S
s | e
Q?] INTERNATION AL ATOMIC ENERGY AGBNOY “H
> ¥
Y v ! UNTTED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL GHEANIZATION LLISA LA
Ll J .

INTIHRNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIFESTIC (ITALY) - B OB 588 - MIBAMARE - STRADA COMTIERA 1« TELEPHONES: 2242812340 8
CARLF: CENTRATOM « TELEX 460392~

SMR/101 - 18

o.0UMD COLLEGE ON MICHOPROUESSORS: TECHNOLOGY AND AFFLICATIONS IN PHYSICS

{18 April — 13 May 1983)

SOFTWARE TOCLS’

I. WILLERS

DD Division

CERN

CH-1211 Geneva 23
Switzerland

Phese are preliminary lecture notes, intended only for dietribution to participants.
Missing or extrs copies are available from Room 230.

Programming Methods page 1 Programming Methods page 2

Two talks. Aim of good programming methods.
l. Programming Methods Readability
- abstractions in programming languages Modifyability
2. P D 1 £ Cvel - We will discuss those programming
- Trogram Jevelopmen yeie methods that help us towards +these
- Overview aims.

- tools.

A L

AEE Bk

1K

Programming Methods page 3

Programming Methods page 4

1. Aim of good Program Development Meth-
od '

- Write program that is required.
- Maintainability through documentation.

2. The Programming Cycle.

- The computer tools that you wili use.

o

Programming languagess Abstractions.

Unstrﬁctured'programming,
Strucfured progrémming.
Procedural ahstractlon.”'

- Structure Charts.-gé;'
Module/package abstractlon. .
[Task stxucturel _ |
;'lFilfers!:- o

Programming Methods

page

5

Programming Methods

page 6

Programming languages,

Unstructured data.
Structured data.

[Relational Databasel
- [Data model.]

Data hiding.

[Data flowl
- [Data flow diagrams]

Abstractions.

Program Structure.

Structure implies readability.

Readability implies
ween time and text.

correspondance bet-

‘Programming Methods page ¢

Programming Methods

page 8

Program Structure.

- Program c¢an be dissected into parts
each of which has a start and end
point.

Example from Pascal.

if <{testd then
<body>

WF”""

R

- — —

—

2

——

' Programming Methods - .page 9° ~Programming Methods - - page 10

Example from Pascal. . Example from Pascal. - -

if i=0 then : - - if <test> then
count := count + 1 - - <body-1>
else |

<hody-2>

Programming Methods

page 11l Programming Methods page 12

Example from Pascal.

if x>y then
begin max:=x; min: =y end
else

begin max:=y; min:=x end

Example from Pascal.

case <expression> of
value-1l: <body-1}
value-2: <body-2>

end

i !
b
!
},

*® .

Programming Methods R page 13 Programming Methods page 14

Example from Pascal. Example. from Pascal.
case month of | , for var=<Ffirst value> to <last value> do

1,3,5,7,8,10,12: NxDays:=31; ' <body>
4,6,9,11: NrDays:=30;
2: 1f leapyear then

' NrDays: =29

else
NrDays: =28

end

IR Y T W S I S Y W R e VW WP S e e

Programming Methods

page 15

Programming Methods page 16

Example from Pascal.

for month=1 to 12 do
writeln(month, daysin{month))

Example from Pascal.

while <test do
<body>

Prove to yourself that your loops will
texrminate.

Programming Methods “page 17 Programming Methods -~ page 18

Example from Pascal. | Example from Pascal.
while power<l0 do ' repeat

power := powexr ¥ 10 ' ‘ <body>

until <{test>

Prove to yourself that your loops will Prove to yourself that your loops will
terminate. terminate.

Programming Methods page 19

Programming Methods pagye 20

Example from Pascal.

repeat
read(character)

until character < ' '
¢ is unequal

Prove to yourself that your loops will
terminate.

Data Structure.

Structure implies readability.

Readability implies correspondance bet-
ween naming, operations and meaning.

Programming Methods

page 21

Programming Methods page

22

Example from Pascal.

Boolean type

or and

not

Char type

Integer type

etc.

write #

chr
read # write #

+ - ¥

div mod

abs sqr odd
read # write #

Example from Pascal.

