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Determinism, Chaos, Randomness

Helmut Moritz
Graz University of Technology

Abstract. This paper reviews two separate but related problems, which both go back to
Henri Poincaré: the “method of arbitrary functions”, which provides a reduction of physical

probabilities to instability and symmetry, and the general theory of nonlinear dynamic systems,
popularly known as Chaos Theory.

1 Introduction

Let us start with three quotations:

An intelligent being which, for some given moment of time, knew all the forces
by which nature is driven, and the relative position of the objects by which it is
composed (provided the being’s intelligence were so vast as to be able to analyze
all the data), would be able to comprise, in a single formula, the movements of the
largest bodies in the universe and those of the lightest atom: nothing would be
uncertain to it, and both the future and the past would be present to its eyes. The
human mind offers in the perfection which it has been able to give to astronomy,
a feeble inkling of such an intelligence.

Pierre Simon de Laplace (1799)

We collectively wish to apologize for having mislead the general educated public
by spreading ideas about the determinism of systems satisfying Newton’s laws of
motion that, after 1960, were proved incorrect.

Sir James Lighthill (1994)

Imagine the figure formed by these two curves and their infinitely many intersec-
tions ...; these intersections form a kind of meshwork, tissue, or infinitely dense
network ...One is struck by the complexity of this figure which I do not even
attempt to draw. Nothing is better suited to give us an idea of the complexity of
the three-body problem and in general of all the problems of dynamics in which
there is no uniform integral [of the motion] ...

Henri Poincaré (1899)



These three quotations, each about a century apart, show:

~ classical determinism (Laplace)
- deterministic chaos (Lighthill)

~ the essence of chaoticity (Poincaré)

Classical determinism, based on Newtonian mechanics, considers the universe com-
pletely determined by stable deterministic laws wich, in principle, can be known, as well
as their stable solutions, by a superhuman intelligent being (“Laplace’s demon™).

A very famous example is the two-body problem of classical mechanics, such as the
motion of the Earth around the Sun, along a Kepler ellipse, which is perfectly stable
from time = —oc¢ to time = +ooc.

Surprisingly enough, Poincaré showed that even a relatively small perturbing body
such as the Moon (three-body problem) changes the classical simplicity in a completely
unexpected and dramatic (“chaotic” ) fashion. The trajectories, far from forming regular
geometric curves, show an irregular meshwork which Poincaré “does not even attempt
to draw”. Only present-day computers can plot such an intricate mesh (Figure 1).
It can be shown that, in a certain sense, chaotic behavior is the rule and the simple

Figure 1: Poincaré’s “chaotic” behavior of trajectories (after Herrmann 1994)

classical motions, which Laplace had in mind, are rather exceptions. This is the reason
for Lighthill’s impressive statement quoted above.



2 Instability

Stability is a continuous dependence of the trajectories from the initial conditions: small
causes lead to small effects. Instability means that small causes may produce large
effects.

Again nobody can express the situation better than Poincaré (1908). From the
English translation (Appendix B) of his book we quote from p. 67:

“We will select unstable equilibrium as our first example. If a cone is balanced on
its point, we know very well that it will fall, but we do not know to which side;
it seems that chance alone will decide. H the cone were perfectly symmetrical,
if its axis were perfectly vertical, if it were subject to no other force but gravity,
it would not fall at all. But the slightest defect of symmetry will make it lean
slightly to one side or other, and as soon as it leans, be it ever so little, it will fall
altogether to that side. Even if the symmetry is perfect, a very slight trepidation,
or a breath of air, may make it incline a few seconds of arc, and that will be
enough to determine its fall and even the direction of its fall, which will be that
of the original inclination.

A very small cause which escapes our notice determines a considerable effect that
we cannot fail to see, and then we say that that effect is due to chance. If we knew
exactly the laws of nature and the situation of the universe at the initial moment,
we could predict exactly the situation of that same universe at a succeeding mo-
ment. But, even if it were the case that the natural laws had no longer any secret
for us, we could still only know the initial situation approzimately. If that enabled
us to predict the succeeding situation with the sarne approzrimation, that is all we
require, and we should say that the pheromenon had been predicted, that is gov-
erned by laws. But it is not always so; it may happen that small differences in the
initial conditions produce very great ones in the final phenomena. A small error
in the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon.”

Another example of instability in classical mechanics is the fall of raindrops, consid-
ered small rigid spheres (Figure 2). This is of course unrealistic, but it is simple, and
realistic liquid raindrops would lead to essentially the same result. Again, neighboring
trajectories suffer an instability at the top of the roof: a raindrop may go down the
left-hand side of the roof, whereas an arbitrarily close second raindrop may take the
right-hand side of the roof.

Still another example is the throw of a coin: on the first throw, the coin may show
“head”, whereas on another throw (even if we try to reproduce as well as possible the
“initial conditions” provided by the throwing hand) may show “tail”.

On the average, both sides of the coin are equally likely: performing a great number
of coin tosses, head and tail will have equal probability p = 1/2, provided the coin is
perfectly symmetric.

-



Figure 2: Trajectories of raindrops falling on a roof

Quite similar is the throw of a die: on repeatedly throwing a perfectly symmetric
die, each face will have equal probability.
Thus we see that the initial conditions and the laws of mechanics become almost

irrelevant for the statistical outcome, and symmetry takes over; cf. (Moritz 1995, p. 84);
Appendix A.

3 The Implication of Roulette

In the beginning ... there was Poincaré.

E. Atlee Jackson

The game of roulette is well-known to gamblers in gambling casinos. Since scientists
are not usually gamblers, let me briefly sketch the very simple principle: The roulette
wheel is divided into a large number of equal alternate red and black sectors (Fig. 3). It
rotates with little friction, until it comes finally to a stop. This stop evidently is again
practically independent of the initial condition (the fourneur causing the wheel to spin,
whereupon the wheel continues to rotate freely). The wheel stops and a fixed needle
points either to a red or a black section, determining whether we lose or win. With a
fair wheel, red and black are evidently equally probable (p; = p; = 1/2).

Poincaré investigated this case (Poincaré 1908, p. 76) and similar cases mathemati-
cally in (Poincaré 1912, chapter XVI). Thus he created a general mathematical theory,
known by the name of “method of arbitrary functions”. This method was further devel-
oped by Hopf (1937) and others; an excellent review with references is (Engel 1992).

Much better known is Poincaré’s role as a founder of nonlinear dynamics (“determin-
istic chaos”) already mentioned above. It should be mentioned, however, that, together
with Birkhoff (1927), Hopf (1937) was also a forerunner of chaos theory, which exploded
with the work of A.N. Kolmogorov (also the founder of modern probability theory!) and
his associate V.I. Arnold after 1954 and, independently, of E.N. Lorenz after 1963. Is
it surprising that Poincaré (1908, p. 68; see Appendix B) already fully understood and



Figure 3: A roulette wheel

described meteorological instability, which was the starting point of Lorenz’ pioneering
investigations?

My favorite books on chaos theory are (Arnold and Avez 1968; a classic in content
and readability), (Abraham and Shaw, 1992; unsurpassed simple presentation of the
complex geometry without formulas!), (Hilborn 1994; excellent introduction to concepts
and methods), and (Jackson 1990; comprehensive geometric treatment on high but
accessible level). Herrmann (1994) and Korsch and Jod! (1994) give beautiful and highly
instructive computer programs with diskettes. The game of roulette has important
implications indeed!

4 The Drunkard and the Gaussian Distribution

The most important probability distribution is the normal distribution

1 z’
brd

€ : (1)

flz) = —=
where m and e are the standard mathematical constants and o (the dispersion) is a
constant characterizing the distribution.

Its importance consists in the Central Limit Theorem: a random phenomenon,
caused by a combination of many small random influences will be normally distributed
even if the small original influences are arbitrarily distributed.

1]



Now the roulette (of radius R) has a “limiting distribution”

flz) = ET%E = const. (2)

that is, equal distribution on the circle, because of the very symmetry of the wheel.
For the infinite straight line, however, a uniform distribution is impossible because the
constant would have to be identically zero (for B — o0), in contradiction to the well-
known fact that the area under the curve f(z) must be 1 (corresponding to probability
1 or certainty).

Thus translational symmetry for f(z) is impossible: one point (z = 0) must be fixed.
Then which symmetry is exhibited by the Gaussian distribution (1)?

It is rotationally symmetric: rotating the curve (1) around the y—axis produces a
distribution which again is a two—dimensional normal distribution. A rotation is a
special case of a linear transformation. This rotational invariance and invariance with
respect to dimension 1 or 2 is a particular case of two basic invariances:

1. invariance with respect to dimension (there are normal distributions in n dimen-
sions) and

2. invariance with respect to linear transformations.

Linear or linearized laws are still of basic importance in physics. Even quantum
theory is strictly linear. Einstein’s General Theory of Relativity is approximately linear,
although nonlinearities (e.g. “black holes”) are of increasing importance. Of course,
chaos theory is basically nonlinear, and so is the “fractal geometry of nature” according
to B. Mandelbrot. Still, most of contemporary physics is linear or linearizable.

The linearity of (1) with respect to linear transformation is also at the root of the
Central Limit Theorem: only a linearly invariant law can be a limiting distribution of a
sum of many small random influences, since a sum is linear by its very definition! (This
heuristic argument, however, would be a poor “proof” of the Central Limit Theorem!)

