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We introduce a class of deterministic lattice models of failure, Abelian avalanche (AA)
models, with continuous phase variables, similar to discrete Abelian sandpile (ASP) models.
We investigate analytically the structure of the phase space and statistical properties of
avalanches in these models. We show that the distributions of avalanches in AA and ASP
models with the same redistribution matrix and loading rate are identical. For an AA model
on a graph, statistics of avalanches is linked to Tutte polynomials associated with this graph
and its subgraphs. In the general case, statistics of avalanches is linked to an analog of a Tutte
polynomial defined for any symmetric matrix.

1. Introduction

Different cellular automaton models of failure (sand piles, avalanches, forest
fires, etc.), starting with Bak, Tang and Wiesenfeld (BTW) [1], were intro-
duced in connection with the concept of self-organized criticality [2]. Tradition-
ally, all of these models are considered on uniform cubic lattices of different
dimensions. Recently Dhar [3] suggested a generalization of the BTW model
with an arbitrary (modulo some natural sign restrictions) matrix A of redistribu-
tion of accumulated particles during an avalanche. An important property of
this Abelian sand pile (ASP) model is the presence of an Abelian (commuta-
tive) group governing its dynamics. Abelian sandpiles were studied in ref. (4],
and one special case€ is treated in ref. [5]. In a non-dissipative case (Z;4,=0,
for all i) an avalanche in the ASP model coincides with a chip-firing game on a
graph [6] where A is a Laplace matrix of the underlying graph.

Another class of lattice models of failure, slider block models introduced in
ref. [7] and studied in ref. [8], as well as models [9-13] which are equivalent to
quasistatic block models, have continuous time and some quantity which
accumulates and is redistributed at lattice sites. This quantity is called the
slope, height, stress or energy by different authors. In slider block models it
corresponds to force [11]. We use the term height as in ref. [3].

0378-4371/93/$06.00 © 1993 - Elsevier Science Publishers BV, All rights reserved



254 A. Gabrielov | Abelian avalanches and Tutte polynomials

We introduce here a class of deterministic lattice models with continuous
time and height values at the sites of the lattice, and with an arbitrary
redistribution matrix. For a symmetric matrix, these models are equivalent to
arbitrarily interconnected slider block systems. One of these models, which in
the case of a uniform lattice coincides with models studied in ref. [10] and in
ref. [13] (as series case a), is characterized by the same Abelian property as
ASP models. We call this the Abelian avalanche (AA) model.

‘The stationary behavior of the AA model is periodic or quasiperiodic,
depending on the loading rate vector. We show, however, that the distribution
of avalanches for a discrete, stochastic ASP model is identical to the dis-
tribution of avalanches for an arbitrary quasiperiodic trajectory (or to its
average over all periodic trajectories) of a continuous, deterministic AA model
with the same redistribution matrix and loading rate,

For the AA model on a graph, the combinatorial structure of the phase
space and the corresponding statistics of avalanches is described in terms of the
invariants of the graph and its subgraphs called “Tutte polynomials™ [14]. In
the general case, the same is true for an analog of a Tutte polynomial defined
for any symmetric matrix.,

In the second section, we introduce different types of avalanche models. In
the third section, we investigate the properties of AA models. In the fourth
section, we study the structure of the set of recurrent configurations and derive
analytic formulas for the mean number of avalanches in the AA model. Some
of our results are new also for ASP models. In the fifth section, we establish
the equivalence of distributions of avalanches for AA and ASP models. In the
sixth section, we describe the structure of the phase space for AA models on a
graph in terms of Tutte polynomials. In the seventh section, we describe the
distribution of avalanches in the AA model in terms of an analog of a Tutte
polynomial for an arbitrary symmetric matrix. The proofs of the different
statements are given in the appendix.

2. Avalanche models

Let V be a finite set of N elements (sites), and let 4 be a N X N real matrix
with indices in V, with the following properties:

A; >0, foralli; 4,=<0, foralli#j; (1)

s; =2 4,20, foralli. (2)
J

The value s; is called the dissipation at a site i.
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At every site {, we define a positive real value 4, (height). The set h = {h,} is
called the configuration of the system. For every site i, a threshold H. is

i

defined, and configurations with h; < H, are called stable. For every stable
configuration, the height 4, increases in time with a constant rate v, = 0 until it
exceeds a threshold H, at a site i. Then the site i breaks, and the heights are

redistributed as follows:
hi—h;—4;, forallj. (3)

If after this redistribution, any heights exceed thresholds at some other sites,
these sites also break according to (3), and so on, until we arrive at a stable
configuration and the loading resumes. The sequence of breaks is called an
avalanche.

The model (3) has the important Abelian property (see below): the stable
configuration of the system after an avalanche, and the number of breaks at
any site during an avalanche, do not depend on the order of breaks during the
avalanche. We call this model an Abelian avalanche (AA) model.

It may happen that an avalanche continues without end. We can avoid this
possibility by suggesting that the system is weakly dissipative in the following
sense. We require that from every non-dissipative site i, s; =0, there exists a
path to a dissipative site j, 5,>0, i.e. a sequence iy, ..., i, withiy=1i,i =j
and 4, , <0,fork=1,...,m. Itis easy to show that in a weakly dissipative
system every avalanche is finite.

We suppose also that the system is properly loaded, i.e. for every site j, there
exists a path from a loaded site i, v, >0, to the site j. If this is not the case,
some parts of the system do not evolve in time. For a properly loaded system,
the rate of breaks at every site is positive.

In the case of a symmetric matrix 4 and v, =s,, for all i, this model is
equivalent to a system of blocks where the ith block is connected to the jth
block by a coil spring of rigidity 4, and to a slab moving with a unit rate by a
leaf spring of rigidity s;. For every block, a static friction force H, is defined,
and a block is allowed to move by one unit of space when the total force A,
applied to this block from other blocks and the moving slab exceeds H,. The
dissipation property means that the loading rate is positive at least for one
block in every connected component of the system.

Remark 1. The previous definition can be also reformulated for the model
where

hy—h;—Ah,, forj#i and h—0 (4)

[T A B
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at a break of the ith site, studied in refs. [11,12] and in ref. [13] as scries case
b. This corresponds to a system of blocks in which every block stops when the
total force acting on it vanishes. In this case, in addition to the redistribution
rule, the choice of one or several (e.g. all) possible breaks in fast time should
be specified.

Finally, we can introduce a system with parallel redistribution by [13]
considering continuous fast time 8 and redistribution rules

Py L4 forall j 6
69_)—55 i orall r, )

when the ith element breaks at &, = H,, and

P i a forall j 6

38 9 T4, foralj, )
when the ith element heals at A, =0. This corresponds to a system of blocks
where several blocks are allowed to slip simultaneously during an avalanche.

These two models, i.e. specified by eq. (4) and by eqs. (5) and (6), are not
Abelian.

Remark 2. All the models introduced here are deterministic. If we replace
uniform loading in time by random loading then a class of stochastic models
can be defined. Many of the properties of the deterministic AA model are valid
also for the stochastic case.

3. Abelian avalanches

We want to establish the Abelian properties of the model (3). Many of our
arguments are similar to those in ref. {3].

The dynamics of the model does not change if we replace the values H, by
some other values, and add the difference to all configuration vectors. For
convenience we take H,=A,. In this case, &, >0 for any trajectory of the
system when the ith element has been broken at least once. Hence only
configurations with non-negative heights at all sites .are relevant for the
long-term dynamics. Let ¥ = {0<h, < A,} be the set of all stable configura-
tions in RY, = {h, =0, for all i}.

Let h(r) be a trajectory of the model (3), and let n = {n,(r), i € V} be the
number of breaks of a site i during a time interval ¢. It is easy to show (see
appendix A) that the average rate of breaks per unit time r = n(r)/t satisfies



A. Gabrielov [ Abelian avalanches and Tutte polynomials 257
A'r—uv, fort—o . (7)

Here A’ is transpose of 4, and v is the loading rate in a deterministic model, or
the mean loading rate in a stochastic model.

As the rate of breaks at every site is positive for a properly loaded system,
this implies that A'(RY)DRY . In particular, 4 is nonsingular. We have also
det(A4) > 0 because the set of all weakly dissipative matrices satisfying (1) and
(2) is a convex domain containing a unit matrix.

Let h be any configuration in RY. Let i, ..., i, be an avalanche started at
h, i.e. a sequence of consecutive breaks (3) such that configurations after ail
breaks but the last are unstable and the configuration k' € & after the mth
break is stable.

It can be shown (see appendix B) that k' = ok does not depend on the
possible choice of breaks, and is completely determined by the initial configu-
ration h. More precisely, let n, be the number of times the site i breaks during
the avalanche. Then

n;dependsonlyon &, foralli. (8)
Hence an avalanche operator
ARV - & (9)

1s defined.

For any vector u €RY, we define a loading operator B,h=h+ u. We call
€, = A o%B, a load-avalanche operator.

We claim that every pair of load-avalanche operators commutes. More
precisely, for any « €RY and v €RY, we have

%uocgv = (gu+v . (10)

The proof (see appendix B) follows the arguments of ref. [6] for chip-firing
games.

Following ref. [3], we define recurrent configurations of the AA model as
those stable configurations that can be reached after arbitrarily long time
intervals.

We claim that for a weakly dissipative, properly loaded system, the set & of
all of these configurations does not depend on v and has volume det(A).

