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5A) Intermediate Coupled Models Support ENSO-
like Vanability

. Cane and Zebiak (1985); Zebiak and Cane (1987)

- Shopf and Suarez (1988)

Intermediate coupled models yield interannual variability that is tem-
poral and spatially similar to the observed ENSO phenomenon.

Inhomogeneous basic state and surface mixed layer physics are cru-
cial;

Upper ocean thermodynamic processes are rich and varying during the
simulated ENSO cycle.

« Many other intermecdiate coupled models later shown to
support ENSO-like interannual variability (e.g., Chang et
al.),
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SVD mode 1 for SST and windstress fields
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FIGURE 5. Results from the SVD analysis of tropical SST and windstress fields:
leading eigenvectors (SVDT),in the form of heterogeneous regression maps (see
-text for interpretation) for the (a) observed, and (b) ZC model; SST fields are
contoured at 0.2 °C intervals and positive values are shaded; windstress fields
are given with vectors, and a sample 10 (m/s)? vector is included for scale.
Normalized expansion coefficients for the leading SST (solid lines) and
windstress (dashed lines) eigenvectors are plotted for (c) the observed, (d) the
Z.C model, and (e) the B88 model. The correlation coefficients (r) between the
time-series pairs are listed in the lower right corner of panels (c), (d) and (e).
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A schematic representation of the major physical processes which act o

a model ENSO event, based on the analysis presented in Battist {(1988a,b}.
Cut-away views on the cquator are given for the main stages of development: Thick
arrows point to regions O major heating/cooling, with the primary heaang and cool-

and mechanisms noted. Thin arrows denote upper-layer ocean currcoi

anomalies and direction of advective beating. Arrows with tails denote wind suoess
direction. The size of the arrows does not reflect relative amplitude (from Battisu
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SCASITIVITY STVOIES

TABLE |

Case

Description

Comments

2

A4 3

4

S
Inkdﬂ%cﬂ

MMSM(QJ

Sensthvity 7

&l 8

v 9

10

Standard physics (SPC)
No western boundary
No seasonal cycle (NSC)
VT =0

SPC and 7/9x = 0 for 1 > Jan(12)
SPC and a7/dy = 0 for ¢ > Jan(12)

SPCand b, =0fort=0
SPC and 7, = 0 for ¢ > Jan(12)

NSC and &, = 0 for ¢ > Jan(12)
Filtered off-equatorial winds

Meridional boundary Kelvin
waves included

3 or 4 year period;
quasi-regular
events

uncontrolled growth

periodic 3.47 year
events

no interannual
vanability

warmer, longer event

smaller amplitude
event than SPC

no interannual
variability

no interannual
variability

as in case 3

3-4 year period;
regular events

periodic 4 year
oscillation
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Delayed Oscillator Physics

Diagnosis of coupled atmosphere/ocean models of intermediate com-
plexity (e.g., the model of Cane and Zebiak) led to the delayed oscilla-
tor paradigm for ENSQO. Schematically, it goes like this ...
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5B) The Delayed Oscillator Theory (DOT) of
ENSO

. Overview of the Delayed Oscillator Theory for ENSO

In this theory for ENSO, the ocean memory and the dynamical adjust-
ment time of the oceans is crucial to the evolving ENSO event, includ-
ing the event onset, peak, demise, and the ensuing cold event.

Why “Delayed Oscillator”?

DOT of ENSQ is a statement that a growing ENSO event contains the
seeds of it’s own destruction. This is due to the nature of equatorial
dynamics, the long time scales associated with the adjustment of the
tropical Pacific Ocean and the close relationship between wind and
SST anomalies in the tropics.

. Implications of DOT for long-range climate forecasting

If delayed oscillator physics is relevant to Nature’s ENSO events, then
(i) ENSO events should be predictable at least nine months in advance;
and (ii) The Atlantic Ocean should not support an unstable ENSO-like

mode.

. Uncertainties concerning DOT and nature circa 1990
No observational evidence verifying the crucial subsurface variability.
Can you get sufficient reflection of ocean signals off Indonesia?

The delayed oscillator physics explains how ENSO works in a “simple”
numerical atmosphere/ocean model. What do the coupled GCMs say? No
coupled A/O GCMs available. -

What is the cause of irregularity in the ENSO cycle?

What is the limit of predictability of the state of the tropical system?



A simple model for the numerical coupled
atmosphere/ocean model
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» “T” is the eastern basin temperature anomaly

« Local coupled instability (c) in the central and eastern Pacific gener-
ates a delayed, opposing forcing (b) that eventually reverses the sign of

the local anomaly.

+ A key assumption is that the western Pacific is passive.

Postulated by Suarez and Shopf (1988), and derived by Battisti and Hirst
(1988).

Suarez and Schopf | Battisti and Hirst
Nonlinear (b/c < 1,£=20) Linear ( bﬁg >1)

Relevant to McCreary (1983)  Relevant to Cane ana Zepiak model,
: Relevant to some coupled A/O GCMs
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Summary of Delayed Oscillator Physics

. The character of the model coupled atmosphere/ocean
ENSO seems to be critically dependent on the inter-
play of:

(1) Local (eastern basin) instability characteristics;

(2) Delayed ocean wave effects on a localized, growing insta-
bility

(1) Depends on a delicate balance in the ocean thermodynamics.

(2) Depends on oceanic wave speed and the reflective and dissipa-
tive properties of the oceanic waves.

. A simple linear analog model (the delayed oscillator)
based on these processes qualitatively explains the
behaviour of the interannual variability in full numer-
ical coupled atmosphere/ocean model (Battisti and Hirst

1989).




