hence the time lag r. Increasing
T acts to increase both the growth rate and the period.

A central assumption made in the formulation of
the simple analog model (2.9) and the use of a r of
180 days is that the only significant west-boundary re-
flection in the full model is that of the gravest sym-
metric mode (7 = 1) Rossby component. This possi-
bility is certainly suggested by a decomposition of the
full model oceanic fields into the various wave com-
ponents which, in the case of the full linear model with
annual-mean background, reveals thatthen = |, n =
3 and n = 5 Rossby reflections account for 77, 17 and
4 percent of the total Kelvin wave mass flux at the
western boundary, respectively, while al/ the n > 5
Rossby reflections combined account for just the re-
maining 2 percent (see also Battisti 1988a). To more
directly clarify the role of the # = 1 Rossby reflection,
we have run the full linear model but allowed only the
n = | Rossby reflection to contribute to the west-
boundary Kelvin flux. The resulting oscillation is little
changed from that in the complete reflection case, with
a period of 3.6 yr, growth rate of 0.4 yr ~! and structure
very similar to that in Fig. 9. In the converse experi-
ment, where only the n = 1 Rossby reflection was ex-
cluded from contributing to the Kelvin mass flux, the
solution features pure exponential growth. Thus the
critical west boundary reflection is that of the n = |
Rossby wave, The high n Rossby waves which take 2-
4 yr to propagate across the ocean basin are also evident
in the model solution, but the mass flux associated
with these waves is too miniscule to influence the os-
cillation (cf. McCreary 1983).

The crucial nonlinearity in the full ocean model is
due to the intrinsically limited ability of upwelling to
generate SST anomalies. The nonlinear processes are
secondary effects in the numerical model, and are
shown to primarily bound the magnitude of the inter-
annual varability in the coupled system and slightly
increase (by about 10 percent) the frequency of the
final state oscillations from the frequency at small am-
plitude. The characteristic small amplitude growth rates
and the period of the interannual variability are set by
the (mean) basic state of the atmosphere and ocean
and are consistent with both the full model results (with
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or without the nonlinear processes ) and the simple lin-
ear analog model. We derive the nonlinear analog
model relevant for the ENSO events in the coupled
numerical model, which reduces to a nonlinear delayed
oscillator equation. This nonlinear analog model is
similar in form to that proposed by Schopf (1987) and
SS. The essential physical balance featured in these
two models, however, is compietely different. Both the
linear and nonlinear delayed oscillator models we have
derived characterize the coupled system as oscillatory
about one unstable state: the mean state. The analog
model results, in concert with the full coupled numer-
ical model integrations, indicate steady, stable warm
(El Nifio) and cold (La Nifta) states are not possible
for the parameter regime of the Pacific.

In all of the experiments with different basic state
oceans, the solution to the analog model correctly pre-
dicted the behavior of the fully coupled numerical at-

‘mosphere-ocean model. The success of the simple an-

alog model allows us to speculate on two important
aspects of the coupled atmosphere—ocean system, both
of which involve the remote equatorial wave processes
acting in the western basin. The first issue concerns
the effects of the basin size on the nature of the inter-
annual variability. From the analog model, we expect
that ocean basins much narrower in longitude than
about 13 000 km will not be able to support interannual
variability analogous to ENSO. Although this calcu-
lation is valid for a fixed size eastern ocean box, using
small eastern ocean boxes with the same basic state as
for the eastern Pacific gives the same result. Hence the
simple analog model indicates neither the tropical In-
dian or Atlantic Ocean should support interannual
variability as described in the full numerical model.