Let §,=(4;,...,4,y) be the ith row vector of the matrix A. Integer
combinations of vectors &, generate a lattice ¥ in R". Two configurations & and
k', are called equivalent if h' — h belongs to £. A subset in R" is called a
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fundamental domain for £ if, for every configuration k €R", it contains exactly
one configuration equivalent to . The volume of every fundamental domain is
equal to det(4).

The rule (3) for breaks can be rewritten as h— h — §,. For every A ERY,
configuration &k is equivalent to k and belongs to . Hence & contains a
fundamental domain for %. .

Let « €RY and S, =& + u. Then &, contains a fundamental domain for &
because this property is translation-invariant. Hence A(S,)=€,(F) contains a
fundamental domain for %.

It can be shown (see appendix C) that

C,(¥) is a fundamental domain for £ if u, = 4,,, foralli. (11)

The Abelian property (10} implies that the intersection of images of any two
load-avalanche operators €, and €, contains a fundamental domain for Z,
because it contains €,,,(%), hence the two images coincide when both vectors
u and v have large enough components.

This proves that ® is a fundamental domain for Y, hence its volume is
det(4), when all components of the loading rate vector v are positive, because
all components of vt are large enough for large values of ¢. If some of v, are 0,
the proper loading condition guarantees that, for large t, there exists an
avalanche starting at ur and passing through a vector with large enough
components, hence R is a fundamental domain for % also in this case.

The dynamics of the system on % in a deterministic model is defined by the
break rate vector r= A'"'p. If this vector is collinear to an integer vector,
Tr = n, then vT = A’n, hence every trajectory is periodic, with a period 7, and
a site i breaks n, times during a period T, for every periodic trajectory.
Otherwise, every trajectory is quasiperiodic.

In any case, the measure dk =11,_, dh, on & is invariant under the dynamics
of the system. This is also true for the random loading.

As a result, (7) has the following implication:

1 .
det(A)Jn(h+U) dk=4"""v, (12)

where n(k) = {n,(h)}, and n;(kh) is the number of breaks at a site j during an
avalanche started at h.
Let

@i=@n{hi=dii} | (13)
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be the set of (unstable) configurations where the recurrent avalanches with a
first break at i start. Here @& is the closure of %. For any quasiperiodic
trajectory of the system (in the periodic case, for a randomly chosen periodic
trajectory), the mean (per unit time) number of times it crosses a domain
D C R, is equal to

pi(D)=wv,vol(D)/vol(R) = v, vol(D)/det(4) . (14)

“Here vol(D) is the volume in (|V| — 1)-dimensional space {h, = 4,}.
In particular, the mean number of avalanches started at { is equal to

p:(R,) = v, vol(R,) /det(4) . (15)

The mean number of breaks at a site j per unit time can be computed from
(14) as

r,.=2 def(fﬂ)inj(h)dh;, (16)

where dh; = dh/dh, is the measure on %, and n,(k) is the number of breaks at
a site j during an avalanche started at h.
Due to (7), r=A"'"'v. Hence

fnj(h) dh; = det(4) (A7), , (17)

R

and the mean (per avalanche) number of breaks at a site j during avalanches
started at a site i is

, _ det(4) (4™,
M= G t(/_l) f (k) dhj= — g ) (18)

The value of vol(%;) is found in the next section, for the case when every
site breaks at most once during an avalanche.

Remark. In the periodic case, a single trajectory can contain avalanches of
different sizes, and for a large system, in a time interval shorter than its period,
it can be indistinguishable from a chaotic trajectory. This effect (called
“periodic chaos™) was found in ref. [13] for a uniform lattice.
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4. Recurrent configurations

To investigate the structure of the set & of recurrent configurations, we note
first that, for any & € & and any vector u € R", configuration & + u belongs to
R if it belongs to &.

Let @ =(4,,,..., 4yy). For an integer vector n,let P=Q, =0 — A'nbe a
configuration equivalent to @, and let ¥, = {h, <P} be an open negative
octant with a vertex at P. It can be shown (see appendix D) that

R=ANU'Y,, (19)

where the union U’ is taken over all n with at least one positive component. If
0=n,; <1, for all {, the sets ¥ N ¥, coincide with stable forbidden subconfigu-
rations [3]

9X={hey,hj<— > 4, forjEX}. (20)

(€EX, in]

Here X is the set of sites / with n, = 1. Dhar [3] argues that the union of sets
(20) over all nonempty subsets of V coincides with A\R.

In general, this is not true. For a 2 X2 matrix 4 with §, =(2, ~1) and
8, = (=3, 4) we have @, ,=(1, 2). Hence configurations with k, <1 and
h, <2 are not recurrent, and only configurations with 4, <1 are forbidden.

It can be shown, however (se¢ appendix E) that

= s
R 9’\XLCJV Fy, (21)
i.e. all allowed stable configurations (i.e. those that do not contain any
forbidden subconfigurations) are recurrent, when

iev

2 4,20, forall j. (22)

In particular, this is true when 4 is symmetric.
Suppose now that

2 4,>0, forallj. (23)

=

In this case, the configuration Q@ — I, §; is stable. Hence every site can break
at most once in an avalanche started at any configuration k with &, < A_, for all
i.

[
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Let &, be the set (13) of recurrent configurations initiating avalanches with a
first break at i. If (23) holds, the values of k' ={h;, jEV, j#i} in R, are
defined, due to (21), by the same inequalities as the set of all allowed
configurations for a model (3) on V\{i} with a matrix A(i), where A(i) is 4
with the ith row and the ith column deleted. Hence %; coincides with the set of
all recurrent configurations for A(/), and

vol(,) = det[A(i)] = det(4) (47 1), - (24)

Due to (15), the mean number of avalanches started at a site i per unit time
is

pi(R;) = v, det{A(i)] /det(4) = Ui(A_I)n' . (25)

Hence the mean number of avalanches in the system per unit time is equal to

2 v (A7), (26)

Due to (18), we have

m; = (A_l)ij/(AFl)n‘ ’ (27)

where m,; is the mean (per avalanche) number of breaks at a site j during
avalanches started at a site i.

Remark. In case (22) holds but (23) is not valid, the volume of &, is less than
det[ A(j)]. Due to (21), for every subset F C V\{j} such that 4, + L, 4, =0,
configurations with 2, = A, and h, <-4, — X, 4,,, for v € F, do not belong
to R;. It can be shown, however, that the formulas (25)-(27) are still valid for
the following modification of the model.

We allow every site to break at most once in an avalanche. At the end of an
avalanche started at a site {, the value A, can be still at the threshold level 4,,.
In this case we immediately start a new avalanche at a site {, and so on until
finally we arrive at a stable configuration.

For the original model, eqs. (25)—(27) are true if we count every avalanche
with the multiplicity of the number of breaks at its starting site.

S. Distributions of avalanches in AA and ASP models

There is obvious similarity between the properties of the deterministic,
continuous AA model and the stochastic, discrete ASP model. We want to
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show that, for a matrix A with integer elements, the distribution of avalanches
in the AA model is identical to the distribution of avalanches in the ASP model
with the same matrix A and the same loading rate vector v.

For a matrix A with integer elements satisfying (1) and (2), and a loading
vector v with L v, =1, the ASP model is defined as follows. The height &, at
every site €V is an integer, 0<h, < 4,. At every (discrete) time step, we
choose a site i with a probability v, and add a particle at the site i, i.e. add 1 to
the height h,. If i, = A, after this operation, we start an avalanche according to
the rule (3). After termination of an avalanche, we proceed with adding the
next particle. Only uniform loading (all v, equal) was considered in ref, (3]
However, the generalization to any proper loading rate vector is straight-
forward,

As is shown in ref. [3], the recurrent configurations for the ASP model are
precisely the integer points in the set ® of recurrent configurations of the AA
model with the matrix A, every point is attended with equal probability, and
the total number of these points #(R) is equal to det(4) = vol(%R).

For the ASP model, a recurrent configuration with s, = A, starting an
avalanche at a site { belongs to the set of integer points in the set R, defined in
(13). For a randomly chosen configuration in &, the probability of initiating an
avalanche at a site i at any time step is equal to p; = v,#(%;}/det(4). Due to
(19), the number of integer points #(%,;) in R, is equal to vol(%.). Hence
Pi = p(#;) coincides with the mean number of avalanches initiated at { defined
in (15} for the AA model. For any integer vector k = {k;}, the set of points
R, » C R, where an avalanche with k; breaks at a site j, for all JEV, starts
coincides with

(gz +2 kf.aj) NR,, (28)

where §; is the jth row vector of A. Due to (19), the number of integer points
in (28) coincides with its volume. Hence the mean number per time step of
avalanches started at a site 7, with k}. breaks at a site j, which is equal to
v,#(%; ,)/det(4) for the ASP model, coincides with the mean number per unit
time of avalanches of the same type for a quasiperiodic trajectory (in the
periodic case, for a randomly chosen periodic trajectory) in the AA model,
which is equal to

Pi(%; ) = v; vol(; ) /der(4) (29)

according to (14).
This equivalence implies, in particular, that the size distributions of av-
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alanches in AA and ASP models, with the same matrix A and loading rate v,
coincide.

