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SCALE INVARIANCE OF SMALL
EARTHQUAKES:
THE MYTH AND THE REALITY

L. Knopoff

Department of Physics and Astronomy
and Institute of Geophysics and Planetary Physics
University of California, Los Angeles

1. EARTHQUAKE ENERGY DISTRIBUTIONS

Over the last decade the weli-known power-law distribution of earthquake en-
ergies [1-3] has frequently been taken to be evidence of self-organization under
scale-invariant conditions and hence to imply that the earthquake process is
one of self-organized criticality [4-8]. In the earthquake case this argument is
misleading; there are alternative explanations for understanding the power law.

To review, the power laws are derived from analysis of earthquake catalogs,
which are usually a listing of five parameters, namely the hypocenters - which
are the locations in three dimensions of the points of initiation of the earth-
quake fracture—, the times of initiation of the earthquake fracture, and the
magnitudes. The magnitude Af of an earthquake is proportional to the base
ten logarithm of the energy radiated to distant sites. There are two hints that
dynamical processes are important: 1) earthquakes are fractures - and fractures
cannot develop instantly -, and 2) earthquakes radiate vibratory wave motions
of stress and displacement to distant points. The phenomenon of radiation
implies that dissipative processes are at work even during the brief seconds of
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the earthquake fracture event. We cannot ignore radiation since it is the one
method we have of knowing that most earthguakes have actually taken place.

On a standard picture, the nature of fracture requires that we start with an
elastic medium that has been prestressed up to some critical fracture thresh-
old, at which moment {racture initiates locally and the zone of fracture spreads
over some surface. The detection of wave radiation by seismographs, as well
as the human experience of large earthquakes, is testimony to the rapidity of
the f{racture process; the crack edge velocities are of the order of shear wave
velocities and in crustal rocks, these are of the order of 3 km/sec. Maximum
particle velocities during slip are estimated to be of the order of a few me-
ters/sec. The rate of loading of prestress is slow, thereby accounting for the
long interval between successive large earthquakes; typical loading slip rates
are of the order of several cm/year. The energy radiated in an earthquake is
undoubtedly a measure of the linear dimensions of the fracture: the larger the
fracture, the larger the magnitude of the earthquake. As we shall see, the limits
to the size of an earthquake fracture are strongly influenced by the geometrical
fluctuations in the prestress and of the fracture strengths.

To establish an intuitive understanding of the magnitudes of earthquakes,
cach increase of one magnitude corresponds to a 30-fold increase in energy.
A magnitude 8 earthquake is an enormous event, capable of causing great
death and property damage in populated areas; a magnitude 8 earthquake
is a rare event locally on the scale of human lifetimes, and occurs only once
every 132 years or so on the average in Southern California(9]. A magnitude 3
earthquake is perceptible only very locally, and causes no damage and occurs
about once every two days in Southern California on the average; the magnitude
3 earthquakes occur about 2x 10* more frequently than magnitude 8 events, but
are feit by few people because of their small size and localization. Magnitude
8 events are huge earthquakes and are felt over wide regions.

The cumulative energy distribution in small earthquakes is

N{(E)~ E7B. (1)

{Seismologists prefer to use the cumulative distribution rather than the pdf.)
The power law is a universal, found in all regions of the earth where there are
tectonic earthquakes; observationally the exponent is 2/3 everywhere in the
world with only small fluctuations; there are also heuristic arguments that give
the exponent precisely. The relation (1) is known to hold for small earthquakes,
since these are the only ones observable in sufficient quantity that their statis-
tics can be identified. We know very little about the energy distribution of
large earthquakes since they are rare events, and since magnitudes have only
been measured since definition in 1935. The catalog for Southern California
carthquakes, which spans 60+ years, is the temporally longest local catalog in
the world. In that interval the largest earthquake was a magnitude 7.5 event;
the last earthquake in the magnitude 8 range took place in 1857. How can one
do statistics of large earthquakes if only 16 independent events with M > 6.4
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have occurted in 63 years, and the strongest earthquake known has not oc-
curred at all in the intervai? So our quantitative knowledge of the large-energy
end of the spectrum is poor, as given by this relatively short, although longest
of catalogs.

If the finite temporal sample of a 60-year long {or less) catalog is valid as a
long-term average, the total energy radiated by earthquakes [ EdN under the
power law (1) diverges if the upper limit to earthquake encrgy size is infinite,
since B < 1. Since the energy budget for generating earthquakes, derived from
processes in the interior of the earth, is finite, it is clear that the power law
cannot extend to the largest energies, and that there must be a rolloff or cutoff
in the distribution. This argues for the presence of at least two branches to
the distribution: a low energy branch for which the power law is observed and
is due to some universal process, and a high energy branch which does not fit
the power law for small earthquakes and for which we have very little data.
The high energy branch may or may not have its own power law distribution,
but we do not know anything about that. I shall argue that the low energy
branch, which we know is valid for frequent small earthquakes, is indeed due to
a universal process (no surprise here), although the nature of the process may
turn out to be something of a surprise. I shall also argue that the high energy
branch is a response to physical processes that are strongly influenced by the
geometry of earthquake faults locally. Since the geometry of faults varies from
region to region, i.e. fault maps in Peru are different from those in Japan, etc.,
it will follow that the high energy branch must have a local character rather
than a universal one, unless the major faults on which large earthquakes occur
have some universal character of their own; this seems unlikely. The power law
branch of the distribution cannot imply self-organized criticality (SOC) since
the development of SOC depends on the presence of a power law tail at the
large energy end of the distribution. Our power law is at the wrong end of the
distribution.

The larger the region of potential energy storage before the earthquake, the
larger the earthquake. If there is a rolloff or cutofl in the energy distribution,
then there must be a corresponding characteristic length scale in the geometry
of earthquakes. [n Southern California, all small earthquakes are located in
the uppermost !5 km of the earth’s crust, which is only about 1/400 of the
earth’s radius; larger earthquakes may have fractures that extend as deeply as
18 or 19 km. Let us take 15 km to define the characteristic length. A critical
depth is an appropriate measure of the crossover in the distribution since small
fractures would be likely to grow as circles or ellipses without intersecting either
the lower or upper boundaries of the seismogenic slab, while larger earthquakes
would be constrained to grow horizontally, with a roughly rectangular geometry.
Thus the statistics of large earthquakes would not be expected to follow the
same rules as the small ones, since the fluctuations that stop growth would
be expected to have different distributions on the two scales. In many other
parts of the world, earthquakes occur at much greater depths, so the rolloff
magnitude corresponding to the characteristic length scale is not expected to
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be a universal; instead it probably varies significantly from region to region.

The rupture dimensions of small earthquakes increase by about a half-order
of magnitude for each increase in earthquake magnitude: a magnitude 3 earth-
quake corresponds to a fracture dimension of about 300 m, a magnitude 5
earthquake to a fracture of about 3 km, etc. An earthguake with linear dimen-
sions of 15 km corresponds to a magnitude 6.4 earthquake approximately; I
take this to be the rolioff magnitude. The magnitude distribution for Southern
California shows no kink at magnitude 6.4 nor at any other magnitude up to
the largest (M=7.5) that has taken place in the last 60+ years. Further, the
net slip in all earthquakes of the last 60 years is less than that of the slow slip
in the plates that drive the earthquakes; this has been interpreted as implying
that we are currently in an episode of deficiency of strong earthquakes in the
magnitude 7 range and above[10]; on this interpretation, the pdf should have
a peak al its large energy end, which is not observed at present; there should,
of course, be a falloff at even larger energies. | will argue that at the largest
energies, the geometry of fauiting will require that there be a cutofl in the
distribution at energies beyond the M=6.4 rolloff.

2. STRESS REDISTRIBUTION

What are the physical processes that determine the distributions of the two
branches? The mechanism is centered on the physics of fracture. Because the
earthquake catalogs do not indicate the relationship between the geometry of
the fracture and the hypocenter, most authors have treated the catalogs as
describing a point process. This interpretation is misleading. The geometry of
fracture plays a vital role in the self-organization of seismicity; in detail, the
precise points of origin of fractures may be rather minimally important.

The average slip (u} in a fracture is related to the average drop in stress
(o) from that in the prestressed state to that in the final state. From simple
dimensional arguments based on Hookean elasticity, the scaling is

(u) ~ —1L (2)

where p is the elastic modulus of the material astride the crack and L is some
critical length, presumably related to the geometry of the crack. Consider the
application of (2) to the great (M = 8) San Francisco earthquake of 1906. The
mean slip was about 4.5 m. The fracture length was about 450 km, which
implies that there was a huge momentum exchange over the short time of the
carthquake. (The energy released was of the order of 10?* erg, which is an
enormous amount, and is of the order of the energy that would be released in
a hypothetical 100 megaton explosion.} If we use typical values of stress drop
of 100 bars (= 10MPa = 10%dy/cm?) and of shear modulus of 3 x 10* MPa
(= 3 x 10'! dy/cm?), one gets a scale size L for this earthquake of about 15
km, give or take a factor of 7 or less. The coincidence with the thickness of
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the seismogenic zone may or may not be real; 1 believe there are arguments
favoring the association. The enormous discrepancy between the scale size and
the fracture length implies that slip ceases when the fracture length is of the
order of 15 km. Thus the fracture in this great earthquake must be described
as a moving patch of rupture of size 15 km;j at the time the extremities of the
fracture began to slip, the parts close to the point of initiation had healed a
minute or two earlier; only ~ 15km of the fracture slips at any instant. Thus
healing may play as important a part in the self-organization as the condition
for initiation of fracture; we will have to understand the dynamics, not only
of initiation of slip, but also of cessation of slip. If the value of 15 km for the
healing scale size is valid, then perhaps the process of healing has a different
influence on the fracture of large earthquakes than it has on small ones,

In general, the drop in stress on a fracture is accompanied by a redistribution
of stress in the neighborhood. Immediately to the side of the fracture, the
stress is also lowered because of the continuity conditions on stress. Beyond
the end of the fracture the stress after fracture is increased. The stresses in
1-D and 2-D scalar static cracks satisfy Laplace’s equation; one can apply
Gauss’ theorem and show that the net change in stress on any closed curve
is gero. As a consequence, there is no way to relieve the inexorable buildup
of stress from tectonic sources in this model, and ultimately this model must
explode in a “non-earthquake”. This is not the case for dynamic cracks which
are dissipative, having a dynamics controlled by the wave equation. It is the
increase in stress outside the crack and in its plane that provides for the self-
organizing principle in usual use. The stresses are decreased on the fractured
segment and increased outside it. The range of the stresses L outside the
cracks is scaled by 15 km for the larger fractures or by the size of the fracture
for the smaller fractures, L = min[i5km, £], where £ is the length of the crack.
The change in scale size is usually ignored in simple models of seismicity that
take finite fracture sizes into account. In even simpler sandpile models, the
scale size for the redistribution is uniformly nearest-neighbor, ie. it is the
lattice spacing. However this is clearly a model of a dislocation rather than
a fracture; it is assumed in dislocation models that healing, or restoration of
strength, takes place before the neighboring lattice site can break, whereas on
crack models, healing does not take place until after the crack has reached the
length L. Evidently the dislocation model is undesirable: the model cannot
develop the slip observed in large earthquakes; according to (2), the slip is
vastly underestimated when compared with observation since the scale size L
is so small.

The basis for the self-organization is thus that the stress drops on the frac-
tured segment and increases in its plane outside it. The tectonic stress in the
plane elevates the stress level slowly over the entire region, causing a new seg-
ment to rupture, which in turn causes further stress redistribution. Thus the
succession of fractures and the reloading by plate tectonics generates a system
of stresses that fluctuate in time and space. Fractures are initiated when the
prestress is brought to the level of the fracture strength. Fractures stop growing
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when they encounter a fluctuation in the difference between the local fracture
strength and the prestress that is too great for the stress at the edge of the
crack to deliver; the fluctuation is set up by the past history of fractures. From
the Green’s function for cracks with smooth edges, under either dynamic or
static conditions of {racture, the stress enhancement at the edge of a crack 1s

Teage ~ (o) L/d)'? (3)

up to some numerical factors that take complex geometry into account, where
o and L are as before, where the average of the stress drop (o) is taken over the
active region of slip as measured by L, and where d is a distance of tapering
at the edge of the crack that is introduced to avoid singularities; d is scaled
by L but is less than it. Thus the larger cracks among the low-energy part
of distribution have a greater likelihood that they will increase in size than
smaller cracks; this statement does not hold for large L, that is for the largest
cracks. The distance dis not a mere mathematical convenience: it can be shown
that the edge of a crack must have a transition zone of dimension d, that lies
between the regions of complete slip on the inside and the region of locking on
the outside of the crack(11]; in this zone the material deforms nonelastically
such as by inducing plastic deformation, slip-plane gliding, microfracturing,
granulation, etc. In the case of earthquake faults, this requires that a zone of
weaker material be developed around the fault laterally before or during the
earthquake and whose strength rises again some time after the earthquake; thus
the strength of this zone itself Auctuates over time. Such weak zones have been
identified as wave guides from observations of aftershocks of the very strong
Landers earthquake (M=7.3, 1992) in Southern California(12].

3. MODELS OF LARGE EARTHQUAKES

Earthquake systems are cleatly self-organizing. I have indicated that these sys-
tems are not SOC for geophysical reasons; [ show that they are not SOC for
physical reasons as well. We study models of large earthquakes to see what
the gualitative properties of the self-organization are. A number of models
of self-organization in earthquake systems have been constructed in which it is
assumed that the power law is the only branch to the distribution. Since power
laws imply sel{-similarity, it has been assumed that the earthquake histories are
developed on the simplest of landscapes of the spatial distribution of fracture
strengths, namely constant distributions. However, for spatially homogeneous
threshold models of fracture, the power laws that are developed must have
infinitely long tails. Thus for these models, there is a finite probability that
a fracture will develop that extends across the entire model; at this point a
fracture develops that stops for reasons other than the internal fluctuations of
difference between fracture strength and prestress; these cracks are of infinite
length for periodic boundary conditions, or they encounter unbreakable bar-
riers at ends (which are extraordinary inhomogeneities of strength), etc. We
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call these events runaways; they are lattice-size effects. In other words, the
runaway events interact with the computational boundaries and develop frac-
tutes that are not stopped for the same reasons as the smaller events; they are
not members of the same universality class; the largest earthquakes in nature
are true earthquakes. After a runaway the subsequent evolutionary history is
overwhelmed by and is a consequence of the reset of the stress conditions by
the interaction with the boundaries, and no longer reflects a process that is
characteristic of an infinite region; to restate in simple terms, after a fracture
encounters the boundaries, we begin to be concerned with surface rather than
volume effects. The situation does not improve if one introduces dynamics and
radiation damping into a finite lattice system. It has been shown that evolu-
tionary seismicity on a finite homogencous lattice with dynamics and radiation
and with rapid healing, develops a very long transient episode of activity that
has the power law property, but even here the system ultimately organizes it-
self into a lattice-wide event[13] which, as remarked, is physically unacceptable.
Indeed the power law in the transient phase does not describe an ensemble of
random events. Instead, the events before the runaway are highly correlated:
since the stress after any fracture is roughly uniform, all parts of it are likely to
reach the threshold stress at about the same time, after a suitable elapsed time
for reloading. Thus the next event on this segment has a very high probability
of being about the same length as its predecessor. Thus the power law in these
models reflects the numbers of clusters and the number of fractures in each
cluster.

Numerical simulations focus on the high energy branch of the distribution
rather than the low energy branch. If computational lattice sizes correspond
to a size that is larger than the largest fractures observed, then the simulations
of stress redistribution are dominated by the large and largest earthquakes. It
follows that the primary goal of these simulations cannot be one of using the
power law distribution known for small earthquakes as a target. We restrict
attention in the models to the organization of the large earthquakes, for which
we have no statistical guidelines.

Can inhomogeneous distributions of fracture strength stabilize the process
and restrict the occurrence of runaways? Recent work[14] has shown that there
is a strong relationship between fracture strength and geometry of faulting, and
that an irregular geometry implies an irregular fracture strength. To elaborate
this notion, we must first define an earthquake fault. The mapped faults are
sites where large earthquake ruptures of the past have intersected the surface
of the earth; they are manifestations of the damage to the crust performed
by large events. Because of their size, smail fractures are unlikely to intersect
the surface, but large fractures will, especially if A > 6.4, Thus fault maps
give the surface expression of the geometry of large fractures. The dating
of ancient fractures on faults at the surface is a campaign that is only just
beginning[9,15]. The fact that major faults have extensive offsets that are very
much larger than the slips in individual great earthquakes, tells us that large
earthquakes recur on the same fault structures. Although they are themselves
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strong, so that they do not slip in earthquakes very often, these faults are zones
of local weakness since the largest earthquakes do not take place in the fresh
rock adjoining the old faults; most often, new earthquakes take piace on old
structures. Faults however grow very slowly by extension of existing structures
and new ones are probably initiated, but most contemporary earthquakes take
place on pre-existing fault structures. At some time after a fracture on a fault
has taken place, the walls of the fault must be sutured or locked in order
that deformational stress be accumulated over the long time interval before the
next large earthquake occurs on it. We have proposed above that the process
of healing in the large events is relatively rapid and and a large part of the
strength is restored during the rupture itseif.

No fault is perfectly planar or perfectly smooth, because nothing in the real,
macroscopic world is smooth. Without geometrical roughness of fault surfaces,
there would be no ability to store deformational prestress, since faults would
always slip. But roughness is found on a variety of scales. On large scales, the
macroscopic geometry of faults includes offsets, bifurcations, echeloning, etc.;
at sites of nonplanar geometry, bifurcations into secondary branches can take
place. Thus faults form networks; in the case of Southern California faulting,
the San Andreas Fault (SAF), which is the boundaty between the Pacific and
Notrth American plates, dominates the activity on the network. In the past
60+ years, there has been virtually no activity down to the very smallest of
magnitudes on the SAF; all of the very strong earthquakes of this interval have
occurred on secondary faults of the network. Thus any model of the seismicity
of large earthquakes should be done on a network of intersecting fault, rather
than on the single faults of popular models up to this time.

Despite these remarks, let us see how far we can get by studying single faults.
In the case of in-plane deformations which are appropriate for earthquakes, seg-
ments of faults that are not parallel to the regional shear stress will continue to
accumulate normal stress; the normal stresses are not relieved by shear (earth-
quake) fractures, Thus the normal stress on these “bends” should be expected
to build up monotonically under the inexorable increase of regional deforma-
tion by the loading due to plate tectonics. Under a Coulomb fracture criterion
{or something similar), which states thai the material will fracture when the
shear stress exceeds a certain fraction of the normal stress, in 2-D the threshold
stress for fracture of this bend segment should increase more and more, i.e, it
becomes stronger and stronger. Thus the succession of earthquakes on this
segment should increase monotonically in magnitude and with monotonically
increasing time intervals. Once the fault becomes too strong, the fault should
lock and plate tectonics be switched off. Since this does not happen in nature,
there must be some form of relaxation of the normal stress with a time con-
stant that is long compared to the recurrence time of large earthquakes. The
relaxation must take place through seismic processes such as mountain building
and non-seismic processes, such as erosion, folding, and most likely the fracture
and growth of secondary faults. We can overestimate the relaxation time from
the ratio of the heights of local mountains— and their roots— to the tectonic
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rates of deformation, and reach a figure of about 10° years, give or take a large
factor. The relaxation time must be longer than the interval times between
large earthquakes; the interval between the two most recent large earthquakes
on the Landers fauit system was between 6000 and 9000 years(15], which places
a lower bound on the relaxation time. Thus the normal stress accumulated in
the last 10* to 10° years is stored in bends on the faults (and we suppose in
other geometrical irregularities of fault structures), and hence these irregulari-
ties are of great local strength in comparison with the portions of the fault that
are parallel to the regional stress. Thus fault structures that are not paralle] to
the regional stress are sites of great shear strength, and we must expect that
large fluctuations in fracture strength would develop at these sites. Such geo-
metrically induced fluctuations in threshold stress imprint a second extrinsic
scale size (or many scale sizes) on the problem. Simulations under the geomet-
rical constraints of very large fluctuations in fracture strength with long-time
constant relaxation of stress, never display runaways or lattice-wide events; but
then one can always argue that the computations have not been run for long
enough times, so the case is not proved.