- Remote wave processes and western boundary re-
flection of these waves are crucial to this model ENSO
cycle. In the western Pacific, the oceanic boundary is
quite irregular and far from meridional. Additionally,
it is not clear that the Rossby waves generated in the
central / eastern Pacific will actually survive the trip to
the western boundary in the presence of a vigorous
undercurrent, although Bigg and Blundell (1988 } have
found evidence for the gravest mode symmetric Rossby
wave propagation in the western Pacific prior to the
1982 ENSO event. Qur calculations suggest that the
same dynamical and thermodynamical processes acting
to control the interannual variability in the idealized,
full numerical model can still act to produce ENSO-
like interannual variability, even if Kelvin waves that
come from the western basin into the eastern Pacific
are severely reduced in amplitude from the idealized
situation.

Finally, we arrive at the question of predictability of
interannual variability in the coupled system. All of
our model calculations suggest that the basic state of
the system is the most crucial factor in determining
whether the coupled system will support growth
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through local instability that leads to ENSO-like events.
Hence, the question of predictability should depend,
to a large extent, on specifying the basic state of the
ocean and atmosphere. The time mean state of the
Pacific atmosphere and ocean is supportive of growth.
However, there are certainly times in the annual cycle
(e.g., Northern Hemisphere winter) where, according
to the simple model, conditions are not ideal for
growth. During these times, the predictability of the
variability of the coupled system should be at a mini-
mum ( see section 5 of Battisti 1988b). We are currently
planning a series of experiments to examine the pre-
dictability of the interannual variability in the tropical
Pacific.

The analog models we have derived from the full
coupled numerical model contains the essential physics
for ENSO events in the (Cane and Zebiak ) numerical
model. We suspect the essential physics which are re-
sponsible for ENSO events in these models are similar
to those in the coupled numerical model of SS. In both
models there is essentially a single mode of coupled
atmosphere—ocean instability which is quasi-stationary,
primarily because of the zonal asymmetry in the mean
state (cf., the propagating instabilities described by
Hirst 1986, 1988 for a zonally uniform mean state}).
We would like to emphasize the scenano for ENSO in
these simple models has yet to be verified by obser-
vations. In addition, there are probably other modes
of instability in nature which may successfully compete
with the dominant quasi-stationary mode for ENSO
found in these simplified coupled atmosphere—ocean
models. We expect that by increasing the complexity
of the coupled model (e.g., increasing vertical resolu-
tion in the ocean, explicitly modeling boundary-layer
processes in the atmosphere) such modes will arise,
and plan to examine these modes in future studies.
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APPENDIX A
General Properties of the Linear-Delayed Oscillator
The equation
aT

—=—bT(t —7)+ T

ot (AL)
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is a simple example of a class known as “differential
delay equations.” There exists an extensive literature
on this class of equations (see Saaty 1981 for an intro-
duction), although most treatments focus on nonlinear
differential delay equations and associated chaotic be-
havior (e.g., May 1983). This section focuses on general
properties of the linear equation (A1) which will be
helpful in the comparison with the fuil model results
presented in section 3.

As noted in section 2, solutions to (Al) with b =0
are pure exponential with growth rate c. To determine
the system’s behavior at nonzero b, solutions of the
form T = Ty exp[ot] are sought (¢ may be complex).
Permitted growth rates (o,) and angular frequencies
{o;) are obtained from solution of the relation

o= —be " + . (A2)
The behavior of the system is illustrated in Fig. 21 for
a range of b and ¢. When lagged negative feedback is
weak (0 < b < exp[cr — 1]/7), the fastest growing
solution still displays pure exponential growth/decay,
but with reduced growth rate. A second pure exponen-
tial solution possessing even lower growth rate also ex-
ists. At b = exp[er — 1}/7, the two exponential so-
lutions become degenerate, here independent solutions
are T = Ty explot] and T = Tot explot]; 0 = ¢
— 77!, Note that, for the basic state Pacific variables
(¢c=22yr7', b =239 yr! and r = 180 days) this
range of solution is not relevant.