6. Avalanches on graphs

" A graph G is a set V(G) of vertices and a set E(G) of edges with a relation or
rule of incidence which associates with every edge in E(G) two vertices in
V(G) called its ends. An edge with different ends is a link. Its ends are called
adjacent vertices, or neighbors. An edge with identical ends is a loop. For every
vertex { its degree d; is equal to the number of the edges incident to it, loops
counting twice.

If V' CV(G)and E’ C E(G) with the ends of any edge in E’ belonging to V'
then a graph H with V(H)= V"', E(H) = E' and the incidence relation induced
from G is called a subgraph of G. If V' =V then H is a spanning subgraph. If
U C V(G) then the subgraph H = G[U] with V(H) = U and E(H) consisting of
all edges of G with both ends in U is called an induced subgraph of G.

An n-arc is a graph with vertices {,,...,i, and edgese,,...,e,_, where i,
and i,,, are the ends of the edge e,. An n-circuit is an n-arc with additional
edge e, with ends i, and {;. A graph G is connected if any two of its vertices
belong to an arc in G. A tree is a connected graph without circuits,

The tree number T(G) of a graph G is defined as the total number of
different spanning trees of this graph. T(G)>0 only for connected graphs,
T(G) =1 for any tree, and T(G) = n for a circuit of order n.

For every edge e in a graph G, the operation of deletion G-e is defined by
removing e from E£(G), and the operation of contraction G/e is defined by
removing e and identifying the ends of e in V(G). It is easy to show (ref. [14],
p. 40) that

T(G) = T(G — ) + T(G/e) (30)

for every link e of G. The functions with this property are often called Tutte
polynomials.

We consider only loopless graphs, with multiple edges, and define G/e as a
graph with loops removed after contraction of e. The property (30) of T(G)
remains valid for this operation. We define the order |G| = |V(G)| of a graph G
as the number of its vertices.

The Laplace matrix A(G) of a graph G is defined as 4(G),, = d, and —4(G);
equal to the number of links between vertices i and j, for i #j. We have
Z; 4(G); =0, for all i. _

With any diagonal matrix S, with non-negative elements S, =s,, we can
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associate an avalanche model with a symmetric matrix A; = A(G) + S. (The
model with non-symmetric matrices can be associated with directed graphs, but
we do not consider this here.)

Let v={v,, i€EV(G)} be a loading vector for this model. Suppose that
v; =s;, for all #, as in a slider block model. Then every recurrent trajectory of
the AA model with matrix A; and loading rate v is periodic, with a period
T'=1, and every vertex of G breaks once during this period.

Let Gy, ..., G, be an arbitrary partition of G into induced subgraphs, and
I, a selected vertex in G,. We claim (see appendix F) that the total volume
occupied by recurrent configurations generating periodic trajectories with an

ordered sequence of avalanches covering sets V(G,), ..., V(G,,) initiated at
sites 7,,.. ., i, is equal to
5, 7(Gy) -+ 5, T(G,,)/m! (31)

In particular, this volume does not depend on the order of G,.
Hence the total volume occupied by periodic trajectories with avalanches
constituting a partition of G into induced subgraphs G, ..., G, is equal to

S(G,) T(G,)--- S(G,,) T(G,,) (32)

where 5(G,) =Z,cvs,) 5i
As the total volume of all recurrent configurations is det(4;), we have

2 2 1186,) 7(G,) = det(ay) (33)

m=1 G,..., G, v=1

where the sum is taken over all partitions of G into induced subgraphs.
The linear term in § in this expression appears for m=1and G, = G. It is
equal to S(G) T(G). Hence

d det(Ag)

nG)= 7S

e det[4.(G)], foreveryi €V . (34)

Here A,(G) is the matrix A(G) with the ith row and column removed. This is
the matrix-tree theorem for graphs (see ref. [14], p. 141).

The mean number of avalanches in a randomly chosen periodic trajectory is
equal to

ded) S S [1S(G)TG,). - (39)

mz=1 G, G, v=1

m



A. Gabrielov [ Abelian avalanches and Tutte polynomials 265

Comparing expressions (35) and (26) for the mean number of avalanches,
we have an identity

>m 2 HS(G)T(G) det(As)Zs(A“‘),,, (36)

mz=1 Gioeens G, v=1

where the sum in the left part is taken over all partitions of G into mduced
subgraphs.

Let H be an induced subgraph of G, and let G\H be an induced subgraph of
G with V(G\H) =V(G)\V(H).

For i € V(H), the total volume of all periodic trajectories with an avalanche
started at { covering H is equal, due to (31), to

X(, H)=s,.T(H)(Z > HS(G)T(G )) (37)

m=1 G,...., G, r=1

where the sum is taken over all partitions of G\H into induced subgraphs.
Applying (33) to G\H, we have

X(i, H) = s, T(H) det[ A,(G\H)] . (38)

Here A,(G\H) is the Laplace matrix of G\H with s, added to diagonal
elements, for v € V(G)\V(H).

We have also X(i, H) = s, vol(Z; ;,), where &, , is the subset of &, where the
avalanches covering H start. Hence, if 5, >0 then

vol(R,; ;) = T(H) det[A;(G\H)] . (39)

Due to (14), the mean (per unit time) number of avalanches started at i
covering H is p(R,; ;) = v, vol(R, ;;}/ det[A;(G)], for arbitrary loading rate v.
Hence

PR, ) = v, T(H) det{ A{(G\H)])/det{ A((G)] , (40)

for an arbitrary loading rate vector. Due to section 5, this is also equal to the
mean {per time step) number of avalanches started at / and covering H in the
ASP model if all 5, are integer.

Finally, we have the following expression for the mean number of avalanches
of size k, both in the AA and ASP models:

1
det[A4(G)] UCV(§|UI=,C T(G[U]) det[A(G\G[U])] ZL v; . (41)
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This gives a purely combinatorial expression for the distribution of the
avalanches of different sizes. Explicit formulas for this distribution are found in
ref, [13] for a circuit of arbitrary order.

Remark. The formulas (40) and (41) are valid when s, > 0, for all { with v, >0
(because (39) is not true when s, = 0). When s, =0 and v, >0 for some i, these
formulas are still valid for the modlﬁcatlon of the model suggested in remark at
the end of section 4, when every site is allowed to break at most once during an
avalanche,

7. Tutte polynomials for matrices

For any symmetric matrix A with indices in a set V, we define a symmetric
matrix A" = D, (4) (deletion of (i, j)) as

4,;=4,+4,, A,=4,+4,, 4,,=0, (42)

with other elements of A unchanged, and a symmetric matrix A" = C;(4)
(contraction of (i, j)) as

i i i i ik ik ik

with the jth row and column of 4 removed and other elements of A unchanged.
For A= A(G), the Laplace matrix of a graph G, the matrix D, ;(4) is the
Laplace matrix of G after deletion of all edges connecting i and j, and C;(4) is
the Laplace matrix of G after contraction of all edges with ends at i and I
For every symmetric matrix 4, lets,= I, ;4 and let 4, be the matrix A with
the diagonal terms 4, replaced by 4, —s,, for all i. Then

ij(Ao) = Cij(A)O » Dij(AO) = Dr’j(A)O > (44)

the operation C; does not change the values of 5,, and the operation D;
replaces s; by s, + s; leaving the other values s, unchanged.

We call a functlon F(4) on the set of symmetric matrices a Tutte polynomial
if the following properties hold:
(A) For every pair of distinct indices { and j,

F(4) = F(D4(4)) — 4,F(C,(4)) . (45)

(B) Let A" and A” be two matrices with indices in V' and V”, and let
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A= A" x A" be a matrix with indices in disjoint union of V' and V", 4, = 4;,
fori,jeV’, 4;= 4] for i, jEV", 4;=0 otherwise. Then

F(A' x A") = F(A') F(4") . (46)

Let T(4) be a function of a symmetric matrix which does not depend on the
values of s,, satisfies (A), and is equal to 1 for a 1 X 1 matrix 4 and to zero for
any dlagonal matrix of size greater than 1. Then T(4) coincides with thc tree
number T(G) of a graph G in the case A = A(G).

Let A satisfy (1) and (23). Consider the set of periodic trajectories of the
AA model with the matrix 4 and the loading rate v, = s, for all ». The same
arguments as in appendix F show that the volume X(4; V,,...,V,; i)
occupied by all recurrent configurations generating periodic trajectories with an
ordered set of avalanches covering subsets V,,...,V,_ of V starting at sites
i, €V, satisfies

XAV, ..V i)= X(C,.I.(A); Vi,..., V.3 i)

v

A.s, .
——____'Jl - .I
- +SJ_X(D,.I.(A),V1,...,V oLVl (4T

wheni=i 6 jEV,  j#I, 14 =V,\{/j}, and

1

XAV, ..V, i)=5,"""5 (48)

m

when V, = {i }, for all ». Hence
X(A;Vl,...,Vm;i)=S,~lT(Al)...S,-mT(Am), (49)

where A, is the minor of A with indices in V.
Let f_(4) be the volume of all periodic trajectories with m avalanches. Due
to (49),

fald)= Z S(V)T(A) -S(V,,) T(4,,) - (50)

.....

Here the sum is taken over all partitions of V into m subsets, S(V,) =X,y ;.