Overdrawn := balance < 0

if (char>='A') and {(char<='Z"') then

write(char)

numhbher := number divllo

Programming Methods page 23

Example from Pascal.

type month = ¢ Jan, Feb, Maxr, Apx, May. Jun,
Jul, Aug, Sep. Oct, Nov, Bec);

case month of

Jan, Mar, May, Jul, Aug, Oct, Dec:
NrDays:=31;

Apr, Jun, Sep;, Nov: NxrDays: =30;
Feb: if leapyear then
NxrDays: =29
else
NrDays: =28

end

Programming Methods page 24

Example from Pascal.

An ARRAY is a data structure composed
of a fixed number of components. all of
the same type. An array component is
selected by an INDEX.

line = arrayll..80] of char:

read(line);

for i:=10 to 20 do
writetlinelil)

¢ <wm

T . ‘Fw—*

Programming Methods page 25

Programming'Méthods page 26 °

Example from Pascal.

A RECORD is a data structure composed

of a fixed number of
_.[fields),
types.

_ components
which may be of different
FIELDS‘are selected by name.

+

¥
date = record

day:1..31;

month: Months:;

year: integer
end

date.day := 2;
date.month := May;
date.year := 1983;

Example from Pascal.

A PROCEDURE consists of a block of
code which may be invoked, with or with-
out parameters, elsewhere in +the pro-
gram.

It is the programmers means of‘build%
ing abstractions which do not exist in
the programming language. ‘

It effects readability

- since it divides programs into small
parts each of which can bhe understood
easily.

Divide and conquer.

—

W W

L X KX i XK

g -

Programming Methods page 27

Programming Methods page 28

Example from Pascal.

program printtables;
tables = arrayll..12;1..121 of integer;
procedure MultiplicationTable;

L]
-

procedure PrintTable;

L]
-

begin
MultiplicationTable:;
PrintTable:

end.

Top Down Programming.

A program which is designed from the
highest level concentrates on the func-
tion of the procedures From the highest
jevel. It is therefore easy to read and
modify.

A program which is designed from the
lowest level {bottom up) concentrates on
the roles that different procedures play
and is difficult to read.

A compromise is obtained in the Mo~
dule or Package abstraction where new

operations on data items can be grouped:

together.

— L

Programming Methods page 29 Program Development Cycle page 1

The Structure Chart. : Complete Development Cycle

Requirements
- yes/no answers when finished
Specification

. = In what way will the requirements be
satisfied

Data Model

- Properties of the data
Programs/structure charts

- documentation of the program

[tasks/data flow diagrams]

N.B. In perfect world this is not cyclic
however the concrete world of the data
model may effect your ideas on the spe-
cification or requirements.

P Y

-y

F Y w3

PSS

Program Development Cycle page 2

Program Development Cycle page 3

Requirements and Specifications

Requirements
- yes/no
Specification

- What and houw.

DO NOT WRITE THE WRONG PROGRAM

Modifyability

- Reduce to a minimum

Requirements and Specifications

Example Requirement

The program must at any time be able
to inform the user of the time of day.

Example Specification

When the program has given a prompt,
the user will type 'TIME' followed by
carriage return in order to obtain the
time. The program will print the time
in the following format 'hh:mm:ss' where
hh is the hour, mm the minutes and ss
the seconds. This will be according to
the 24 hour clock.

Program Development Cycle

'pagé_Q” ' PrOgram!Ueveiopmént:Cycle

page 5

Program Development Cycle

Data Model

- Describe the attributes and pProperties
of the data,

car := [REGISTRATION NUMBER, “make, mo-
del, colour]l] ‘

- REGISTRATION NUMBER

= is that number issued by the authori-
ties which uniquely identifies the
car.

colour
- is the c¢olour inscribed on +the car' s
papers.

Program Develoﬁmeht“Cycle

Data Model |
model := [MAKE, MODEL, engine size, pow-

 er, body type]l

body type

- will be one of [sedan, wagon, truck]l}

I Ew: =1 _ X 3 ., AmS _ma& . % ma i A . mmaa - e

Program Development Cycle page 6

Program Development Cycle page 7

Program Development Cycle

The Tools

Edit

Compile

[Link]

Test

The mechanical process.

Editing

Line Editorx

- References by line number.

- Line numbers remain fixed.

- Gaps left so that lines can be insert-
ed. '

-. Displays current line.

Context Editor

- References by strings in text.
- Refer to nth. line in ‘text.