A beautiful physical interpretation of the Central Limit Theorem is Galton’s Board.
This apparatus is described in many books on statistics and intuitive mathematics {even
the great Kolmogorov does not distain it {Kolmogorov 1988, p. 185)). Fig. 4 shows
two versions found in the literature. Falling small balls are “randomly” deviated by
symmetrically arranged nails (or similar obstacles). At least in the left figure, the ball
performs a random walk, that is, every step can be to the right or to the left with
equal probability. (A random walk is performed by a “perfect drunkard” who is so
drunk that he cannot distinguish right or left, but still not so drunk as to be unable to
walk). The similarity with the instability of Fig. 2 is evident. Poincaré is reported to
have said, partly in jest no doubt, that there must be something mysterious about the
normal distribution since mathematicians think it is a law of nature whereas physicists
are convinced that it is a mathematical theorem ...



O
SOPIET ISP PILLS IS
PIIIISIILIELLSEST LY
VP I PP e
VIS VI T IIITI IV
Nrerrrrrrrrresserss
VIV P P00 P P04
POPPIIINIIIIIIIIIII,
V2222000 e PP
SIS PS ISP
VI IIIIPI IV I PP

Figure 4: Two versions of Galton’s Board

5 Final Remark

What is randomness? Paraphrasing a famous statement of St. Augustine about time,
we may say: “If nobody asks me, I know what randomness is; if I want to explain it to
somebody, then I don’t know what to say.”

At any rate, randomness has many aspects. Chaos theory shows that determinism is
compatible with what we would call random behavior. Conversely, statistical mechanics
(which we have not touched yet) derives the “deterministic” laws of thermodynamics
from the “probabilistic” statistical mechanics.

For a somewhat provocative interpretation of the toss of a coin assume that we have
a law which associates to any given digit 1 the occurrence of “head”, and to any given
digit 0 the occurrence of “tail”.

Take any real number in the interval (0, 1) and represent it as a binary number
(known to everyone in our computer age):

z = 0.011000100111110100... (3)

If we prescribe such a real number ezactly by means of an infinite number of binary
digits, the sequence of coin tosses is perfectly, “deterministically”, known in advance . ..

The basic problem in this example is of course the impossibility of determining or
fixing ezactly the boundary condition (already pointed out by Poincaré above), in our
case the number (3). This, however, is a general feature of all physical measurements:



they can never be “mathematically exact” (whatever this means). This is the reason for
the probability of coin tossing, dice throwing, roulette, etc.

By the way, the normal distribution 1s the standard tool of the theory of measuring
errors and has been developed by Laplace and Gauss for this purpose.

As a matter of fact, quantum theory is essentially probabilistic (cf. Ruhla 1992,
chapter 7). Are at least some of the small “random influences” on measuring errors due
to random quantum fluctuations (Moritz 1995, pp. 254-255)?

Finally we mention that probabilistic methods are very successfully applied in the
most austere and “pure” branch of mathematics: number theory. As the beautiful book-
let (Kac 1959, p. 53) expresses it, “primes play a game of chance”. Normal distribution
even plays a role in number theory. One of the basic concepts of statistical mechanics
and chaos theory, ergodicity (Birkhoff 1927; Hopf 1937; Arnold and Avez 1968), occurs
with continued fractions (Kac 1959, p. 89).

And very delicate number-theoretic property decide about stability or instability of
trajectories of nonlinear dynamic systems (“KAM theorem”, after A.N. Kolmogorov,
V.I. Arnold and J. Moser) ...

We are back at the beginning: it is time to stop.
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IV,

CHANCE.

L.

“ How can we venture to speak of the laws of chance?
Is not chance the antithesis of all law?” It is thus
that Bertrand expresses himself at the beginning of
his *“Calculus of Probabilities.” Probability is the
opposite of certainty ; it is thus what we are ignorant
of, and consequently it would seem to be what we
cannot calculate. There is here at least an apparent
contradiction, and one on which much has already
been written.

To begin with, what is chance? The ancients
distinguished between the phenoumena which seemed
to obey harmonious laws, established once for all,
and those that they attributed to chance, which were
those that could not be predicted because they were
not subject to any law. In each domain the precise
laws did not decide everything, they only marked
the limits within which chance was allowed to move.
In this conception, the word chance had a precise,
objective meaning; what was chance for one was
also chance for the other and even for the gods.

But this conception is not ours. We have become
complete determinists, and even those who wish to
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reserve the right of human free will at least allow
determinism to reign undisputed in the inorganic
world. Every phenomenon, however trifling it be,
has a cause, and a mind infinitely powerful and
infinitely well-informed concerning the laws of nature
could have foreseen it from the beginning of the ages.
If a being with such a mind cxisted, we could play
no game of chance with him; we should always
lose.

For him, in fact, the word chance would have no
meaning, or rather there would be no such thing as
chance. That there is for us is only on account of
our frailty and our ignorance. And even without
going beyond our frail humanity, what is chance
for the ignorant is no longer chance for the learned.
Chance is only the measure of our ignorance. For-
tuitous phenomena are, by definition, those whose
laws we are ignorant of.

But is this definition very satisfactory? When the
first Chaldean shepherds followed with their eyes
the movements of the stars, they did not yet know
the laws of astronomy, but would they have dreamed
of saying that the stars move by chance? If a
modern physicist is studying a new phenomenon,
and if he discovers its law on Tuesday, would he
have said on Monday that the phenumenon was
fortuitous? But more than this, do we not often
invoke what Bertrand calls the laws of chance in
order to predict a phenomenon? For instance, in
the kinetic theory of gases, we find the well-known
laws of Mariotte and of Gay-Lussac, thanks to the
hypothesis that the velocities of the gaseous mole-
cules vary irregularly, that is to say, by chance.
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The observable laws would be much less simple,
say all the physicists, if the velocities were regulated
by some simple elementary law, if the molecules
were, as they say, organised, if they were subject to
some discipline. It is thanks to chance—that is to
say, thanks to our ignorance, that we can arrive at con-

clusions. - Then if the word chance is merely synony-.

mous with ignorance, what does this mean? Must
we translate as follows P—

“You ask me to predict the phenomena that will
be produced. If I had the misfortune to know the
laws of these phenomena, I could not succeed except
by inextricable calculations, and I should have to
give up the attempt to answer you; but since I am
fortunate enough to be ignorant of them, I will
give you an answer at once. And, what is more
extraordinary still, my answer will be right.”

Chance, then, must be something more than the
name we give to our ignorance. Among the phe-

nomena whose causes we are ignorant of, we must

distinguish between fortuitous phenomena, about
which the calculation of probabilities will give us
provisional information, and those that are not for-
tuitous, about which we can say nothing, so long
as we have not determined the laws that govern
them. And as regards the fortuitous phenomena
themselves, it is clear that the information that the
calculation of probabilities supplies will not cease to
be true when the phenomena are better known.

The manager of a life insurance company does
not know when each of the assured will die, but he
relies upon the calculation of probabilities and on
the law of large numbers, and he does not make a
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mistake, since he is able to pay dividends to his
shareholders. These dividends would not vanish if
a very far-sighted and very indiscreet doctor came,
when once the policies were signed, and gave the
manager information on the chances of life of the
assured. The doctor would dissipate the ignorance
of the manager, but Le would have no effect upon
the dividends, which are evidently not a result of
that ignorance.
I1.

In order to find the best definition of chance, we
must examine some of the facts which it is agreed
to regard as fortuitous, to which the calculation of
probabilities seems to apply. We will then try to
find their common characteristics,

We will select unstable equilibrium as our first
example. If a cone is balanced on its point, we know
very well that it will fall, but we do not know to
which side; it seems that chance alone will decide.
If the cone were perfectly symmetrical, if its axis
were perfectly vertical, if it were subject to no other
force but gravity, it would not fall at all. But the
slightest defect of symmetry will make it lean slightly
to one side or other, and as soon as it leans, be it
ever so little, it will fall altogether to that side,
Even if the symmetry is perfect, a very slight trepida-
tion, or a breath of air, may make it incline a few
seconds of arc, and that will be enough to determine
its fall and even the. direction of its fall, which will be
that of the original inclination.

A very small cause which escapes our motice
determines a considerable effect that we cannot fail
to see, and then we say that that effect is due to
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chance. If we knew exactly the laws of nature and
the situation of the universe at the initial moment,
we could predict exactly the situation of that same
universe at a succeeding moment. But, even if it
were the case that the natural laws had no longer
any secret for us, we could still only know the initial
situation agproximately. 1f that enabled us to predict
the succeeding situation witk the same approximation,
that is all we require, and we should say that the
phenomenon had been predicted, that it is governed
by laws. But it is not always so; it may happen that
small differences in the initial conditions produce very
great ones in the final phenomena. A small error in
the former will produce an enormous error in the
latter. Prediction becomes impossible, and we have
the fortuitous phenomenon.