Let F(z)(4) =, f.(4) z™ Due to (50), F(z)(4) satisfies (45) and (46), i.e.
F(z) is a Tutte polynomial. In particular, the total volume of all periodic
trajectories is equal to F(1) = det(4). Hence det(A) satisfies (45). This implies,
in particular, the following identity:
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F(z)(4) = det(4, + zs), (51)

where s is a diagonal matrix with s, =s,.
Computing linear terms in S in the expression for F(1), we have the
matrix-tree theorem

T(4) =det[4,(])], forevery i€ V(G). | (52)

Here A,(7) is the matrix 4, with the ith row and column removed.
Finally, the mean number of avalanches per unit time in a randomly chosen
periodic trajectory is equal to

F(1)/det(4) =2 (47"), 2 4, . (53)

8. Conclusions

We introduce a class of deterministic lattice models of failure with continu-
ous phase variables, Abelian avalanche (AA) models, with Abelian properties
similar to those of the discrete, stochastic Abelian sandpile (ASP) models. We
investigate analytically the dynamics, distributions of avalanches and the
structure of the phase space of AA models. Depending on the loading rate
vector, the steady state dynamics of the AA model can be periodic or
quasiperiodic. However, periodic trajectories can contain sequences of av-
alanches with non-trivial time-space-size distributions. We call this phenom-
enon “periodic chaos”. We show, in particular, that the distribution of
avalanches for an ASP model is identical to the distribution of avalanches for
an AA model with the same redistribution matrix and loading rate vector, after
averaging over all periodic trajectories. We present a proof of Dhar’s conjec-
ture on the description of the set of recurrent configurations of an Abelian
model in terms of forbidden subconfigurations. Recurrent combinatorial for-
mulas for the distributions of avalanches are given, in terms of operations on
matrices corresponding to deletion and contraction operations in graph theory.
Corresponding combinatorial expressions are known in graph theory as Tutte
polynomials. Several identities for these combinatorial expressions, in terms of
determinants of various matrices, are derived.
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Appendix

A. Proof of (7). Let n = {n,, i €V} where n, is the number of breaks of a site i
during a time interval ¢, starting from a stable configuration &, and let &’ be the
stable configuration after these breaks. Then &' = h + vt — A’n where v is the
loading rate vector in a deterministic model or its mean value during a time
interval ¢ in a stochastic model.

As both configurations h and k' belong to &, the distance between A" and h
remains bounded, hence

A'nft=v+(h—-h')/t—v as >,

B. Proof of (8). We want to prove that any two avalanches starting at a point
in RY terminate at the same stable point. In this case the two avalanches
automatically contain equal number of breaks for every site. Let i=
(i,,...,i) be an avalanche of minimum size / such that there exists another
avalanche j=(j,,..., j,) starting at the same point g with a different end.
Let g’ # ¢" be the ends of i and j. Then i, # j,, otherwise / is not 2 minimum.
We want to show that p = g — §; — §; belongs to RY. As g~ 5, € R}, only the
coordinate j, of p may be negative. The same argument with i, and j,
interchanged shows that only the coordinate i, of p may be negative. As i, #j,,
p €ERY. In particular, / > 1 and m > 1. Let k be an avalanche initiated at p. An
avalanche i’ = (i, .. ., {,) initiated at ¢ — §; has size / — 1, hence an avalanche
(J;» k) initiated at ¢ — &, has the same end g’ and size [ - 1 as i’. Next, its end
coincides with the end of the avalanche (i;, k) initiated at ¢ — 5, . As the size of
this last avalanche is / — 1, the avalanche (j,, ..., j,) initiated at g — &, has
the same end g', i.e. ¢’ = ¢” in contradiction with our hypothesis.

If an avalanche contains a loading vector v with v, = 0, for all i at some site,
the same argument shows that an avalanche with the vector v displaced one site
towards the starting point always belongs to RY. This proves commutativity of
load-avalanche operators.

C. Proof of (11). Let h be a configuration in &,, and let A’ be any
configuration with large enough components equivalent to k. We want to show
that
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dh= ok’ (54)

This shows that avalanches started at any two equivalent configurations in &,
terminate at the same stable configuration, hence #(%,) is a fundamental
domain for %,

To prove (54), we note that condition (11) implies that h — k' =L n;s;,
where all n, are non-negative. Because the components of # and &' and the
values of n, are bounded, we can suppose that any sequence of breaks, with at
most n; breaks at a site i, applied to B"=h' + h — o/h' is contained in R' (this
is the exact meaning of “large enough” components of A'). Hence there exists
an avalanche started at k" passing through #'. Due to the Abelian property (8),
this yields s{h" = o/h'. At the same time, an avalanche from k' to &k’ shifted
by & — &k’ (due to the condition of (11), all components of this vector are
non-negative) connects A" with k. Due to the Abelian property (8), this yields
Ah" = o/h. Hence, oh' = h, q.e.d.

D. Proof of (19). We call a (stable or unstable) configuration k reachable if
there exists an avalanche passing through % and starting at a configuration with
arbitrarily large components.

Let us show first that configurations in ¥, are not reachable. If some of the
configurations in ¥, are reachable, then all configurations in V, close to @, are
reachable. There exists a configuration # in & arbitrarily close to Q. The
configuration &, = h — A'n is equivalent to &, belongs to ¥, and is close to Q,.
Any avalanche starting at a configuration with large enough components that
passes through h, should terminate at 2 € R. But this is possible only if all
components of & are non-positive. Hence R C U7, It is easy to show that
for any two equivalent configurations in & at least one belongs to U'Y, . As &
is a fundamental domain for the lattice %, this yields # = AU V.

E. Proof of (21). Due to (19),

RCAU F (55)

Xcv

Hence it is enough to show that the volume of the right side in (55) is det(4) if
(22) holds. We have

vol(&"\XLCJvP}?) HA +2. -1y X vol(F0...NF).  (56)

I=1 Xpo X f

Here the sum is taken over all unordered collections Xy, ..., X; of distinct
nonempty subsets of V.
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If (22) holds then, for any two subsets X' and X" of V,
F NFye CF oy xm - (57)
This implies that only terms with
X, C...CX, (58)

can be left in (56).

To show this, let < be any ordering of subsets of V such that X' < X" when
|X'| <|X"| and the sets of equal size are arbitrarily ordered. Then X; in (56)
can be arranged in increasing order

X, <--<X,. (59)
Let X be the first term in (59) such that X, Z X,,,. Then X,,, <X, U X ,,. If
the sequence (39) contains X;U X,,,, we remove it from the sequence,
otherwise we add it to the sequence. Due to (57) this operation does not
change the value of the corresponding term in (56) but does change its sign.

Hence all terms but (58) annihilate in (56).
If (22) holds then

vol@,n...ng)=41 11 (-3 a), (60)

JEX, i=1 jEXNX,_, vEX;, vEj

for X, C ... CX,, appears in (56) with the sign (—1)’. If we add an empty set
@ as X, to every sequence (58) and define %, = ¥, then (56) can be rewritten as

Septe S Tall T3 a, (1)

120 XoCX\C. . .CX, jgX, =1 jEXX;_{ vEX,vr]

We claim that this is equal to det(4), for any matrix A.
Expanding all the sums and products in (61) we can rewrite it in the
following way:

2 e(o) 4,5, (62)

where ¢ runs over all maps from V to itself, and the coefficient e(¢) is defined
as follows. Let V*={jEV:¢(j)=j} be the set of fixed points of ¢. Then

e(g) = ()" (-1, | - (63)
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where the sum is taken over all ¢-invariant flags
X={#=X,CX,C...CX, =WV}, (64)

and /(X)=1is the length of X. Here the ¢-invariance of X means that
e(X,)C X, for all ;. :

If ¢ is 2 permutation of V then every ¢-invariant set in V\V¥ is identified by
a subset of the set W of cycles of ¢ with length greater than 1.

All subsets of W can be identified with vertices of an |W/|-dimensional cube if
we set an ith component of a vertex equal to 1 when i belongs to a subset and 0
otherwise. All flags of subsets of W constitute a simplicial complex (with the
length of a flag as the dimension of a simplex) which is a simplicial subdivision
of this cube. The flags starting with @ and ending with W constitute an open
|W/|-dimensional cube. Its Euler characteristics y = (-1)™!,

Hence &(p) is equal to (—1)""17% where & is the number of all cycles of ¢
which is the usual sign of a permutation.

In case ¢ is not a permutation, there exist two @-invariant subsets 4 D B in
VAV? such that |A|=|B|+1, ¢(A)= B and B does not contain non-trivial
p-invariant subsets. For every flag X, we find i such that X1 2DA, X, ZA.
Then X; C Y =(X,,\NA)U B. If X, =Y we remove it from the flag, otherwise
we addY to the flag between X, and X,,,. This operation defines a sign-
changing isomorphism of the set of terms in the sum (63). Hence &(¢) =0.

F. Proof of (31). First, it is obvious that (31) is positive only when all
subgraphs G, are connected. Also, avalanches covering a non-connected graph
have zero measure, because to start such an avalanche at least one site at every
connected component has to be at the threshold level,

Configurations generating trajectories with a sequence of single breaks
Iys..., Iy occupy a simplex

—_ + .. J—

A, . . h.
0<t1=_—£ms*ll<”'<t~= Pylpr - ik py rNsl, (65)
i N

where ¢, are the time moments of breaks™at i,. Its volume is equal to
s;, -5, /NI Hence (31) is true in this case.

For partitions where at least one subgraph has order greater than 1, we
proceed by induction on the number of edges of the graph G and suppose that
the statement is true for both G ~ e and G/e where e is any edge of G.