- Displays current line.

Fuil Screen Editor..

- References by pointing. -

- Displays many lines.

Language Oriented Editor

- Helps with and checks syntax of text.

i
I

Program Development Cycle

page 8

Program Develbpment Cycle

page 9

Editing

input 100
100= SET I=1
110= SET J=1

120= I=I+1
130= J=J+1
140= GOTO 120
150= »x%x

insert 135

131= I2=]I%%2

132= J3=J%%3

133= IF I2>J3 GOTO 130

134= IF I2=J3 THEN PRINT 12,33

135= I=I+1
136= GOTO 131
137= xx

delete 100,110

etc.

Editing

find ' name'

7change 'me’ to ' you'

next 2

etc.

-

A R i d K

RI

_Ri X3 _“E _ARS

Program Development Cycle page 10

Program Development Cycle page 1l

Language Translation

A language translator translates a
higher level language into a lower level
language.

It includes

compilers

interactive interpreters
intexpreters
pPreprocessors

[assemblexs]

The lowest level consists of the bit
patterns which the computer understands
and obeys. A load module contains that
information.

Assemblexr (Kknowm)

There is a one-to-one correspondance
between the language text and the ma-
chine code +that the computer under-
stands.

op-code <arguments>

Assembler looks up op-code for corx-
responding bit pattern and format of the
instruction.

The format enables it +to understand
the arguments which are converted into
bit patterns.

Normally, +two passes since the argu-
ments can refer to +things which occur
textually later

e.q. JMP LAB

LAB

The user has access to all machine
capabilities.

Program Developmént“cycle page 12

_Cdﬁbiler
The compiler is free to generate wha-

tever code it wants that will do the
job.

User has losf control of the machine
but has aids to programming.

Stagesrof compiling

language text

Lexical Analysis

Syntax Analysis

Code Generation

load module

Language can be machine independent
e.g. Fortran, Pascal, Basic etc.

Progfam;bévelopment Cycle page 13

' Lexical Analysis

The lexical analyser recognises words
and symbols in the text. A compiler
turns those into an internal representa-
tion.

e.g. if i=0 then i:=1;

could translate into

reserved word if : 8
symbol i ' 12 1 i
logical operator = 32
integer constant 0 29 0
reserved word then 9
symbol i 12 1 '1
assignment operator 40
integer constant 1 29 1
semicolon 41

Program Development Cycle - page 14

Program Development E€ycle page 15

Syntax Analysis

This turns the output of the lexical
analyser into a structure Known as the
SYNTAX TREE.

e.g. if i=0 then i:=1;

From this structure code or intermediate
code is generated.

Intermediate code
language text
Lexical Analysis
Syntéx_ﬁnalysist_
"; Intemediafe CodégGéﬁetafdr":
intermediate code
| Code@Génerat6r '-

object code A object code B

Code Generator

Program Development Cycle page 16 Program BDevelopment Cycle - page 17
Run Time Support Interactive Interpreter
The run-time support is code that one statement of
contains and initialises the programs language text

environment.

lexical Analysis
Syntax Analysis

Perform Operation

e.g. Basic

& o -

e

F W

. B3z 2> 1% _EMA A

Program Development Cycle page 18

Interpreters (not interactive)

language text

Lexical Analysis

Syntax Analysis
Interpretive Code Generation

interpretive code

Interpreter

A compiler's intermediate code may be
used as an interpretive code.

e.g. Interpretive Pascal (UCSD), ...

Program Development Cycle page 19

Lanquage Preprocessors

text for language A

Language Preprocessor

text for language B

COMPILER

load module

Language A is richer than language B.

e.g. MORTRAN, Ratfor. ...

%
t

Program Development Cycle page 20

Program Development Cycle page 21

Testing

Testing shows the presence of bugs.

Testing does NOT show +the absence of
bugs.

l. Exercise your program in everyway
that you can in order to remove all ' in-
fant mortallity' bugs.

2. Read your program looking for cas-
es not accounted for, checks not made
and errors still present.

3. Get someone-else to read your pro-
gram.

MAKE YOUR PROGRAM READABLE

Other Tools

Debuggers - ROSY is a typical micro-
Processor debugger. High level langquage
debuggers with assertions are beginning
to appear.

Document Formatters - many.

- -~ T T T T T VRS T T Y ¥ CTIW TEW | SN