5C) Verification of DOT from Observations
« The Ocean Subsurface Thermal Structure

Is the ocean subsurface thermal structure consistent with DOT?
Essentially, yes.

Observations: Kessler 1990; Bigg and Blundell 1992; Mantua and Bat-
tisti 1994.

Ocean model hindcasts: Wakata and Sarachik 1991; Chao and Philan-
der 1993; Rosati et al. 1995; Schneider et al. 1995.

. Western Boundary Refection Efficiency

Is there enough signal reflected off Indonesia to shut down a growing
ENSO event? Yes.

Numerical estimate of minimum (critical) value for DOT to operate 1s
55% efficiency (BH); Back of the envelope gives 60 - 80% with geom-
etry of Indonesia.

Detailed theoretical calcuiétions by DuPenhoat and Cane (1991) and
Clarke (1991) indicate that 81% and 83%, respectively.

Observational evidence indicates 84% of the incoming energy is
reflected back (Mantua and Battisti 1994).

. Coupled Atmosphere/Ocean GCMS and DOT
Does delayed oscillator physics act in full physics models? Yes.

DOT has been shown to be consistent with the interannual variability
in the models of Philander et al. 1992, Nagai et al. 1992, Latif et al.
1993, Chao and Philander 1993, Barnett et al. 1993 (hybrid model),
Schneider et al. (1995) and Davey et al. 1994.

First Coupled Atmosphere/Ocean General Circulation models used for
ENSO Prediction (Latif et al. 1993); predicted ENSO events evolve
consistent with the DOT.
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Strategy: analyze the output from a hindcast of ocean variability

- reduced-gravity ocean model for the tropical Pacific basin
forced with the ovserved surface wind stress from 1961-
1992;

Results: the interannual variability from the model reproduces
most of that from the observations . . .

-t
o

’

Interannual Sea Level (cm)
o

-10

9 10 1975 19 1985

. . . and the evolution of INDIVIDUAL (warm and cold) ENSO
events follows the delayed oscillator scenario.

- -

- Delayed oscillator theory cannot explain the aperiodic
nature of the ~bserved ENSO cycle.

Ctin l . LD oar1. ‘ou)
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- Coupled Atmosphere/Ocean GCMS and DOT
Does delayed oscitlator physics act in full physics models? Yes.

Philander et al. 1992, Nagai et al. 1992, Latif et al. 1993, Chao and
Philander 1993, Barnett et al. 1993 (hybrid model), Schneider et al.
(1995) and Davey et al. 1994, Coupled Atmosphere/Ocean General
Circulation models used for ENSO Prediction (Latif et al. 1993):
ENSQO events evolve consistent with the DOT.

. Verification of DOT from observations

Is the ocean subsurface thermal structure consistent with DOT?

Essentially, yes.

Observations: Kessler 1990; Bigg and Blundell 1992; Mantua and Bat-
tisti 1994. Ocean model hindcasts: Wakata and Sarachik 1991;
Chao and Philander 1993; Rosati et al. 1995; Schneider et al. 1995.
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SD) ENSO-like Variability in the Atlantic Basin

« ENSO-like variability in the Atlantic Basin Exists

Zebiak 1994; Chang et al. 1996.

« Assuming DOT, however, ...

The geometry of the basin excludes the possibility of unstable coupled
modes in the Atlantic Basin (Zebiak 1994; Battisti 1988; Chang et al.
1996).

Indian Ocean: the “homogeneous” basic state.
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regressing surface variabla_includeDSSTA, wind and heat flux anomalies upon an Atl-3 index
delined by averagpg SSTA in a 20°x8° region centered at 10°W and the equator. The SST dipole
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deviatign of the reference time series. Colors imdicate the stren h of surface heat flux anomalies
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5. One Year in Advance. ENSO 15 Predictable.

« Implications for long-range climate forccasting

If the ENSO physics in the models (the delayed oscillator physics) is
relevant to Nature’s ENSQO events, then ENSO cvents ~should be pre-

cadtable at feast nine months i advance
+ Predictions of ENSO using dynamical climate iatmosphere/ocean/
land/ice} models

Successful predictions have, and are, being made by about one dozen
research groups.

El Nino/Southern Osciliatton and its Impact on Fish. Birds and Coral: Apnl 10, 1997
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Summary

- Coupling the atmosphere and ocean may lead to locally
unstable modes. The structure of these instabilities
depends crucially on the mix of processes that affect SST.
However, inhomogenieties in the basic state of the ocean
and atmosphere lead to fundamentally different (basin)
coupled modes: the “delayed oscillator.”

- The key processes for the delayed oscillator mechanism
are localized atmosphere/ocean instabilities and equatorial
ocean adjustment; they have comparable time-scales.
These basin modes have much in common with the
observed ENSO events (e.g., the structure of the quasi-sta-
tionary SST anomalies confined to the central/eastern
Pacific).

. Analyses of the subsurface thermal structure (a.k.a the
ocean memory) from the observations (XBT data) and the
forced ocean models of the Pacific indicate these data are
largely consistent with the delayed oscillator theory for
individual ENSO events.

. The delayed oscillator theory for ENSO appears to
explain the interannual variability in the tropical Pacific of
several coupled atmosphere/ocean general circulation
models, and in many of the intermediate level coupled
models.



. The DOT (more generally, the ocean memory) provides
the foundation for the extraordinary skill in the long-lead
(one year) forecasts of ENSO that is demonstrated by sev-
eral coupled atmosphere/ocean models and is providing
clues to the seasonal structure in the forecast skill.

. Robust interannual variability vis a vis the delayed oscilla-
tor physics is unique to the Pacific Basin.