Our second example will be very much like our
first, and we will borrow it from meteorology. Why
have meteorologists such difficulty in predicting the
weather with any certainty? Why is it that showers
and even storms seem to come by chance, so that
many people think it quite natural to pray for rain
or fine weather, though they would consider it
ridiculous to ask for an eclipse by prayer? We see
that great disturbances are generally produced in
regions where the atmosphere is in unstable equilib-
rium. The meteorologists see very well that the
equilibrium is unstable, that a cyclone will be formed
somewhere, but exactly where they are not in a
position to say; a tenth of a degree more or less at
any given point, and the cyclone will burst here and
not there, and extend its ravages over districts it
would otherwise have spared. If they had been aware
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of this tenth of a degree, they could have known
it beforechand, but the observations were neither
sufficiently comprehensive nor sufficiently precise, and
that is the reason why it all seems due to the
intervention of chance. Here, again, we find the
same contrast between a very trifling cause that
is inappreciable to the observer, and considerable
effects, that are sometimes terrible disasters,

Let us pass to another example, the distribution of
the minor planets on the Zodiac. Their initial
longitudes may have had some definite order, but
their mean motions were different and they have been
revolving for so long that we may say that practically
they are distributed &y chance throughout the Zodiac.
Very small initial differences in their distances from
the sun, or, what amounts to the same thing, in their
~ mean motions, have resulted in enormous differences
in their actual longitudes. A difference of a thousandth
part of 2 second in the mean daily motion will have
the effect of a second in three years, a degree in ten
thousand years, a whole circumference in three or
four millions of years, and what is that beside the
time that has elapsed since the minor planets became
detached from Laplace’s nebula? Here, again, we
have a small cause and a great effect, or better, small
differences in the cause and great differences in the
effect. ,

The game of roulette does not take us so far as it
might appear from the preceding example. Imagine
a needle that can be turned about a pivot on a dial
divided into a hundred alternate red and black
sections. If the needle stops at a red section we win ;
if not, we lose. Clearly, all depends on the initial
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impulse we give to the needle. I assume that the
needle will make ten or twenty revolutions, but it
will stop earlier or later according to the strength
of the spin I have given it. Only a variation of a
thousandth or a two-thousandth in the impulse is
sufficient to determine whether my needle will stop
at a black section or at the following section, which
is red. These are differences that the muscular sense
cannot appreciate, which would escape even more
delicate instruments. It is, accordingly, impossible for
me to predict what the needle I have just spun will
do, and that is why my heart beats and I hope for
everything from chance. The difference in the cause
is imperceptible, and the difference in the effect is
for me of the highest importance, since it affects my
whole stake.
II1.

In this connexion I wish to make a reflection that
is somewhat foreign to my subject. Some years
ago a certain philosopher said that the future was
determined by the past, but not the past by the
future; or, in other words, that from the knowledge
of the present we could deduce that of the future
but not that of the past; because, he said, one cause
can produce only one effect, while the same effect can
be produced by several different causes. It is obvious
that no scientist can accept this conclusion. The laws
of nature link the antecedent to the consequent in
such a way that the antecedent is determined by the
consequent just as much as the consequent is by the
antecedent. But what can have been the origin of
the philosopher’s error? We know that, in virtue
of Carnot’s principle, physical phenomena are irrevers-




CHANCE. ve:

ible and that the world is tending towards uniformity,
When two bodies of different temperatures are in
conjunction, the warmer gives up heat to the colder,
and accordingly we can predict that the temperatures
will become equal. But once the temperatures have
become equal, if we are asked about the previous state,
what can we answer? We can certainly say that one
of the bodies was hot and the other cold, but we
cannot guess which of the two was formerly the
warmer.

And yet in reality the temperatures never arrive
at perfect equality. The difference between the
temperatures only tends towards zero asymptotically.
Accordingly there comes a moment when our
thermometers are powerless to disclose it. But if
we had thermometers a thousand or a hundred
thousand times more sensitive, we should recognize
that there is still a small difference, and that one of
the bodies has remained a little warmer than the
other, and then we should be able to state that this
is the one which was formerly very much hotter than
the other.

So we have, then, the reverse of what we found in
the preceding examples, great differences in the cause
and small differences in the effect. Flammarion once
imagined an observer moving away from the earth
at a velocity greater than that of light. For him
time would have its sign changed, history would be
reversed, and Waterloo would come before Austerlitz,
Well, for this observer effects and causes would be
inverted, unstable equilibrium would no longer be the
exception ; on account of the universal irreversibility,
everything would seem to him to come out of a kind
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of chaos in unstable equilibrium, and the whole of
nature would appear to him to be given up to chance.

IV.

We come now to other arguments, in which we
shall see somewhat different characteristics appearing,
and first let us take the kinetic theory of gases. How
are we to picture a receptacle full of gas? Innumer-
able molecules, animated with great velocities, course
through the receptacle in all directions ; every moment
they collide with the sides or else with one another,
and these collisions take place under the most varied
conditions. What strikes us most in this case is not
the smallness of the causes, but their complexity.
And yet the former element is still found here, and
plays an important part. If a molecule deviated
from its trajectory to left or right in a very small
degree as compared with the radius of action of the
gaseous molecules, it would avoid a collision, or would
suffer it under different conditions, and that would
alter the direction of its velocity after the collision
perhaps by 9o or 180 degrees.

That is not all. It is enough, as we have just seen,
that the molecule should deviate before the collision
in an infinitely small degree, to make it deviate after
the collision in a finite degree. Then, if the molecule
suffers two successive collisions, it is enough that it
should deviate before the first collision in a degree of
infinite smallness of the second order, to make it deviate
after the first collision in a degree of infinite small-
ness of the first order, and after the second collision
in a finite degree. And the molecule will not suffer
two collisions only, but a great number each second.
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So that if the first collision multiplied the deviation
by a very large number, A, after n collisions it will be
multiplied by A= It will, therefore, have become very
great, not only because A is large—that is to say,
because small causes produce great effects—but be-
cause the exponent » is large, that is to say, because
the collisions are very numerous and the causes very
complex. \

Let us pass to a second example. Why is it that
in a shower the drops of rain appear to us to be
distributed by chance? It is again because of the
complexity of the causes which determine their
formation. lons have been distributed through the
atmosphere ; for a long time they have been sub-
jected to constantly changing air currents; they have
been involved in whirlwinds of very small dimensions,
so that their final distribution has no longer any
relation to their original distribution. Suddenly the
temperature falls, the vapour condenses, and each of
these ions becomes the centre of a raindrop. In
order to know how these drops will be distributed
and how many will fall on each stone of the pave-
ment, it is not enough to know the original position
of the ions, but we must calculate the effect of a
thousand minute and capricious air currents.

It is the same thing again if we take grains of dust
in suspension in water. The vessel is permeated by
currents whose law we know nothing of except that
it is very complicated. After a certain length of
time the grains will be distributed by chance, that
is to say uniformly, throughout the vessel, and this
is entirely due to the complication of the currents
If they obeyed some simple law—if, for instance
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the vessel were revolving and the currents revolved
in circles about its axis—the case would be altered,
for each grain would retain its original height and
its original distance from the axis.

We should arrive at the same result by picturing
the mixing of two liquids or of two fine powders.
To take a rougher example, it is also what
happens when a pack of cards is shuffled. At
each shuffle the cards undergo a permutation similar
to that studied in the theory of substitutions.
What will be the resulting permutation? The prob-
ability that it will be any particular permutation (for
instance, that which brings the card occupying the
position ¢ (#) before the permutation into the position
n), this probability, I say, depends on the habits of
the player. But if the player shuffles the cards long
enough, there will be a great number of successive
permutations, and the final order which results will
no longer be governed by anything but chance; I
mean that all the possible orders will be equally
probable. This result is due to the great number
of successive permutations, that is to say, to the
complexity of the phenomenon.

A final word on the theory of errors. It is a case
in which the causes have complexity and multiplicity.
How numerous are the traps to which the observer
is exposed, even with the best instrument. He must
take pains to look out for and avoid the most flagrant,
those which give birth to systematic errors. But
when he has eliminated these, admitting that he
succeeds in so doing, there still remain many which,
though small, may become dangerous by the ac-
cumulation of their effects. It is from these that

e e T e T TR AP FA R = 2
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accidental errors arise, and we attribute them to
chance, because their causes are too complicated and
too numerous. Here again we have only small causes,
but each of them would only produce a small effect ;
it is by their union and their number that their effects
become formidable. | |

V.

There is yet a third point of view, which is less im-
portant than the two former, on which I will not lay so
much stress. When we are attempting to predict a
fact and making an examination of the antecedents,
we endeavour to enquire into the anterior situation.
But we cannot do this for every part of the universe,
and we are content with knowing what is going
on in the neighbourhood of the place where the fact
will occur, or what appears to have some connexion
with the fact. Our enquiry cannot be complete, and
we must know how to select. But we may happen
to overlook circumstances which, at first sight, seemed
completely foreign to the anticipated fact, to which
we should never have dreamed of attributing any
influence, which nevertheless, contrary to all anticipa-
tion, come to play an important part.

A man passes in the street on the way to his
business. Some one familiar with his business couild
say what reason he had for starting at such an hour
and why he went by such a street. On the roof a
slater is at work. The contractor who employs him
could, to a certain extent, predict what he will do.
But the man has no thought for the slater, nor the
slater for him; they seem to belong to two worlds
completely foreign to one another. Nevertheless
the slater drops a tile which kills the man, and we
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should have no hesitation in saying that this was
chance.

Our frailty does not permit us to take in the whole
universe, but forces us to cut it up in slicess, We
attempt to make this as litfle artificial as possible,
and yet it happens, from time to time, that two of
these slices react upon each other, and then the effects
of this mutual action appear to us to be due to chance.

[s this a third way of conceiving of chance? Not
always; in fact, in the majority of cases, we come
back to the first or second. Each time that two
worlds, generally foreign to one another, thus come
to act upon each other, the laws of this reaction
cannot fail to be very complex, and moreover a very
small change in the initial conditions of the two
worlds would have been enough to prevent the
reaction from taking place. How very little it would
have taken to make the man pass a moment later,
or the slater drop his tile a moment earlier !

VL

Nothing that has been said so far explains why
chance is obedient to laws. - Is the fact that the
causes are small, or that they are complex, sufficient
to enable us to predict, if not what the effects will
be in each case, at least what they will be on the
average? In order to answer this question, it will
be best to return to some of the examples quoted
above,

I will begin with that of roulette. I said that the
point where the needle stops will depend on the
initial impulse given it. What is the probability that
this impulse will be of any particular strength? I
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do not know, but it is difficult not to admit that
this probability is represented by a continuous
analytical function. The probability that the impulse
will be comprised between « and e+« will, then,
clearly be equal to the probability that it will be
comprised between a+e¢ and a+ 2¢, provided that « is
very small. This is a property common to all
analytical functions. Small variations of the function
are proportional to small variations of the variable.