When lagged negative feedback is strong relative to
the local growth processes (b > expl[er — 1]/7), so-
lutions of (A1) are oscillations whose amplitudes grow
or decay exponentially with time. In this oscillatory
regime, it is illuminating to split (A2) into real and
imaginary parts to get two equations for o, in terms of
a;.

g, =c¢ — og;/tan{o;71) {A3a)
o =1 ln[M]. (A3b)
T a;

The intersection of (A3a) and (A3b) vield the per-
mitted growth rates and frequencies. Equations (A3a)
and (A3b) are plotted in Fig. 22, which shows that
there exists a slowly oscillating solution of period (2x/
;) always greater than 2r and a series of rapidly os-
cillating solutions having periods near 7/(n + %), n
= 1,2, 3,- - -. The high frequency solutions generally
have high decay rates. Such solutions might have pos-
itive growth rates only if » > (2n + Y2)«/7, 1e., at
values very much larger than those relevant to the full
model.

The slowly oscillating solution is the analytic con-
tinuation of the pure exponential solutions previously
discussed; both growth rate o, and frequency o; increase
rapidly as # increases, and ¢, is positive for the most
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GROWTH RATE

IV B | i . 1

Ty = ¢ T(t} — b T{t-1)
T = 0.5 years

interval = 0.5 year™'

FREQUENCY

To= ¢ T) = b T(t-7)
T = 0.6 years

interval = 0.1 yeer~'

FiG. 21. Behavior of fastest growing solution to the delayed oscil-
latqr equation (Al ): growth rate and frequency as b and ¢ are varied
wh:lle time delay r is held at 180 days, Variables b and ¢ have units

yrl,

relevant parameter values. The condition for g, to be
x T
b>——|——1

positive is approximately
c.
2T [ 2 ]

The above condition holds exactly only at ¢ = 7! and
at ¢ = 0, but is correct to within a few percent of the
true critical b for the range —1 < ¢ < 2.1 yr~!in Fig.
21. {An exact, but implicit, formula for the critical »
may be readily derived by setting ¢, = 0 in (A3a)
and (A3b).]

(A4)
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It may seem curious that as the strength of the lagged
negative feedback (i.e., b) is increased, the growth rate
o, of the slow oscillation also increases, and may reach
values much larger than that for local instability alone
(i.e., ¢). It can be shown from (A3a) that ¢, > ¢ when
the oscillation has period between 21 and 4+ [i.e., when
b > x exp[cr]/(27). To understand the connection
between period and growth rate, multiply (A1) by T(#)
to get

ar?

ot

The growth in 72 from one maximum to the next
depends on the local contribution 2¢ f T(t)%dt (al-
ways of the same sign as ¢) and the lag contribution
—2b [ T(£)T(t — 7)dt. The lag contribution adds to
growth when there is a negative correlation between
T(t)and T(¢ -~ 7). This can be shown to occur when
w/(27) < g; < « /7, i.e., when the period is between
2r and 4r. For illustration, consider the situation when
o; approaches x/7: T(t — 1) =T, explo,(t — 7)]
cos[wt/+ — w] has sign almost always opposite that
of T(t) =Ty explol] cos[nt/7], and so clearly
[T()T(t - 7)dt <0.

The effect of varying r on the behavior of the fastest
growing solution to (A1) is illustrated for ranges of b
and cin Figs. 23 and 24, For parameter values relevant
to the full model, o, is large negative when 7 is very
small (i.e., when the ocean basin is very narrow); here
the effect of the time delay in (Al) is small and the
(negative) growth rate is of the order c — b. As 7 is
increased, the growth rate increases towards a limit,
which is equal to ¢ when ¢ > 0. The value of + for
neutrality [o, = 0] is given with an error of less than
5% by the approximate relation (A4), for the range
—l1<c—4yr'and 1.5 <b < 10yr~!. The frequency

2eT(6)? = 2bT()T(t — 7).  (A5)

gt/ m

FiG. 22. Values of ¢, as given by { A3a} [ dashed ] and (A3b) [solid ]
versus angular frequency o;. The intersections indicate solutions to
(A1l). Units of the scaled variables are nondimensional.
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GROWTH RATE

interval = 0.5 yoar™' T, = c T{t) — b T{t-1)
b = +3.9 year~!