The geometry suggests that the long reaches of the SAF that are more or less
parallel to the regional shear stress have relatively low shear strength[16), and
are punctuated by occasional localized sites of great strength. In other words,
the two plates would be likely to slip in a mode of almost continuous sliding
were it not for a few sites at which they are prevented from doing so; at these
sites the plates are “nailed” together. Thus these “asperities” are sites at which
the potential energy of deformation is accumulated prior to great earthquakes;
when these asperities break, they do so in very large events, and generate
slip in very large earthquake fractures that extend to the next asperities or
beyond. These are the characteristic earthquakes that have been reported for
large earthquakes that seem to recur on the same sites[17]). They represent the
largest earthquakes that are possible on the system and their magnitudes are
limited by the spacing and strengths of the asperities.

Simulations on a 1-D straight fault with a spiky distribution of breaking
strengths shows a large number of weak slip events in the valleys between the
peaks of strength. Occasionally, strong earthquakes develop at the asperities
that tear up to and stop at neighboring asperities as we expect. However there
are enormous instabilities in these patterns in the form of abrupt changes in
rates and sizes of events(18,19]; these instabilities are associated with abrupt
stress transfer from one part of the fauit to another through broken asperities
that act as gates. Further, these patterns have extraordinarily different from
those that are found to develop on models with large but smoothed fluctuations
of breaking strengths. These instabilities of pattern from structure to struc-
ture, and instabilities of pattern evolution for a given structure, imply that
the quality of the large-energy branch of the distribution is strongly dependent
on local fault geometry and therefore cannot be expected to be a universal
property.

As a first effort to simulate earthquake pattern development and evolution on
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a network of faults, we have considered a simple case of stress interactions be-
tween two nearby, parallel faults with inhomogeneous distributions of fracture
strengths[18]. We find a new type of instability of pattern in these simula-
tions: extended lacunae in the seismic activity are developed on individual
faults, wherein activity on extended portions of one fault ceases and activity
is concentrated on the other fault. This form of activity-flipping is associated
with the constraint that all points on at least one fault must ultimately break
through, no matter how strong, ot else plate tectonic motions cease. As a
consequence, activity must develop at strong sites on one fault even though
complementary faults may be locally weaker and would have been expected to
be more likely to fracture had the fault been isolated. These instabilities are
further testimony to the dependence of the large-energy branch or the local
geometry of faulting on a two-dimensional network of faults capable of tearing
in large earthquakes. The fact that these systems appear to be unstable due
to a number of geometrical agents means that there is little likelihood at the
present time of predicting interval times between events on the large earth-
quake branch of the distribution. But since this time scale is long compared to
the human time scale, these issues are, for the moment, of academic interest, if
it is our purpose to generate some insights into the possibilities of earthquake
prediction.

4. AFTERSHOCKS

I return to the issue of the universality of the low-energy branch of the dis-
tribution. Because of the scaling of stress redistribution, large earthquakes
must change the stress field significantly on the sites of occurrence of small
earthquakes in the neighborhood, but the reverse is much less likely. This is
another reason why SOC is unlikely to develop on the small-energy branch of
the distribution; any self-organization on the small energy branch is likely to
be heavily punctuated by activity on the large-energy branch. [t would seem to
be paradoxical to suggest that the universality of the small events is somehow
connected with the non-universality of the larger ones. I argue that this is
indeed the case.

A map of all earthquake epicenters in Southern California with a lower mag-
nitude threshold on the low-energy branch of the distribution, is of course
dominated by small earthquakes which are displayed in overwhelming numbers
(Fig. 1). The map shows rather remarkably that many of the mapped faults on
which large earthquakes are expected to occur, do not have any small earth-
quakes; but since there were no large earthquakes on these faults in the 60+
year interval of the catalog, these faults show no seismicity whatsoever in this
interval. Most of these faults are expected to have strong earthquakes at some
time in the future; the SAF has this property. This result is completely con-
trary to expectations based on sandpile or dislocation models of self-organizing
systems, which assert that any given section of fault should experience the full
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Fig. 1. — Epicenters of Southern California earthquakes with magnitudes greater than
3.5, 1935-1994. Most of the clusters of epicenters are due to aftershocks of large
earthquakes.

spectrum of sizes of events, with small events occurring more frequently than
large ones,

Some faults have many small shocks on or near on them. The densest clusters
of these earthquakes can be identified as being the numerous small aftershocks
of a few large earthquakes. These small earthquakes are the consequence of
predecessor large ones, and these small earthquakes cannot organize themselves
into a succession of events leading to future large earthquakes; these small
events are the fallout of the large ones. Typically, large events cccur without
much preparation or build-up. However hopes for earthquake prediction must
rest on observations of fluctuations in what seismicity there is before a large
earthquake. Some of the small earthquakes on the map are not aftershocks of
known identifiable large earthquakes in the 60+ year interval. Below, I suggest
that aftershock series may last for much longer than 60 years, and hence these
latter earthquakes may be aftershocks as well, but of large earthquakes that
occurred before the start of the catalog.

Aftershocks are of course earthquakes that are highly localized around frac-
ture zones of large earthquakes and are delayed by often many years after their
parent event. Aftershocks themselves have been much studied, and are known
to have at least two universal properties. The rate of occurrence of aftershocks
is a universal and is given by Omori's law[20]

A~ 1/t (4)
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Observationally, the exponent on ¢t may differ from 1 slightly, and adjustments
in the specific form of the time dependence have been suggested, but we use
this formula as a good starting point for discussion. Formula (4) is accurate
at all magnitudes of the low-energy branch of the distribution; there are few
aftershocks with magnitudes on the high-energy branch. A second universal is
the observation that the magnitudes of carthquakes in an individual aftershock
series fit the Gutenberg-Richter power law for small magnitude earthquakes
remarkable well with the expected exponent B (21,22]; since the aftershock
magnitudes are less than those of the patents, their magnitude distribution
has a cutoff. The durations of the sequences (4) are extraordinarily long. In
the best-documented aftershock series, which is that following the M=7.5 Kern
County earthquake of 1952 in Southern California, aftershocks in the immediate
neighborhood have a remarkably excellent fit to the Omori law, even after 43.5
years, a time thatis a substantial fraction of the length of the complete catalog;
for these earthquakes the fit to the power-law energy distribution is excellent:
1.5B = 1.03 + 0.04. It is plausible to suppose that the law (4) holds for times
longer than 60+ years.

If we strip off the known aftershocks from the map of Southern California
epicenters, we are left with a much reduced set of small events. If we make
the conjecture that the tail of the Omoni distribution is very much longer than
the 60+ year span of the Southern California catalog, we reach the conclusion
that the majority of the residual events are also aftershocks of large events that
occurred before the start of the catalog, and perhaps long before the start of the
catalog. The catalog of small earthquake that remains, after all identifiable and
presumed aftershocks are removed, is very small, accounting for perhaps 10%
of the original total; these may also be aftershocks of early strong earthquakes,
but we ate not sure. Let us make the assumption that the earthquakes on the
small-energy branch fit the Gutenberg- Richter law because they are aftershocks
that fit the Gutenberg-Richter power law. This assumption is consistent with
our conclusion from the analysis of the energy distribution that the numerous
small events are the consequence of the few large ones, rather than being part
of a self-organizing process leading to the large ones. Under this assumption,
the self-organization of the small earthquakes is not punctuated by the stresses
redistributed from the large earthquakes, but rather they are the punctuations
themselves. This assumption regarding the length of the tail in the Omori law,
means that earlier efforts to try to remove aftershocks by filters that made
use of windows of finite width[23] were incorrect; this form of data analysis
led to the observation that the residual events were independent. Under this
assumption, the residual events are no longer independent. We must now shift
our effort to try to understand the cause of the universality of the small energy
branch of the distribution to a new and different problem, which is to try to
understand the universality of the Omori/Utsu law of aftershocks.

The spatial distribution of aftershocks provides a clue to the problem. The
distribution of aftershocks after the Landers earthquake was especially well
documented|24], and the fact that the main rupture was on a system of vertical
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faults removes many difficulties associated with the geometry of projection of
hypocenters on the horizontal/map plane. The locations of the aftershocks
form a cloud of dots that are up to several km from the rupture trace and
within the accuracy of location cannot be assigned to the rupture trace itself;
more of the aftershocks are near the rupture trace than far from it. Most
of the aftershocks lie within 4 or 5 km of the rupture trace; Aki (personal
communication) indicates that at least 80% of the aftershocks were more than
200 meters from the rupture trace.

There are two problems: Why are aftershocks located in the neighborhood of
the fracture and not on the fault {as some authors would prefer), and what is
the cause of the time delays? The solution to the problem of the time delays has
been suggested by a number of authors to be due to relaxation of extraordinarily
high stresses by non-elastic processes. I agree that relaxation is the answer to
the time-delay problem, but this mode of solution runs into the first problem:
where do the high stresses come from? Many authors suggest that irregularities
of slip on the main fault might be the source of the high stresses. But the
aftershocks are more or less uniformly distributed along the length of the main
fracture and show no evidence of large irregularities on any scale. For the
irregular-slip soiution to hold, we would require that the irregularities of slip
in the main fracture have very long wavelength fluctuations, since the shorter
the distance scale of slip variations for a given amplitude of slip variations,
the smaller the amplitude of the stress variations in the neighborhood. The
amplitude of the slip variations in the main fault cannot be made too large,
else the main fault would stop prematurely; the dynamics of large ruptures is a
smoothing operator on slip, due to inertial effects, so it is difficult to generate
rapid fluctuations in slip even for highly inhomogeneous faults. Further, it
would be difficult to attribute a stochastically universal irregularity of slip that
would contribute to the universality of the two observations of aftershock series.

An alternative to irregular slip is the following. We note first that the
strength of the material a few km from the main fault is strong before the
big earthquake since the sites of the afiershocks did not tear before the main
shock. Second, from continuity conditions, the rupture on the main shock low-
ered the stress on the aftershock sites, and probably by a large amount. Thus,
on a standard model, the aftershock sites would be even less likely to tear at
any time after the main shock. Now we need a mechanical amplifier to increase
the stress up to the fracture threshold at aftershock sites adjacent to the fault
The solution to the dilemma is to propose that the main rupture also lowered
the strength of the rock nearby the fault at the time of the main rupture, and
to a level well below that of the residual stress, which is near the sliding friction
or below it if there is dynamical overshoot. We suppose that the main shock
shattered the rock nearby. The fragments are in contact at points of geometri-
cal irregularity; these points are interconnected by a spiderweb of cracks, rather
like the shattering of a windshield in an automobile collision— with different
symmetry of course. Under a finite but small regional residual stress, weak
cracks will have a large stress concentration at their edges, and these asperities
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disappear in delayed time by stress corrosion at their edges. The process is
much enhanced if the unbroken segments form asperities between two or more
adjacent cracks which is the amplifier we seek. Stress corrosion is an active
agent in promoting delayed collapse of a strong barrier region between two {or
more) cracks(25). The rates are much enhanced by the presence of water be-
cause of the enhanced solubility of silicates, and the possibility of developing
granular rotations at high temperatures and confining pressures[26].

Thus aftershocks are a two-stage process. First, the large-slip event of the
main shock triggers shattering of the near neighborhood over the time that it
takes elastic waves to travel to the aftershock sites, which is of the order of
a second or less. These fragments are prevented from further slipping by the
geometrical irregularities of the shards. In the second stage the geometrical
contacts between the shards disappears in accelerated creep by stress corrosion
processes under the influence of the residual shear stress on the main fault. The
magnitude distribution of the aftershocks is thus dependent on the amount of
energy stored in the geometrical contacts of the shards, and the time delays
are regulated by the stress corrosion process. If there is a low density of small
cracks are produced by the shattering for example at some distance from the
main fault, then the stresses are not amplified significantly and no aftershocks
occur in this region. Simulations have reproduced part of this picture[25]. The
model generates universality of the aftershocks by virtue of the universality of
the shattering process. the model is not dependent on the specific properties
of large-scale fault geometry or on the specifics of slip on individual faults.
Seismological tests of this model are under way at this time.

In this development, we have introduced two new components of the physics
of fracture, beyond those of simple elastic loading and brittle fracture presented
in the carlier parts of this lecture. Tsuggest that 1} the walls of the small cracks
that participate in the development of small earthquakes remain open for some
time after formation, in order that 2) their edges can deteriorate in time under
non-elastic decay processes. Thus we require that the healing rates for small
cracks be long compared to the rupture times; these {ractures must remain
open for many decades. This is in contrast to the model of healing that we
have developed for large earthquakes, in which healing is relatively rapid, and
certainly shorter than the rupture time of the complete length of the fracture.
How can this be? One possibility is to invoke the role of fluids in the fault
zone and nearby. Fluids have been suggested as an active participant in the
weakening process of faults, and that they might be agents in developing slip
weakening prior to large-scale faulting. Further suppose that the immediate
environment of the fault is strong because it is relatively dry. As large scale
faulting develops, water may be squeezed out of the fault, into the fractures
that it itself has formed in the neighborhood, thereby promoting short-term
healing of the main fracture. The increased pressure of the fluids in the cracks
nearby keeps the walls apart. Over long periods of time, this fluid can diffuse
back into the fault zone and reheal the small cracks, thereby terminating the
aftershock process, and preparing the region for the next great earthquake.
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On this model, the presence of small earthquakes serves as a signature of low
probability of occurrence of a strong shock. It does not however indicate when
the strong shock will accur.

With regard to earthquake precursors, there are several indicators of the
importance of fluids in fault zones and in fault networks to produce seismic
precursors. Time limitations in this lecture, and space limitations on these
printed pages, do not permit me to develop these ideas further. Some discussion
along these lines have been identified in [27-29}}.

Further research along these lines must take us in the direction of understand-
ing better the physics of granular materials: how they are locked together, and
how they unlock in the presence of fluids and under local shear stress.

5. DISCUSSION

I have proposed that a study of the universals of earthquake observations,
namely the low-energy branch of the power-law distribution of earthquake en-
ergies and the properties of aftershocks, can lead to an understanding of the
self-organization of earthquakes on several time scales. The consequences of
these considerations have taken us away from the far too simple models of
self-organization and the critical state that have appeared in the literature.
In particular we have had to introduce a new component of the physics of
fracture into the modeling over and above the usual considerations of elastic
loading and brittle fracture; in particular we have been obliged to take into
account the healing of cracks and the rates of healing; the physics of healing
has bearing on the problems of plasticity, which I cannot discuss here. The
future will see a much greater effort on understanding the interaction between
geometry and fracture; we must expend a much greater effort at understanding
the nature of deformation of granular materials since these materials are the
real constituents of the fault zones and the nearby regions. In short, the appli-
cation of simplistic physics is not enough to solve the problems of earthquakes.
The problems are rich and well-deserving of serious attention, and there are
many unsolved problems.
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ABSTRACT Predictions of earthquakes that are based on
observations of precursory seismicity cannot depend on the
average properties of the seismicity, such as the Gutenberg—
Richter (G-R) distribution. Instead it must depend on the
fluctuations in seismicity, We summarize the observational
data of the fluctuations of seismicity in space, in time, and in
a coupled space-time regime over the past 60 yr in Southern
California, to provide a basis for determining whether these
fluctuations are correlated with the times and locations of
future strong earthquakes in an appropriate time- and space-
scale. The simple extrapolation of the G-R distribution must
lead to an overestimate of the risk due to large earthquakes.
There may be two classes of earthquakes: the small earth-
quakes that satisfy the G-R law and the larger and large ones.
Most observations of fluctuations of seismicity are of the rate
of occurrence of smaller earthquakes. Large earthquakes are
observed to be preceded by significant quiescence on the faults
on which they occur and by an intensification of activity at
distance. It is likely that the fluctuations are due to the nature
of fractures on individual faults of the network of faults, There
are significant inhomogeneities on these faults, which we
assume will have an important influence on the nature of
self-organization of seismicity. The principal source of the
inhomogeneity on the large scale is the influence of geome-
try—i.e., of the nonplanarity of faults and the system of faults.

The Magnitude-Frequency Law

Assume that our goal is the prediction of large earthquakes in
a region as well studied as Southern California. Large earth-
quakes in Southern California occur so rarely that statistically
based predictions of large earthquakes are not possible. We
therefore try to limit the broad range of possible extrapolation
scenarios that can be constructed from meager geological or
geophysical observations with physics-based models. Before
one can discuss efforts to model the physics of earthquakes,
and especially of large earthquakes, one must appreciate the
relevant phenomenology which must perforce form the targets
of modeling efforts.

The extraordinary simplicity and universality of the familiar
Gutenberg-Richter (G-R) power-law relation for the fre-
quency of occurrence of earthquakes with a given energy has
been a magnet for the statistical physics community, especially
since power law relations also characterize the properties of
magnetism, melting, etc., near critical points. The scale-
independence of an empirical power law implies that the
underlying physics is also to be found in scale-independent
processes, and this course has been followed with much
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visibility and success in the model of self-organized criticality
(1-8) and its application to the development of power-law
relations for earthquakes.

The G-R power-law relation for earthquakes—the distribu-
tion of the number of earthquakes with seismic energy radiated
greater than £,

Newm ~ E7PP (1
where b is the usual coefficient in the magnitude—frequency
relation and is a number close to 1 for any region world wide
(9, 10), and B is the coefficient in the radiated energy vs.
magnitude relation, which has been measured to be 1.5 (11,
12), and has been calculated to be 3/2 for all but the largest
earthquakes (13).

While the arguments for self-similarity are persuasive, there
are even mMOre persuasive arguments that the power-law rela-
tion cannot be extended to the largest energies and that large
earthquakes obey different statistics and, hence, are subject to
a different set of physical interrelationships than are small
ones. Expression 1 cannot be extended indefinitely to infinite
energies; otherwise the exponent /8 ~ 2/3 would imply that
an infinite amount of energy be available from the motion of
tectonic plates for the generation of earthquakes (14). Thus,
there must be a cutoff or rolloff to the distribution at its large
energy end. It follows that the occurrence of large earthquakes
must take place under a different set of rules than the small
ones. Thus, while the system is undoubtedly self-organizing, it
is not self-organizing to a critical state.

There is also a power-law seismic momeni-frequency rela-
tion with a similar exponent {15, 16). In the moment-
frequency form, Eq. 1 describes the distribution of the product
of the integrated final slip in the earthquake over the area of
the rupture surface. Although the moment is written in energy
units, it should not be considered to be anything other than a
measure of slip, and thus this distribution is a constraipt on the
slip. By an argument similar to the above, we can show that the
integrated slip rate on all earthquakes in the region cannot
exceed the slip rate between the tectonic plates. Thus the
moment distribution, too, must have a rolloff or cutoff.

It has been expressed frequently that the G-R law provides
a basis for estimating seismic risk by extrapolating the statistics
of small earthquakes to estimate the probability of occurrence
of large ones (see ref. 17, for example). From the argument
above, an extrapolation of this type can seriously overestimate
the frequency of occurrence of large earthquakes. If the real
distribution has a cutof, its extrapolation may provide a finite
estimate of the probability of occurrence of very large carth-
quakes that may never occur.

Because the G-R power-law distribution cannot be appro-
priate for large earthquakes, the propertics of models of

Abbreviations: G-R, Gutenberg-Richter; SAF, San Andreas fault.
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seismicity on isolated faults that describe self-organization
leading to a critical point may be irrelevant to our tlask.
Because our concern is with the problems of large earthquakes,
we try to understand why large earthquakes, and possibly
others as well, fail to follow the power-law relation. We
describe the phenomenological basis for developing an under-
standing of the physical processes that lead to the occurrence
of large earthquakes.