But we have assumed that a very small variation in
the impulse is sufficient to change the colour of ‘the
section opposite which the needie finally stops.
From « to a+e¢ is red, from a+e¢ to a+2¢ is black.
The probability of each red section is accordingly the
same as that of the succeeding black section, and
consequently the total probability of red is equal
to the total probability of black.

The datum in the case is the analytical function
which represents the probability of a particular
initial impulse. But the theorem remains true, what-
ever this datum may be, because it depends on a
property common to all analytical functions. From
this it results finally that we have no longer any need
of the datum. -

What has just been said of the case of roulette
applies also to the example of the minor planets.
The Zodiac may be regarded as an immense roulette
board on which the Creator has thrown a very great
number of small balls, to which he has imparted
different initial impulses, varying, however, according
to some sort of law. Their actual distribution is
uniform and independent of that law, for the same
reason as in the preceding case. Thus we see why




78 SCIENCE AND METHOD.

phenomena obey the laws of chance when small
differences in the causes are sufficient to produce
great differences in the effects. The probabilities of
these small differences can then be regarded as
proportional to the differences themselves, just be-
cause these differences are small, and small increases
of a continuous function are proportional to those
of the variable.

Let us pass to a totally different example, in which
the complexity of the causes is the principal factor.
I imagine a card-player shuffling a pack of cards,
At each shuffle he changes the order of the cards,
and he may change it in various ways. Let us take
three cards only in order to simplify the explanation,
The cards which, before the shuffle, occupied the
positions 123 respectively may, after the shuffle,
occupy the positions

123, 231, 312, 321, 132, 213.

Each of these six hypotheses is- possible, and their
probabilities are respectively

.Pl: }’m Plr pb Pﬁa }’o-
The sum of these six numbers is equal to 1, but that
is all we know about them. The six probabilities
naturally depend upon the player’s habits, which we
do not know.

At the second shuffle the process is repeated, and
under the same conditions. I mean, for instance,
that p, always represents the probability that the
three cards which occupied the positions 123 after
the #* shuffle and before the 7+ 1%, will occupy the
positions 321 after the #+1” shuffle. And this re-
mains true, whatever the number » may be, since the
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player’s habits and his method of shuffling remain
the same.

But if the number of shuffles is very large, the cards
which occupied the positions 1 2 3 before the first shuffle
may, after the last shuffle, occupy the positions

123,231,312, 321,132, 213,
and the probability of each of these six hypotheses is
clearly the same and equal to } ; and this is true what-
ever be the numbers g, . . . g, which we do not know.
The great number of shuffles, that is to say, the com-
plexity of the causes, has produced uniformity.

This would apply without change if there were more
than three cards, but even with three the demonstra-
tion would be complicated, so I will content myself
with giving it for two cards only. We have now only
two hypotheses

12, 21,

with the probabilities 4, and #,=1-2,. Assume that
there are » shuffles, and that I win a shilling if the
cards are finally in the initial order, and that I lose one
if they are finally reversed. Then my mathematical
expectation will be -

(Lr—2)"

The difference g, -2, is certainly smaller than 1, so
that if # is very large, the value of my expectation
will be nothing, and we do not require to know p,
and 2, to know that the game is fair.

Nevertheless there would be an exception if one of
the numbers p, and g, was equal to 1 and the other to
nothing. {¢ would then hold good no longer, because
our original kypotheses would be too simple.

What we have just seen applies not only to the




80 SCIENCE AND METHOD.

mixing of cards, but to all mixing, to that of powders
and liquids, and even to that of the gaseous molecules
in the kinetic theory of gases. To return to this theory,
let us imagine for a moment a gas whose molecules
cannot collide mutually, but can be deviated by col-
lisions with the sides of the vessel in which the gas
is enclosed. If the form of the vessel is sufficiently
complicated, it will not be long before the distribution
of the molecules and that of their velocities become
uniform. This will not happen if the vessel is spherical,
or if it has the form of a rectangular parallelepiped.
And why not? Because in the former case the dis-
tance of any particular trajectory from the centre
remains constant, and in the latter case we have
the absolute value of the angle of each trajectory
with the sides of the parallelepiped.

Thus we see what we must understand by conditions
that are 2o simple. They are conditions which pre-
serve something of the original state as an invariable.
Are the differential equations of the problem too
simple to enable us to apply the laws of chance?
This question appears at first sight devoid of any pre-
cise meaning, but we know now what it means. They
are too simple if something is preserved, if they
admit a uniform integral. If something of the initial
conditions remains unchanged, it is clear that the
final situation can no longer be independent of the
initial situation. _

We come, lastly, to the theory of errors. We are
ignorant of what accidental errors are due to, and it is
just because of this ignorance that we know they will
obey Gauss's law. Such is the paradox. It is ex-
plained in somewhat the same way as the preceding
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cases, We only need to know one thing—that the
érrors are very numerous, that they are very small,
and that each of them can be equally well negative
or positive. What is the curve of probability of each
of them? We do not know, but only assume that it
is symmetrical. We can then show that the resultant
error will follow Gauss’s law, and this resultant law is
independent of the particular laws which we do not
know. Here again the simplicity of the result actually
owes its existence to the complication of the data.

VII.

But we have not come to the end of paradoxes. [
recalled just above Flammarion’s fiction of the man
who travels’ faster than light, for whom time has jts
sign changed. I said that for him all phenomena
would seem to be due to chance. This is true from
a certain point of view, and yet, at any given moment,
all these phenomena would not be distributed in con.
formity with the laws of chance, since they would be
just as they are for us, who, seeing them unfolded
harmoniously and not emerging from a primitive
chaos, do not ook upon them as governed by chance,

What does this mean? For Flammarion’s imagi-
nary Lumen, small causes seem to produce great
effects ; why, then, do things not happen as they do
for us when we think we see great effects due to small
causes? Is not the same reasoning applicable to
his case?

Let us return to this reasoning. When small dif-
ferences in the causes produce great differences in
the effects, why are the effects distributed according
to the laws of chance ? Suppose a difference of an
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inch in the cause produces a difference of a mile in
the effect. If [ am to win in case the effect corre-
sponds with a mile bearing an even number, my
probability of winning will be 4. Why is this?
Because, in order that it should be so, the cause must
correspond with an inch bearing an even number.
Now, according to all appearance, the probability
that the cause will vary between certain limits is
proportional to the distance of those limits, provided
that distance is very small. If this hypothesis be not
admitted, there would no longer be any means of
representing the probability by a continuous function.

Now what will happen when great causes produce
small effects? This is the case in which we shall not
attribute the phenomenon to chance, and in which
Lumen, on the contrary, would aftribute it to chance.
A difference of a mile in the cause corresponds to
a difference of an inch in the effect. Will the
probability that the cause will be comprised between
two limits # miles apart still be proportional to #?
We have no reason to suppose it, since this dis-
tance of » miles is great. But the probability that
the effect will be comprised between two limits #
inches apart will be precisely the same, and ac-
cordingly it will not be proportional to #, and that
notwithstanding the fact that this distance of =»
inches is small. There is, then, no means of repre-
senting the law of probability of ‘the effects by a
continuous curve. I do not mean to say that the
curve may not remain continuous in the amalytical
sense of the word. To infinitely small variations
of the abscissa there will correspond infinitely small
variations of the ordinate. But practically it would
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not be continuous, since to wery small variations of
the abscissa there would not correspond very small
variations of the ordinate. It would become impos-
sible to trace the curve with an ordinary pencil : that
is what I mean.

What conclusion are we then to draw? Lumen has
no right to say that the probability of the cause (that
of Ais cause, which is our effect) must necessarily be
represented by a continuous function. But if that be
so, why have we the right? It is because that state of
unstable equilibrium that I spoke of just now as initial,
is itself only the termination of a long anterior history.
In the course of this history complex causes have been
at work, and they have been at work for a long time,
They have contributed to bring about the mixture of
the elements, and they have tended to make everything
uniform, at least in a small space. They have rounded
off the corners, levelled the mountains, and filled up
the valleys. However capricious and irregular the
original curve they have been given, they have worked
so much to regularize it that they will finally give us
a continuous curve, and that is why we can quite con-
fidently admit its continuity.

Lumen would not have the same reasons for drawing
this conclusion. For him complex cayses would not
appear as agents of regularity and of levelling ; on the
contrary, they would only create differentiation and
inequality. He would see a more and more varied
world emerge from a sort of primitive chaos. The
changes he would observe would be for him unfore-
seen and impossible to foresee. They would seem
to him due to some caprice, but that caprice would
not be at all the same as our chance, since it would
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not be amenable to any law, while our chance has its
own laws, All these points would require a much
longer development, which would help us perhaps to
a better comprehension of the irreversibility of the
universe.

VIIL

We have attempted to define chance, and it would
be well now to ask ourselves a question. Has chance,
thus defined so far as it can be, an objective character?

We may well ask it. I have spoken of very small
or very complex causes, but may not what is very
small for one be great for another, and may not what
seems very complex to one appear simple to another?
I have already given a partial answer, since I stated
above most precisely the case in which differential
equations become too simple for the laws of chance
to remain applicable. But it would be well to exam-
ine the thing somewhat more closely, for there are
still other points of view we may take.