FREQUENCY

1 Lasssl 1 1 1 b 1 1 st 1 Las

inlerval = 0.1 year*! T, = ¢ T{t) — b T{t-T1)
b = +3.6 year™?

FiG. 23. Behavior of fastest growing solution 1o the delayed oscil-
lator equation (A | ): growth rate and frequency as c and 7 are varied
while delayed feedback coefficient b is held at 3.9 yr~'. ¢ has units
yr~', 7 has units yr.

generally decreases with increasing 7, for = over 0.3 yr.
At very large delays, the solution reverts to pure ex-
ponential growth, if ¢ > 0.

APPENDIX B

Linearization of the Coupled Model

The derivation of the full linear model from the full
nonlinear model of B88 is outlined here. Outside the
SST anomaly equation, the “full nonlinear model”
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really features only two nonlinear processes: wind stress
on the ocean and dependence of atmospheric heating
on convergence. The nonlinear windstress on the ocean
is

= paCD[lﬁcz+Ua|((ja+ Ua)_ lﬁalrja]
Ty=PaCD[|Ua+Ual(I7a+ Ve) — |I-Ja“7a]s (Bl1)

where U, is the mean surface velocity (U, = iU,
+ j¥,). The complete linearized version of (B1 ) is then

GROWTH RATE

1 | Lol 1 1 A 1 i

rasedell

4 '\ W -
o ' :
2 -
/‘ .
___——-'_'—-—-’—_F. [
———— &
0 Ty T T Al M | T T "l T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
interval = 0.5 year™! Ty =cT{t)— b T(L-7)
c= +22 year™!
FREQUENCY
_j \L 1 1 i i 2l 1 1 1 1 1 baa
6 -
4 r
sl
2 4 :
0 SRS RARAN RRARAE T T T T |ARSASRARRS |
0.0 0.2 0.4 0.6 0.8 1.0 1.2
interval = 0.1 year™' T, = ¢ T(t} — b T{t-71)

¢ = +2.2 year™!

FiG. 24. Behavior of fastest growing solution to the delayed oscil-
lator equation (A 1): growth rate and frequency as b and r are varied
while local-instability growth-rate ¢ is held at 2.2 yr™'. b has units
yr~!, 7 has units yr.
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* o= pOHO(st Ua + KsCVa)

Y= poHo(KVa + K °UL), (B2)
where
L 204V p,Cp ., T +2V p,Cp
T + P2 poHy (T + 71172 poHy
e ov p.Cp

: (UZ+ 172)”2 poHy
The atmospheric heating in the full nonlinear model
given by B88 becomes in the linear (or small pertur-
bation) regime,

v.-U,>0

-
(B3)
V-U,=<0.

_ 0,
@=aT)+ {ﬁ*v- u.,
Thus convergence feedback is restricted to regions
where the reference state wind is convergent. Heating
is calculated iteratively at each time step, using the part
given by the SST anomaly field as first guess. The lin-
earization of the SST anomaly equation has been dis-
cussed in section 2. The equation used in the full linear
model is [cf, Eq. (2.1)]

aT
G_T_ —u- VT —u-VT — 6H(w)w——

ot
+ Krh—dT, (B4)
where
_sA(wya(h) _ A(w)
T= ——Hl 7 d [ ) +6 Hl .

In other respects, the linear model conforms to that
of B88.