Let Gy,..., G, be a partition of G into induced connected subgraphs,
|G,|>1,and i, G, a site starting an avalanche. Then there exists an edge e

of G with one end i, and another end j € G,.
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Let h(¢t)y={h,(t), iEV(G)}, be a periodic trajectory with avalanches
G,....,G,, and starting sites i,,...,1i,, and let k= {h,} = h(t,) where ¢ is
the time moment of the avalanche G,. Then h;, = 4, ;.

There are two possibilities.

(@) h; <4, -1

Replacement of /1, (1) by A, (1) —1 defines a one-to-one correspondence
between trajectories for the system on G satisfying (a) and all trajectories for a
system on G — e, with the same values of s5;, generating the partition induced
from G, with the same starting points and time moments of breaks. Due to
inductional conjecture, the volume of the configurations generating trajectories

satisfying (a) is equal to
5; (G) 5, (G, — e} -5, T(G,,)/m!. (66)

(b) 4, >h;=4,— 1.

We can identify the trajectory &(t) with a periodic trajectory for a system on
G /e, with the site j removed and all the edges adjacent to it connected to the
site i, passing at the time moment ¢, through the configuration obtained from
h replacing h; = A, ; by the threshold value 4, ; + A, +24, ; -5, for G/e. This
trajectory generates the partition of G/e induced from G, with the same
starting points and time moments of breaks. The correspondence represents
the set of trajectories for G satisfying (b) as a prism of height 1 over the set of
trajectories for G/e generating partition induced from G, with the same
starting points and time moments of breaks. From the induction conjecture,
the volume of the configurations generating trajectories satisfying (b) is equal
to

5; T(G) -5, T(G,/e)- - -5, T(G,,)/m!. (67)

Then, due to (30), the sum of (66) and (67) is equal to (31). This proves our
claim.
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Quasistatic lattice models to explore scaling and other properties of failure events, including
earthquakes, are characterized by the presence of two or more time scales. We show that there is
a remarkable degree of variability in the qualitative bebavior of these models: In one model with
periodic boundary conditions, which simulates a moving dislocation or avalanche model of fracture,
the trajectories are always periodic in both one and two dimensions. In another quasistatic model
which simulates a growing coherent crack, the trajectories are either periodic or chaotic, depending
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on the initial conditions. Characteristic behaviors derived from analytic results are illustrated by

numerical simulations.

PACS number(s): 05.45.4b, 46.30.Nz, 64.60.Ak, 91.60.Ba

I. INTRODUCTION

In the model of self-organized criticality due to Bak
et al. [1], 2 homogeneous lattice system organizes itself
into a critical state via fluctuations regulated by the local
rules for the dynamics. If the local rules obey a conser-
vation law, the system will develop a scale-independent
distribution of sizes of events that is valid on all scales.
Bak and Tang (2] proposed that this model had applica-
tion to the simulation of earthquake faulting. Kadanoff
et al. [3] showed that the size distributions are sensitive
to the local dynamics and may belong to different uni-
versality classes. In the model [1], dissipation is only
possible at the edge of the lattice, implying the existence
of a massive inhomogeneity at the edge of an otherwise
homogeneous system. In models with nonconservative
local dynamics, dissipation can take place in the interior
of the lattice, and a number of models with dissipative
dynamics have been explored [4-7]. These dissipative
models are similar to a dynamical lattice model of earth-
quake occurrence introduced by Burridge and Knopoff 8]
and explored in depth by Carlson and Langer [9,10] and
Carlson [11]. Matsuzaki and Takayasu [12] and Lomnitz-
Adler et al. [13] have explored the ability of a dissipative
lattice system without inertia but with nonlocal dynam-

*Now with the Department of Mathematics, University of
Toronto, Toronto, Ontario, Canada M5R 2P7,

1063-651X/94/50(1)/188(10)/506.00 50

ics, to organize itself into a critical state. The latter au-
thors also found that the presence or absence of a critical
state depends delicately on the choice of the rules, and
is very sensitive to small changes. Other models explore
systems that involve nonlocal dynamics, other fracture
geometries, etc. [14-16).

In this paper, we consider lattice models similar to
the above with dissipation but without inertia, i.e., the
system is massless. We are concerned with failure or
avalanche models, in general, and earthquake models, in
particular., Readers are advised to consider terms such as
earthquake events and fracture as metaphors for a broad
range of phenomena including but not confined to seis-
micity and material failure. Let “slow” or tectonic time
be the interval between fracture events, during which the
loading increases the level of stress in the solid. This
stress is then released through a sequence of one or more
breaks in “fast” time, which is the time needed for frac-
tures to develop. In the case of real earthquakes, these
two time scales differ by seven orders of magnitude or
more—the slow time scale can be the order of a century,
while the fast time scale may be as long as one or two
minutes for the largest earthquakes,

We study a class of deterministic models where both
time and stress are continuous variables and where the
loading proceeds at a uniform rate at all lattice sites.
This was first done by Burridge and Knopoff [8] and later
by others [5-7,17]. This class of models, as with those
considered in [9-11,15] is (stress) dissipative, in contrast
with the stress conservative model of {1). Olami et al. [7]
have shown that this class of lattice models is formally

188 ©1994 The American Physical Society
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equivalent to the zero-mass limit of the Burridge-Knopoff
spring-block mode]l with different friction laws. For a
scalar particle model with uniform spacing, the value of
the total force and the stress on a lattice site are equiv-
alent. For convenience we use the term stress for this
quantity.

We employ a lattice model whose elements slowly accu-
mulate stress up to a certain threshold of strength; the
accumulated stress is then rapidly released in fast time.
Part of the released stress is redistributed between other
elements and part is dissipated locally. We construct a
sequence of the slow times and intensities of the fracture
events. In all of our experiments we consider uniform
lattices with periodic boundary conditions.

We consider two variants of the mode!, which we call
sertes and parallel models, both having identical struc-
ture and laws of failure; the only difference between the
models is the order of stress release and redistribution in
fast time.

In the series model, the stress is fully released immedi-
ately when the stress on an element achieves the thresh-
old of strength. Then part of the released stress is added
to the neighboring elements. The same procedure is now
applied to all neighbors that have stress greater than or
equal to the threshold. The process is repeated until no
elements have stresses exceeding the threshold. In this
case, the stress release rate is presumed to be faster than
the stress redistribution rate.

In the paralle] model, an element breaks when the
stress arrives at the threshold of strength, and starts
to release its stress in fast time. In this case, part of
the released stress is simultaneously added to the neigh-
boring elements as the stress on the first element drops.
This process continues until all the stress on the bro-
ken element is released or until the stress on some of its
neighbors arrives at the threshold. In the latter case, the
neighboring element breaks and begins to release and re-
distribute its stress in the same manner, until finally no
more elements break. This corresponds to the case when
the stress release rate is slower than the stress redistri-
bution rate.

We show that these two models lead to markedly dif-
ferent dynamical histories. For a uniform lattice with
periodic boundary conditions, we find and can prove
analytically that for most initial conditions the paral-
lel model produces essentially chaotic behavior while the
series model always converges to a complex but periodic
trajectory.

II. MODELS

In these quasistatic models, the process of readjust-
ment of the accumulated stress at a site involves two
physically different time scales, which are the time
needed for the bond at that site to fail, or the stress
.release time, and the time needed for the released stress
to be transferred to the neighboring sites, or the stress
transfer time. For simplicity and without loss of gener-
ality, we set the stress accumulation rate and the stress
threshold, i.e., the strength of the elements, numerically

equal to unity.

Both the stress release and stress transmission time
scales are much smaller than the loading or tectonic time
scale. The ratio of these two fast times is a parameter
describing a broad class of models of failure with two
limiting cases of particular interest.

A. Series model

In the first case, whick is similar to most other qua-
sistatic lattice models [1,4-7], the stress transmission
time is much longer than the stress release time. In an

- extended lattice, this may correspond to the quasistatic

mode] for a moving dislocation or to the avalanche ana-
logue of a fracture. In this case, we observe a “series”
of stress release events, followed by a series of transmis-
sion events followed by a series of release events, and so
on. Dissipation is introduced through a dissipation pa-
rameter § which is the fraction of the accumulated stress
that is lost to the system; the remaining fraction 1 — §
is redistributed equally among the nearest neighbors.
Since a site that receives transferred stress from a
neighboring ruptured site can achieve a stress level
greater than its threshold, there are at least two vari-
ants of the series model. In case a, the stress level at
a fracturing site is reduced by a fixed amount, while in
case b, the stress level at the new site is reduced to zero.
Let 0;; be the stress level at a given site (i, ). In case a,

(2.1)

ifoy; 2 1, where the interaction parameter p = (1-5)/2d
and d is the dimensionality of the lattice. This model is
similar to the models explored by Refs. [1,5] and [18]; we
present some new results for this model. In case b,

o;; 3 03— 1land 0y, 3 Opn +p

oi; = 0 and on, = Onn + poy; (2.2)
if i > 1. This model can also be related to [6,7,19], and
again we present new results for this model.

In case a, it can be shown that the sequence of events
in slow time is independent of the order of breaks in fast
time. In this respect, the model is similar to the abelian
sandpiles introduced in {20]. As a result of this commu-
tative property, it is not necessary for the stress level of
newly released sites to be adjusted synchronously, as long
as the stress drop experienced by each of these sites is the
same. In case b, it is essential that stresses be reduced -
at failed sites in proper sequence; otherwise, the behav-
ior obtained is quantitatively, but evidently not qualita-
tively, dependent upon the order of the stress drop. In
the numerical and analytic results below we discuss these
variants of the series model.