We take as the basis for most of our discussions of phe-
nomenology, observations of carthquakes in Southern Cali-
fornia, which are the most extensive local data base we have,
and thus the most studied of any history of instrumental
seismicity. The magnitude —frequency relations for Southern
California are reasonably well-established for the 60 yr of the
Southern California catalog. The magnitude distribution of
earthquakes in the Southern California catalog with after-
shocks removed not only shows that the expected log-linearity
for small magnitudes extends, most remarkably, up to the
largest earthquakes (Fig. 1), excluding aftershocks. The 60-yr
distribution of Fig. 1 does not show any hint of a deviation from
linearity of the log-frequency vs. magnitude relation around
M = 6.4 that has been proposed by a number of authors (13,
18-22) to correspond to a transition between two-dimensional
and one-dimensional fracture shapes in a seismogenic zone of
finite thickness. Despite the reasonableness of the proposal
that it is the thickness of the seismogenic zone, which is of the
order of 15 km in Southern California, that provides this
characteristic dimension, contrary to recent assertions (21),
the sharp cutoff to the distribution near M = 7.5 and the
absence of a rolloff at smaller magnitudes does not support the
simplistic proposal. A similar conclusion has been reached
from a study of the energy—frequency distribution (23).

Excluding aftershocks, the statistics of the smallest earth-
quakes, which are by inspection the most numerous, is Pois-
sonian (24); this does not imply that the less frequent stronger
earthquakes are also randomly occurring events,

Large Earthquakes

Despite the presence of a cutoff to the distribution in Fig. 1 for
the most recent 60 yr, we know that earthquakes with mag-
nitudes greater than M = 7.5 occur in Southern California on
a longer time scale, as for cxample the great Fort Tejon
earthquake of 1857 on the San Andreas fault (SAF) in this
region. Ten prehistoric earthquakes with large slips, and hence
presumably with large magnitudes, have been identified by
geochronometric methods between 671 = 13 AD. and 1857,
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FiG. 1. Number of earthquakes in Southern Califoroia as a func-
tion of magnitude for the inferval 1935-19%4 in intervals of (.5
magnitude units (upper curve), Lower curves are the subdivision into
15-yr intervals. Aftershocks have been removed from the distributions
{from ref. 42).
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the interval times range from roughly 50 to 330 yr. with a mean
of about 135 yr (25, 26).

Because the form of the distribution of large earthquakes
cannot depend on the power-law statistics of small earthquakes
and appears to depend on events that have not happened
within the time span of the catalog, we have no seismographic
information to bear on this point. We approach the problem
of the distribution of large earthquakes from a different point
of view. Because the fracture length and the energy released
in a large carthquake are roughly related, we assume that the
distribution of fracture lengths also has a cutoff or rolloff. If
it has a rolloff, then there is a finite probability that a fracture
will occur whose length will extend completely across a region
as large as Southern California. It has been argued that the
fractures in the largest earthquakes are confined by relatively
fixed barriers to the extension of growth (27) that may be
associated with fault geometry. In this model, these charac-
teristic fault segments have characteristic slips in large earth-
quakes. But a process of repeated slip between strong barriers
must ultimately accumulate stress at the barrier edges, and the
barriers in this model must ultimately break as well; under the
constraint of a fong-term average uniform slip rate at every
point in a plate boundary, barriers cannot remain unbroken
forever. Thus the stresses at the barriers must ultimately relax,
either by fractures in even stronger earthquakes or by some
(generalized) viscous relaxation. If the process is viscous, then
the relationship between the time constants for stress relax-
ation and for loading the system becomes important. In most
modeling exercises, the restricted view is taken that viscous
stress relaxation is extremely slow and, hence, that even
long-term stress relaxation can take place by brittle fracture.

If one barrier must ultimately break, does it fellow that
sooner or later afl barriers within a given region must break in
the same earthquake, if only we wait long enough? It is
sufficient to apply this question to the faults that support the
largest of the carthquakes, which are those that occur on the
SAF. Hence our question really refers to earthquakes that have
not happened in the catalog interval of the most recent 60 yr.
if carthquakes on the SAF are stopped according to the same
processes as the smaller earthquakes—namely, because of
encounters with strong barriers with low stored prestress, then,
since all points on an individual plate boundary such as the
SAF must sooner or later break, sooner or later two adjacent
barriers may reach a nearly threshold state at about the same
time—i.e., their prestresses must be close to their strengths at
the same time. If this is the case, then, on the model that a
stress at the edge of a crack is scaled by the length of the crack,
one barrier must surely be triggered into fracture by a rupture
on an adjacent barrier and, hence, a superearthquake will be
developed.

But this model is valid under the assumption that the earth
is homogeneous. The barrier property of the characteristic
earthquake model argues for a weaker region of the faults in
the reaches between barriers and, hence, that the appropriate
scaling distance for redistribution of stress is the size of the
nucleation zone of these greatest earthquakes—i.e., the barrier
dimension, rather than the length of the crack. Observational
support for this point of view is to be found in the self-healing
pulses observed in the dynamics of the rupture process de-
scribed by Heaton (28). We argue in a companion paper (29)
that a smaller scaling length is sufficient to prevent an earth-
quake from tearing through several barriers, if the barricrs are
widely spaced compared to the scaling distance for the size of
the fluctuations in siress outside the edge of the crack and for
a sufficiently large ratio between the fracture sre. raths of the
barriers and the relatively smoother segments between them.
The scaling distance is the size of the nucleation zone or it is
the size of the self-hcaling pulse, and these two sizes may be
the same (30).
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Because the fargest earthquakes do not fit the G-R distri-
bution and are most likely limited in fracture length by barricrs,
the characteristic carthquake model is probably approprialc
for their description. There is very likely a sharp cutoff to the
distribution of earthquake sizes. If it were not for information
derived from the spatial distributions of smaller earthquakes,
we would be inclined to suppose that it would not be appro-
priate to describe smaller carthquakes by the characteristic
earthquake model because the smaller events arc dominated
by the G-R distribution, and hence these events may be
strongly influenced by the processes of self-organization, But
o be able to draw a clearer opinion, we musi describe the
spatial distributions of earthquakes in Southern California.

Spatial Fluctuations

The epicenters of the carthquakes that define the G-R law for
Southern California are widely distributed over the entire area
(Fig. 2). If the G-R law and other features of the seismicity are
properties of earthquakes in two dimensions, is it appropriate
to try to simulate these features by modeling faulting in one
dimension, as has been the vogue in recent years? If we are
successful in simulating seismicity on a single fault, can these
simulations be related to seismicity in two dimensions?
With regard to the G-R law, there is no convincing evidence
that the hypocenters of small earthquakes, other than after-
shocks, have a well-defined geometrical relationship to the
mapped faults, or to buried faulls for that matter. The seis-
micity on a number of mapped faults, including the SAF, is
essentially nil over the 60-yr interval, an observation not
inconsistent with the proposal above that the earthquakes on
the faults that support large earthquakes have different sta-
tistical properties than the earthquakes on fault structures that
support small ones. In the case of the SAF, there is an
extraordinary absence of activity on the segment of the SAF
that ruptured in the 1857 earthquake, down to magnitudes less
than 3 (31). The Salton segment of the southernmost part of
the SAF is also dormant (31, 32). Indeed, “no large earthquake
(M = 7.0) has been documented in the historic record (since
1749) for the SAF south of Cajon Pass” (32). These observa-
tions imply, as already indicated, that efforts to synthesize a
power-law distribution on g single major fault such as the SAF
are inappropriate. An important feature of the seismicity in
Southern California is that the major part of the SAF and other
faults on which large earthquakes can occur are quiet at the
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FiG. 2. Epicenters of carthquakes in Southern California with
magnitudes greater than 3.3 in the inclusive interval 1935-1994.
Aftershocks have not been deleted. Most of the clusters of epicenters
are due to aftershocks of large earthquakes. The SAF is indicated.
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present time and that very likely they will only shp in great
carthquakes (33-35).

Not only are the earthquakes that define the G-R distribution
widely distributed in two dimensions but also the epicenters of
the largest carthquakes of the past 80 yr with magnitudes near
the cutoff in the instrumental distribution at M = 7.5 are also
widely distributed two-dimensionally over Southern Califor-
nia, and all are located on faults other than the SAF. The 23
carthquakes with M, = 6.4 since 1915 fall into two mutually
exclusive categories: To the north and west of a line extending
belween the epicenters of the 1933 Long Beach and the 1993
Landers earthquakes, all of the focal mechanisms of the cight
earthquakes are not strike-slip; while to the south and east of
this line, all of the 5 earthquakes including the Long Beach
and the Landers earthquakes have strike-slip focal mecha-
nisms (36); most of the carthquakes in the southeastern region
are located on the San Jacinto fault and its prolongation. The
horizontal component of the slip on the nonstrike slip earth-
quakes in the northern part of the region is paralle! to the plate
motions. But since these earthquakes lie off the plate bound-
ary, sooner or later the locked section of the SAF must also
tear in a great earthquake with a component of slip parallel to
the plate motions.

We have no way of knowing whether the absence of activity
on the SAF, except for the largest earthquakes, is a condition
that is likely to persist. The punctuation of activity on the SAF
by relatively more frequent large earthquakes off the fault may
be a steady process. Although it is possible that there might be
a shift in style of seismicity from one that favors exclusivity of
large earthquakes to one that favors a broad distribution of
sizes on the SAF, some numerical simulations of seismicity on
single faults with configurations of fracture threshelds that
have been designed to favor the characteristic earthquake
model have exhibited abrupt changes in size of earthquakes by
factors that are much smaller than the range demanded by
these speculations,

[arge earthquakes on neighboring faults produce significant
fluctuations in stress on the SAF and vice versa and influence
the mode of self-organization under the conditions of stress
redistribution. Simulations on a model of a single fault with
spatially variable strengths, especially designed to simulate the
inflience on seismicity of strong barriers, lead to the strongest
earthquake events that have a great regularity (37, 38). The
large variability in the interearthquake times of the strongest
carthquakes (26) on the SAF has, however, been modeled in
a restricted sense by the study of seismicity on a pair of
interacting faults; these have variations in the time intervals
hetween large earthquakes by as much as the factor of 6
observed. While the demonstration of large variable in-
tercarthquake times through a model of a pair of interacting
faults is not an adequate representation of interactive fault
coupling on a model of the network of faults in Southern
California, it is a genuine indication that simulations on single
fault models are observed to be inadequate vehicles for the
study of seismicity in a region with as complex a fault geometry
as that of Southern California. Thus the modeling of fractures
on the major units of the fauit system must take into account
coupling between the members of a two-dimensional web of
faults through interactive stress transfer.

The modeling of seismicity on a network of faults as
numerous as those in Southern California may not he 4
tractable problem, even with extravrdinarily large computing
resources. Although the time scale for the largest carthquakes
on the SAF which is of the order of 135 years, with a vartation
that spans a factor of 6 [modeled with a truncated exponential
distribution (29)], the time scale for the recurrence af cunh
quakes on the other faults of this region may be much wngc.
Sieh (39) has found that the last preceding earthquake on
much of the fault complex that ruptured in the 1992 Landers
(M = 7.3) event took place 6000 to 9000 yr before the present.
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Assume the time scales for large earthquakes on faults other
than the SAF are of the order of only 2000 vr. Assume. for the
sake of argument, that M = 7 carthquakes occuy 10 times as
frequently as M = 8 earthquakes, using a factor taken from a
convention that we have already argued against. Assume all of
the M = 7 earthguakes do not take place on the SAF and all
of the M = & events do take place on it. if we scale the rates
of recurrence of individual earthquakes on the two classes of
faults by a factor of 20, being the ratio between 2000 yr and 100
yr, we find that there are roughly 200 times as many fault
segments that support M = 7 earthquakes as the SAF, which
supports M = 8 carthquakes. We conclude that the SAF
ruptures much more frequently than any other fault in the
network, at least among the panoply of faults that support
strong earthquakes, but that there are many such fault seg-
ments. The probability of a strong earthquake occurring on any
specific fault other than the SAF is finite but small; the
probability of occurrence of a strong earthquake with mag-
nitude M = 7 is significantly higher than that of an earth-
quake with M = 8. The modeling demands are stupendous,
especially in view of the fact that mapping has not yet
identified most of the faults that support strong earthquakes
of the Northridge or Landers types, in a network that we
estimate to include as many as several hundred faults. A
statistical model of rupture on a large network in two di-
mensions will be needed.

Small Earthquakes: “The G-R or Characteristic
Earthquake Distribution, Which Is 1t?”

The title of this section reproduces the title of a paper by
Wesnousky (40). We have proposed that the largest carth-
quakes are ruptures that take place on massively inhomoge-
neous faults. We return to the issue whether the smaller
earthquakes, which fit the G-R distribution, belong to a distinct
class of events from that of large ones, with an independent sct
of statistical rules, or whether there is a more complicated
interaction. We offer the following speculations.

Consider the following extreme model. Aftershocks of in-
dividual strong earthquakes fit the Omari law in its simplest
form n ~ 17 with p ~ 1, The aftershocks also fit the G-R
distribution weli with the usual exponent. Formally there is a
small but finite probability of having an aftershock a very long
time after a strong earthquake because of the infinite tail of the
function. On this medel, small earthquakes near New Madrid,
MO, and Charleston, SC, today might be aftershocks of the
earthquakes of 1811-1812 and 1886. 1f this is the case, the risk
of strong earthquakes is small in the foreseeable future in these
areas since aftershocks are windows to the past, rather than to
the future. The rate of occurrence of the number of aftershocks
in these regions appears to be more or less constant at the
present time because of the long interval since these strong
parents. Up to the present time, shocks in the vicinity of the
Kern County, CA, earthquake of 1952 and the San Fernando
earthquake of 1971 appear to be consistent with the Omori
law, even 40+ yr after the Kern County event. In our descrip-
tion of the G-R distribution (Fig. 1), we have excluded
aftershocks on a nominal basis through the use of a formula
that looks for satellite earthquakes within a specified time and
space window after a strong event in the catalog. 1f the Omori

Flg. 3. (A} Epicenters of earthquakes in Southern California with
magnitudes between 5.1 and 6.3 from January 1, 1965, to April 9, 1968,
which is the date of the Lorrego Mountain (M = 6.5} carthquake: the
epicenter of the (M = 6.5) earthquake is indicated bv the double
square. (B) Same as 4 for the interval April 9. 1705, to Coordars
1471; the latter is the date of the San Fernando (M - 6.6) earthquake.
The epicenter of the San Fernando carthquake is shown by the dewuble
square. (C) Same as B for the 2 yr after the San Fernando earthquake.
February 9, 1971, to February 8, 1973 (from ref. 42).



3760 Colloguium Paper: Knopoff

and G-R laws hold for a long time after the parent, then how
many earthquakes in the Southern California catalog are in
reality aftershocks of strong events that took place before the
start of the catalog? If the Omori law is taken literally, then are
ali of the earthquakes that constitute the observations of the
G-R distribution today aftershocks of past strong events(?).
Since aftershocks depend on the existence of a mechanism for
providing for a time delay between the main, strong shock and
the aftershock, any model that purports to describe seismicity
in a region such as Southern California and uses the G-R law
as a paradigm must include a mechanism for time delays—i.e.,
some nonelastic stress transfer. Under this assumption, the
G-R taw does not tell us anything aboul future seismicity since
aftershocks only refer to the past history of strong shocks.

However, today there are no significant aftershocks of the
1857 earthquake on the SAF. Thus at least for SAF earth-
quakes, the Omori law does not have an infinite tail, and there
is a temporal cutoff for aftershocks. We speculate that the map
of Southern California seismicity, which is dominated by the
smallest earthquakes (Fig. 2), shows that some faults can
produce long-term and others only short-term aftershocks. It
is likely that we should not assume that all earthquakes in
Southern California can be modeled under the same set of
physical rules. Thus, we conclude that the relationship between
the present-day small earthquakes that define the G-R law and
future large earthquakes on the major faults is ill-defined,
there exists the possibility that there is no relationship between
present small and future large ecarthquakes.

Assume that the smaller earthquakes do not take place on
the same fault structures as the larger ones. Then, except in
unusual circumstances, the two populations of small and large
carthquakes have independent distributions, we can assume
that the smaller events fit the G-R law, and the larger ones have
their own distribution, whatever that may be. If large mapped
faults, or faults that are large enough to be mapped, are
reserved for big earthquakes, then where do the small ones
take place? The process zones at the tips of cracks are regions
of highly deformed and/or broken material. As a fault grows,
it must certainlty grow through its own process zone, Thus we
expect that the entire length of all faults must be surrounded
by a zone of weakened material. Under an increasing tectonic
stress, this zone will slip in small earthquakes. Irregular slip in
large earthquakes on the nearby fault surface could cause
fluctuations in stress that could trigger aftershocks in the
adjoining process zone; aftershocks can thus occur along the
entire length of a large earthquake, both in the process zone
nearby and in the process zone beyond the ends of the crack
by the more conventional mechanism of stress intensification.
Thus small earthquakes with rupture lengths that are most
frequently, but not necessarily, less than the thickness of the
process zone occur in an elongated three-dimensional zone
astride the fault. Hence, the distribution of small earthquakes
on this model is characterized by the distribution of sizes of
contacts where slips might take place in a three-dimensional
space and might have different focal mechanisms, as well as
different spatial locations, than the larger earthquakes, con-
sistent with our conjecture.

If small and large earthquakes have different temporal
distributions, why does the projection of the distribution for
small earthquakes in Southern California extend almost per-
fectly into the magnitude range of the largest carthquakes in
the past 60 yr, only to be truncated by an abrupt cutoff (Fig.
1)? Suppose that we divide Southern California into smaller
seismic zones that each includes at least one fault that supports
large earthquakes. Assume each zone will have its own G-R law
fur small carthquakes and that the exponent is the same for
cach. But the cutoff (or rolloff) will depend on the properties
of the dominant fault in the zone, and especially its length, and
we can expect that it will be different for each region. The sum
of the seismicity distributions over all zones will give the
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seismicity for all of Southern California; the spatially cumu-
tative distribution will have the usual power-law refation for
small earthquakes with the usual exponent; but the rollott for
the spatia! sum distribution will reflect the distribution of
cutoffs (or rolloffs) for the zones. Because the summation
seismicity has a sharp cutoff (Fig. 1), then either the distribu-
tions for each of the zones must have the same cutoff, which
seems very unlikely, or the distributions at the large magnitude
ends must vary widely, with some of the zones having a rate for
large earthquakes that is greater than the extrapolation of the
seismicity from the simple power-law relation, and some less
than it. Thus the propertics of the large carthquakes differ
significantly from the G-R law for small earthquakes in each
zone, and hence the smail and large earthquakes interact
differently. On the last model, the sharp cutoff in Fig. 1 is a
coincidence.

Of course, there is always the argument that the distribution
in Fig. 1 is based only on two earthquakes in the magnitude
range 7.25-7.75 and, hence, the uncertainties are so large that
the apparent sharp cutoff is a statistical fluctuation itself. In
either case, one cannot say much about the validity of extend-
ing the G-R curve out to the largest magnitudes.

Space-Time Fluctuations

We have argued that the G-R law, which describes small
carthquakes, excluding aftershocks, over a 60-yr period in
Southern California, cannot be used directly to predict large
earthquakes. However if the distribution is temporally variable
or it is not Poissonian, fluctuations in the magnitude-frequen-
cy law might give possible indications of forthcoming large
earthquakes. Fluctuations are indeed found on a time scale of
15 yr, in the magnitude range of 4.8-6.2 approximately, that
are significant at the 2o level (Fig. 1). Jones has also identificd
that there was a significant increase in the rate of occurrence
of earthquakes with M = 5 in Southern California by a factor
of two over the interval 19861992 in comparison with the rate
over the 40 yr preceding 1986 (41). On the time scale of the
order of 1-10 yr, there is an increase in the rate of occurrence
of earthquakes with magnitudes greater than 5.1 before all of
the strongest earthquakes in California with magnitudes M =
6.8 (42). It is doubtful whether these fluctuations in seismicity
might be useful for earthquake prediction on the above time
scale, because their space scale is so large, being of the order
of the size of Southern California. No detailed exploration has
been made as yet to see if similar fluctuations are to be found
for smaller magnitudes, at shorter distances, and over shorter
time intervals before strong carthquakes with magnitudes less
than 6.8,

We have listed above nonuniform properties of earthquake
occurrence that includes observations that (i) the rate of
occurrence of the strongest earthquakes differs from the
extrapolations of the G-R law for small earthquakes, (i) there
is long-term spatial quiescence at all magnitudes on the faults
that support the largest earthquakes, (i) there are fluctuations
in the interval times between the strongest earthquakes on the
SAF, and (iv) there are temporal fluctuations of intermediate-
magnitude seismicity. We mention briefly the phenomenology
of fluctuations that are coupled in space and in time. Kanamori
(43) has given an excellent review of space—time-coupled
fluctuations: quiescence or reduced activity has been identified
prior to 41 very strong earthquakes worldwide out of a list of
52 earthquakes, over a time scale of a few months to as much
as 30 yr, and over distance scales that arc usually of the order
of the dimensions of the fracture of the strong earthquake.
Wyss and Habermann (44) have ideatified 17 cascs of carth-
quakes that preceded by seismic guiescence on time scales of
the order of 1 to 6 yr and distance scales of the order of the
size of the fracture length in the strong earthquake. These
examples include several carthquakes in Southern California.
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Of particular interest is the case history of quiescence hefore
both the Landers and the Big Bear earthquakes (45). A 75%
to 100% reduction in the seismicity of small earthquakes took
place within a space of dimensions of 10-20 km adjoining or
astride the faults and extending for 4.5 yr and 1.6 yr before
these earthquakes.