All but one of the nonlinear processes in the full
nonlinear model approach linearity in the small per-
turbation limit. The exception is in the expression for
T,, where, in the small perturbation limit,

at(hh, h>0
Ts=[ (#7)

a (h)h, h<0,
with a*(h) larger than a~ (k) by typically a factor of
two or more. Consequently, most of the growth of the
small amplitude nonlinear solutions occurs during the
warm phase, In the pure growth regimes of Figs. 10—
12, the small amplitude warm solution { which follows
a westerly wind burst initialization) has growth rate
considerably larger than the linear model (where
a(h) = (a*(h) + a~(h))/2), while the small ampli-
tude cold solution (following an easterly wind burst

initialization ) has smaller growth rate.
The annual mean and seasonal reference states fea-
ture fields of rich zonal and meridional structures,
which is reflected in the horizontal structures of the

(BS)
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FIG, 25. Spatial structure of the ocean thermodynamic coefficients
K7 and 4 and the zonal windstress coefficient Kg* as computed from
the annual mean reference state. The contour intervals are as follows:
Kr, 108 m~' s7'; d, 1077 57! (dashed curve is 0.93 X 1077 57');
Ks*, 025 x 107757



1712

coefficients that result from linearization. Those of the
crucial ocean thermal coefficients K and 4, and the
zonal wind stress coefficient K*, are illustrated in Fig.
25; the strong zonal and meridional dependence con-
trasts markedly with the horizontally constant coeffi-
cients used in previous coupled ocean—atmosphere in-
stability studies (e.g., Lau 1981; Philander et al. 1984;
Hirst 1986, 1988). The effect of the strong zonal de-
pendence of K is reflected in the disparate evolution
of equatonal thermocline depth (#) and SST (T)
anomalies shown in Figs. 6 and 7, where SST anomalies
develop in situ while thermocline depth anomalies
show a strong tendency for eastward propagation (cf.
Hirst 1988, Figs. 10, 13). Such diverse patterns of A
and T are possible because Ky is large in the east and
very small in the west (Fig. 25). Windstress anomalies
are restricted to the central basin, partly because of the
position of the SST anomaly field, and partly because
the zonal windstress coefficient Ks* is largest in the
central basin.

APPENDIX C
Evaluation of e*

A precise evaluation of the coefficient e* is difficult.
Here, our main objective is to identify the effects of
* this principal nonlinearity, not justify a specific value.
Thus, rather than obtaining a precise area averaged
value for e*, we wish to consider only the order of
magnitude for e*. We will evaluate ¢* at 140°W on
the equator, since it is only in the eastern Pacific where
the full model # perturbations act nonlinearly in the
T, expression (4.2).
In the text, we have simplified the expression for T
[cf., Eq. (4.2)],

T, = @(h)[tanh(A(2 + 1.5[4])) — tanh(AR)] (C1)

by approximating the asymmetric part of 7, with the
cubic equation

T, = a(h)h — e*h* + O(h®). (C2)

With the cubic approximation to (C1), we would like
to obtain roughly the same subsurface temperature
perturbations ©, at the local extrema /4. = (a/3e*)}'/?
of (C2) as that which is possible at infinite perturbation
in {(C1), given by

Ocxe = O[1 — tanh(M2)].

Since ©,,. is achieved at | 4] = oo in (C2), A, is arbi-
trarily defined as the displacement necessary to attain
0.90,,. = 0,. As the value for 0. depends on the sign
of the h perturbation, we equate /. with the average
value for A, = (h.* — h.”)/2, where the sign indicates
the sense of the pycnocline perturbation. At 140°W,
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the parameter g, defined in B88, and has a value of
0.138°C m™', @, = (0,* —©,7)/2 = 3.3°C and 4.
=45m.

With ¢ fixed in (C2), e* is the only free parameter.
Therefore, we are not able to fit both @, and 4,. If we
choose to calculate ¢* by retaining A, at 45 m, we es-
timate ¢* = ah."2/3to be 2.27 X 1075°C m~2, For
this value of e*, the maximum T obtained in (C2) at
h. = 4515 4.1°C. This is comparable with the @,. Al-
ternatively, we can require that 0, be 3.3°C at A = 45
m, which yields e* = (a —©,/h)/h? = 3.19 X 1072 °C
m 2. Choosing this value for e* sets 4, at 38 m. A
compromise value for @, is chosen at 3.7°C, and thus
a value for e* is obtained at 2.9 X 10> °C m~2 at A,
= 40 m,
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