B. Paralle]l model

In the second case, the stress release time is much
longer than the transmission time. As a given element
releases its accumulated stress, its nearest neighbors im-
mediately receive a proportionate increase in their stress.
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The stress release and redistribution take place in “par-
alle]” among the appropriate elements. In this model, a
neighboring site can reach the threshold of rupture while
the site which initiated the release is still in the process
of releasing stress. In an extended lattice, this may cor-
respond to a quasistatic model for a growing crack, with
motions correlated along its extent, and not dissimilar
from the models of [12,13]. In this redistribution model,
we cannot distinguish between cases a and b as in the se-
ries model, because failure always occurs at precisely the
stress threshold, which is reached gradually within fast
time. Again we define the failure threshold by oy = 1.
When an element fails, the elements respond in fast time
7 according to the relations
da‘.-,- da.—_f

dopn donn
— -1
dr - dr and dr - dr

These relations hold until o;; = 0 whereupon

+p . (2.3)

dO"'J' - gg’"__,_ +1 and da‘,m dO',m
T

dr g dr o ¢ (29

When do;;/dr = 0 for all sites, we return to the slow
time scale.

III. EXAMPLE:
THREE-ELEMENT CONFIGURATION

We begin by looking at a configuration of three el-
ements connected in a closed chair, which has both a
series and a parallel realization, before proceeding to the
case of large lattices. When any element fails, a frac-
tion p of its released stress is transferred to each of the
other two elements, and a fraction § = 1 — 2p is dissi-
pated. The simple three dimensional phase space of this
reduced system permits detailed analytic investigation.

This model can be described by a Poincaré surface of
section, defined without loss of generality, by plotting the
stress level o, and o3 of each of the surviving elements 2
and 3 when element 1 fails. In Fig. 1, we show the geom-
etry of the Poincaré surface of section for series case a.
The regions with indicial notations correspond to various
periodic trajectories. The indicial notation “1,2,3” de-
scribes periodic trajectories in which each element fails
separately in the order given; we refer to this sequence of
isolated failures as “single breaks.” On the other hand,
“1-2, 3" refers to a situation where the failure of element
1 causes element 2 to fail instantly, and then after some
time element 3 fails. Finally, “1-2-3" refers to a situa-
tion in which all three elements fail simultaneously. One
can readily show that all of these trajectories are peri-
odic. The hatched region is not periodic, but subsequent
breaks will bring any point from the hatched region into
one of the periodic trajectory domains.

In case b, only the shaded regions “1,2,3” and “1,3,2"
(i.e., single breaks) are periodic and we can show that
all other regions of the o3-03 plane arrive, after a finite
number of breaks, in one of these two periodic domains.

In the parallel case, the single break situations “1, 2, 3"
or the inverse, remain periodic while the behavior in the
other cases is more complicated. It can be shown that

0 -
o p 1-p 1

FIG. 1. The Poincaré section o1 = 1 for the three-element
configuration, series redistribution mode! for both cases a and
b. Areas designated by indices correspond to different types of
periodic trajectories. Every trajectory starting in the hatched
area is unstable and moves into one of the periodic areas. In
case b, only areas with single breaks, i.e., those designated by
1,2,3 and 1,3, 2, (shaded in the figure) are stable.

the mapping is area preserving and hence the complex-
ity which it manifests has the signature of Hamiltonian
chaos. The map for the case p = 2/5 (§ = 1/5) is shown
in Fig. 2. We exploit the fact that Fig. 2 is symmetric
about a diagonal. Below the diagonal, the black area
identifies a chaotic region. We represent here one chaotic
trajectory; it is everywhere dense, but does not have pos-

0.0 — T,

0.0 0.2 o4 0.6 0.8 1.0

FIG. 2. Poincaré section o, = 1 for the three-element con-
figuration, parallel redistribution model, p = 2/50r §=1/5.
The white triangles correspond to periedic trajectories with
single breaks (as in Fig. 1), while the white ellipses correspond
to families of invariant tori with quasiperiodic behavior. The
figure is symmetric about the diagonal, but the above- and
below-diagonal portions highlight different features of the
problem. Below the diagonal, the black area defines the
chaotic region, while above the diagonal, the boundary be-
tween the chaotic and regular behavior is displayed.
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FIG. 3. Expansion of the boxed region of Fig. 2. One of the
families of invariant tori, with two satellite families consisting
of 11 and eight elements, are shown. The pumbers 1 — 11 and
letters a — h specify the ordering of quasiperiodic trajectories
in the two satellite families.

itive measure because it is a countable set. Indeed, a con-
tinuum of chaotic trajectories coexist in the same region.
Above the diagonal, we describe the boundaries between
the regions of chaotic and regular behavior. The trian-
gular areas of periodic behavior (shaded) shown in Fig.
1 also appear in Fig. 2. There is as well an infinite num-
ber of elliptical areas, each of which is filled by a family
of invariant tori with quasiperiodic behavior. In Fig. 3,
we show in detail one of these regular regions, which is
identified by a box in the upper left of Fig. 2. This is an
area having a continuum of tori together with “satellites”
which are themselves families of invariant tori. In the fig-
ure, we identify one group of 11 satellites designated by
the numbers 1-11, and another of eight satellites desig-
nated by the letters a-h. Any orbit which originates in
one of these satellites progresses to another satellite in
the same group in the order shown in the figure.

Unlike many dynamical systems encountered in physics
for which empirical evidence of chaotic behavior has been
advanced, we are able to show rigorously the presence
of chaos in the parallel case. We exploit the inherent
symmetry of this system as follows. A trajectory may
take us from one face of the unit cube, say with oy = 1 to
another with o3 = 1 or 03 = 1. Suppose the trajectory
goes from o3 = 1 to o3 = 1; then, we map ¢z — o3,
01 — o3 cyclically, and so on. The symmetry of this
system guarantees that this map, which we denote by P,
is well defined, i.e., is one to one, and is area preserving
although it is not continuous.

LEGEND
Polygon ABC and ACDE
0'3 """" Image of ABC
------ {mage of ACDE

— v e = Separatrix
—————r Images of Separatrix

075

060~ _ & 50 A Wema .

To prove that the behavior of the three-element parallel
configuration is chaotic, consider the polygon (see Fig. 4)
with vertices

7 3 13 3
—(%,Z),Bw(g;g),c-—(osg),
66 16 6
p=(o%)- 2 (%3),

lying in the area between the shaded triangle and the
boxed domain in Fig. 2. The line AC separates this
polygon into a triangle ABC and a quadrangle ACDE.
It can be shown that Q@ = P o P (i.e., the map P taken
twice) is linear on ABC and on AC'DE', that is,

(3.1)

7 7
Q(02!a3) = (O’g - 59’3 + E!US

) in ABC , (3.2)

and

4 19 22
Q(o2,03) = ('3-.0'2 — 58 + T

7 4

’ 0'2+30"3 5) (33)
in ACDE. .

Images of ABC and ACDE intersect both ABC and
ACDE producing a *horseshoe [21].” As a result of
Smale’s Theorem [21], a subset in the unit square, invari-
ant under @ and @~?, has the characteristic structure of
a Cantor set.

The point X = (5,3f) in ACDE is a fixed point

of Q with eigenvectors (3 ¥ V/85,6) and eigenvalues
(11 + v/85)/6, which define the stable and unstable sep-
aratrices of Q. A segment XY C ACDE of the unstable
separatrix of @ extends to XYz under Q. Let Y Z be the
intersection of XY; with ABC. Then, the image Y, Z, of
Y Z under Q intersects transversely the segment VX of a
stable separatrix of @, producing a “homoclinic” strue-
ture [21], which satisfies the formal criterion for (homo-
clinic) chaos. Images of the unstable separatrix under
eight iterations of Q are shown in Fig. 4.

From this formal demonstration of the chaotic charac-
ter of the three-element configuration, we turn our atten-
tion to the numerical results for the series and parallel
lattice models.

FIG, 4. Homoclinic chaos in the three-
element configuration, parallel redistribution
model for p = 2/5 (S = 1/5). X is a fixed
point of the Poincaré map, while H is a ho-
moclinic point, i.e., it is the intersection of
the stable and unstable separatrlces of the
Poincaré map at X.
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IV. RESULTS: PERIODIC LATTICE

Cousider a periodic lattice of arbitrary dimensionality
d and interaction parameter p, under conditions of case a
of the series redistribution model with fixed stress drop.
Let the system, starting in slow time from a state ai{t),
undergo an arbitrary sequence of consecutive breaks that
includes all the elements in the system, each of them only
once, during a time period S. Then one can show that
oi(t+5) = oy(t) for all i where ¢ denotes the time and the
state 0;(t) belongs to a periodic trajectory with period
S.

Such a trajectory, where each element fails only once
in a period, will be referred to as a normal trajectory. For
any initial state (see Appendix A), the system arrives at
a normal trajectory after a finite number of breaks.

The period of the trajectory is S because the units
of stress and time are chosen so that the stress drop is
equal to S and the rate of stress loading is unity. In
an equivalent block model formulation 7], the value §
corresponds to the rigidity of the loading spring. If we
choose the units to make the stress drop and the velocity
of loading constant, then the period scales as 1 /5.