In a small number of cases of Japanese earthquakes, a
contemporaneous locat reduction and a distant increase of
seismicity have heen noted (46). Knopoff ¢ ol (42} have
described an increase in intermediate-magnitude seismicity to
distances of the order of several hundred km hefore all 11
documentable earthquakes with magnitudes =6.8 in Califor-
nia over a time scale of the order of I-10 yr as noted: the
increase in activity ceases abruptly after selected strong carth-
quakes, Although stress redistributions are expected on the
scale size of the fractures, these latter observations (42) are
notable in two respects: {{) The precursory episode of increase
of distant earthquakes terminates abruptly. (#) The distances
spanned by the precursor earthquakes is much larger than the
classical scale size of the fracture in the strong earthquakes,
thereby implying a much larger range of interactions than
possible from standard elastic models of fracture. An example
of remote prior increase in activity and subsequent rapid
extinction associated with the smaller San Fernando earth-
quake (M = 6.6) of 1971 is shown in Fig. 3. The epicenters of
earthquakes with magnitudes helween 4.7 and 6.3 between
1965 and the date of the earthquake in 1972 are shown in two
3-yr stages; a remarkable decrease in the number of such
earthquakes in the following two years is seen to extend over
distances from the cpicenter of the San Fernando earthquake,
which are at least an order of magnitude larger than the size
of its fracture dimensions (42). There does not appear to be any
change in the level of activity before and after the Borrego
Mountain earthquake (M = 6.5) 3 yr carlier,

[n most cases, the anomalous precursory seismicity is wide-
spread in two dimensions, and arguments for or against
intermediate-term clustering in space and time, as well as any
attempt 1o understand the mechanism for such clustering, must
depend on the construction of a model of regional faulting that
consists of a two-dimensional network of faults.

Stress Fluctuations and the Fracture Process

If the setf-organization of seismicity is a response to the
redistribution of stress by earthquake fractures, the final stress
ficld after a fracture represents an inikial state for the next
fracture on the same fault segment and in its neighborhood;
the stress field depends as well on the increase of stress by the
tectonic load and the changes due to subscquent fractures in
the neighborhood. Thus, the conditions of the {racture in the
dynamic episode of “fast time” is a strong determinant of the
times and locations of future earthquake cvents. The details of
the rupture in an individual fracture depend on a number of
parameters that include the friction on the fault, the degree of
spatial inhomogeneity of the fracture threshold, and the
aforementioned spatial distribution of prestress. Some infor-
mation that bears on these points can be inferred from
observations of earthquake occurrence. We cite a part of the
list.

{fY From the focal mechanisms of small carthquakes in the
neighborhood, we learn that the stress field along large parts
of the extent of the SAF is oriented so that the principal
compressional stress is normal to the fault (47). This orienta-
tion is a rotation from the expectation for an elastic continuum
in which the component of the stress ficld on the SAF should
be a shear ficld parallel to the tectonic load stress. This
obscervation implies that much of the fault has a low fracture
strength or coefficient of static friction, and, hence, that the
strength of much of the SAF has not been restored to a fully
healed value after the most recent major rupture.
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(ii} The stress drops in Southern California earthquakes are
highly variable quantities, ranging by a factor of from 300 to
400). from values less than 1 bar to more than 300 bars, as
determined from the ratio between the seismic energy radiated
and the seismic moment Eg/M,,, this ratio itself being propor-
tional to the ratio o/w of the stress drop to the shear modulus,
for a homaogeneous carth and fracture model. On the high side,
a value of about 300 bars has been reported for the Landers
earthquake (48). Low values are found for small earthquakes
on the San Jacinto fault (49). This quantity has been tabulated
for almost 500 carthquakes worldwide (49-53), including 22 in
Southern California. and for these, the ratio Eg/M, is also
highly variable, Kanamori ef al. (50) propose that the faults in
Southern California that undergo more frequent rupture, such
as the SAF and the San Jacinto fault, tend to have much lower
stress drops than do the faults that support less frequent
events, implying that the healing process is gradual. On this
interpretation. only small amounts of stress are stored in the
fault zone in the time interval between SAF and San Jacinto
fault earthquakes, over the time scale of repetition, and is a
result that is not inconsistent with the observation of Zoback
et al. (47) (sce above).

(i) Bullard (54) suggested that the frictional heat devel-
oped in great carthquakes should be enough to melt rocks in
the vicinity of major carthquake faults in some tens of millions
of years (and hence that earthquakes should no longer occur
on old fault structures), and hence one ought to see an elevated
heat flow along the major faults of the world. Measurements
of heat flow along the SAF and several other major faults of
Southern California indicate that the heat flow along the faults
is not greatly elevated over the regional average (55-58),
suggesting that the friction during sliding is low. There are at
least two explanations: either the faults have been weakened
significantly by the dynamics of the rupture event itsell, or they
have been weak for some time both before and during the
ruptures {(56).

In the first case, which is the proposal that the fault is
weakened due to the dynamics of the event in fast time, melting
during sliding was proposed early, but this model can be
rejected because it implies high friction and a high level of
residual heat. Brunc et al. (59) have proposed that the heat
flow paradox can be explained by assuming that a dynamical
mode of slip on the fault exists that involves interface sepa-
ration of fault contacts that has a traveling wave property in the
wake of the rupture front, thereby reducing the sliding friction.
{t is not known if this model can be successful if the fault has
strong inhomogeneity; the nature of the propagation of inter-
face waves of separation in the presence of inhomogeneities of
stress drop has not been studied.

The second altcrnative asks whether an inhomogeneous
distribution of strength thresholds, frictions, and stress drops
along the fault can be consistent with the heat flow paradox,
as well as with seismological observations. In Kanamori’s (43)
asperity model, most of the deformational encrgy released in
an earthquake is accumulated at a localized high strength node
or asperity before the earthquake. The asperity is bounded by
zones of very low strength; slip generated at the asperity then
spreads casily through the region of low strength. In this model
the average stress drop can be small because the regions of low
stress drop can be large; the fracture tength is large, being the
sum of the lengths of the adjoining regions and the central
asperity; thus the ratio of energy to moment can be low. High
heat will be generated only in the zanes of high stress drop,
which are the asperities, and the heat flow has an average over
the fault that is constrained by the friction on the low-friction
patches that adjoin the site of nucleation.

Support for a model of inhomogeneous fracture is to be
found in the following observations:

(iv) Heaton {28) has observed self-healing pulses of slip in
farge earthquakes; these are propagating patches of slip that
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imply a reduction in the scale fength of fracture, as indicated
above; the best-documented exampte of self-healing patches of
slip is the inversion for the slip in the Landers earthguake (60).
It can be shown that self-healing slip pulses of constant
duration require a critical scaling dimension for their gener-
ation. Cochard and Madariaga (30) have argucd persuasively
that the eritical scale size is given by the dimensions of a
nucleation zone, which we cquate with an asperity. In this
model, the pulse gencrated at the asperity breaks into a region
of lower stress drop. wherein its velocity of growth atienuates.
slip begins to diminish, and ultimately a velocity-dependent
friction that is intrinsic 1o the healing process causes ultimate
cessation of motion,

{v) The earthquakes studicd by Heaton (28, 60) show
significant irregularities of the slip distributions in the rupture
plane, which indicate the presence of significant inhomogene-
ity of stress drop and/or fracture threshold in the plane. The
slip at the surface in the Landers carthquake of 1992 has been
studied in detail in the field (60-62) and over the entire plane
by inversion of the seismic signal (60, 63, 64). Of particular
interest is the presence of time detays of about 1-3 sec between
termination of rupture on one strand of the fault and initiation
of rupture on a acighboring strand (60, 63, 64}. These time
delays between rupture of successive strands of the large
fracture can be accounted for by inhomogeneity of the fracturc
threshold or the stress drop, or both, as well as by a slip-
weakening in slow time, over the time interval of the time
delay, of the strength in the high-stress drop barriers.

Summary

We summarize these observations an the seismicity of South-
ern California as follows. Not all faults in Southern California
behave in the same way statistically. For example, the SAF
today supports large earthquakes only and does not support
small ones. Hence an effort to apply a universal model that
vields the G-R statistical law is doomed to failure.

The G-R law is valid for small earthquakes but not for large
ones. The G-R law is a manifestation of seismicity over the
entire area of Southern California. Thus efforts to model the
power-law character through a process of self-organization on
a single fault is misdirected. The power law is probably a
manifestation of the distribution of little faults and/or after-
shocks in two dimensions—i.c., it is a manifestation of the
geometry of faulting in Southern California.

Although we do not know what the distribution for large
earthquakes is. the distribution for large carthquakes on faults
other than the SAF is likely to show large spatial fluctuations.
Large carthquakes on the SAF aceur more frequently than
farge carthquakes on any uother major fault in Southern
California; the SAF is the most rapidly slipping element of the
fault network but may be slipping under conditions of low
average stress drop—i.c., u small cnergy-lo-moment ratio.

The temporal distribution of earthquakes must be depen-
dent on the limitations of fracture size. What stops the growth
of a fracturc is the encounter of a growing crack with a barrier
region, which is a zone of large stress drop. If the large stress
drops are localized, the earthquake ruptures are confined, and
the characteristic earthquake model is appropriate. Localiza-
tion is possible where significant changes in the geometry of
faulting are encountered, such as at sites of step-overs (ech-
cloning) or bifurcations {fault junctions). Under the constraini
of uniform average rate of moment release, strong barrier sites
must themselves break or the stresses at these sites must relax,
Not only is geometry on a network of faults likely to be
important for the modeling enterprise. but also the geometry
of individual faults is going to lead 1o fluctuations in strength.
in rupidity of restoration of strength (suturing) after a big
carthquake. These geometrical fluctuations are likely to lead
to nonuniformity of slip. Temporal fluctuations in seismicity
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imply the importance of time-dependent stress transmission
processes, such as those associated with creep. Probably the
most alluring proposal for intermediate-term carthquake pre-
diction is the idea that local quiescence of small carthquakes
develops near the site of a future strong carthquake and that
intermediate magnitude activity increases at distance from the
future carthquake. The most likely candidate for modeling the
fluctuations in stress drops and fracture thresholds is an
asperity model for individual earthquakes and a barrier model
that accounts for the complexity of the fault network.

This research was supported by 4 grant from the Southern California
Larthgquake Center. This paper is publication number 4621 of the
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The organization of seismicity on fault networks
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ABSTRACT Although models of homogeneous faults de-
velop seismicity that has a Gutenberg-Richter distribution,
this is only a transient state that is followed by events that are
strongly influenced by the nature of the boundaries. Models
with geometrical inhomogeneities of fracture thresholds can
limit the sizes of earthquakes but row favor the characteristic
earthquake model for large earthquakes. The character of the
seismicity is extremely sensitive to distributions of inhomo-
geneities, suggesting that statistical rules for large earth-
quakes in one region may not be applicable to large earth-
quakes in another region. Model simulations on simple net-
works of faults with inhomogeneities of threshold develop
episodes of lacunarity on all members of the network, There
is no validity to the popular assumption that the average rate
of slip on individual faults is a constant. Intermediate term
precursory aclivity such as iocal guiescence and increases in
intermediate-magnitude activity at long range are simulated
well by the assumption that strong weakening of faults by
injection of fluids and weakening of asperities on inhomoge-
neous models of fault networks is the dominant process; the
heat flow paradox, the orientation of the stress field, and the
low average stress drop in some earthguakes are understood
in terms of the asperity model of inhomogeneous faulting.

Homogeneous Faults

Our interest is in the prediction of large earthquakes since
these are of the greatest societal concern. If large earthquakes
are periodic, the problem is trivial. Since large earthquakes at
the same site are not periodic (1, 2), we must inquire into the
causes of the dispersion of interval times and especially to see
if patterning is likely to develop. If patterns of seismicity
emerge, then these can be used as templates for studies of
likelihood of occurrence of strong carthquakes that take into
account the small amount of information that is currently
available concerning these cvents.

The physical causes of nonperiodicity of carthquakes must
he rooted in interactions, since the absence of interactions
would imply that the events earthquakes are simple relaxation
oscillators. The only serious model for interactions that has
been proposed is the redistribution of elastic stress by frac-
tures. Thus, efforts to simulate evolutionary seismicity have
focused on the development of fractures in an environment of
fluctuations of the clastic stress field produced by earlier
fractures: The stress field locally is lowered by fractures thut
occur when certain thresholds are reached, is restored by
tectonic plate motions in the interval between earthquakes,
and can be increased or decreased by the occurrence of
fractures nearby and by stress relaxation from nonefastic
processs. Do identifiable patterns of fractures arise under
these conditions of fluctuating stresses?

Many of the simulation studies to date have taken as their
paradigm the Gutenberg-Richter (G-R) power-law distribu-
tions of earthquake energies and moments and have attempied
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to do so by understanding the self-organization of fractures on
a single, uniform earthquake fault. While these studies give
insights into the process of self-organization of a complex
systemn of small and large events, they are inappropriate to
study the organization of large earthquakes on several ac-
counts. First, the G-R law is appropriate only for small
earthquakes and cannot be applicable to the description of
large earthquakes (3). Second, the small earthquakes of South-
ern California do not take place on the plate boundary which
is the San Andreas fault (SAF), or on some of the other major
faults of Southern California but rather take place on a
complex two-dimensional network of secondary and higher
order faults (3). A third point concerns the current scale of
computing of the simulations: Since the computational lattice
size must correspond to events larger than the largest possible
earthquakes, then the smallest plausible earthquake that is
simulated well on the present-day lattice models corresponds
to a magnitude 5 earthquake roughly. These smallest model
earthquakes are close to the upper limit of applicability of the
G-R law (3), and smaller ¢arthquakes are not wcll modeled
computationally today.

Large earthquakes arc so rare in any given region, that we
are unable to provide an appropriate statistical paradigm for
their study. One goal of simulation studies must be the
development of paradigms that are physically plausible.

Before discussing recent progress toward our goal of study-
ing simulated seismicity on a network of faults (3), we first
summarize some of the relevant results in the modeling of
seismicity on a single fault as a preliminary step toward the
more difficult problem. The focus on simulations of the
power-law part of the distribution has led a number of authors
Lo suggest that a scale-independent physics regulates the
self-organization. The simplest scale-independent fault model
is a homogeneous one, in which it is assumed thai the structure
of a given seismic region does not play an important part in the
carthquake process at any scale, and that the seismicity is
dominated by the mechanics of the self-organization due to the
stress redistribution on a homogeneous landscape of structure
{4-11). The total stress on the fault in scalar one- and
two-dimensional (antiplane) elastostatic fractures does not
decrease with time; thus, ultimately the stress in the system
must exceed the fracture strength everywhere and a fracture
must occur that is larger than any given size. If we require that
the largest carthquakes be of finite length and that their growth
stops by the same mechanism as the smaller ones, then these
quasistatic models must ultimately develop a fracture whose
length is greater than the largest that is geophysically possible.

Thus, an event must develop that is equal to the size of any
finite computational lattice; at this point, the fracture interacts
with the boundaries, and the system is no Jonger homogeneous:
the evolutionary development of fractures is subse, ently
influenced by the interaciion with the boundarics, by the

Abbreviations: G-R, Gutenberg-Richter; SAF, San Andreas fault
B-K. Burridge-Knapoff; 1D, one-dimensional.
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inappropriate modeling of the transfer of stress from the fault
regions outside it into the lattice segment. A throughgoing or
fattice-wide fracture is not stopped by the same mechanism as
that which stops the smalier fractures whose spans lie wholly
within the lattice. There are thus two arguments against the
applicability of homogeneous lattice models of self-organi-
zation: first, it is not possible to prevent the “runaway” or
lattice-wide event, which is not stopped by the same mecha-
nism as the smaller earthquakes, and second, there is no
mechanism for discriminating between small and large earth-
quakes, as demanded by the finiteness of the energy budget for
earthquakes (3). The same arguments apply against the de-
velopment of scaling on an otherwise homogeneous system in
the tensor (in-plane) case as well.

The dynamics of the fracture process represcnis an escape
from the tyranny of the resolute increase of stress. A redis-
tribution argument based on conservation laws no longer
applies in this case, since the stresses are no longer solutions
to Laplace’s equation but are solutions to the elastic wave
equation. The loss of energy in elastic wave radiation reduces
the amount of energy available to promote further slip.
However, dynamics does not provide an escape from the
failure of a homogeneous system to develop an internally
derived scale size that separates large from small fractures;
absence of scaling is a powerful argument that self-organi-
zation of dynamic fractures on a single homogeneous fault
must also lead to the abyss of the lattice-wide event.

We illustrate these remarks by a consideration of the
seif-organization of dynamic fractures on a single homoge-
neous fault model with periodic edge conditions through the
vehicle of the Burridge-Knopoff (B-K) (12) spring-block
model in one dimension. We do not elaborate on the dynamic

-K model, which has been discussed in detail elsewhere,
except to remark that, in order that changes in the stress due
to fracture be redistributed via elastic wave transmission, we
guarantee that the (supersonic) dispersion, due to the local
influence of the transverse $prings in some dynamic versions of
this model (13, 14}, is moderated by fine-tuning a radiation
damping term (15) that is equivalent to introducing a local
viscosity as a frictional damping of the slip (12). It can be
shown that the tunable radiation term merely represents a
scaling of the size of the fracture with respect to the lattice
spacing. Laboratory measurements of the nature of sliding
friction in the range of slip velocities that occur in earthquakes
have not been made: in our model, we do not invoke a
velocity-dependent sliding friction; instead, the strength of the
bonds at the crack edges drops instantly to the dynamic friction
at the instant that the critical threshold stress is reached (15).
Although the B-K models do not generate redistributed
stresses that are scaled by the crack length, nevertheless these
B-K models with critical radiation damping generate slip
pulses whose ranges are of the order of a(//k)'/* where a is the
lattice spacing and / and & are the transverse and longitudinal
spring constants and hence appropriate {0 simulations of
self-healing pulses (16) in large earthquakes wherein slip is
concentrated mainly near the growing edge of a crack. This
model is more appropriate to the modeling of large earth-
quakes than small ones.

For arbitrary initial conditions on the homogeneous one-
dimensional (1D) dynamic B-K fault model, the system quickly
organizes itself into fractures with a power-law distribution of
sizes (17). The events with power-law distribution of fracture
sizes is only a transient state. Power-law transiency in the
self-organization of other nonlinear systems has also been
identified recently (18). Ultimately, a runaway event takes
place that spans the entire lattice and hence has an infinite
length on the periodic lattice. After the first runaway, subse-
quent seismicity displays only periodic runaways to the exclu-
sion of smaller events, but this is a consequence of the
smoothness of the stress after each runaway; other scenarios
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after the first runaway are possible, but they too lead to further
runaways, and so on indefinitely.