What is the meaning of the word small? To
understand it, we have only to refer to what has
been said above. A difference is very small, an
interval is small, when within the limits of that in-
terval the probability remains appreciably constant.
Why can that probability be regarded as constant
in a small interval? It is because we admit that the
law of probability is represented by .a continuous
curve, not only continuous in the analytical sense of
the word, but practically continuous, as I explained
above. This means not only that it will present no
absolute hiatus, but also that it will have no projections
or depressions too acute or too much accentuated.

What gives us the right to make this hypothesis?
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As I said above, it is because, from the beginning of
the ages, there are complex causes that never cease
to operate in the same direction, which cause the
world to tend constantly towards uniformity without
the possibility of ever going back, It is these causes
which, little by little, have Jevelled the projections and
filled up the depressions, and it is for this reason that
our curves of probability present none but gentle undu-
lations. In millions and millions of centuries we shall
have progressed another step towards uniformity, and
these undulations will be ten times more gentle still.
The radius of mean curvature of our curve will have
beeome ten times longer. And then a length that
to-day does not seem to us very small, because an
arc of such a length cannot be regarded as rectilineal,
will-at that period be properly qualified as very small,
since the curvature will have become ten times less,
and an arc of such a length will not differ appreciably
from a straight line.

Thus the word very small remains relative, but it
is not relative to this man or that, it is relative to
the actual state of the world. It will change its
meaning when the world becomes more uniform and
all things are still more mixed. But then, no doubt,
men will no longer be able to live, but will have to
make way for other beings, shall I say much smaller
or much larger? So that our criterion, remaining
true for all men, retains an objective meaning,

And, further, what is the meaning of the word very
complex? I have already given one solution, that
which I referred to again at the beginning of this
section; but there are others, Complex causes, I have
said, produce a more and more intimate mixture, but
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how long will it be before this mixture satisfies us?
When shall we have accumulated enough complica-
tions? When will the cards be sufficiently shuffled ?
If we mix two powders, one blue and the other white,
there comes a time when the colour of the mixture
appears uniform. This is on account of the infirmity
of our senses; it would be uniform for the long-
sighted, obliged to look at it from a distance, when
it would not yet be so for the short-sighted. Even
" when it had become uniform for all sights, we could
still set back the limit by employing instruments.
There is no possibility that any man will ever dis-
tinguish the infinite variety that is hidden under the
uniform appearance of a gas, if the kinetic theory is
true. Nevertheless, if we adopt Gouy’s ideas on the
Brownian movement, does not the microscope seem to
be on the point of showing us something analogous?

This new criterion is thus relative like the first, and
if it preserves an objective character, it is because all
men have about the same senses, the power of their
instruments is limited, and, moreover, they only make
use of them occasionally.

IX.

It is the same in the moral sciences, and particularly
in history. The historian is obliged to make a selec-
tion of the events in the period he is studying, and he
only recounts those that seem to him the most im-
portant. Thus he contents himself with relating the
most considerable events of the 16th century, for
instance, and similarly the most remarkable facts of
the 17th century. If the former are sufficient to
explain the latter, we say that these latter conform
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to the laws of history. But if a great event of the
17th century owes its cause to a small fact of the
16th century that no history reports and that every
one has neglected, then we say that this event is due
to chance, and so the word has the same sense as in
the physical sciences; it means that small causes
have produced great effects.

The greatest chance is the birth of a great man.
It is only by chance that the meeting occurs of two
genital cells of different sex that contain precisely,
each on its side, the mysterious elements whose mutual
reaction is destined to produce genius. It will be
readily admitted that these elements must be rare,
and that their meeting is still rarer. How little it
would have taken to make the spermatozoid which
carried them deviate from its course. It would have
been enough to deflect it a hundredth part of a inch,
and Napoleon would not have been born and the
destinies of a continent would have been changed.
No example can give a better comprehension of the
true character of chance.

One word more about the paradoxes to which the
application of the calculation of probabilities to the
moral sciences has given rise. It has been demon-
strated that no parliament would ever contain a
single member of the opposition, or at least that such
an event would be so improbable that it would be
quite safe to bet against it, and to bet a million to
one. Condorcet attempted to calculate how many
jurymen it would require to make a miscarriage of
justice practically impossible. If we used the results
of this calculation, we should certainly be exposed
to the same disillusionment as by betting on the




88 SCIENCE AND METHOD.

strength of the calculation that the opposition would
never have a single representative.

The laws of chance do not apply to these questions.
If justice does not always decide on good grounds,
it does not make so much use as is generally supposed
of Bridoye’s method. This is perhaps unfortunate,
since, if it did, Condorcet’s method would protect us
against miscarriages.

What does this mean? We are tempted to attribute
facts of this nature to chance because their causes
are obscure, but this is not true chance. The causes
are unknown to us, it is true, and they are even
complex ; but they are not sufficiently complex, since
they preserve something, and we have seen that this
is the distinguishing mark of “too simple” causes.
When men are brought together, they no longer
decide by chance and independently of each other,
but react upon one another. Many causes come into
action, they trouble the men and draw them this way
and that, but there is one thing they cannot destroy,
the habits they have of Panurge’s sheep. And it is this
that is preserved.

X.

The application of the calculation of probabilities
to the exact sciences also involves many difficulties.
Why are the decimals of a table of logarithms or of
the number = distributed in accordance with the laws
of chance? 1 have elsewhere studied the question
in regard to logarithms, and there it is easy. It is
clear that a small difference in the argument will give
a small difference in the logarithm, but a great differ-
ence in the sixth decimal of the logarithm. We still
find the same criterion,
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But as regards the number = the question presents
more difficulties, and for the moment I have no
satisfactory explanation to give.

There are many other questions that might be
raised, if I wished to attack them before answering
the one I have more especially set myself, When we
arrive at a simple result, when, for instance, we find
a round number, we say that such a result cannot be
due to chance, and we seek for a non-fortuitous cause
to explain it. And in fact there is only a very slight
likelihood that, out of 10,000 numbers, chance will
give us a round number, the number 10,000 for in-
stance ; there is only one chance in 10,000. But
neither is there more than one chance in 10,000 that
it will give us any other particular number, and yet
this result does not astonish us, and we feel no hesita-
tion about attributing it to chance, and that merely
because it is less striking.

Is this a simple illusion on our part, or are there
cases in which this view is legitimate? We must
hope so, for otherwise all science would be impossible.
When we wish to check a hypothesis, what do we
do? We cannot verify all its consequences, since
they are infinite in number. We content ourselves
with verifying a few, and, if we succeed, we declare
that the hypothesis is confirmed, for so much success
could not be due to chance. It is always at bottom
the same reasoning.

I cannot justify it here completely, it would take
me too long, but I can say at least this. We find
ourselves faced by two hypotheses, either a simple
cause or else that assemblage of complex causes we
call chance. We find it natural to admit that the
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former must produce a simple result, and then, if we
arrive at this simple result, the round number for
instance, it appears to us more reasonable to attribute
it to the simple cause, which was almost certain to
give it us, than to chance, which could only give it
us once in 10,000 times, It will not be the same
if we arrive at a result that is not simple. It is true
that chance also will not give it more than once in
10,000 times, but the simple cause has no greater
chance of producing it.
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Chapter 3

Physics

3.1 Classical mechanics and determinism

Nature and Nature’s Laws lay hid in Night:
God said, Let Newton be! and All was Light.

Alexander Pope

The great Greek philosopher Aristotle (384322 B.C.) believed that
the velocity of a body is proportional to the force to which it was
subjected. Ordinary experience seems to confirm this view. A horse
carriage moves the faster, the stronger the horses are. A body lying on
the floor does not move unless some force is exerted to drag it along.

Only Galileo Galilei (1564~1642) recognized that matters are not
so simple. A body lying on a very smooth and plane ice surface will-
continue to move with constant velocity and in a constant direction
even if the initial force has ceased to act. To be sure, this body will
gradually slow down and finally stop, but the cause is friction. If there
is no friction, the movement will be continuous and will never come to a
stop. A space ship in intergalactic space will forever move with constant
speed along a straight line after the rocket engines have been shut off.
Thus Aristotle and common sense have been deceived by friction.

The correct law of motion in the absence of friction was discovered
by Isaac Newton (1642-1727). It has the form

i mx=F . (3.1)
\ Here m denotes the mass, and F is the force. The position vector is
x=lz,9,2] , (32)

o
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the velocity vector is its time derivative:

. __dx ..
== [z, 9,2 , (8.3)
and the acceleration is the second derivatjve:
. d*x . . .
k=—5= [z, §, 2] . (3.4)

Thus Newton’s law of motion (3.1) says that the acceleration is
Proportional to the force, and not the velocity as Aristotle thought.

In order to fully define the movement, in addition to the differential
equation (3.1) we need initial conditions: at a certain instant ¢ = to,
the position and velocity:

Xo=x(t) ,  %o=x(to) (3.5)

must be given.
Assume motion under no force, F = (. Then (3.1) gives

x=0 . (3.6)
The solution of this differential equation is
x=at+b , (3.7)

where the constant vectors a and b serve as integration constants. To
understand this, differentiate (3.7) twice:

X = a , (3.8)
X =0 . (3.9)

Thus (3.6) is satisfied, what was to be shown. If we put £ = 0 in (3.7)
and (3.8), we get
a=Xy , b=x, . (3.10)

Taking for the initial instant ¢, = 0, we thus have a very instructive
interpretation of the integration constants a and b: they are nothing
else than the initial conditions (3.5).

