&%} INTERNATIONAL ATOMIC ENERGY AGENOY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (1TALY)- P.O.B. 88 - MIRAMARE - BATRADA COSTIERA 11 - TELEPEONEHR: 224281/2/3/4/5 8
CABLFE: CENTRATOM «- TELEX 480392~

SMR/LOL - 5

SECOND COLLEGE ON MICROPROGESSORS: TECHNOLOGY AND APPLICATIONS IN PHYSICS

(18 april - 13 May 1983)

ASSEMBLER LANGUAGE PROGRAMMING FOR THE MOTOROLA 6809

" H. von EICK.W '

" DD Division
CH 1211 Geneva 23
Switzerland

; . 1’hese are preliminary lew\.re notes, intended only for distribaticn ie pa.t::lpa.nts. '
B T -) T N e .,:.amg or ertra caples wre avallaole from Room 250.

= — - ——

Assembler language. programming for. the Motorola 6809 “page 2

HARDWARE and SOFTWARE ENVIRONMENT
Hardwara:

Computer Terminal consisting of:
« ‘a keyboard to enter programs, data, text,, etc

+ a CRT display screen to visualize the data we entered and the
messages we receive from the computer system we connect to

. an interface cable to connect the terminal to the computer sys-
tam
Computer System consisting of:
. a matching interface to connect our terminal

« a high speed random access memory to store programs and
their data

« 2 processing unit to control the hardware and to execute the
program(s) stored in the random access memory

» a Jower speed mass storage system (usually a disk) to more
permanently store programs and their data

« a printer to obtain listings
« a "data transport” medium
_ magnetic tape

_ floppy disk or disk cartridge
__ network connection

83-04-19

Assembler

|an.gﬁag-e programming‘for-the Motorola 6309 page 3

HARDWAR

E and SOFTWARE ENVIRONMENT { continued)

Resident - Software:

83-04-19

Oﬁerating System providing:

« input / Output drivers to handle the peripheral equipment
like keyboard, printer, disk, etc ' .

« Command interpreter and program scheduler

. File manager to retrieve, update and store information on the
mass storage device

. Te:;t Editor and utilities for file copy, transfer, ete.

Language system providing:
s+ Language processors like:
_ Macro assembler
_ Compiler(s) (Fo.rtt_ran, Pascal,. Moc'Iula-Z,- Ada, , ate)

_ Iinterpreters { Basic, intermediate languages)

« Library of run time support routines { Fortran library, Pascal
library, etc)

. Linkage editor and loader

« Debugging aids

Asszmbler language programming for thé Motorola 6809 page 4

HARDWARE and SOFTWARE ENVIRONMENT ¢ continued)

Cross - Softwafa:

: Software package that executes-bn a computer, usually called a Host

Computer Preparing code to e;:ecute on another computer, usuaily
called the Target Computer ’

At CERN this technique is widely used to provide support on diffe-
reant hosts for a variety of different target processors:

- » Hosts ave:
CDC Cyber series;-
BEC VAX (WMS or Unix); -
IBM 370 series;
NORD computers;
Siemens 7800 series;

« Targets are:

Intel 8080, 8085:
Motorola 6800, 6801, 6309, 63000
Texas instruments 89800, 99000;

The following language processors are provided:
+ Assemblers for all targets. " :
* Modula-2 for M 6809, M 68000, TMS"QQOO,’ T™MS 99000
* Pascal for'M 68000

Alt language Processors produce CUFOM, the Cern Universal FOrmat
for Object Modyles. Consequence:

* one linkage editor can handle code for all targets

* one librarian can handle code for all targets
+ each target format however needs its own pusher

83-04-19

Assembler language programrﬁing for the Motorola 6809 page 5

HARDWARE and SOFTWARE ENVIRONM_ENT (continued)

Cross - Software (- continued }:

83-04-19

Why does one use cross software? ;

»

Host computer s usually a fime-shared system pf-oviding sim-
ultaneous access for many . computer users (cost effective)

famitiarity with ‘existing tools (command language, text edi-
tor, filing system, etc. , no new learning effect)

the filing system usually provides automatic backup and aflows
sharing of libraries for target computers

host offers high speed printing facility
cross software tools are usually weritten in a higher level lan-

guage and may therefore be more easily . "transported” from
one host system to another one :

Anything against cross software?

a large host computer is expensive
if the central host computer is overicaded, one might have to
wait very long ta have even small assemblies done

everything must be down-line loaded from the host into the
target

some people like to hide and this is much easier, if they have
there own little pet system