In the transient state, the power-law distribution for the
sequence of seismicity is not Poissonian but is rather a
distribution that is dominated by (almost) periodic localized
clusters. There is an intense clustering of repetitive events of
almost the same size at the same locations, at almaost equal time
intervals (Fig. 1). These persistent clusters disappear after
somme time and others appear elsewhere. Such persistence is
due to the smoothness of the stress across the extent of a
fracture in this model (19), If the stress is smooth after
fracture, the restoration of stress by the external loading
mechanism brings the extent of a previous fracture to the
uniform critical threshold at the same time, and hence local
recurrence dominates this phase. Because of the nearest-
neighbor property of the 1D B-K model, any changes in the
stress can only take place at the edges of the fractures. Thus,
the length of a fracture differs from its immediate predecessor
only at its edges, and hence the persistence of a cluster is
approximately scaled by the length of the fractures. The
power-law distribution that results from this model describes
the number of clusters of a given length weighted by the
number of repetitions within the cluster. Thus, the spatial
localization is evanescent, and the pattern has an overriding
imprint of a periodicity imposed by the coupling of the
smoothness of the postfracture stress and the homogeneity of
the threshold fracture strength. The probability that any point
along this fault will experience a large earthquake is the same
for all points along the fault over the long term; over the long
term, there can be no spatial localization.

A rolloff that is observed in the distribution (17) does not
define a characteristic length; the scale size that is implied is
an artifact of the fact that the count is terminated at the time
of the first lattice-wide event; events that are slightly tess than
lattice-wide in size are undercounted compared with expec-
tations for a larger lattice. The magnitude that corresponds to
the rolloff corresponds to the parameter that mimics the
seismic radiation; the larger the energy loss in the parameter-
ized radiation, the longer the time to inevitable runaway.

Even if long-range forces are taken into account, the self-
organization of fractures on a homogeneous landscape must
ultimately develop a dynamic crack that is larger than any given
size. A similar conclusion is reached if one introduces a
weakening of strength into continuum quasistatic models with
long-range redistribution of stress (20).

The Influence of Geometry

We turn to inhomogeneous faults or fault zones as systems with
intrinsic scale sizes o explore the differences between large
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Fic. 1. Portion of the slip histary of the transient phase on a
homegeneous 1D B-K model with periodic end conditions. Vertica!
strokes detine the linear extent of a fracture; fractures with greater
length release more energy. Evancscent persistent clusters can be
identified. After a long time, this pattern is replaced by lattice-wide
periodic fractures. {Reproduced with permission from ref, 17 {copy-
right 1994, American Institute of Physics).]
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and small earthquakes, We assume that the inhomogeneities
on faults mirror the nonplanarity of geometry. The simplistic
view of the physics of the resting or sliding of a single block on
an inclined plane and the simplistic mathematics of planar
fractures have obliged us to paramelerize friction on a plane:
in both cases, the complexity of the interface between the
block and plane is ignored because it is physically or mathe-
matically convenient to do so. The usual medels of the
development of fractures on planar fault surfaces with param-
eterized friction, including the continuum models of Kostrov
(21), Burridge and Halliday (22), and successors, as well as the
discrete nearest-neighbor models of B-K type {19}, have
relatively smooth distributions of stress after fracture; on the
other hand, real earthquake fractures have very irreguiar
poststress distributions, in view of the large numbers of
aftershocks that accur close to the rupture surface.

There are several scales of nonplianar geometric features: ()
topographic irregularities on fault surfaces and the presence of
fault gouge that are the cause of friction on faults; (if)
targer-scale geometrical fluctuations of faults such as bends,
stepovers, bifurcations, etc., of faults; (¢if) the dendritic nature
of the network of secondary faults associated with plate
boundaries and a possibly tegular character of the space
between elements of the network; and (iv) the influence of the
curvature of the carth and the distances between triple junc-
tions of the tectonic plates. We have no contribution to make
to this discussion on the influence of this last item on the
organization of earthquakes worldwide.

While there is much to be said concerning the dynamics of
friction at the smatlest scales, limitations of space do not allow
for a full discussion of recent efforts at modeling the dynamics
of sliding of blocks with irregular contacts (23-25) or of the
development of a fluid dynamics and deformation mechanics
of granular materials (26-31).

We concentrate attention on the issue of larger scale
irregularities in fault geometry. The two problems of the
irregularity on the small and the large scales differ by virtue of
the size of the dimensions of the irregularities scaled by the size
of the slip. On the large scale, the dimensions of the irregu-
larities are large compared with the slips, which are a number
of meters in the largest earthquakes. The offset between the
two more or less parallel sections of the SAF in Southern
California is about 100 km. Whereas there is strike-slip motion
on the parallel sections, the link beiween them, such as the
connection between the two parallel sections of the SAF, must
have some thrust compenent of motion. The continuum
mechanics, especially from the viewpoint of iterative seismic-
ity, is difficult and has not yet been worked out.

We make the assumption that there is a correspondence
between irregularities in the large-scale fault geometry and
spatial fluctuations in the fracture strength on a planar model;
in other words, we make the usual, unjustifiable assumption
about planarity. While we do not know the precise nature of
these relationships, for the purpose of medcling assume that
the fracture threshold is high where a fault has a relatively
complex geometry (see list above) and that the threshold will
be low when the fault is relatively straight and parallel to the
regional shear stress, because it should be relatively more
difficult to prolong propagation of a fracture that arrives at a
region of complex fault geometry; King (32, 33) has presented
persuasive arguments why the strength of these regions of
complex geometries cannot persist and that stresses stored in
them due to repeated fractures that stop there or nearby
should relax on the long time scale. We do not consider these
issues of long-term stress relaxation in this paper. We apply
these consi-lerations of inhomogeneity to the B-K model and
preserve other properties of the B-K model including the
homogeneity of the elastic parameters and the periodicity of
the boundary conditions. As in the case of a homogeneous
distribution of thresholds of fracture strengths, this system also
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rapidly enters upon an apparently steady state condition (15,
34), although it is hardly stationary on a short or intermediate
time scale. Despite the seeming stochastic character of the
space-time patterns in an example of large, correlated spatial
fluctuations of fracture strength along the fault {Fig. 2) with a
fractal distribution, there is a large-scale imprint of systematic
pattern development, if not one of multidimensional chaos, not
unlike the large-scale spatial localization with small-scale
irregularity that appears in other nonlinear systems. In the
cxample, the small {ractures occur relatively frequently where
the fracture thresholds are low., Large events are located where
fracture strengths are large, with longer time intervals between
events. Because of the correlations between fracture strengths
in the model. a region of large fracture strength can store large
amounts of potential encrgy that will be released in large
earthquakes; sites with large fracture stresses require a greater
time for restoration of the stress to the fracture threshold from
plate tectonic sources than do those with small thresholds. The
larger events have greater stress drops than do the small ones
in these models with fractal distributions of thresholds, a result
that is not wholly consistent with observation, thus suggesting
that this fractal barrier model is inappropriate for the descrip-
tion of large earthquakes. In order that these cracks grow
dynamically, they must deliver enough stress at their edges to
overcome the local difference between the strength and the
prestress. A region with a large, increasing change of strength
will usually represent a barrier to crack growth. There is an
anisotropy: fractures entering a region of increasing friction
will have decreasing rates of growth and may stop; a crack
leaving the same region but growing in the opposite direction
will speed up; events that initiate in regions of high strength
and high stress drop will occasionally extend into regions of low
stress drop but the reverse is less likely.

Does a system with spatially varying thresholds develop
runaways? The extent of the fracture is defined by its encoun-
ter with a barrier—i.e., a site with a sufficiently large difference
between fracture threshold and prestress. Whether a given
fracture breaks through a barrier or is stopped by it depends
on the amount of stress available at the crack tip. In quasistatic
models, the stress at the crack tip is proportional to the product
of the average stress drop and the instantaneous length of the
slipping region. Thus, a runaway must sooner of later occur on
a quasistatic model because the longer a crack, the greater the
size of the barrier that the crack can break through. But if
dynamic slip is localized near the edge of a crack, the stress at
the edge of a slipping patch of a dynamic crack is scaled by the
size of the patch, which may or may not be the final length of
the crack. From zn elementary theory, except for reasonable
dimensionless factors, the scale size of a dynamic crack is

L =~uc/nu,
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FiG, 2. Partion of the slip history on an inhomogeneous 11 B-K
model with periodic end conditions. The fractal distribution of frac-
ture thresholds js shown on the right, Where fracture strengths are low,
small earthquakes occur frequently.
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where u is the mean slip, 4 is the mean slip velocity, and ¢ is
the speed of the cdge of the crack, which we take 10 be the
shear wave velocity. For the largest earthquakes such as
Landers or San Francisco, the scale size is of the order of 15
km, a distance that is more appropriate to the thickness of the
seismogenic zone than is the length of the crack, by factors of
5 and 30 in the two cases. Thus, the stress at one edge of the
largest earthquakes does not depend on the conditions at the
remote, opposite edge but depends instead on some local
property. We remark in passing that the range of altershocks
beyond the edge of an earthquake fracture can be expected to
be scaled by L. {35), which is more appropriately 15 km than
the total length of the fracture. Conversely, the relatively short
range of aftershocks in great earthquakes implies the presence
of a moving patch of slip as the mode of ruplurc and is a
condition observed for a number of carthquakes (16}, I the
scale size of rupture is independent of the length of the rupture
in the largest earthquakes, then the stress at the edge does not
increase with increasing length of rupture, and hence a suffi-
ciently strong barrier will stop crack growth. If there are
several such barriers in a region, then the breaking of one of
these will not cause the others to fail. Hence, there will be no
runaway in this case. Because of the nearest-neighbor coupling
of stresses in the B-K model and the short range of stress
interactions on the ruptured segment, this model is not likely
to develop runaways in the presence of a nonuniform distri-
bution of fracture strengths. Since large fluctuations in frac-
ture thresholds serve to prevent runaways, and vanishingly
smail ones do not, we expect that there should be a transition
between the cases of small fluctuations in barrier strengths,
which allow for runaways, and those of large fluctuations,
which allow for localization.

The distribution of earthquakes that is found on these
inhomogeneous models is very sensitive to the distribution of
fracture thresholds. A spiky distribution of fracture strengths,
intended to simulate a sparse distribution of barriers on a
single fault, leads to a very different display of space-time
seismicity, from the preceding case (Fig. 3). In the example, the
ratio of threshold fracture strengths in the spikes to that of the
broad and almost flat valleys between them is very large. The
space~time patterns show much greater regularity than in the
preceding example. However, the notable interruptions from
one scemingly stable pattern to another equally seemingly
stable pattern, occur at times that are episodic and not
apparently predictable, even on a deterministic model such as
this one. These instabilities are triggered by the breaking of the
strong barriers that form the borders to the deep, broad valleys
of low strength, in contrast to models with infinite barriers at
the edge of the laitice. Even the site with the greatest strength
must break because of the constraint that the long-tcrm
average slip velocity be uniform at all lattice sites. The barrier
earthquakes are usually strong, since these are the sites of large
storage of deformational potential energy. The opening of the
barrier gates transfers a large stress from one low strength
valley to another and changes the stress distribution in the
adjuining valley, thereby triggering a new mode of repetitive
fractures in the valley. We suppose that in models with
inhomogeneous thresholds the relaxation of the stresses in the
barriers are important events, whether the thresholds are spiky
or not. To assume that barriers are unbreakable with infinite
thresholds leads to evolutionary histories that are not reliable.

In some cases, the valley with low fluctuations appears to be
smooth and fractures are throughgoing from one barrier spike
to the next barrier spike. But if the valley is sufficiently long,
seismicity in the valleys breaks up into shorter fracture seg-
ments; these cases would appear to be consistent with 1 long
maode]l with homogeneous fracture strengths as described
above (17). The factors that determine whether the seismicity
in the valleys will be of one type or the other are the ratio
between the fracture strengths of the peaks and valleys, which
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determines the strength of the stress impulse that is sent into
a valley from a rupture at a peak, and the ratio between the
length of the valley and the scale size for the B-K Green's
function a¢//k)'*?, which determines how far into the valley
the stress impulse can travel.

In the models of this section, we have found it possible to
generate a series of large or barrier events that belong to a
different class than small or valley events. Some of the valleys
break only in long fractures, while others break in a broad
distribution of events having the G-R distribution, which is
schematically a pattern not unlike seismicity in Southern
California, although there are significant differences. The
maodels are sensitive 1o the choice of geometry, but generally
these models favor the characteristic carthquake model for
large events on some of the faults of the system and the
statistical model for smaller events on other faults of the
system. The large events are stopped by significant barriers
associated with major geometrical features of long faults. In
these models, the smaller events are dominated by processes of
self-organization on relatively smooth faults, since we have not
allowed for their occurrence on individual faultlets that are not
directly linked to major faults nearby.

By the arguments above, | have tried to suggest that the G-R
law is not a characteristic of faults that support large earth-
quakes. If this is the case, what is the structure that supports
the G-R law? Although the scale independence implied by the
G-R law may arise due 1o self-organization on the scale
independent, homogeneous system, this system has the defects
already enumerated, that it does not develop localization, it
does not provide for a discrimination between small and large
earthquakes, and it does not prevent runaways. An orthogonal
point of view is that the G-R distribution is a consequence of
the geometry of the fault network, as are the properties of the
largest earthquakes. On the geometrical model, we suppose
that the power law distribution of earthquake sizes is due to
seismicity on a myriad of isolated and noninteractive faults
having a power-law distribution of sizes and strewn over the
entire space. The failure of the SAF and several of the other
faults to observe the regularity of the G-R law sugpests
therefore that the faults that support large earthquakes have
different physical properties and geometry than do the smaller
ones, a conclusion already suggested by the phenomenology. If
the G-R law is an image of a power-law distribution of sizes of
small faults or fracture surfaces, why is the G-R distribution
universal? One possible answer is to propose that the forma-
tion of the fault surfaces of small dimension that support small
earthquakes is linked to the process of slip on the larger,
irregular faults, which may induce the formation of these
sccondary fractures. Under this model, the universality of the
G-R law is a consequence of the universality of the fracture
process of a three-dimensional structure under the influence
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chanical Engineers}.|
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of a hierarchy of fractures of various sizes. Such a mode! has
been proposed by Furcotte (36, 37) to explain the distribution
of fragments in granular assemblages and in the present
context can be assumed to describe the evolution of a fault
network, whether dendritic or not, under some process of
aggregation, such as diffusion-limited aggregation, in the
process of development of regional fault structure,

Two Coupled Faults

The model of Fig. 3 favors characteristic carthquakes that are
dominated by intervals of local periodicity, interrupted by
episodic instabilities. The periodicity is, of course, not appro-
priate to the seismicity of Southern California. We consider
whether the regularity of the large events is modified by
exploring models of seismicity on a network or web of faults,
In the discussion in this section, we describe only the interac-
tions between two parallel faults. There is still much to be done
before we can simulate a region as complex as Southern
California.

Consider, as a simple model of fault interaction, the problem
of two 1D scalar B-K fault models, coupled so that a fracture
event on one fault reduces the stress on the other (Fig. 4);
hence, both faults cannot tear in the same earthquake. This
coupled system may be considered to be a skeletal model of the
interaction between the San Jacinto favlt (SJF) and the SAF
in the southern part of the Southern California region, if we
exclude the influence of all other faults in the region, We
endow cach model fault with its own set of fracture thresholds.
The dissipation on each fault is tuned to the transverse spring
constant.

We consider a distribution of thresholds on each fault that
is intended to simulate several strong barriers that are sepa-
rated by valleys with low threshold strength (Fig. 5). The
barriers are staggered on the two faults; the valleys on the
upper fault have slightly lower thresholds than on the lower
fault and have rather higher thresholds at the barriers. Seis-
micity is notably different from the single fault model of Figs.
2 and 3, especially in the development of notable episodes of
local quiescence on the faults. The principal difference from
the case of a spiky distribution of thresholds on a single fault
(Fig. 3) is the disappearance of local periodicity. The history
is much less predictable,

The seismicity on the two faults is almost Babinet comple-
mentary: where one set of sites is active, the sites on the
parallel fault are usually inactive (Fig. 5). (Quiescence does not
disappear if the angular distribution of redistributed stresses at
the ends of the fractures are taken into account.) The com-
plementary quiescence and activity are due to the differences
in fracture thresholds between the two faults: The fault that is
the stronger of the pair at a given coordinate will in general be
locked against slip, and fractures will take place on the weaker
of the pair and its neighboring elements because of the
correlations in fracture thresholds, Duc to the coupling, stress
on the stronger element of a pair does not build up because of
the unloading when its weaker sibling ruptures, These results
suggest that the dormancy of the SAF is complementary to the
activity an the SJF but that at some time in the future, activity
and quiescence will interchange between the two.

Because of the incxorable motion of the driving blocks,
locked segments on the two faults cannot remain in the locked
state indefinitely; the (diagonal) region between two locked
segments on opposing faults stores increasingly more potential
energy as tectonic motion continues, and this region must
eventually lose its energy by fracturcs at one or the other of the
locked scgments. When one of the two locked segments
breaks. it induces an extended episode of quiescence on weak
segments on the companion fault. Around time 1720, activity
on the upper fault is almost totally absent over the entire length
but only temporarily so. Activily on the lower fault is similarly
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FiG6.4. Two 1D B-K moded faults, coupled so that a fracture on one
fault lowers the stress on the other. The two anvils have constant
relative velocity. During sliding of any particle, there is a friction
proportional to slip velocity with coelficient 2(m/)!/2, where m is the
mass of any particle and { is the constant of the transverse coupling
Springs.

absent over much of its length around time 1960, again only
temporarily.

Because the barrier locations are staggered between the two
faults, the zones of quiescence are found to alternate spatially
from one fault to the other, from region of strength to region
of strength. 1t is notable that the extended absence of activity
at the barrier on the upper fault at coordinate 200 between
times 1300 and §800 is matched by relatively frequent ruptures
of the barrier at coordinate 175 on the lower fault, At about
time 1800, activity on barrier upper 200 resumes and activity
at barrier lower 175 ceases until time 2000.

Although the sum of the slip rates at a given coordinate is
a constant for the entire region, the slip rates on the individual
faults are not constant over time at a given coordinate. The slip
rates can change abruptly; some active faults may becomc
dormant, only to resume their activity later. These results are
inconsistent with contemporary models that estimate seismic
risk using the assumption that the present slip rate on a single
fault of system is likely to be unchanged in the future (38).

The largest events occur where the barriers break and
successive events at a given barrier release about the same
amount of energy. Slip in the greatest earthquakes at a given
site is not simply periodic: the interval times show significant
variation. A cumulative distribution of the interval times is fit
well by a truncated exponential distribution (Fig. 6): there are
no interval times less than a certain critical value; the upper
end of the distribution is terminated by the values for the
extended lacunae, which are evidently inconsistent with the
exponential distribution.

A comparison between the numerical distribution for inter-
vals between large events on the model and the intervals
between great earthquakes on the more northerly SAF mea-
sured at Pallett Creek (1, 2) suggests that the distribution at the
latter site may also be truncated; it cannot be confirmed that
the decay is exponential because of the small number of data.
Lacunae are not be expected here since there are no long faults
parallel to the SAF in this region 10 absorb the strain. Itis likely
that the fluctuations in interval times at Pallett Creck are due
to interactions with large earthquake events in the neighbor-
hood that generate stress transfer among ruptures on a more
complex network of faults.

Without detailed information about the stress and strength
distributions on the network, which is evidently not now
possible for the faults of Southern California, we have no way
at present to predict either the onset of tacunarity where
appropriate or the interval time to the next great earthquake.
[t is doubiful that the time series of seismicity can be consid-
ered to be stationary if the effects of localization due to
barriers are taken into account appropriately.

Intermediate Time Scale

Thus far, we have considered models with a time scale of
sersmic events that is set by the ratio between the elastic stress
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drop at a lattice site and the stress loading rate. This time scale
is apprapriate to the long time scale of earthquake recurrence,
which is of the order of 100 years in the case of the SAF and
longer in the case of the other faults in i1s neighborhood. On
the shorter time scale of intermediate-term precursory pro-
cesses, let us say on a time scale of 1-10 years, we wish to
identify clustering of smaller carthquakes before larger ones,
a problem not adequately described by the above models. We
modify the above models in two ways, First, we ask whether
there is any physical mechanism that is competitive with brittle
fracture to load or unload a fault on this time scale or shorter.
In this section, we consider the diffusion of water in and out
of fault zones and the nonelastic processes of slip weakening
prior to fracture, which are mechanisms that are indeed
important on the intermediate time scale: identification of
precursory patterns of activity that make use of models of
setf-organization that are based on simple brittle-fracture
processes only (39-41) must be modified to take the tmportant
influences of fluids and slip weakening into account. Second,
we must be able to compute in detail over shorter time
intervals, and hence we must forego the opportunity to study
long-term evolutionary seismicity; here we describe computa-
tional schemes that explore precursors before each strong
earthquake individually.