What is notable is that the periodic part of the tra-
jectory appears to be “chaotic” within a single period.
We refer to this phenomenon as “periodic chaos.” In
Fig. 5, we show the distribution of break sizes as a func-
tion of time during one period for a 300 x 300 lattice with
§ = 0.01 for two randomly chosen initial stress distribu-
tions. Both time histories appear to be “chaotic” but are
manifestly different from each other. There is no hint in
this figure that the trajectory could be periodic. Indeed,
this result poses a warning that abbreviated investiga-
tions of these phenomena can lead to grossly incorrect
conclusions about the nature of the phenomena.

Size-frequency diagrams generated from one periodic
trajectory appear to be crudely power law in character
and display a characteristic logarithmic slope near —1 in

| [,Ii i‘ '} 1| J|"’4Ji;:: ,.-" B . i f |
_m_‘ -!Ew Ty i l,ii. FhILI

Namber of Bieaks
=

T T T r
0.00 0.20 040 0.60 0.30 1.00
Notmalized Time

FIG. 5. Two typical realizations of break size as a function
of time for one period of a periodic trajectory in the series
redistribution model case a, 300 x 300 lattice and S = 0.01
displaying periodic chaos. The results shown are for two ran-
domly selected periodic trajectories of the same model: the
two sets of results are displayed above and below the time
axis, respectively.

Density of Breaks

L 1

0ol
1 10 100 1000

Size of Break

FIG. 6. The size-frequency distribution for two periodic
trajectories periodic chaos in the series redistribution model
case a; 300 x 300 lattice with § = 0.01. Size is defined to be
the number of elements that break in a single cascade event.

the central part of the distribution when § is sufficiently
small. This is illustrated in Fig. 6 for the two periodic
trajectories shown in Fig. 5. The two distributions are
remarkably similar, despite having been produced by two
randomly chosen periodic trajectories.

For a one-dimensional lattice, the structure of the
phase space in case a, i.e., with fixed stress drop, of
the series redistribution model can be investigated an-
alytically (see Appendix B). Consider a one-dimensional
lattice of size N subdivided into n (connected) clusters
of different sizes. The volume of all normal trajectories
with n clusters is equal to

V(n,N) = N (N +n— 1) srpN-n

4.1
n 2n—1 (4.1)

N
Let V(N) = 3 V(n,N) be the total volume of all peri-
n=l

odic trajectories. Then

N
V() (H—m_ "12,‘47’2) asNoo . (4.2)

An estimate of the mean value A;(N) of the number of
clusters of size j for a randomly chosen periodic trajec-
tory is the analytic size-frequency distribution:

. N
A;(N) = -173(%2

n=1

N+n—-j-2
n—-3

)S"pN ™, (4.3)

so that

i-1

. 1-2p 2p
Ai(N) NS"/ 44
i(N) o j 1+2p(1+\/l—4p2) (4.4)

for N » j. This analytic result is substantially different
from the size-frequency distribution obtainred numerically
in the two-dimensional case, a feature also noted by Bak
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et al. [1]. As § — 0, the large events dominate the dis-
tribution, while small events scale in proportion to size
(a feature also noted by Bak et al. [1]). These results
demonstrate a fundamental difference between one- and
two-dimensional models.

In case b of the series model, as well as in the case
of parallel redistribution, periodic behavior appears for
2 much smaller set of states, in which only single breaks
are allowed. (It is easy to show that both of the series
cases and the parallel case are equivalent on the set of
single breaks [22].) If NV is the number of elements in
the lattice, then the part of the phase space occupied
by normal trajectories with single breaks has volume § N
and consists of N! identical simplexes, a result that has
been confirmed analytically (see Appendix C).

Computer simulations show that, in the case of series
redistribution with a fixed healing threshold, the set of
these simplexes is a global attractor, and a trajectory
with any initial state becomes periodic after a finite, but
generally very large number of breaks. In the short term,
the trajectory becomes “almost” periodic, with multiple-
breaks occurring with a “period” shorter than S§. With
the passage of time, each multiple break decomposes into
a sequence of single breaks; however, the sequence of sin-
gle breaks preserves the memory of its multiple-break ori-
gin and remains localized in space and time, as shown in
Fig. 7 for a one-dimensional system of 200 elements with
§ = 0.1. Figure 8 shows two time intervals extracted
from the sequence shown in Fig. 7 to illustrate the tran-
sition of multiple-break behavior into single-break behav-
ior.

In the parallel redistribution model, the behavior out-
side of these simplexes is, in general, seemingly chaotic.
We considered situations where the initial values of the
stress are taken to be uniformly distributed between 0
and 1. In Fig. 4, we show a time stress plot for a 20 x 20
lattice with § = 0.1. There is a natural time scale which
coincides with 5§ in the “stress-accumulation-release cy-
cle.” On the otber hand, intermittency on a time scale
that is long compared with S is evident. This may be ob-
served in two noncontiguous segments of this time series,
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FIG. 7. The space-time distribution for a periodic trajec-
tory in the series model, case b, displaying significant localiza-
tion. For sufficiently long times, all events are single breaks,
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FIG. 8. Two time intervals selected from Fig. 7 to illustrate
the transition from multiple- to single-break behavior.
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FI1G. 9. Intermittency in the parallel model, on a 20 x 26
lattice for § = 0.1.
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FIG. 10. Two noncontiguous time segments from the pre-
vious plot, revealing the nenstationary character of the inter-
mittency.
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F1G. 11. The cumulative size-frequency distribution for the
parallel case for different sizes of the two-dimensional lattice,
and for different values of 5. As the lattice size n increases,
the distributions seem to converge to the T distribution.

which we display in Fig. 10. Finally, we have computed
cumulative size-frequency distributions for this case for
different values of the dissipation parameter § and lat-
tice size n (Fig. 11); the distributions are independent
of n for a given value of §. The distribution appears to
be consistent with a power law with an exponential cut-
off which depends upon the value of S; this distribution
is called the gamma distribution in the statistical liter-
ature. However, for small values of §, the exponential
cutoff migrates to infinity and, in the apparent power-
law regime of the distribution, the power-law index lies
between —1 and —2, a result that is quite different from
the situation encountered in the series model.

V. CONCLUSIONS

Quasistatic lattice models of failure with dissipation
have been employed recently by a number of authors to
explore the scaling and other properties of catastrophic
events including earthquakes. These models are represen-
tative samples of a broad spectrum of physical situations
described by the presence of two or more characteristic
time scales: a “slow” time with the interval between fail-
ure evenis associated with tectonic loading and a “fast”
time associated with the fracture event itself. There are
two broad classes of models characterized by their fast
time dynamics: (i) the series model characterized by an
instantaneous release of stress at a failed lattice site fol-
lowed by the transfer of some fraction of that stress to
neighboring lattice sites; and (ii) the parallel model char-
acterized by a relatively slow release of stress at a failed
site and an instantaneous tramsfer of some fraction of
that stress to neighboring lattice sites. We have consid-
ered two versions of the series model; in case a the stress
level at the failed lattice site is reduced to zero, and in
case b the stress level is reduced by a fixed amount. These
models yielded remarkably different qualitative behavior.

In the series model of a uniform periodic lattice con-
taining N elements, part of the phase space consists of
periodic trajectories. This part of the phase space is of

positive measure, i.e., it occupies a finite part of the en-
tire phase space. This set of periodic trajectories is a
global attractor of the system: any initial state arrives at
a periodic trajectory in finite time. In case a, these pe-
riodic trajectories may contain multiple breaks, in which
many elements fail at the same time, For N large, the
behavior during one period may appear to be chaotic,
and displays an approximate “size-frequency” law 1 /f as
the dissipation parameter § pgoes to zero. We refer to
this remarkable situation as “periodic chaos.” In case b,
the set of periodic trajectories is much smaller than in a,
occupying a fraction SV of the phase space. The rate of
convergence to the periodic trajectory is much smaller In
case b than in case a. The trajectory quickly enters an
intermediate phase of behavior which includes multiple
breaks that gradually decompose into a series of single
breaks which are localized in space and in time.

In the parallel model, the set of periodic trajectories
is also composed solely of single breaks. (We note that
once a periodic trajectory composed of single breaks is
achieved, the parallel model and both cases of the series
model are equivalent.) In the phase space outside the
periodic regime, most trajectories are chaotic producing
a size-frequency relation which converges to a power law
as the dissipation parameter S approaches zero, but the
power-law differs from the former 1/f situation. More-
over, at time scales that are large compared with S, there
is substantial intermittent behavior.

Finally, the three-element model is particularly re-
markable in that it provides such complexity. Analyt-
ically, we have shown it to exhibit Hamiltonian chaos
including homoclinic points and the presence of Smale
horseshoes. In addition, we have derived an analytic size-
frequency distribution from combinatoric considerations,
which is markedly different from the two-dimensional
case (cf. [1]).
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APPENDIX A: NORMAL TRAJECTORIES

Let us consider a periodic lattice of arbitrary dimen-
sionality d, with an interaction parameter p and a dis-
sipation parameter § = 1 — 2dp > 0. For any two sites
i and j of the lattice, we define Pij = pif i and j are
nearest neighbors, p; ; = 0 otherwise.