Assembler Janguage programming for the Motorola 6809 page 6

First programming problem: Add the first 15 integers

Constraints:

« the integer 15 with which to begin the calculation is kept in a memory
location

« the result should be stored in another memory location

« the program should start at location 0400 hex and return to the systam
monitor

» accumulator A is free for use

Passible solutions: (expressed in a Pascal like syntax)

VAR
Count : INTEGER; {to count the repetitions}
NWal : INTEGER; {the initial value 15}
Sum : INTEGER; {to calculate the sum}
> { WHILE <condition> DO <body> }

Sum:= 0; Count:= @;

WHILE Count < Nval DO BEGIN
Count:= Count * 1;
Sum:= Sum * Count;

END;

> { REPEAT ¢body> UNTIL <condition> }
Sum:= 0; Count:= NVal;
REPEAT
Sum:= Sum * Count;
Count:= Count - 1;
UNTIL Count =

> { FOR <iterative condition> DO <body> }
Sum:= 0;
FOR Count:= 1 TO Nval DO
Sum:= Sum * Count;

83-04-20

Assembler language programming for the Motorola 6808 page 7

First programming problem: Add the first 15 integers (continued)

Let's try to hand_code the REPEAT -- UNTIL construct:

» { REPEAT <body> UNTIL <(condition> }
Sum:= 0; Count:= NVal;
REPEAT
Sum:= Sum * Count;
Count:= Count - 1;
UNTIL Count = 0;

jogation contents opcode address mode comment

0400 4F CLRA inherent Sum:= 0;

0401 B7 201B STA extended

0404 B 201C LDA extended Count:= NVal;
0407 BT 201A STA extended REPEAT

040A BB 201B ADDA extended Sum:= Sum * Count;
040D B7 201B STA extended

2010 B6 201A LDA extended Count:= Count - 1;
2013 8B FF ADDA immediate

2015 26 FO BNE relative UNTIL Count:= 0;
2017 3F 00 MON 0 system call return to monitor
2071A location to keep index

201B location to keep sum

201C OF lacation containing initial value

Are there any problems with this approach?
« easy to make mistakes and nobody checks!

« address calculation and allocation is tedious
+ just imagine you had made an error!

83-04-20

Assembler language programming for the Motorola 6809 page 8

Assembler Language:

The assembler language provides a means to create a computer program. The
goals of such a language are programs that are:

* easier to create

+ easier to modify

+ easier to read and understand

* translated into a machine readable load module

What are the features of such a language?

*» symbolic machine operation codes (mnemonics)
+* symbeolic address assignments and references
_ instruction addresses
— operands
_ operand addresses
e comments and remarks for program documentation
+ relative addressing
. storage reservation and data creation
* expression handling
+ assembler directives

What else does an assembler provide?

listing of the source code including:
— addresses and generated code
- optional titles and subtitles
- optional formatting
— optional cross reference of all symbols
+ detailed error diagnostics
* Parameterized macro facility
» conditional assembly facility
+ absolute and relocatable code in a format suitable for a linkage editor

MES00 M6807 ME805 ME809 MACRO ASSEMBLERS REFERENCE MANUAL
Motorola, MBBMASR(D2), Second Edition, September 1979

83-04-20

AssemBIer language programming for the Motorola 6809 page 9

Assembler Language Elements:
Identifiers:
* consists of 1 to 6 characters
» valid characters in an identifier are:
"A" threugh "Z", "0" through "9", "." and ng"

» first character must alphabetic or "."

Note: Reserved Identifiers

_ A", "B", "D" - accumulators A, B and D (A, B concatenated)
D S - index registers X and Y
_ ", s - user and system stack pointer
. "PC", "PCR" - program counter
_ "ce" - condition code register
- "DP" - direct page register
Constants:

+ decimal constant, range 0 - 65535 inclusive, digits (0-9)

» hexadecimal constant, range 0000 - $FFFF inclusive, either:
- prefixed by "$", followed by digits (0-9) and letters (A-F), or
— postfixed with "H"” and preceded by digits (0-9) and letters (A-F)
first digit must be 0-9

+ octal constant, range 0 - @177777 inclusive, either:
- prefixed by "@", followed by digits (0-7), or
- postfixed with "0O" and preceded by digits (0-7)
+ binary constant, range 0 - $1111111111711111 inclusive, either:
- prefixed by "%", followed by digits (0-1), or
- postfixed with "B" and preceded by digits (0-1}

+ character constant, ASCIl character prefixed with """ {apostrophe)

83-04-20

Assembler language programming for the Motorola 68089 . page 10 Assembler language programming fof the Metorola 6806 . - 7 page 11

Assembler Linguage lElements (eontinued): ' Assembler Language Elements (continued):

Opcodes: _ . p - Label symbols: A label symbol is an identifier that specifies a value and its as-

» an opcode is a mnemanic for a machine instruction (CLR, DEC, etc.)