Because the normal stress on faults increases with depth
below the earth’s surface, brittle fracture on faults becomes
increasingly difficult even at shallow depths in the crust;
without the agency of water to reduce strength, faults would
become locked, and yielding would not be localized on discrete
fault surfaces. Hubbert and Rubey (42) proposed that the
introduction of water into a fault would fower the friction and
permit sliding to take place. Sibson (43-47) has described how
water can be introduced into a fault zone from below the
seismogenic zone before a large earthquake and how it can be
removed after a large earthquake; removal allows for reestah-
lishment of friction and hence for renewal of the carthquake
process.

The introduction of fluids into a fault zone not only lowers
the normal stress on the fault zone but also causes the normal
stress on nearby fauitlets to increase—i.e., as the walls of a
major fault are pushed apart, other nearby faults should be
squeezed together. Thus, activity of small earthquakes in the
neighborhood of a fluidizing or fluidized fault should de-
crease—i.e., quiescence should be initiated. But why does not
& fluidized fault rupture immediately upon lowering of the
normal stress? To allow for a time delay between the onset of
quiescence and occurrence of a strong earthquake, we assume
that the fault is inhomogeneous and that while parts of it are
fluidized, other parts remain locked in frictional contact; this
is the asperity model of carthquakes.

In the barrier model (48) of the preceding sections, the
growth of elastic fractures may stop at regions of low ratio of
stress drop to strength, In the asperity model (49), 2 central,
strong brittle zone or asperity is surrounded by a weak zone
such as a crack that has a low shear strength or low friction
because of the continuing presence of fluids, a structure that
is inherently inhomogeneous, On a 1D fault, the asperity
separates two disconnected, fluid-filled cracks. In the asperity
model, unstable sliding is prevented by the asperity sutures;
large scale sliding takes place when the asperities break. This
maodel is not unlike the “bed-of-nails” model {30) proposed to
understand porous flows in rocks at low pressures and the
“fiber bundle model™ (51, 52} designed to understand failure
of braided cables or ropes. Neither of the latter statistical
models have the correlations implicit in the present context;
the issues in the present case involve the spatiotemporal
development of conditions for occurrence of large earthquakes
due to self-organization of the stress field.

An instability due to a decrease of friction with an increase
of slip or slip rate for rocks close to their breaking point has
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been known for some time (53) and is a property of most solid
materials. The instability associated with a lessening of
strength as the critical state of fracture approaches has been
studied more recently in experiments on stress corrosion,
suberitical crack growth, and slip-weakening (54-59) and has
been used in studies of self-organization on extended single
faults (60-63). The presence of water vastly accelerates the
rate of weakening of strength of fault materials and especially
so at clevated temperatures because the weakening follows an
activation process; it is the accelerated weakening that makes
this process competitive in the intermediate time scale.

We combine the slip-weakening physics with the asperity
model. We first consider a planar 1D array of fluid-filled
preexisting cracks, separated by asperities (64). The crack
lengths and the asperity widths are random variables, which we
choose to have power law distributions. The cracks are sub-
jected to an in-plane shear (mode 1T} stress. We solve the
problem of the stress field in the complete long-range formu-
lation. Cracks develop accelerated growth at their tips under
the influence of the external shear stress, thereby causing the
width of the asperities at their edges to decrease; cracks grow
only along their own fault lines. The velocity of growth is a very
strong function of the stress intensity factor at the crack tip,
which we specify as vy, ~ &7 or Wip ~ o with n large (54-55).
As the crack lengths increase, and as the widths of asperities
at the edges of cracks decrease, the stress intensity factor at
crack tips increases, and hence the velocities of the tips
increase. When the velocity of the tip of a crack approaches the
S-wave velocity, the crack begins to radiate seismic energy (60,
61) and, in the quasistatic approximation we use, the asperity
disappears at this instant and an earthquake event occurs. The
stress ts now redistributed to the ends of the new crack, which
has linear dimensions equal to the sum of the lengths of the two
cracks and the now-vanished asperity; the suddenly increased
stress intensity factors at the tips may cause further asperities
to be consumed. For a finite array, in most cases only a few
foreshocks, and in most cases no foreshocks, precede a strong
event that releases prestress energy accumulated in the nucle.
ation volume of the asperities; the large event transfers stress
to great distance, being the extent of the fluidized zone. A
homolegous distribution of the few Fforeshocks over many
simulations is in agreement with the inverse Omori law
observed, also homologously, in large earthquakes worldwide
(65, 66). It is 1o be expected that faulis that are fluidized over
much of their length, except for asperity contacts, should have
normal stresses that are perpendicular to the fault structures,
as observed (67), except at the asperities. This ithomogeneous
model of faulting has bearing on the problem of the heat flow
paradox. Lachenbruch and Sass (68) have remarked that the
(average) stress drop in strong earthquakes is low (69) and that
the heat flow across the SAF is not much above background
(70, 71Y; these features combine to suggest that the fault is
weak, a result inconsistent with field and laboratory measure-
ments on whole rocks. There has been some discussion of the
possibility of reducing the friction to very low values through
a process of interface separation during the dynamics of
rupture on relatively homogeneous materials (72); the asperity
model suggests that the friction is low over much of the
inhomogeneous fault before the ruptuie was initiated.

Consider now a network of faults (73). Suppose that fluids
are introduced from below the seismogenic zone into the
network when the region is at a suff'ciently high state of stress.
Let the width of the fluidized band of faults be small compared
with their length, Seismic activity develops over the entire
region in a series of local events of intermediate Magniiide un
individual faults of the network by the mechanism above. At
a later time, a large earthquake having low average stress drop
and great length develops on one of the faults. The large event
not only extinguishes activity on its own fault but also lowers
the stress on nearby faults and thus extinguishes activity on
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them as well; activity on the entire region now ceases. If the
fault network is studded with occasional asperity contacts in
the fluidized state, the redistribution of stress may take on a
filamentary geometry, as observed in experiments on granular
assembiages, the grains having mainly free surfaces and only
occasional bridging contacts (74-76).

If, however, an asperity having a dimension of let us say a few
tens of kilometers does not break completely through, then a
high stress drop earthquake will occur; because of failure to
connect to the fluidized regions, these events will not cause
significant changes in activity at distances of the order of
several hundred kilometers. The agency of extended regions of
fluid penetration into fault networks may help to understand
the observations of an increase in intermediate-magnitude
activity on a time scale of several years before a strong
earthquake and its subsequent, rapid extinction on a distance
scale of many times the classical dimension of rupture of a
large earthquake that has been recently noted as part of the
phenomenology of strong earthquakes in California (77).
Reactivation takes place on the tectonic time scale.

If the faults of the network are somewhat farther apart in
comparison with the length of the zone of activation, faults at
intermediate distance may become reactivated after an epi-
sode of quiescence by the stress corrosion mechanism (73); the
stress-corrosion reactivation time scale is much shorter than
the tectonic reactivation time scale on an individual fault zone.
Reactivation on a time scale of decades is consistent with some
patterns of seismicity in Japan and is consistent with a greater
width of the fault network in Japan than in California.

Summary

Because of scale independence, homogeneous fault models
develop power-taw distributions of seismicity that reproduce
well the G-R distribution for small events. Unfortunately, the
seismicity is only a transient state; for any finite fault, sooner
or later seismicity interacts with inhomogeneities at the bound-
aries that leave an imprint on future seismicity that is charac-
teristic of the nature of the boundaries. We have therefore
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Fic.§5. Distribution of seismicity for a part of the time sequence for
two faults coupled as in Fig. 4. The distribution of fracture thresholds
is shown on the right. Periodic end conditions on both faults. Seismicity
is largely complementary, with quiescence on ene fault matched by
activity on the other at the same coordinate and time. Around time
1600, the tault with stronger barriers becomes quiet over almost its
entire length, which is matched by activity over almost the entire length
of the other. Around time 1920, the pattern is almost completely
reversed. Noteworthy is the interval from times 1300 to 1800, when the
barrier at coordinate 200 on the upper fault does not tear; after time
1800, it tears frequently.
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FiG. 6. Cumulative distribution of interval times for fractures of
the strong barrier at coordinate 200 on the upper fault of the model
(M), compared with the distribution of interval times for great
earthquakes at Pallett Creek {PC). The model curve is well fit by a
truncated exponential distribution except for the instabilities at the
facunae, such as that between times 1300 and 1800 (see Fig. 5}. Time
scales of the two curves have been adjusted to have a common median.

considered inhomogeneous fault models, with geometrical
fluctuations of fracture strengths, to guarantee that large
events are localized and do not interact with boundaries and
to guarantee that large earthquakes will not obey the power-
law distribution. Inhomogeneous fault models favor the char-
acteristic earthquake model for large events—namely, those
that are limited by the strongest inhomogeneities—while the
smaller earthquakes may continue to be described by power-
law distributions. However, we find that the character of the
seismicity is extremely sensitive to the geometrical distribu-
tions of inhomogeneities of fracture thresholds.

Most models of the seismicity of the largest events on single
inhomogeneous faults show little dispersion of interval times.
To generate significant dispersion of interval times, we have
explored the nature of seismicity on a pair of paralle! faults,
whose stress redistribution patterns influence the occurrence
of earthquakes on one another. Model simulations show that
the instabilities of seismicity on a single fault have a different
character in the coupled cases; seismicity now displays comple-
mentarity behavior as well as episodes of lacunarity. The
distribution of interval times for the strongest earthquakes is
a truncated exponential. We conclude that the popular as-
sumption that the average rate of slip on individual faults is a
constant is not likely to be valid.

Intermediate-term precursery activity in Southern Califor-
nia is simulated well by an asperity model that assumes that
faults are fluidized and hence are weak over much of their
length. Accelerated weakening of strength, coupled with the
infusion of fluids from below the seismogenic zone, can
account for local precursory quiescence for an increase of
intermediate-magnitude activity at long range and the abrupt
extinction of the latter by the occurrence of strong earthquakes
with low average stress drop; the range of interaction can be
many times the dimensions of the zone of brittle fracture in a
large earthquake. The model of a fluidized fault network,
sutured by occasional asperities, can explain the heat flow
paradox, the orientation of the stress ficld near the SAF, and
the low average stress drop in some strong carthquakes.
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Increased long-range intermediate-magnitude earthquake
activity prior to strong earthquakes in California

L. Knopoff, T. Levshina, V. L. Keilis-Borok,' and C. Mattoni?
Institute of Geophysics and Planetary Physics, University of California, Los Angeles

Abstract. We study the space-time relationships between strong earthquakes

in California and the intermediate-magnitude earthquakes that both precede and
follow them. All 11 earthquakes in California with nominal magnitudes greater
than or equal to 6.8 from 1941 to 1993 were preceded by an increase in the
rate of occurrence of earthquakes having magnitudes greater than 5.1. Ten of ..

the 11 earthquakes occurred when or shortly after the intermediate magnitude . .";-;:_ .

a.ctlwty was greater than its 75th percentile. Three of these strong earthquakes
are in a conventional space-time foreshock-aftershock relationship with others of
the 11 strong events. The precursory activity is concentrated in regions having
linear dimensions of the order of a few hundred kilometers; these dimensions '
are significantly larger than the estimated fracture lengths of the ensuing strong
earthquakes. The correlations are ill defined for smaller earthquakes and aré
almost unidentifiable for earthquakes with magnitudes less than about 4.6." The
precursors to the strong earthquakes appear over a time interval of the order-of 5
to 10 years before the strong earthquake, although the onset was about 25 years
before the San Francisco earthquake. In the case of the Loma Prieta and San
Francisco earthquakes, the onset of increased activity appears to be relatively
abrupt. The increased activity is either switched off abruptly to distances of the
order of hundreds of kilometers shortly after the occurrence of a strong earthquake,
or the strong events are themselves part of a precursory pattern of continuing
high activity before a second strong earthquake that takes place soon thereafter,
with subsequent extinction of activity after it. Thus the intermediate-magnitude
precursors do not directly influence the time and location of the subsequent strong
event, but the strong event has a strong influence on the stress field in the vicinity
of intermediate-magnitude earthquakes to distances of the order of many times the
scale size of the strong earthquake.

Introduction

A precursory increase of seismic activity at relatively
large distances and over timescales of the order of a
few years has been described frequently, either as an
isolated phenomenon or together with other seismicity
patterns le.g., Mogt, 1969; Wesson and Elisworth, 1973;
Sykes, 1983; Wesson and Nicholson, 1988; Keilis-Borok
et al., 1988; Keilis-Borok and Kossobokov, 1990; Sykes
and Jaumé, 1990]. Among these other seismicity pat-
terns are those of precursory quiescence and clustering
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which have been reported in a number of instances over
distance ranges both shorter and longer than those indi-
cated for increased activity [e.g. Mogi, 1969; Kanamori,
1981; Keilis-Borok et al., 1988; Wyss and Habermann,
1988; Habermann, 1988]. Keylis-Borok and Malinov-
skaya (1964), Keilis-Borok et al. [1988], and Keilis-
Borok and Kossobokov [1990] identified premonitory
patterns of seismicity over broad geographical areas
whose dimensions were much larger than the rupture
sizes of upcoming strong earthquakes; however, the
precise locations of the earthquakes that contribute to
these patterns were not identified. In this paper we
discuss the space-time relationships in fluctuations in
intermediate-magnitude seismic activity and the rela-
tionship of these fluctuations to the strongest earth-
quakes of California.

A marked increase in seismic activity prior to the
1989 Loma Prieta earthquake M = 7.1 has been iden-
tified by Sykes and Jaumé [1990] and Bufe and Varnes
[1993]. We show the cumulative number of earthquakes
with Mg > 5.5 in a 3°x3° region around the Loma Prieta

5779



Number of earthquakes

" n > i "

1920 1930 1940 1950 1960 1970 1980 1990 2000
Time (years)

Figure 1a. Cumulative number of earthquakes with
MP 2 5.5 in a 3° % 3° region around the Loma Prieta

gp;ce:(ger from 1919 to 1989. Aftershocks have been
eleted.

epicentral region for the 70 years before the earthquake
(Figure 1). We have deleted obvious aftershocks from
the list of earthquakes [Gardner and Knopoff, 1974];
we make adjustments for differences in the magnitude
scales between the earlier Berkeley catalog and the later
Preliminary Determination of Epicenters (PDE) cata-
log. An abrupt and significant change in the rate of oc-
currence takes place around 1979 (Figure 1). The rates
differ roughly by a factor of 6. Intermediate-magnitude
earthquakes in the interval 1919-1979 are widely dis-

39° 2 e

38°

36° '
-123° -121° -120°
Figure 1b. Epicenters of the earthquakes in Figure 1a.

Open circles are epicenters 1919 to 1978; solid circles are
epicenters 1979 to 1989,

1220

KNOPOFF ET AL.: LONG-RANGE PRECURSORS OF STRONG EARTHQUAKES

tributed over the region, while the earthquakes in the
interval 1979-1989 are concentrated in a smaller region
approximately 1° on a side; the precursory earthquakes
are not located on the San Andreas Fault itself.

A similar increase in seismicity prior to the M = 8.3
San Francisco earthquake of 1906 has been noted in
qualitative terms by Ellsworth et al. {1981]. We use the
W.L. Ellsworth et al. catalog of earthquakes for almost
the same region as Figure 1, for the period after 1855;
we hesitate to link this catalog with that used in the
preparation of Figure 1 because of the incompatibility
of the historical basis for one and the instrumental ba-
sis for the other. A magnitude-frequency plot of the
Ellsworth catalog shows deviation from log linearity for
events with magnitudes less than about 5.5, implying
an underreporting of earthquakes with smaller magni-
tudes; Ellsworth et al. [1981, p. 137] “estimate that the
catalog is essentially complete down to M 5.5 after 1855
in the San Francisco Bay region”. We assume it is com-
plete over the region at this magnitude level. We plot
the cumulative number-time distribution for the cata-
log for earthquakes with M > 5.5, in this case without
removing aftershocks because of the lack of resolution
of locations in the historical catalog (Figure 2). Again,
a significant change in rate by about a factor of 2.5,
sets in around 1880, or 25 years before the 1906 earth-
quake; the onset of the interval of increased seismicity
prior to both the Loma Prieta and San Francisco earth-
quakes seems to be abrupt. The prolonged episode of
low seismicity after 1906 and lasting until 1979 has al-
ready been noted. The M = 6.7 earthquake of 1868 was
also preceded by a brief interval of increased seismicity
and was followed by an abbreviated interval without
earthquakes.

In this paper we explore the generalization whether
a rather simple precursory pattern of increase of activ-
ity is to be found on a timescale of several years before
each strong earthquake in the California area, and dis-
tributed over a region as large as several hundreds of
kilometers from the strong earthquake.

30§ - -
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10F

Number of earthquakes

5p
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1900

Figure 2. As Figure 1a for earthquakes in a 3° region
around San Francisco from 1850 to 1906.
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Regionalization and Catalogs

We consider the occurrence of earthquakes in three
different regions of California and vicinity (Figure 3},
which we call the southern, central, and northern re-
gions, and which are located astride the plate bound-
aries of the Pacific Coast of California and Oregon. The
northern region encompasses the seismically active area
around Cape Mendocino and the complex plate bound-
ary to its west and northwest. The southern region is
essentially that spanned by the CalTech catalog but it
excludes the region to the east of the Sierra Nevada.
With one exception, the boundaries have been chosen
to reflect gaps in the seismicity of the entire region for
earthquakes with M > 5.1 over the interval 1965-1993
for the northern region, 1939-1993 for the central re-
gion, and 1933-1993 for the southern region. The south-
ern and central regions are separated by a gap at the
Carrizo Plain; the northern and central regions are sep-
arated by the gap in northern California centered near
Point Arena,; the northern boundary to the northern re-
gion is drawn at the gap in seismicity that starts at the
southern edge of the Juan de Fuca Ridge. ‘The south-
ern boundary of the southern region is the southern
edge of the CalTech catalog and lies about 1° south of
the United States-Mexico political border. Magnitudes
for intermediate-magnitude earthquakes south of this
boundary are mostly unavailable from 1933 to 1965; in
a few cases we give a qualitative discussion of the rele-
vance of the earthquakes after 1965 in this region to our
analysis. The Parkfield area of the San Andreas Fault

45° 1

40° -

30"

L

115°

4300 1250 -120°
Figure 3a. Regional boundaries and fault map. The
Juan de Fuca Ridge (JFR), Blanco Fracture Zone

(BFZ), Gorda Ridge (GR), Mendocino Fracture Zone
{(MFZ), and San Andreas Fault (SAF) are indicated.
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Figure 3b. Earthquake epicenters with M > 5.1 span-
ning the intervals 1933-1993 in the southern region and
1965-1993 for the other parts of the map.

system near latitude 36°N lies to the north of the Car-
rizo gap and thus is included in the central region rather
than in the southern region, but this is not critical to
the subsequent discussion.

‘We have used the CalTech catalog for southern Cali-
fornia earthquakes (1935-1993) with modifications given
by Hutton and Jones [1993], a combined catalog for
the central region (1939-1993) that fuses the Berke-
ley, the U.S. Geological Survey (USGS), and the PDE
catalogs that has been prepared by Y. Kagan, and
the USGS/PDE catalog of earthquakes (1965-1993) for
the other regions. These catalogs are complete during
these periods for earthquakes with magnitudes M >4.7,
which is sufficient for the purposes of this paper. After-
shocks are eliminated from these catalogs by the use of
an algorithm given by Gerdner and Knopoff [1974]; an
aftershock is defined as the smaller and later of a pair of
events that are separated by time and distance intervals
that depend on the magnitude of the earlier of the pair.
Our analysis makes use of earthquakes prior to March
25, 1993. The Northridge earthquak2 of January 17,
1994, occurred while this paper was in preparation; we
have extended ocur analysis of seismicity in the south-
ern region to include earthquakes up to the latter date,
and discuss this aspect of the seismicity in a separate
section.