Newton’s law of gravitation. Besides Newton’s law of motion (3.1),
we also have his law of gravitation:

my mgy

F=GT

(3.11)
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Two point masses (Fig. 3.1) attract each other with a force F of mag-
nitude F, proportional to the masses m; and m3, and inversely propor-
tional to the square of their distance I; this is the famous inverse square
law. Here G denotes a universal constant, the gravitational constant.
We also have the equality of action and reaction: the two forces Iy and
F, in Fig. 3.1 are equal in magnitude and opposite in direction. The
magnitude of both F, and F, is given by (3.11).

g
| Fs
my
F

Figure 3.1: Ilustrating the law of gravitation

If Newton’s law of gravitation (3.11) is used in the equation of mo-
tion (3.1), then this differential equation, on integration, gives the Ke-
pler ellipses, along which the planets move around the Sun.

Principles of mechanics. If the motion is subject to constraints,
the simple Newtonian equation of motion is no longer applicable. For
instance, frictionless motion of a particle consirained to move along
a curved surface cannot be along a straight line, even if there is no
external force, F = 0. The “straightest” curve on a surface is a geodesic,
representing the shortest line between two points that wholly lies in the
surface. If the surface is a sphere, then the geodesic is a great circle.
Now it can be shown that frictionless and forceless motion along a
surface really is motion with constant velocity along a geodesic. Even
this simple but important case is not covered by (3.1).

So for motion on a surface Newton’s equation (3.1) is not satisfied,
that is,

mk—F#£0 . (3.12)

If the left~hand side cannot be zero, then let us try at least to make it
as small as possible:

(m% — F)? = minimum (3.13)

subject to the given conditions, for instance, motion on a surface. This
is Gauss’ principle of least constraint.

It is in full analogy to the principle of least squares discussed in
sec. 2.6, eq. (2.35) on p. 65. In fact, (2.36) says that

Ax—-1#0 , (3.14)

—
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and (2.39) is equivalent to
(Ax —1)* = minimum . (3.15)

The analogy between (3.12) and (3.13), on the one hand, and (3.14)
and (3.15), on the other hand, is obvious.

Thus it is not surprising that both principles are due to Gauss, who
also recognized the deep analogy between them.

It may be shown that Gauss’ principle applied to a free particle on
a surface, does give geodesic motion. For the sphere, motion along a
great circle is obvious, cf. Fig. 3.2.

Figure 3.2: A free particle describes a geodesic on a sphere

For many other simple and complicated cases, Newton’s elementary
law (3.1) does not directly apply. A pertinent example is the rotation of
a rigid body, because Newton’s equations are essentially valid for point
masses only and do not apply to rotation. With respect to orbital
motion about the Sun, the planets may be considered point masses,
but Earth rotation must be treated in a different way.

A number of other principles, more general than Newton’s laws,
were proposed in the 18th century by d’Alembert, Lagrange and oth-
ers. This is subject of analytical dynamics, of which a non-specialist
account can be found in (Lindsay and Margenau 1957, Chapter ITI).
We have briefly considered only Gauss’ principle and shall now outline
Hamilton’s method.

Hamilton’s equations. The Newton equation (3.1) is in reality a
system of three ordinary differential equations of second order:

mil = Fl(wla I3, 3:3) ]

mzy = Fy(z, 24, z3) (3.16)
mzz = F3($1, sz, 33) )
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T, = ¥, T, = Y, T3 = z denoting the Cartesian coordinates which are
the components of the position vector x, and similarly Fy, F3, F3 for
the force vector F.

Now we introduce the auxiliary quantities

= m:i:1 y D2 = m.‘l..'g y P = m:i:3 (3.17)

called momenta. The coordinates =z, T2, £3 are now denoted by
@1, g2, g3- Then (3.17) and (3.16) become with ¢+ =1, 2, 3:

] 1
G = ;P.‘ ’

(3.18)
p = Filq, ¢, 03)

Thus we have reduced the three differential equations (3.16) of sec-
ond order by 3 + 3 = siz differential equations of first order.

This method is standard in the theory of differential equations and
not particularly enlightening.

What is significant, however, is the fact that William Hamilton
(1788-1856) was able to bring (3.18) to the form

i = A

T oy ’

. oH (3.19)
pi - 3q' Y

with one function H only, instead of the 3 functions F;! Because of
their importance, they are called the canonical equations of mechanics,
and H is known as Hamilton’s function or, briefly, as Hamiltonian. By
the way, H is simply the sum of kinetic and potential energy. Any
quantities p; and ¢; satisfying (3.19) are called canonically conjugate
variables.

The true importance of the Hamiltonian equations (3.19), however,
is the fact that ¢; need not be Cartesian coordinates but can be any
generalized coordinates (parameters), and ¢ need not be restricted to
1, 2, 3 but can assume so many values as we need parameters to fully
describe the dynamical system. For instance, for a rotating rigid body
we need 6 parameters ¢; (1 = 1, 2, 3, 4, 5, 6): three translations (along
the z, y, z axes) and three rotations (e.g., around the same axes). If
we have r particles, then we need 3r parameters g;: 3 for each particle.
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Let us assume that we have n generalized coordinates gi. Then we
have 2n differential equations (3.19), and we can solve them uniquely
provided we have the 2n initial values q; and p; at time ¢t = to.

Laplace’s demon.

An intelligent being which, for some given moment of time, knew all the
forces by which nature is driven, and the relative position of the objects by
which it is composed (provided the being’s intelligence were so vast as to be
able to analyze all the data), would be able to comprise, in a single formula,
the movements of the largest bodies in the universe and those of the lightest
atom: nothing would be uncertain to it, and both the future and the past
would be present to its eyes. The human mind offers in the perfection which
it has been able to give to astronomy, a feeble inkling of such an intelligence.

This impressive statement was given by Pierre Simon de Laplace
(1749-1827); the “intelligent being” has become famous as “Laplace’s
demon”.

This is the classical expression of causality or determinism: given
the equations of motion and the initial conditions at ¢ = to, the state of
the system is exactly known at all earlier (¢ < ) and all later (t > to)
times. Determinism reigned supreme until about 1925, when quantum
theory started thoroughly to shake it (sec. 3.5).

Recently, however, determinism has come under attack even from
its very stronghold, classical mechanics. This has been achieved by the
theory of chaotic systems (sec. 3.2).

The principle of least action. Instead of differential equations, clas-
sical mechanics can also be expressed by an integral minimum principle
of form

B
f L dt = minimum (3.20)
4

where an integral (the “action”) of a function L is to be minimized. The
Lagrangian L is related to the energy and also to the Hamiltonian H
in a way which is not necessary for the present argument. Least-action
principles have been given by several scientists starting with Pierre
Louis de Maupertuis (1698-1759) and Leonhard Euler (1707-1783).

From the integral principle (3.20) it is possible uniquely to derive
the differential equations (3.19). This is of considerable philosophical
importance, for the following reasons.

An integral principle (3.20), minimizing (or maximizing) some
“overall” quantity, has been interpreted as expressing a tendency of
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nature towards perfection, attaining some ideal: maximum or optimum
sounds better than minimum, but is essentially the same thing. It thus
expresses a finalist tendency, a “causa finalis” in the sense of Aristo-
tle, cf. sec. 5.4. Such finalism occurs especially in biology (sec. 4.1).
It has been opposed to the causal determinism as exemplified by the
differential equations of classical mechanics.

The deduction of the deterministic equations (3.19) from the final-
istic integral (3.20) shows that both principles can coexist peacefully:
the p)rinciple (3.20), so to speak, creates its own differential equations
(3.19).

In a similar way we shall see in sec. 4.1 that a thermostat, governed
by a “finalistic” principle of producing a desired temperature, will “gen-
erate” its own physical “deterministic” differential equations that help
achieve the goal.

Thus causality, characteristic for classical mechanics, and finalism,
considered typical for biology, are far less incompatible as they first
appear, cf. also (Thom 1975, sec. 12.1.A).

“Causality”, so to speak, is the answer to the question “For which
reason?”, whereas “finality” answers the question “For which pur-
pose?”.

The basic results of the present section will also be needed to discuss
geodesic motion in general relativity (sec. 3.4) and a generalization of
Hamiltonian methods to quantum theory (sec. 3.5).

But also taken in itself, classical mechanics has an incredibly rich
structure. It comprises:

— causality: basic property;

- chaos: sec. 3.2;

— final causation: just discussed;
~ constraints: eq. (3.13); and even

— “software laws” in a rudimentary form: as initial conditions (see
also sec. 4.5).

Ideas will be needed rather than formulas, so the reader need not
understand all mathematical details. Interested readers may consult
any textbook on theoretical physics; particularly suited for the present
purpose is the treatment in (Lindsay and Margenaun 1957, Chapter III).
We also mention (Margenau 1950) which is less mathematical and more
philosophical and which is still a classic.
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3.2 Deterministic chaos

In the beginning . .. there was Poincaré.
E. Atlee Jackson

The deterministic paradise of classical mechanics, over which
Laplace’s demon (sec. 3.1) exerted a rigid but essentially benevolent,
orderly, and stable regime, began to show, on closer inspection, some
strange and irritating features.

The application of mechanics to gases and fluids consisting of an
enormous number of particles (molecules) led to the statistical theory
of heat. Heat was explained as the random and irregular, more or less
violent motion of these particles. In view of the enormous number of
these particles, it is practically impossible to describe the trajectory
of every particle by Newton’s laws (even assumed that this would be
theoretically possible). Instead, these particles were treated statisti-
cally, which led to statistical mechanics or statistical thermodynamics,
created by Josia Willard Gibbs (1839-1903), Ludwig Boltzmann (1844—
1906) and others. A brilliant success was the derivation of the basic
equations of thermodynamics from the principles of classical mechanics
combined with statistical considerations. Temperature was explained in
terms of the average kinetic energy of the molecules; it is the higher, the
greater the average velocity of the particles is. The important concept
of entropy was introduced, and Boltzmann found his famous equation,
formula (4.3) of sec. 4.3.