50 LATTICE MODELS OF FAILURE: SENSITIVITY TO THE... 195

Proposition 1. In case a of the series redistribution
model, let the system, starting in slow time from a state
o = {oi(t)}, undergo an arbitrary sequence of consecu-
tive breaks that includes all of the elements in the system,
each of them only once, during a time period 5. Then
a:(t + §) = o;(t), for all ¢, and the state ¢ belongs to 2
periodic trajectory with period §. For arbitrary initial
state, the system arrives at one of these periodic trajec-
tories after a finite number of breaks.

Proof. After all of the elements break, at the moment
in time t+ &, the stress of the ith element becomes o;(t +
S) = 04(t) due to the loading in slow time S, wherein the
stress increases by 2dp from the 2d broken neighbors, and
decreases by 1 due to the stress drop.

Suppose now that the initial state o does not satisfy
the condition of Proposition 1. The same arguments as
before show that no element can break twice during the
time period §. Thus, if N — K elements break during this
period, K > 0, then the total stress of the system during
the time period S increases by KS. Then, during each
time interval §, the system would experience a net stress
increase. As the total stress of the system cannot exceed
N, we obtain a contradiction. Therefore, we must come
to a periodic trajectory after a finite nurnber of breaks.

APPENDIX B: PHASE SPACE STRUCTURE

We describe here the structure of the set of all periodic
trajectories in case a of the series redistribution model for
a uniform 1D periodic lattice of size N.

Counsider an arbitrary subdivision of (1,...,N) into n
clusters of different sizes, and let n; > 0 be the number
of clusters of size i, sony +---+ny =n, ng+2ns+

«++ Nny =N.

Proposition 2. The volume of all states generating
periodic trajectories with sequence of n breaks containing
n; events of size i is equal to

Vﬂl, onN —Nn—l TH__xsn N—-n
i=1

(B1)

Proof. Let us identify an initial state defined
in Proposition 1 with an ordered sequence of n non-
overlaping connected clusters (i.e., fast time episodes)
covering the lattice, containing n; clusters of size 1, and
one distinguished (i.e., special) element in each cluster,
namely, the first broken element. Simple combinatorial
considerations show that the number of these objects is
equal to

Nrl(n— 1)'H—

i=1

(B2)

Here, n!/]]n,! is the number of possible unordered dis-
tributions of clusters, [] ™ corresponds to the choice of
an element in each cluster, (n — 1)! defines order in the
set of clusters (due to periodicity of the lattice, the choice
of the first cluster should be made in advance), and N
identifies the position of the head of the first cluster on
the lattice.

An exception is the case with only one cluster of size

N where there are only N different objects, not N? as
suggested by the formula (B2}, because this cluster has
no head. However, the formula (B1) is valid also in this
case.

For any ordered sequence of n nonintersecting con-
nected clusters Ky,..., K, of sizes 1,,...,1, covering the
lattice, with a distinguished element m; € K, the set of
all states with an ordered sequence of n breaks of sizes
i1,...,1n starting with elements m,,---,m, is defined by

1> O,y +p1(m1) > O,

+p2(ma) > - > o, +Pu(ma) 21-8 , (B3)
am; +Pi(my) +p > ok +pi(k) +p
2> 0m; +pi(m;) forke K;, k#m; . (B4)

Here, p;(k} = 3¢ KyU--UK;_y Pik 18 the stress increment
at a site k € K; due to the breaks in the first j — 1
clusters. The volume of this set is S"p"N " /nl.

Once again, an exception appears in the case of one
cluster of size N where the last broken element receives
stress 2p in fast time. In this case, in addition to the set

1>0m, 21-8; 0m, +0>0k4+p 2> 0m,

for k#m; , (B5)
the following N — 1 sets appear for j # my:
1>0m 21-8, 0m, +2>0;+ 202 0m,y,
Om, P20k +P 2> 0, (B6)

for k # my,j. The total volume of sets (B5) and (B6)
is equal to NSp™-!, This, in combination with (B2),
proves (B1).

Theorem 1. (a) The volume of all periodic trajecto-
ries with n clusters is equal to

V(n,N) - E(N""n— I)S"pN—ﬂ

n 2n-1 (B7)

(b) LetV(N)=3"_ V(n, N) be the total volume of all
periodic trajectories. Then
Sz(1 + pz)
V(N)z
Z S e s N
and
1 1-—4p? N
V(N) (—J”-u—w— "2”) as N = oo (B9)
Theorem 2.  Let
1
A;(N) = Vi > ) A (B10)

ny+2na 4 +Nny=N
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be the mean value of the number of clusters of size j for
a randomly chosen periodic trajectory. Then

. N .
JN Z(N+n_3—2)snp1\f—n , (Bll)

;(N) =
VIN) =\ 2n-3
V(N _ ISP 7M1 - pz)Psd
Zz A;(N a7 0 (B12)
and
1-2 2 i
. — &P P
A;(N)x jNS B13
i) oINSy (1+-\/1—-4p2) (B13)
for N » 5.
Lemma. (See Zelevinsky [23]).
N+n-1
Z H n!( 2n—1 ) ’ (B14)

A, AN izl

where the sum is taken over all integer sequences
(R1,...,nn) with n; > 0 for all 4, n; + --- + ny =
n, ny+2ny3+-.--+Nny=N.

Proof. Counsider the generating function g(x,y) =
Trn=o¥(n, N)z"y"N, where v(n, N) denotes the left
side of (B14). We have

3 H—z ‘Y™ =[] explizy’)

(z,y) =
T, BN =] =1
= eXp (iimy‘) = exp .
- - — )2
= (1-v)

(B15)

1
[]s
2%
M8
=
¥+
-1
[
[y
S
2

Extracting the coefficient for z"y™
Proof of Theorem 1.

Via,N)= Y ¥

Ay N

=N > nj(n-1)

Ny EN

, we have (B14).
According to (B1),

BN

xH-——-xS" N-n

‘I

(B16)

i=]1

where the sum is taken over ny + - + ny = n, n;+
2n3 +---+ Nny = N. Thus (B7) follows from (B14).
In order to prove (B8) we observe

(g2 £ 2 ()

z"yN. (B17)

Taking derivative over y of both sides of (B17) and mul-
tiplying by ¥, we have

zy(l + ) _ L N(N+tn-1 LN
(l—y)[(l—y)z—ry]—,\,zlzn( 2n—1 ) v

=1ln=1

(B18)

Substituting x = §/p, y = pz in (B18) we have {B8).
To prove (B9) we represent the right side of (B8) as

Sz(1 + pz) I . S 2
(Q-p2)(1-2+p%22) 2y -2  25-2 1-pz '
(B19)
where
1+£+/1 — 4p2
zllzzz_..._p_ (Bzo)

2p?

are the roots of p?22 — 2z 4+ 1 = 0. As 2z, < p~! < z,,
the second term in this sum defines the asymptotics of
coefficients in the power series 3 V(N)z¥ for large N,
50 V(N) o< 55 = (p2ay)¥

Proof of Theorem 2. According to (B1},

A;(NYWV(N

=¥y ¥

n=ln;+-4ny=n

xH—-—xS"N" y

n_,-(n - 1)'
- (B21)

where ny +2n; + ... + Nny = N. In order to prove
(B11), we have to show that

Z H LA J (N +n—-j-— 2)
e - 1)! 2n-3
(B22)
Consnder the genera.tmg function gi{z,v)

mov=oYi(n, N)z"y™  where vj(n, N) denotes the left
sxde of (B22). We have
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9i(zy) =

Ty N i=1

.5 Ty

Jzn-l—l

Z n; H —a: iyt = oy Hexp(u:y } = jzy' exp (Z ixy )

i=1

= jzj’ exp =
(1-y)?

n=0

Extracting the coefficient for 2™y, we have (B22)
To prove {B12) we first observe that

2n4+i-—-1 i .
= Z Z ( )y“+ (B24)
1— n=0
Hence,
jzy’ "+l i (211. +i- ) n+i+j
T =y T v
e ,.z =\ -l
. P N+n—-j3-2\ u
= 37 Z T Z ( on — 3 )y .
n=1 N=n4j-1
(B25)

Substituting = = §/p, y = pz in (B25) we have (B12).
To prove (B13) we represent the right side of (B12) as

ISP -p2)?d iy
1—z+p222 RIS
1-2p 1
11t 1+2p(zz—-z
1
- B2g
L)

n!

-romm, 2 (Tan )

= (2n+i-—
z;( n—-1

1) yn+i+.1'

(B23)

[ ‘
where z; and z; are the same as in the proof of The-
orem 1. As zz < 2;, the term with 1/(zz — z) defines
asymptotics of coefficients in the power series in (B26).

APPENDIX C:
STRUCTURE OF SIMPLEXES

In case b of the series redistribution mode], as well
as in the case of parallel redistribution, the analog of
proposition 1 is valid for essentially smaller set of states,
when only events of size 1 (or degenerate cases when
several non-neighboring elements break independently)
are allowed. Let 7 = {i;,---,iy) be an arbitrary per-
mutation of (1,...,N), i; = 7(j). For every i, let
P = ):j:,(j)q(‘-) Pr(i)r(j)- Then the set of states o gen-
erating periodic trajectories with an ordered sequence
(i1,...,in) of single breaks is defined by

1>0:y+n>...>0.n)+p821-8 (C1)

The volume of this N-dimensional simplex with side §
is equal to SV /N). The union of the sets (C1) over all
permutations 7 coincides with the set of all periodic tra-
jectories with single breaks. Its volume is ¥
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