Unfortunately, the magnitude scales are not identical
across all the catalogs. For southern California earth-
quakes, we use the revised magnitudes My listed in
Hutton and Jones [1993] where available. For the other
two catalogs and for the remainder of the southern re-
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Figure 4. Differential magnitude-frequency relation
for Southern California earthquakes with aftershocks
removed from 1933 to 1992, Each data point is the
number of events in the interval M + 0.25 where M in-
creases in 0.5 increments. A division into four 15-year
subcatalogs shows divergences that are significant at the
20 level in the approximate magnitude range 4.6 to 6.2.

gion, we used Ms where available, which means, in ef-
fect, for earthquakes with magnitudes greater than 6.0.
For the smaller earthquakes we used M where avail-
able and for those events for which My is not given, an
adjustment for the differences between m; and M|, was
made.

Activity Before Earthquakes With
-Magnitudes M > 6.8

We define strong earthquakes to be those with mag-
nitudes greater than or equal to a threshold of M. In
this section we choose My, = 6.8. To define the magni-
tudes of earthquakes over which fluctuations in activity

KNOPOFF ET AL.: LONG-RANGE PRECURSORS OF STRONG EARTHQUAKES

occur, we construct the usual magnitude-frequency re-
lationship for the southern California catalog with af-
tershocks removed (Figure 4); we observe the usual lin-
ear relationship to the largest magnitudes. However,
there is a divergence among 15-year subcatalogs that is
significant at the 2o level in the magnitude range be-
tween 4.6 and 6.2, approximately; we focus our studies
of fluctuations in seismicity in this magnitude range.
We illustrate the fluctuations in seismicity in the three
regions by displaying the number of earthquakes with
magnitudes between 5.1 and 6.7 in the 5 years preced-
ing a given time (Figure 5a, 5b, 5¢}; the times of these
intermediate-magnitude events are indicated at the bot-
tom of each diagram; a catalog of these intermediate-
magnitude events is given in the appendix. To establish
a terminology, we call the output of the smoothing fil-
ter, as in Figure 5, the windowed activity. (In all cases
discussed in this paper, except for the Borrego Moun-
tain and San Fernando earthquakes, the filter window
is 5 years. If we had set the window width to zero, we
would have obtained the “picket fence” at the bottom of
Figure 5a, 5b, and 5¢). The actual rate of occurrence of
earthquakes in this magnitude range is called the activ-
ity. The times of the strong earthquakes in each region
are indicated by long vertical lines.

Our use of a sliding window of finite width as a
smoothing filter, such as the window of 5 years in this
case, presents some problems for the interpretation of
the results, as we describe below. The times in Fig-
ure 5 correspond to the end of the window interval. The
magnitudes of the intermediate-magnitude earthquakes
were chosen to range from the threshold magnitude that
defines the strong earthquakes down to 1.7 magnitude
units below it; this choice allowed us to explore in a
consistent way variations in the activity within the mag-
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Figure 5a. Windowed activity in the southern region. Solid curve is the number of earthquakes
with 5.1 <M <6.7 in a 5-year sliding window; the window slides by 4-month intervals. Dashed
curve is the windowed activity under the assumption that no earthquakes occurred after each
strong earthquake. If the solid and dashed curves overlay one another, no earthquakes actually
occurred in the 5-year interval after the earthquake. Heavy vertical lines indicate times of strong

earthquakes.
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Figure 5b. Windowed activity in the central region.

nitude range of fluctuations identified in Figure 4 and
their relation to strong earthquakes with different mag-
nitudes. In the present case we have increased the upper
limit of intermediate magnitudes to 6.7, a value that is
indeed above the upper limit for statistically significant
fluctuations in Figure 4, but there are few earthquakes
in the interval 6.2 to 6.7 and our interpretation does not
depend on this feature.

We consider the relationships between the activity
and the strong events with M > 6.8 in the time inter-
vals of the catalogs. The 1940 earthquake in the south-
ern region occurs at the beginning of the useful part of
the curve, so we do not know whether this earthquake
was preceded by increased activity. We do not concern
ourselves with this earthquake any further.

There is a closely spaced series of five earthquakes
in this magnitude range in the northern region from
1991 to 1995; these are the M =6.9,7.1,7.1,7.0, and 6.8
events in 1991, 1991, 1992, 1994, and 1995, respectively
(see appendix, Table A3). The first of the quintuplet
preceded the second (the M = 7.1 offshore earthquake
of August 17, 1991) by only a little over 1 month and

was located nearby. We consider it to have been a fore-
shock of the second. The last two of this quintuplet
are located sufficiently close to the focus of the Petrolia
earthquake (M = 7.1, April 25, 1992) that they were
probably aftershocks of it. The two sets of epicenters
are widely separated. In order to avoid weighting our
tabulations unduly by this concentration of events, we
have arbitrarily chosen to count each of these clusters as
a single event; we return to this point below. There are
thus eight events in this magnitude range: four in the
southern region (having deleted one), one in the central
region and three in the northern region.

Seven of the eight events with M > 6.8 are preceded
within 2 years by a windowed activity greater than or
equal to the 75th percentile level for the specific regional
distribution; that is, they take place during the roughly
25% of the time that the intermediate-magnitude win-
dowed activity in the interval 5.1 < M < 6.7 is at its
greatest. All eight earthquakes occur when the win-
dowed activity is high; strong earthquakes do not occur
at times near minima in the windowed activity. The
percentiles are calculated excluding values in the first 5
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Figure 5c. Windowed activity in the northern region.
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years following the start of the regional catalog, which
represents a startup transient interval. A data point
in the startup interval for the southern region that is
plotted at 1938, for example, only includes actual cat-
alog data for the abbreviated interval 1935-1938. A
percentile measure to identify the occurrence of peaks
in windowed activity is useful only if the fluctuations in
the measure have large amplitudes and do not oscillate
too frequently.

The windowed activity prior to the first of the pair
July 13, 1991(M = 6.9)/August 17, 1991 (M =7.1) in
the northern region, occurs at a time when the win-
dowed activity is at the 57% level which, while not low,
is not above the 75% threshold; the second of this pair
occurs when the windowed activity is well above the
75% threshold (Figure 5¢). Extension of Figure 5c with
new data beyond its termination shows that all of the
last triplet of the Petrolia earthquake and its two after-
shocks, all of which have magnitudes greater than 6.8,
occur at times when the windowed activity is above its
threshold. As remarked, although literally 10 out of 11
events with M > 6.8 are preceded by a windowed ac-
tivity above the 75% threshold, in view of the density
of the last five events, we indicate that only 7 out of 8
have been so anticipated.

Activity After Earthquakes With
Magnitudes M > 6.8

If peaks in activity are correlated with the occurrence
of strong earthquakes, then reductions in activity must
also be correlated with them in order that the system
Lie reset before the next strong earthquake. Thus a test
of the correlation of strong earthquakes with activity
must involve both the increasing and decreasing phases
of the activity.

To measure activity after a strong earthquake, we
must circumvent an artifact of the windowing proce-
dure. A precursory peak of windowed activity often ex-
tends beyond its corresponding strong earthquake (Fig-
ure 5). Part of the extension is caused by the finiteness
of the window: The windowed activity at a time, let us
say, 2 years after a strong earthquake includes a count of
the number of intermediate-magnitude events that oc-
curred less than 3 years before the strong earthquake,
since the windowed activity is attributed to the time at
the end of the sliding window. Of course, some of the
windowed activity after a strong earthquake is also due
to intermediate-magnitude events that occurred after
it. The dotted lines in Figure 5 show the windowed ac-
tivity calculated by deleting all intermediate-magnitude
earthquakes that occurred after each strong earthquake.
Thus we can evaluate the relative importance of the
two influences: if the dotted curves lie close to the solid
lines, the activity after the strong earthquake is small.

After the 1956 San Miguel earthquake in the southern
region, after the 1989 Loma Prieta earthquake in the
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central region, and after the 1980 Eureka earthquake
in the northern region, the activity was very quickly
reduced to a very low level. We comment below about
the seismicity in the southern region in the time interval
after the Landers earthquake and before the Northridge
earthquake of January 17, 1994.

After the July 1952 Kern County earthquake in the
southern region, activity remained high. The Kern
County earthquake is followed within about 4 years by
the 1956 San Miguel earthquake. Part of the region re-
mains in a highly active state after the Kern County
earthquake.

Activity has remained high ever since the first of the
northern quintuplet. The time interval since the last
of these events in 1995 is too short for us to determine
whether there is a falloff in activity after it or that it
remains high.

Thus activity has either fallen abruptly or has re-
mained high after every event. There does not seem to
be any gradual decrease in activity.

Windowed activity has a pronounced peak of about
the same shape in both the central and southern regions
starting from 198(; there is a similar peak in the north-
ern region that begins around 10 years earlier, and an
incipient peak that begins around 1990, thereby sug-
gesting that the two southernmost, if not all three re-
gions, reach a peak of activity at about the same time.
However, we have no data in the northern region be-
fore the start of reporting of PDE magnitudes in 1965
{which implies activity before 1970 in our definition),
50 we cannot evaluate correlations with activity in the
other regions. Furthermore, the quiescence from 1935
to 1979 in the central region is in contrast with the
presence of two strong peaks in the southern region;
we speculate that the quiescence in the central region
up to 1979 is a prolonged aftermath of the lowering of
stress by the 1906 San Francisco earthquake. (A cross
correlation among the pairs of curves of Figure 5 shows
that the single peak of the central region (Figure 5h)
is most strongly correlated with the strongest peak 35
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Figure 6. Stacked windowed activity before and after

the strong earthquakes of Figures 5a, 5b and 5c. All
strong earthquakes are assumed to occur at ¢t = 0.
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to 40 years earlier in the southern region. The isolated
peaks in the central and northern regions are correlated
as expected with a lag of 10 years.) A hypothesis of cor-
relation over larger distances than our three individual
regions is supported only by the most recent peak of
windowed activity that appears in all regions. With re-
gard to this most recent peak, it is arguable whether
the Coalinga cluster near latitude 36° {see Figures 7g
and 7h) represents a linkage between the southern and
central regions that creates a single “superregion”. At
this time, we retain our regionalization as defined.

A more explicit representation of the correlations be-
tween the fluctuations in activity and the strong earth-
quakes is given by stacking the individual plots of win-
dowed activity for all eight strong earthquakes, aver-
aged over the time intervals for which we have data (Fig-
ure 6). The stacked curve rises from a minimum about
15 years before a strong earthquake to a maximum at
the time of the strong earthquake, with a maximum-to-
minimum ratio of about 2.5; thus an increase in activity
before these strong earthquakes is a general property.
The apparent symmetry of the curve in Figure 6 after
t = 01is due to at least three competing influences which
are the contribution of windowed activity prior to the
strong earthquake due to the finiteness of the window,
as noted above, the continued activity after some earth-
quakes and the decrease in activity after others.

Spatial Distributions

We map the epicenters of the intermediate-magnitude
earthquakes that contribute to the peaks in the win-
dowed activity of Figure 5. Except where noted, the
time intervals represented for the events on the follow-
ing maps of activity before strong earthquakes start 5
years before the windowed activity crosses the 75th per-
centile threshold, and end at the time of the strong
earthquake itself. We also map the intermediate-magni-
tude earthquakes for a time which is usually 5 years
after the strong earthquake. We consider such maps
in turn for each of the eight stroug earthquakes with
M > 6.8.

Southern Region

We consider first the pair of the Kern County, July
21, 1852, and the San Miguel, February 9, 1956, earth-
quakes in the southern region. Since a time 5 years be-
fore the crossing of the 75% windowed activity thresh-
old for the Kern County earthquake overlaps the date
of the 1940 earthquake in the Imperial Valley, we have
mapped all epicenters between the 1940 and 1952 earth-
quakes {Figure 7a). The epicenters of the intermediate-
magnitude earthquakes (5.1 < M < 6.7) in this time in-
terval span much of the southern region, which is more
than 5° in its longest dimension. The White Wolf fault,
on which the Kern County earthquake occurred, lies
along the periphery of the distribution. Most of these
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intermediate-magnitude events that occurred prior to
the Kern County earthquake are located at some dis-
tance from the future fracture trace of the strong earth-
quake. In the last 5 years of the 12-year interval, that
is from 1947 to 1952, the seismicity was concentrated
in the southern part of the map {compare Figure 7b
and 7c) a region 350 km in dimension. This feature
may represent the development of a more localized Mogi
[1969] doughnut prior to the Kern County earthquake;
we have not observed similar localized reductions in ac-
tivity prior to the other cases of strong earthquakes in
this magnitude range.

As noted, activity in the southern region before and
after the Kern County earthquake, even after removing
aftershocks, did not diminish significantly but contin-
ued at a high level up to the time of the San Miguel
earthquake. Figure 7d is a map of the intermediate-
magnitude epicenters between the times of these two
strong earthquakes. The majority of the earthquakes
in this interval lie astride the international border and
extend about 150 km to the north of the San Miguel
epicenter; we do not have complete magnitude informa-
tion for earthquakes to the south of the boundary to
the region for this time interval, and hence we do not
know whether the pattern of epicenters extends beyond
the southern boundary, nor if this epicenter ig at the
periphery of the spatial pattern or not. In Figure 7e we
show the epicenters of earthquakes in the first 5 years
after the San Miguel earthquake; much of the activity
remaining after the Kern County earthquake has been
switched off after the San Miguel earthquake; about 5
years after the San Miguel earthquake, activity begins
to revive {Figure 7f). In this case and several cases to
follow, we see that activity is not switched off by a first
strong earthquake; instead, a second strong earthquake
follows after the first in less than roughly 5 years. Activ-
ity is then switched off by the second strong earthquake
of the pair.

Figure 7g is a map of the intermediate-magnitude
earthquakes in the southern region in the 7.3-year in-
terval from February 28, 1985 to June 28, 1992, the
latter being the date of the Landers earthquake. The
earthquakes are again spread over a large, elongated
part of the southern region, which is about the same
as that for the Kern County and San Miguel earth-
quakes. The precursory pattern probably should in-
clude the three earthquakes south of the regional bound-
ary to the southern region as defined. But since the
southern boundary was defined by the southern Cali-
fornia catalog prior to 1965, only earthquakes within
the southern region as specified were used to define the
peak in the activity before the Landers earthquake; the
earthquakes outside the region may be of value to help
identify switch-off or its absence. The Landers earth-
quake also was at the periphery of the area of increased
activity prior to it and the fault break extended outside
and to the north of the pattern.

The recency of the Landers earthquake makes it dif-
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Figure 7a. Epicenters of intermediate-magnitude
earthquakes 5.1 < M <6.7(dots) before and after strong
earthquakes with M > 6.8 (squares). Regions are out-
lined by dashed lines. Twelve-year interval before the
Kern County earthquake from May 19, 1940, to July
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Figure 7d. 3.5-year interval between the Kern County
July 21, 1952, and San Miguel February 9, 1956 earth-
quakes.
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Figure 7e. Five-year interval after the San Miguel
earthquake from February 9, 1956, to February 8, 1961.
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Figure 7c. Five-year interval before the Kern County

earthquake from July 22, 1947, to July 21, 1952.
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earthquake from February 9, 1961, to February 8, 1966.
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ficult to determine the level of activity after it. In the
2.5 years between the Landers earthquake and the end
of 1094, four earthquakes with M > 5.1 occurred in
the region, other than aftershocks. Taken literally, this
implies a high rate of activity after the Landers earth-
quake, and would imply that activity was not switched
off abruptly by the Landers earthquake. One of these
four events was the Northridge earthquake. Two of the
remaining three earthquakes with M > 5.1 occurred in
the interval between the Landers and Northridge earth-
quakes, implying that the activity was high after the
Landers earthquake. There is thus a suggestion that
the Landers and Northridge earthquakes are paired as
suggested by Levshina and Vorobieva {1992, as were the
Kern County and San Miguel earthquakes and hence
that the Landers event was part of the precursory
sequence that anticipated the Northridge earthquake.
The Northridge earthquake is too recent an event for
us to determine whether intermediate-magnitude seis-
micity after it has been switched off and that Northridge
is the terminator of this sequence.

Central Region

The activity before the Loma Prieta earthquake has
already been discussed at maghitude level M = 5.5 (see
Figure 1). At the lower threshold for the intermediate-
magnitude earthquakes of 5.1 that we consider here,
several additional events are added to the map (Fig-
ure 7h). Except for the Coalinga events in the south-
eastern part of the region, the epicenters span a trian-
gular region a little over 1° on a side with the Loma Pri-
eta earthquake itself near the middle. The Mammoth
Lakes/Western Nevada events, near longitude 118.5° lie
outside the region, are not needed to define the peak in
windowed activity, and were not used in the construc-
tion of Figure 5b. In the 3.5 years since the occurrence
of the earthquake, the activity in the central region
has been minimal (Figure 7i). Activity in the Mam-
moth Lakes/Western Nevada region is completely ab-
sent after the Loma Prieta earthquake at the threshold
of M = 5.1. Both the nuclei of activity that are near
the focus and near Mammoth Lakes appear to follow
the model pattern of increase and extinction associated
with the Loma, Prieta earthquake.

Northern Region

Intermediate-magnitude epicenters for the 13 years
prior to the Eureka, California, earthquake of Novem-
ber 8, 1980 (M = 7.0), fall in an elongated zone extend-
ing NW-SE over a distance of about 700 km in its long
dimension (Figure 7j). The events include earthquakes
on the major units of the plate boundary, namely the
Mendocino Fracture Zone, the Gorda Ridge, and the
Blanco Fracture Zone; there are also some intraplate
earthquakes that extend from Cape Mendocino to the
northern end of the Gorda Ridge, and give the struc-
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ture a linear aspect. The Eureka earthquake is at the
periphery of the zone of precursory activity. The map
of epicenters with M > 5.1 which displays the activ-
ity in the 5 years after the Eureka earthquake, is given
in Figure Tk. The annual rate of earthquakes in the
5 years after the Eureka earthquake (1980) is reduced
by a factor of about 2 from that in the 13 years before
it. This decrease is almost completely due to the cessa-
tion of activity from about latitude 43° southward, that
is, along the Gorda Ridge and the Mendocino Fracture
Zone and along the eastern part of the Blanco Frac-
ture Zone. Activity was not reduced to zero because
the western part of the Blanco Fracture Zone continued
active at the same rate as before the 1980 earthquake.
The maximum dimensions of the region of reduction is
about 350 km.

We have already commented on the unusual outburst
of strong earthquakes with M > 6.8 in the interval 1991
to 1995 in this region. There are also several strong
events with magnitudes just below this threshold. Two
strong aftershocks of the 1992 earthquake, both with
M = 6.6, occurred within 18 hours of the main shock.
In addition a M = 6.6 event in 1984 was the western-
most event on the Mendocino Fracture Zone shown in
Figure 7k. The space-time interrelationships of the ac-
tivity before and after the five strong earthquakes over-
lap on a timescale that is short compared with those
that we have considered for the southern and central
regions. Thus an interpretation on the basis of sim-
ple models that apply in the other two regions is much
more difficult. The use of a strong earthquake thresh-
old at M = 6.8 may also be questioned in this case; we
have continued to use it in this discussion to make our
analysis uniform from region to region.

Figure 7¢ shows the seismicity in the 6 years before
the Petrolia earthquake (M = 7.1, August which is the
second of the pair (1992) of strong earthquakes within
the northern region. Figures 7j, Tk,and 7¢ show an al-
most complete preevent, postevent, and again preevent
sequence; not enough time has elapsed since the 1995
earthquake, the last of the quintuplet, to determine
whether the activity will drop or remain high. In the
precursory episode hefore the 1992 Petrolia earthquake,
seismicity along the Mendocino Fracture Zone was clus-
tered very closely around the site of the subsequent
Petrolia earthquake (1992); the two strong earthquakes
with magnitudes 6.9 and 7.1 in this interval do not lie on
the plate boundary segments; seismicity on the Blanco
Fracture Zone continued unabated at about the same
rate as in the preceding 20 years.