But here a problem arises. The equations of classical mechanics are
time—reversible. This means that these equations retain their form on
replacing time ¢ by —f. On the other hand, the equations of thermo-
dynamics are typically irreversible: the entropy in a physical system
always increases, see eq. (4.4). This contradiction must be due to the
introduction of statistics, either because of the enormous amount of
particles, or because of the incredibly complicated, “chaotic”, shape of
the trajectories of the particles (or both). These controverses, in which
already Boltzmann was involved, led to very important advances in
physics, mathematics, and probability theory (sec. 3.3), known by the
name of ergodic theory.

The French mathematician Henri Poincaré (1854-1912) found al-
ready in 1890 that even relatively “simple” nonlinear dynamical prob-
lems in astronomy etc. may admit extremely complicated, irregular,
even “chaotic” trajectories. In his classical work “Les Méthodes nou-
velles de la Mécanique céleste” (1899) vol. III, p. 389 he wrote:
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Imagine the figure formed by these two curves and their infinitely many
intersections ...; these intersections form a kind of meshwork, tissue, or
infinitely dense network ...One is struck by the complexity of this figure
which I do not even attempt to draw. Nothing is better suited to give us an
idea of the complexity of the three-body problem and in general of all the
problems of dynamics in which there is no uniform integral [of the motion]

The modern theory of general nonlinear dynamical systems is con-
gidered to start with Poincaré’s work. The subject then lay relatively
dormant, known only to a few specialists, until 1954 when the fa-
mous Russian mathematician Andrei Kolmogorov (1903-1987) and his
younger colleague Vladimir Arnold started with a general and system-
atic treatment of such strange trajectories. In 1963 there followed an
independent paper on an application to meteorology by the American
Edward Lorenz. Then the subject exploded. Currently it is probably
the most popular subject of mathematics, known to a broad general
public.

Let me try to explain what Lorenz did. He took the equations of
mathematical weather prediction, simplified them and studied the so-
lution numerically with the help of a computer. These solutions proved
to be extremely unsiable: two solutions with almost identical initial
conditions started to diverge wildly (Fig. 3.3). Since the data of me-
teorology are unavoidably insufficient and inaccurate, the initial con-
ditions are not exactly known; small deviations result in completely
different behavior. This is the reason why it is hardly meaningful to
make detailed weather predictions more than a few days ahead. (In

astronomy, predictions are good for tens or even hundreds of years, in
spite of Poincaré ...)

Figure 3.3: Two unstable trajectories

Let us repeat:

stability: small causes produce small effects;
instability: small causes produce large effects.
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Classical causality implicitly presupposes stability. Stability is the
environment in which Laplace’s demon thrives.

Unstable systems are mathematically described always by nonlin-
ear differential equations. Therefore, as we have already mentioned,
mathematicians speak of general nonlinear dynamical systems. (Popu-
larly speaking, the difference between “linear” and “nonlinear” is essen-
tially the difference between a straight and a curved line; the function
y = 2 + 3z is linear, whereas the functions y = z? and y = sinz are
nonlinear.) Unstable nonlinear dynamical systems are nowadays widely
known by the name of chaos theory.

We distinguish between conservative dynamic systems for which
the total energy is conserved (e.g., those described by Hamiltonian
equations (3.19)), and dissipative systems for which part of the energy
is dissipated as heat, e.g., through friction.

The nonlinear systems of celestial mechanics as investi gated by
Poincaré, Kolmogorov, and Arnold are conservative. The meteorologic
systems studied by Lorenz are dissipative, because the atmosphere con-
stantly receives energy from the sun and radiates it again into outer
space: otherwise “global warming” would be very rapid indeed. The
name, chaotic systems, is particularly appropriate for meteorological
and similar dynamic systems.

Chaos theory is an outstanding example of a theory as an instru-
ment for discovery, a “searchlight”: now chaotic phenomena are found
everywhere, from clouds to earthquakes, and from turbulent mountain
streams to human heartbeats. Deterministic chaos, so to speak, is an
example of chaos out of order. There is also an emergence of order out
of chaos; cf. the derivation of thermodynamics from statistical mechan-
ics and sec. 3.3. In fact, both cases are closely interrelated and related
also to the production of order out of order, cf. sec. 4.3 (p. 182).

The historian of science, W. Schréder, tells me that the well-known
German meteorologist H. Ertel has found instability as the reason for
the impossibility of weather prediction beyond a few days already in
1941. Ertel must therefore be considered a predecessor of Edward
Lorenz in meteorological chaos. This is also true already for Poincaré
(1908), as the quotation in sec. 6.3 (p. 243) shows.

Suggested additional reading. There is an incredible amount of
books and papers on chaos theory. An advantage of its popularity is
the fact that there are outstanding presentations for the general public,
of high level but without formulas. An extremely readable introduction
is (Gleick 1988); Stewart (1990) is a fascinating presentation of all the

T A
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details but without formulas; an authoritative and very readable intro-
duction is (Lorenz 1993); and Abraham and Shaw (1984) managed to
present the intricate geometry, which was even too much for Poincaré
as his quotation shows, in beautiful pictures which should be accessible
to everyone with an interest in science. Applications to biology and
medicine may be found in (Glass and Mackey 1988). Chaos theory is
very popular also because its geometrical structures (fractals, strange
attractors) are of a truly exotic beauty. Particularly remarkable is the
combination of beauty and readability in (Briggs 1992). For statistical
mechanics and thermodynamics and their philosophical implications,
(Lindsay and Margenau 1957) is still unsurpassed.

3.3 Probability

God does not throw dice.
Albert Einstein

Nor is it our business to prescribe
to God how He should run the world.

Niels Bohr

A simple and extremely instructive example of an unstable motion
is throwing a die. The die is supposed to be a perfect, absolutely
homogeneous cube, whose faces are numbered 1, 2, 3, 4, 5, 6.

If we throw it, it will come to rest showing, say, face 3. If we throw
it again, trying to repeat the first throw as accurately as possible, it
may show a 6 (Fig. 3.4). The initial conditions defined by the way
of throwing may be almost identical; nevertheless the results will be
quite different and practically completely independent: instead of a 6,
we might as well bave got a 4 or a 2.

This is a characteristically instable situation: an arbitrarily small
difference of initial conditions will give completely different and in-
dependent results. This is the typical situation of a chaotic motion
described in sec. 3.2, Fig. 3.4 corresponding fully to Fig. 3.3.

Even if we replace the human hand by a dice-throwing machine,
the initial conditions will never be exactly the same, and the result
is practically unpredictable. Theoretically its motion is determined by
classical mechanics (if also the impact of the air molecules is considered
a classical phenomenon), but prediction is hopeless. Laplace’s demon,

.
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g @ /

Figure 3.4: Throwing dice

after having worried about the imprecise initial conditions, is then ad.
ditionally bothered by Maxwell’s demon (responsible for air molecules
cf. sec. 4.3).

The result of the fight between the two demons is a completely
random distribution of the results of the die: face 1 is as probable as
any other face. We may say that all faces have equal probability

b

1
P1=P2=P3=P4=P5=Pe=g . (3.21)
We see that Newton’s laws, though theoretically applicable, are prac-
tically useless. Ewit Newton, and Symmetry steps in and produces
the result (3.21). More prosaically, determinism loses importance and
symmetry takes over, producing order out of chaos.

(This is the reason why probability is treated here rather than in
Chapter 2 where logically it would seem to be better placed.)

Had the die been loaded, then, of course, symmetry would have been
destroyed and the probability of the various faces would be different.
(We, of course, would never use such a dirty trick!)

Such assumptions of equal probability, based on symmetry, were
used by Blaise Pascal (1623-1662) and contemporaries for a mathemat.
ical theory of games of chance. This was the foundation of the math-
ematical theory of probability. Laplace has perfected this symmetry-
based theory.

Here the important concept of symmetry appears for the first time.
A cube is symmetric because its six faces are geometrically equivalent:
they can only be distinguished by marking them with dots, from one
to six. If the faces were unmarked, then one could not distinguish a
cube lying on face no. 2 from a cube lying on face no. 5. So much
about geometrical equivalence or symmetry. A cube is also physically
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symmetric if it is made of a homogeneous material: this is what we
mean by an unloaded die. A coin is symmetric if we disregard the
inscriptions on the two sides: then we could not distinguishing a coin
showing “head” from a coin showing “tail”: we would in both cases see
identical circles. We shall meet symmetry again; see secs. 3.6 and 4.2.

We have said that throwings of various faces were independent
events. Statistical independence is a basic concept, though it by no
means always holds. We shall, however, assume independence unless
the contrary is asserted.

Throwing a 3 or a 5 has a probability which is the sum:

pBV5) =ps+ps . (3.22)

Throwing a 3 and then a 5 is the product:

P(3A5) =psps . (3.23)

These formulas do not presuppose equal probabilities (3.21), but they
do presuppose independence.

Now we remember symbolic logic, eq. (2.9) on p. 28. The “logi-
cal sum” of two propositions was symbolized by “V”, and the “logical
product” by “A”. Now the probability of a logical sum is the sum of
probabilities (3.22), and the probability of a logical product is the product
of probabilities (3.23).