« there is a one to one'l:or'r'-espon'dence between .opcodes and machine in-
structions C

« the assembler verifies the opcode, its op'erands and generates the correct
 binary code for the load module

Assembler directives:

Assembler directives are instructions to the assembler. More commonly they

‘are called: pssudo opcodes. According to their function they may be

grouped as follows:)

« module identification { NAM, END)

« section control (ASCT, BSCT, COMM, CSCT, DSCT, ORG, P5CT)

+ symbol definition (EQU, REG, SET)

« module linkage (XDEF, XREF)

« data generation, storage reservation (BSZ, FCB, FCC, 'FDB, RMB)

« object code control (OPT, SETDP }

« macro definition (MACRO, NARG, ENDM)

« conditional assembly (ENDC, FAIL, IFC, IFNC, IFEQ, IFGE, IFGT, IFLE,
IFLT, IFNE)

« listing contrel (OPT, PAGE, SPC, TTL)

83-04-20

sociated attributes. The assembler has four types ‘of label symbols:
Abéolute Symbol:
« the symbol is equated (EQU) or SE‘I" to an absolute value
.. the symbol is defingd in the absolute section of the.program

+ its value is unaffected by any possible future applications of the tink-edi-
tor to the module ' ' ' :

Relative Symbrwol: |

» the symbcl is equated { EQU) or SET to a relative ._e:ymbol

« the symbol is defined in a relative section of the progra'm

» its value is affectec.! by future applications of the link-editor to the rnodulé
External éymbol:

« the symbol is 1iste__d as -parameter in an XREF pseudo‘l instruction

+ the symbol is not de-f'med in the current assembly module

« its value is set to zero and must be defined during a subsequent link-edi-
tor run

Undefined Symbol:

« the symbol is not defined in the current assembly and not listed as par-
ameter in an. XREF pseudo instruction

» the occurrence of such a symbol is indicated as an error

83-04-20

Assembler language programming for the Motorola 6809 page 12 Assembler language programming for the Motorola 6809 page 13 |

Assembler Language Elements (continued): Assembler Source Statement Format:
Expressions: Each source statement for the assembier may include up to four fields: t
‘ * 8n expression is a combination of symbols, constants, algebraic operatars, Labsel field: .
and parenthesas .
The label field starts in column one of the line. If the line starts with:
* an expression specifies a value which is to be used as an operand
* 3 "* (star), then the line is treated as a comment line
* expressions follow the conventional rules of algebra
« a " " (space), then the label fisld is empty
« operators are;
: + with an identifier, then this identifier is called a label symbol
* - multiplication "*", division "/" '
- an identifier may occur only once in the label field *
! — addition "+", subtraction "-" . (except with SET directive }
- exponentiation "!_" : — @ label symbol is assigned the value of the current program counter
. (except for some directives like EQU, MACR, REG AND SET)
' - logical AND "1.", inclusive OR "1+" exclusive OR “IX"

+ for any line starting differently an error indication is given
— shift left "1<", shift right "1>"
Operation field:
- rotate left "IL", rotate right "1R"
The operation field occurs after the label field preceded by at least one
. * expressions may contain relocatable or externally defined symbois but: space and it must contain a symbol of one of the following three types:

‘ — relative symbols cannot be multiplied, divided or operated « opcade (machine instruction mnemonic)
on with the special two-character operators
* pseudo (assembler directive)
— a relative or external symbol may have an absolute value :
added to or subtracted from it, the resylt is relative * macro call { evaluated macro body inserted in place of call)

~ & relative symbol may be subtracted from another relative symbol

provided they are both defined in the same section, the result
is absolute :

83-04-20 . 83-04-21

Assembler language preogramming for the Motorcla 6809 page 14 Assembler language progrémming for the Motorola 6809 page 15
Assembler Source Statement Format (continued): Macro definition - Conditional assembly:
Operand field: MON - macro for ROSY monitor requests
Follows operation field preceded by at least one space. Interpretation is de-
pendent on contents of operation field. For opcodes it is as follows: label operation operand(s) comment field
*
oparand format M 6809 addressing mode * define range of monitor requests
no operand accumulator and inherent *
{expression> direct, extended or relative MONMIN EQU 0 lowest monitor request
({expression> forced direct MONMAX EQU 46 highest monitor request
>{expression> forced extended MCNSTOP EQU 1 monitor request to stop execution
[<expression>] extended indirect SPC 3
{axpression>, R indexed
{<expression>, R 8-bit offset indexed * define macro to handle moniter requests
»expression>, R 16-bit offset indexed *
<{accumuiator>,Q accumulator offset indexed MON MACR
[<expression>,R] indexed indirect * assert we have one and only cne parameter
([<expression>,R] 8-bit offset indexed indirect IFNE NARG-1
>[<expression>,R] 16-bit offset indexed indirect FAIL too few or too many arguments
[<accumulator>,Q] accumulato.r‘ offset indexed MONPAR SET MONSTOP
Q+ auto increment by 1 ENDC
Q++ auto increment by 2 IFEQ NARG-1
[Q**] auto increment indirect MONPAR SET (]
-Q auto decrement by 1 ENDC
--Q auto decrement by 2 * _assert parameter is valid
[--al auto decrement indirect IFLT MONPAR-MONMIN
#<{expression> immediate FAIL parameter below lowest call
{register list> immediate MONFAR SET MONSTOP
ENDC
with: R= S| U | X]|Y | PC} PCR IFGT MONPAR-MONMAX
and : Q= SjUI X1Y FAIL parameter above highest call
MONPAR SET MONSTOP
ENDC
Comment field: * generate the menitor call
Last field of an assembler source statement, separated by at least one blank SWI
from the preceding field, may contain any printable ASCI! character. FCB MONPAR
Note: It is essential to comment the flow of a program! ENDM
83-04-21 83-04-21

Assembler language programming for the Motorola 6809 page 18 Assembler language programming for the Motorola 6809 . . page 17
Macro definition - Conditional assembly: (continued) First programming problem: Add the first 15 integers { revisited }
Demonstrate use of MON macro: Now let's write the REPEAT -- UNTIL constrhct in M 6809 assembly language:
label operation operand(s) comment field .
Demonstrate MACRO and conditional assembly CROSS ASSEMBLER FOR MOTOROLA 68 > NAM INTSUM identifies the assembly unit 4
vse the monitar call macro VERS. 1.1, RUN AT CERN'S IBM cCO; * = F
LINE ADDR CODE EXTENSIONS . SOURCE - STATEMEN T * Thisg program will add the first 15 integers.
T » *
2 * demonstrate legal and illegal calls of MON macro
3] * On entry:
5 % first a legel call * accumulator A is free for use
; * select macro expansion to saa whet happens * the integer 15 is stored in location -NVAL-
g gg; fk'"Ex * the program should start at location hex 400
10 IFNE NARG-1 *
11 FAIL too few or too many arguments .
12 MONPAR SET MONSTOP * On exit:
H ??Eg NARG-1 * location -SUM- contains the calculated sum
15 oF MONPAR SET 15 *
}; ;gEC MONPAR-MONM : d
T AR=MONMIN i functi
12 FAIL parameter below lowest call M.RET EQU 4] monitor return function code
:1!; MONFAR 255 MONSTOP
[
21 IFGT MONPAR-MONMAX » ORG $400 set program counter to $400
22 FAIL parameter above highest call - -
gg MONPAR SEBCMUNSTDP ° s START CLRA clear -SUM
EN
25 opoo 3F SWI STA SUM
26 0001 oF fCB, TMONPAR LDA NVAL load initial loop value
28 LOQP STA COUNT save value of loop count
29 * ou ill 1 ils
3 X desalact macro expansion ADDA SUM . add loop count to SUM
1 ‘
gg gg; ROCL . NOMEX STA SUM and save result
¥x DIAGNUSTIC MK LDA COUNT re-load Iom-:: count
36 too faw or too many aragnent: . ADDA #-1 decrement it -
¥x¥ DIAGNOSTIC »ux BNE LOOP repeat until count is zero
39 ¢ paramater below 1°“°“M§ﬁ“ 50 > MON M.RET return to moniter system
" o 2§?G“2§l§§e::: sbova highest call * declare variables, reserve and preset memory 3
M initial | is 15
43 9008 END £ IVAL EQU 15 initial o.op value is
> COUNT RMB 1 to contain the loop count
SUM RMB 1 to contain the final sum
> NVAL FCB IVAL create initial value
£ END START set program entry point

83-04-21 83-04-21