Probability 1 corresponds to certainty, and probability 0 to impos-
sibility, and

0<p<1 . (3.24)
Obviously

ptpetpstpatps+ps=1 . (3.25)

Thus the probabilities may be considered generalizations of or in-
terpolations between the truth values 0 and 1, cf. (2.15) on p. 41. (Note
the conflict of notations: in sec. 2.1, “p” stands for “proposition”, here
it denotes “probability”. As a temporary compromise, we have in (2.15)
symbolized probability by “P”, but “p” is generally used in probability
theory.)

This can also be nicely expressed in the language of set theory
(Fig. 3.5). Throw a small particle at random in such a way that it
lands on set A with probability p(A) and on set B with probability
p(B). Both events may be considered independent if the two sets are

I_dh-___________________-
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Figure 8.5: Two disjunct sets A and B

disjunct. The union AU B consists of both sets A and B taken together.
Then

p(AU B) = p(A) + p(B) (3.26)
in analogy to (3.22); cf. (2.12) on p. 30. The corresponding relation
P(AN B) = p(A)p(B) (wrong!) (3.27)

unfortunately does not hold since the intersection ANB = 0 for disjunct
sets. Here p(AN B) would mean the probability that the particle lands
simultaneously on A and B, which is clearly impossible, so that ANB =
0 implies p(A N B) = 0.

Remark on terminology. The terms “probabilistic”, “statistic”,
“stochastic”, and “random” have more or less the same meaning and
are frequently used interchangeably.

Relative frequencies. Let us take an even simpler example, tossing
a coin. For an ideally symmetric coin the probabilities p; of head and
p2 of tail are clearly equal:

1
P =pp = 5 (3.28)

If we throw the coin, say, a thousand times, there should be roughly
500 heads and 500 tails. In a real coin tossing experiment we may get,
say, 484 heads and 516 tails. Thus the relative Jrequencies of heads and
tails are

484
i = m—0.484 )

516

If we throw 10000 times, we might get

(3.29)
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5032

fi = Too05 = 05032
4068 (3.30)
fo = Togng = 04968

which is clearly closer to p; and p;. It may be expected that, in some
sense, for n — oo throws

im fy = pp=05 ,
Imf, = p=05 . (3.31)
In the so—called frequency theory of probability proposed by Richard
von Mises since 1928, it was suggested to define probabilities empirically
by such a limit

p=lim f . (3.32)

n-—+00

This, however, meets with mathematical difficulties because the in-
finite limit does not obey one of the more common limit definitions of
mathematics, and furthermore, it is not possible to perform infinitely
many coin tosses or similar procedures.

It is mathematically simpler and more elegant to introduce the con-
cept of probability ariomatically. This was done by A.N. Kolmogorov
in 1933. Here the probabilities were introduced generally, without spec-
ifying their numerical values, but subject to axioms such as (3.22) and
(3.23). Only later, approximate numerical values for them are found a
posteriori as relative frequencies such as (3.30), unless they were not
anyway given a priori by symmetry considerations (dice, coins).

The mathematical theory of probability has been developed to a
high mathematical level, including random functions (stochastic pro-
cesses) and Hilbert space techniques. Such techniques are, for instance,
applied in geodesy to determine the irregular gravitational field of the
Earth. This is called least—squares collocation and consists in an ex-
tension of least-squares adjustment (sec. 2.6) to infinite-dimensional
Hilbert space. Only for curious specialists we mention as reference:
H. Moritz: “Advanced Physical Geodesy”, Wichmann, Karlsruhe, 2nd
edition, 1990.

Interpretations of probability. In sec. 2.4 we have already briefly
introduced subjective probability, expressing a degree of reasonable be-
lief, or just a degree of incomplete knowledge or of ignorance. Of such




88 CHAPTER 3. PHYSICS

character are the “probabilities of rain” given by American weather
forecasts mentioned in sec. 2.4.

The classical Laplace interpretation is clearly intended to be ob-
Jective. When I calculate my chance to gain in gambling to be 95%
(p = 0.95), then I am not satisfied with this nice abstract result of

mathematics: I expect to gain concrete money.

Are physical probabilities subjective concepts or objective features
of nature? Consider statistical mechanics. In principle, presupposing
the validity of classical mechanics, we could calculate the trajectories
of all molecules without needing statistics. Statistics is needed because
we cannot do this in practice. Hence we do introduce statistics just
because of our inability or ignorance? This would indicate that our
probabilities are more or less subjective.

On the other hand, statistical mechanics provides important “emer-
gent” concepts such as temperature or entropy, and an elegant theory
of thermodynamics has been developed on an axiomatic basis, with-
out needing mechanics or statistics. It seems clear that temperature or
entropy are objective “integral” properties of nature, and if they are
derived by statistics, this statistics should be more or less “objective”
as well. By the way, the derivation of thermodynamics from statistical
mechanics is a beautiful example of the emergence of a macro-law from
a micro-law. This is another example of order out of chaos.

A hundred years after Boltzmann, these questions are still being
discussed. To be sure, the mathematical formalism and its results are
completely unaffected by these “philosophical” discussions. Most work-
ing physicists could not care less whether their probabilities are sub-
jective or objective. Weizsacker (1985, p. 100) writes: “The concept of
probability is one of the most striking examples for the ‘epistemologi-
cal paradox’ that we can apply our basic concepts successfully without
really understanding them.”

Whether “deterministic chaos” on the basis of classical mechanics
“really” introduces an objective probabilistic element into nature, is
still an open problem under discussion. Every physicist, however, agrees
that quantum theory does introduce objective probability into physics:
quantum fluctuations form the basic substratum of our world.

Objective probability has been vigorously defended, also in quantum
theory, by Sir Karl Popper (Miller 1985, sec. 15). He calls it propensity
and interprets it in the sense of Aristotle’s potentialities (possibilities)
which are not all realized but are nevertheless properties of nature. In
the progress of time, potentialities become actualitics.
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Summary. Probabilities have different interpretations, which are
presumably all needed.

(A)  Probabilities of sets. The current standard mathematical the-
ory of probability, based on Kolmogorov’s axiom system, is considering
probability as a measure of sets. Any system of numbers which satisfies
Kolmogorov’s axioms is a possible system of probabilities.

Actual estimations of probabilities are done in two principal ways:

(1) By symmetry considerations. This is easy in the case of dice or
coins, but may even be possible in complicated physical applications.

(2) By relative frequency. The toss of a coin regards the toss under
consideration as one case out of an ensemble of 1000 or 10000 tosses,
cf. equations (3.29) or (3.30) above. Similarly, in physics, our “real”
physical system may be considered one out of a fictitious ensemble of
possible “similar systems”. This is the basis of Gibbs’ approach to
statistical mechanics (Lindsay and Margenau 1957, sec. 5.5).

Concerning the physical reality of probability or statistical consid-
erations, there are two possibilities:

(a) Probability is only a function of ensembles of physical systems;
probability considerations, such as in statistical mechanics, are
only done statistically because a (deterministic) treatment is too
complicated for us. Probability is a mathematical tool rather
than a physical reality. Hence it may be regarded as subjective,
at least to a certain extent.

(b) Propensity: this type of probability is a physical property of a
single physical system, as objective as its mass, energy, or velocity.

(B)  Probability of propositions. Mathematically they are very
similar to probabilities (A), because the logical calculus of propositions
is very similar to the logical theory of sets (sec. 2.1). “Subjective” or
subjectivist probabilities of Carnap and others are of this type. (The
forecast: “There is a 20% probability of rain for tomorrow” is a sen-
tence, or in logical terms, a “proposition”.)

Degrees of credibility. Not everything which we call probability
must have a numerical value, or must be capable of being expressed
numerically. If we say that all our knowledge is only probable, if we
believe that the theory of relativity is very probably an outstanding
theory, if I say that my train next day will probably run reasonably on
schedule, it is difficult if not impossible to assign numerical values to
the “probability” expressed by such statements. We instinctively act
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on beliefs with a high subjective degree of credibility as if they were
absolutely true, and we disregard theoretical possibilities which are very
small. When I go to work by car I know that I may have an accident. I
take this into account in a reasonable way, by insuring my car, having
my papers in order, and driving carefully. Having done this, I act as if
this eventuality will not occur.

If I kept in mind all the possible events which theoretically might
happen, but with a very low probability, then I would “probably” turn
crazy or at least become a “professional worrier”. This presumably is
what Bishop Butler had in mind when he said that probability is the
guide of life (Russell 1948, Part V, Chapter VI, p. 398).

In real life there is no absolute logical certainty, in the same way
as there are no real mass “points”, ideal straight lines or ideally exact
measurements, cf. sec. 2.4,

Suggested additional reading. Probability, especially of the subjec-
tive type, frequently is treated together with induction (to be consid-
ered in sec. 3.9). Our standard reference (Lindsay and Margenau 1957)
is slightly out of date on this topic but nevertheless worth reading.
There are many excellent books on mathematical probability. An easy
and delightful brief introduction by the most outstanding Russia spe-
cialists is (Gnedenko and Khinchin 1962). Geophysicists will not want
to miss (Jeffreys 1961, 1973). A recent excellent discussion of all in-
terpretations and their philosophical aspects is (Cohen 1989). Almost
all aspects of probability in their historical development from Blaise
Pascal to Niels Bohr are discussed with relatively little mathematics
but with beautiful physical intuition in (Ruhla 1992). The remarks in
Weizsicker (1985, Chapter 3; 1992, Chapter 4) are brief but profound.

3.4 The theory of relativity

Henceforth space by itself, and time by tiself,

are doomed to fade away into mere shadows,
. and only a kind of union of the two

will preserve an independent reality.

Hermann Minkowski

Special relativity

Einstein’s special theory of relativity deals with inertiql systems.
An inertial system according to Newton’s theory is a system on which