Summary Thus Far

Despite individual differences in the patterns of oec-
currence of earthquakes in all three regions, there is
a common feature that can be discerned. The en-
tire region becomes active before a strong earthquake.
When strong earthquakes switch off the activity of
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intermediate-magnitude earthquakes, they do so to dis-
tances of the order of 250 km or even larger. We note
that the seismicity in the southern and central regions
has a strong imprint of the more-or-less linear fault pat-
terns that correspond to the geometry of the San An-
dreas Fault, whereas the plate boundaries in the north-
ern region have a complex angular structure which car-
ries the implication that the stress fields are likely to
have an even more complex geometry than in the cen-
tral and southern regions, and that the tensor character
of stress redistribution by these earthquakes as an in-
fluence on self organization of the stress field may be
more important in this region than to the south.

In summary, the rate of intermediate-magnitude oc-
currence is high at the time of all eight strong earth-
quakes with magnitudes greater than 6.8 and is above
the 75% threshold before seven of the eight. No strong
earthquakes occur when the activity is low. The linear
dimensions of the cloud of epicenters in each activity
peak is much larger than the classical fracture dimen-
gsions of the subsequent strong earthquake. The causal

Table 1. Strong Earthquakes M > 6.8
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relationship between the precursors and the strong earth-
quakes which follow them is established by the relatively
rapid switch off of the intermediate-magnitude activity
immediately after some strong earthquakes; in the other
cases for which activity following a strong earthquake
remains high, a second strong earthquake occurs within
a few years. The range of the switch off of activity is
much larger than the classical fracture dimensions of the
subsequent strong earthquake. The geometry is com-
plex, especially in the case of the northern region, and
its importance in the development of self organization
has not been considered here.

We list the strong earthquakes we have used in this
paper in Table 1. A quantitative measure of the re-
duction of activity after three of the strong earthquakes
is given in the last column; the entry is the ratio of
the average annual number of intermediate-magnitude
earthquakes in the interval between the time of start of
the window when the threshold is reached to the strong
earthquake, to the number of intermediate-magnitude
earthquakes in the 5 years after the earthquake. In the

Date Time, Location Mag- Reduc-
UT °N °W nitude tions
Southern Region
Imperial Valley® 1940 May 19 0436 32.73 115.50 6.9
Kern County® 1952 July 21 1152 35.00 119.02 7.5
San Miguelb 1956 Feb. 09 1432 31.75 115.92 6.8 39
Landers® 1992 June 28 1157 34.20 116.44 7.3 ce
(Northridge®d 1994 Jan. 17 1231 34.56 118.76 6.7 o)
Central Region
Loma Prieta 1989 Oct. 18 0004 37.04 121.88 7.0 5.3
Northern Region
Eureka 1980 Nov. 08 1028 41.12 124.25 7.0 1.9
e 1991 July 13 0250 42.18 125.64 6.9 T
-4 1991 Aug. 17 2217 41.82 124.40 7.1
Petroliad 1992 April 25 1806 40.37 124.32 7.1
- 1994 Sept. 01 1515  40.41 12565 7.0
~af 1995 Feb. 19 0403  40.56 125.53 6.8
Southern Region (6.4 < M < 6.8)
Borrego Moun- 1968 April 09 0228 33.19 116.13 6.5
tain®
San Fernandof 1971 Feb. 09 1400 34.41 118.40 6.6 5.6

2Reliable windowed activity determined only after this earthquake.

bKern County and San Miguel precursor series coupled.
“Landers and Northridge precursor series presumed coupled.

dPrecursor series coupled. Too recent to ailow determination of windowed activity

after earthquakes.

°In precursory pattern of 1991 August 17.

f Aftershocks of Petrolia earthquake.

&Borrego Mountain and San Fernando precursor series coupled.
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case of paired strong earthquakes, the earthquakes “be-
fore” are counted from the time of the crossing of the
threshold before the first of the pair to the time of the
second of the pair; the earthquakes “after” are those in
the 5-year interval after the second of the pair. The win-
dowed activity decreases by a factor of between roughly
2 and 5 after the three cases of strong earthquakes with
magnitudes M, > 6.8.

The Kern County and Landers
Earthquakes

We try to construct a generalization of the forego-
ing observations as follows: Strong earthquakes with
magnitudes M > M,, are preceded over a specified
time interval and in a fixed region by an increase of
the number of earthquakes in the magnitude range
{Min—1.7) < M < My, and in some cases by an abrupt
decrease in the rate of occurrence of earthquakes in this
magnitude range. We use this definition to test an as-
sumption that there is a self similar or scaling prin-
ciple involved in the fluctuations and their relation to
the strong earthquakes. The Kern County and Lan-
ders earthquakes in the southern region are significantly
stronger than any other events. It seems appropriate to
study them separately. For the purposes of this sec-
tion, we redefine strong earthquakes to be those with
M > My, = 7.3, which is the magnitude of the smaller
of the two earthquakes. We use the same 5-year win-
dow as before, but raise the lower threshold that defines
the intermediate-magnitude earthquakes to 5.6, to cor-
respond to the definition above. With these parameters,
we obtain precursory peaks in windowed activity before
these two earthquakes as seen in Figure 8.

The spatial extent of increased intermediate-magni-
tude precursory activity is essentially the same as be-
fore, as expected, since many of the same earthquakes
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are used in the analysis of both the preceding section
and this section. Again, activity in part of the region
was extinguished before the Kern County earthquake;
the remaining part was switched off by the subsequent
M = 6.8 San Miguel earthquake.

There are two subthreshold peaks in Figure 5a near
1970 and 1983. These are mainly defined by earth-
quakes in the magnitude 5.1 to 5.3 range; these peaks
are much less pronounced in Figure 8. Because of the
suppression of these two peaks, the pattern of Figure 8
shows a much greater correlation of the peaks in activity
as precursors of the strong earthquakes, with the activ-
ity being defined at a higher threshold magnitude level.
In both the cases of strong earthquakes with M, = 6.8
and 7.3, the precursors extend to large distance and
are not concentrated in the neighborhood of the future
strong earthquake. Because the data are partially over-
lapping in the two cases, the second set of results is ev-
idently insufficient to provide verification and can only
give qualitative support to the assumption.

Strong Earthquakes With
Magnitudes M < 6.7

Above, we have identified correlations between fluc-
tuations in activity both before and after only seven
earthquakes. To enlarge the data set, we attempted
to explore fluctuations in activity and their correlation
with more abundant earthquakes with threshold magni-
tudes. Accordingly we selected for study the 12 strong
earthquakes in the three regions with 6.4 < M < 6.7,
and set M, = 6.4. These earthquakes in the south-
ern region recur so frequently, that we were obliged
to reduce our window interval to 2 years to avoid
possible overlap among fluctuations; as above, we de-
termine intermediate-magnitude activity in the range
4.7 < M <6.3. While the activity with these param-
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Figure 8. Windowed activity in the southern region. Solid curve is the number of earthquakes
with 5.6 <M <7.2in a 5-year sliding window. Dashed curve is the contribution from earthquakes
occurring before the Kern County (M =7.5) and Landers (M =7.3) earthquakes. Heavy vertical

lines indicate the times of these two events.
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eters does indeed fluctuate with large amplitudes and
relatively high frequency, it is not as strongly correlated
with strong earthquakes in the My, = 6.4 category as in
the previous cases. The number of failures-to-correlate
is larger, both in terms of peaks of activity above the
75% threshold that were not followed by strong earth-
quakes and, in one case, of a strong earthquake that
was not anticipated by a peak. In the cases where prior
peaks in activity are correlated with subsequent strong
earthquakes, the reduction in activity after these strong
earthquakes is significantly smaller than in the cases of
strong earthquakes with magnitudes M > 6.8. We be-
lieve the general lowering of the “signal-to-noise” ratio
for this type of diagnostic is due to use of a lower thresh-
old for intermediate magnitude earthquakes of 4.7 that
approaches the magnitude range where temporal fluc-
tuations in the rate of occurrence are now no longer
significant statistically, at least on the timescale of 15
years (see Figure 4).

The activity extending from before the April 9, 1968
Borrego Mountain earthquake (M = 6.5) to after the
February 9, 1971, San Fernando earthquake (M =6.6)
(Figure 9a, 9b, and 9c¢) is a significant exception to the
generally poorer identification of these correlations with
decreasing M;,. This sequence of events also allows us
to assess the importance of earthquakes in and near the
Gulf of California, that lie outside the southern region.

The threshold for identification of a peak was set at
72%, a value that is closest to our convention of 75% and
differs from it because of the discreteness of counting
individual earthquakes. There are seven intermediate-
magnitude earthquakes located in the southern region
in the time interval from 2 years before the 72% thresh-
old (determined for the interval 1935 to 1993} was

1
-l -

oP
|
3 - ) + + + Y
P W
-122° -120° -118° -116° -114°

Figure 9a. Earthquake epicenters in the southern re-
gion in the range 4.7 < M < 6.3 in the 3-year interval
from January 1, 1965, to the Borrego Mountain earth-
quake, April 9, 1968.
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Figure 9b. Earthquake epicenters in the southern re-
gion in the range 4.7 < M <6.3 in the 3-year interval be-
tween the Borrego Mountain earthquake (April 9, 1968)
and the San Fernando earthquake (February 9, 1971).

crossed up to the date of the Borrego Mountain earth-
quake; activity in and around the Gulf of California is
much higher. The activity between the 1968 and 1971
earthquakes both within the southern region and the
Gulf to the south of it, is not reduced after the 1968
earthquake, although some activity within the southern
region appears for the first time offshore in the interval
between the two strong earthquakes. During the 2 years
after the San Fernando earthquake, the activity fell to a
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Figure 9c. Earthquake epicenters in the southern re-
gion in the range 4.7 < M <€ 6.3 in the 2-year interval

between the San Fernande earthquake of February 9,
1971, and February 8, 1973.
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very low level both inside and outside the boundaries of
the region. The decrease in activity immediately after
the San Fernando earthquake extends to a distance of
as much as 800 km! The San Fernando epicenter lies at
the periphery of the distribution of precursory events.
The annual rate of activity within the southern region
was reduced by a factor of 5.6 after the San Fernando
earthquake; the reduction was also large to the south
of the southern region. We have included this pair of
strong earthquakes in our listing in Table 1.

Parameter Range of Precursory Activity

Threshold for Strong Earthquakes

We discuss the sensitivity of the analysis to the
choices of the parameters in this search for increases
in precursory activity. The lower magnitude threshold
that defines strong earthquakes is an important ingre-
dient in our proposal that strong earthquakes are antic-
ipated by an increase in temporal activity of intermedi-
ate-magnitude earthquakes that spans a larger part of
the specific region. If the magnitudes we have used for
the strong earthquakes are significantly in error, then
strong earthquakes will be added to or deleted from the
list, and the correlations with fluctuations in activity
may not be as good as it is. Our results are relatively
stable with regard to the choice of this threshold. There
is a naturally occurring gap in the magnitude distri-
bution for the time intervals of the catalogs at around
M = 6.5 or 6.6. Unless there are significant errors in the
magnitudes of the earthquakes by 0.2 or more, the pop-
ulation with magnitudes greater than 6.8 is not likely
to be changed. If we had lowered our value of M, from
6.8 to 6.7, then the Northridge earthquake would have
been well correlated as a pair to the Landers event, as
discussed above; our exclusion of the Northridge earth-
quake from the original discussion by our a priori choice
of the higher threshold, or if the magnitude of this event
had been slightly higher at M = 6.8, then our success
rate would have been eight out of nine events instead of
seven out of eight.

Definitions of Regions

We have carried out a number of tests that confirm
what is to be expected from inspection of Figure 7.
If the sizes of the regions are reduced so that fewer
intermediate-magnitude earthquakes are included, then
the correlations implied by Figure 5 disappear. We in-
terpret this statement to mean that the interactions im-
plied by the abrupt reductions in activity are indeed
long range to distances that are a significant fraction
of the extent of our three regions. We do not believe
the increase in activity before strong earthquakes im-
plies an interaction. We have searched for correlations
at distance scales greater than the sizes of these re-
gions, and while they are indeed observed, there is a ten-
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dency to introduce a greater number of “false alarms”
into the analysis, for example, by attaching the Park-
field or Coalinga earthquakes to the southern region
and deleting them from the central region. The con-
clusions about the peak in activity before Parkfield are
not altered whether one includes the Mammoth Lakes
earthquakes in the central region or not; if we had in-
corporated the eastern Sierra into the central region,
our result regarding the anticipation of the Loma Pri-
eta earthquake would have been strengthened. We have
only the one example of the Loma Prieta earthquake to
define the central region, and we cannot generalize.

Our principal concern in regard to the choice of
boundaries to the regions, involves the question of the
inclusion of the earthquakes in Mexico to the south of
the boundary to the southern region. We have com-
mented on this issue; since there was a significant reduc-
tion in activity south of the boundary after the San Fer-
nando earthquake, we conclude that the natural bound-
ary lies to the south of the one we have used.

Activity Windows

The correlations between the intermediate-magnitude
precursory peaks of windowed activity and the subse-
quent strong earthquakes persist even if the durations
of the activity windows are changed within reasonable
limits. If the width of the window were to be reduced to
a sufficiently small value, then our measure of windowed
activity would be an irregular comb of delta functions
of unit height, as are displayed at the bottoms of Fig-
ures 5 and 8. To determine the density of spikes on the
comb, we would have to apply a smoothing window as
we have done. If the width of the window were set too
large, then we lose our ability to resolve the onset and
prolongation of the active state; that is, we must choose
a window that is shorter than the duration of the in-
terval of increased activity. Since this time is about 10
years in the Loma Prieta case and is about the same
in the other examples, the time constant of 5 years is
probably an appropriate choice for these strong earth-
quakes. We have varied the widths of the windows over
the range 2 to 10 years in the case of strong earthquakes
with M > 6.8 and M > 7.3 and find that precursory ac-
tivity can still be identified and correlated with strong
earthquakes satisfactorily. The choice of a square win-
dow is not optimal; we do not report here results from
a number of experiments in this direction.

Intermediate-Magnitude Threshold

In this paper the lower threshold of intermediate-
magnitude windowed activity was chosen to be 1.7 mag-
nitude units below that of the smallest of the strong
earthquakes in each of the categories. If this threshold
were significantly raised, then the number of precur-
sory earthquakes would become so small that peaks of
intermediate-magnitude windowed activity would not
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be identifiable. At the other extreme, as this threshold
is lowered, we lose our ability to identify precursory ac-
tivity. In general, the correlations between the activity
and strong earthquakes with M, = 6.8 start to disap-
pear when the lower intermediate-magnitude threshold
is lowered below about 4.6, which, as remarked, we be-
lieve is due to the absence of resolvable fluctuations at
this magnitude. Indeed, if the threshold is lowered to
4.0, the fluctuations become erratic and quite uncorre-
lated with the strong earthquakes. In general, a varia-
tion of £0.25 magnitude units in the lower threshold of
intermediate-magnitude earthquakes leaves the correla-
tions intact.

Activity threshold

In the results summarized above, the windowed ac-
tivity threshold was set to be about 75% by a posteriori
parameter fitting. For the northern region, the choice
of the percentile windowed activity threshold is addi-
tionally complicated by the low degree of fluctuation in
the windowed activity (Figure 5c). For example, the in-
terval between the 32nd and 74th percentiles is strongly
compressed and hence the interpretation is unstable in
regard to the choice of this parameter; a reduction of
the size of the northern region to exclude the seismic-
ity on the Blanco Fracture Zone, improves the stability
slightly. At bottom, the problem with regard to this
parameter is the relatively low level of intermediate-
magnitude seismicity in all regions. We do not have
much hope of increasing the size of the data sets: We
are limited by the geophysical constraints on the param-
eters we have discussed; namely, how much the lower
magnitude threshold for intermediate-magnitude earth-
quakes can be lowered, the spatial restrictions of the
bounds to the regions from the gaps in seismicity, and
the temporal widths of the filter windows, constrained
by the frequency of occurrence of strong earthquakes in
California.

In summary, the correlations are not an artifact of
special conditions arising from our analysis. They are
found for a broad range of the parameters and are not
fine-tuned to specific values of these parameters.

Aftershock Identification

We have performed an activity analysis similar to the
above but without filtering out the aftershocks of earlier
earthquakes. Our use of an aftershock rejection filter
focuses our attention on activity at distances of the or-
der of hundreds of kilometers and more from the strong
earthquake, a distance range not heretofore investigated
significantly. Without the use of aftershock rejection,
we could not have observed what may be the most im-
portant part of these observations; namely, the sharp
decline in intermediate-magnitude activity outside the
“classical” aftershock region that takes place almost im-
mediately after the strong earthquake. We have varied
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the parameters of the aftershock filter within small lim-
its without damaging our conclusions.

Summary and Comments

We have shown that the rate of occurrence of interme-
diate-magnitude earthquakes increases significantly be-
fore all the strong earthquakes in the magnitude range
M > 6.8. Intermediate-magnitude earthquakes with
magnitudes less than 4.5 or so do not seem to partici-
pate in the process. The high activity for the precur-
sory intermediate-magnitude events either drops signif-
icantly and abruptly after a strong earthquake, or it re-
mains high until a subsequent strong earthquake occurs
within a short time. Not infrequently, strong earth-
quakes may occur in pairs and that it is the second
member of the pair that switches off the intermediate-
magnitude activity; in one example, these earthquakes
have occurred at least as a quintuplet.

The precursory earthquakes involved in the increase
of activity are distributed widely over broad geographi-
cal areas; these events almost fill the outlines of our geo-
graphical regions as defined. The same region is reacti-
vated with precursors before every strong earthquake in
the region. The size of the precursory does not appear
to be significantly scaled by the magnitude of the sub-
sequent strong event, at least for these strongest earth-
quakes. In most cases, the strong earthquakes occur at
the periphery of the zones of intermediate-magnitude
activity, implying the presence of well-demarked zones
of quiescence outside the active areas. The precursors
to the strong earthquakes appear over a time interval of
the order of 5 to 10 years before the strong earthquake,
although onset began about 25 years before the San
Francisco earthquake. In the case of the Loma Prieta
and San Francisco earthquakes, the onset of precursory
activity appears to be relatively abrupt.

Intermediate-magnitude activity is best correlated
with strong earthquakes in the range M > 6.8. It is less
well defined for strong earthquakes with smaller magni-
tudes. We speculate that if it should turn out that fluc-
tuations in activity are indeed associated with strong
earthquakes having smaller magnitudes, then the areas
over which precursory activity will be correlated will be
smaller than the regions we have explored {Keilis-Borok
and Kossobokov, 1990], that is, that scaling is involved
in the process.

The dimensions of the active regions that are switched
off by the strong earthquakes are many times larger
than the classical fracture length of the strong event,
and point to interactions in the switch off mechanism
that have very long rante. This range is from 250 to 450
km in distance from these strong earthquakes, and in
the case of the San Fernando earthquake, the range of
reduction of activity is much larger. Within our present
ability to resolve temporal relationships, the decrease in
activity appears to be contemporaneous with the strong
earthquake, without substantial lag; thus the reductions
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in activity appear to be causally related to the occur-
rence of the strong earthquakes and to remarkably large
distances. There is no evidence to suggest that the pre-
cursor earthquakes directly influence the time and loca-
tion of the subsequent strong earthquake.

The choice of parameters in this program is arbitrary;
some flexibility in their choice is possible. However, if
the parameters are changed too much, the correlations
disappear. Of greater concern to us has been our use of
discrete thresholds for magnitudes and times, and fixed
regional boundaries. We hope that future developments
will include the construction of a diagnostic model that
is less dependent on discrete choices of parameters; a
modification of this program to include adjustable pa-
rameters lies beyond this first thrust into the identifi-
cation of these correlations.

This paper has not been an essay on earthquake pre-
diction nor have we attempted to construct a physical
model of the phenomenoclogy we have described. This
paper has been concerned with the phenomenology of
earthquake occurrence in and around California; we
have searched for precursory activity in the space-time-
magnitude parameter space of the earthquake history
of California. Nevertheless, the phenomenological find-
ings in this paper have implications for the physics of
the evolution of seismicity in California. Evidently the
fluctuations in activity are related to fluctuations in the
stress field associated with earthquake occurrence. The
scale size of these events, even at the magnitude 5.5 level
is 80 small that the redistribution of the stress field by
the intermediate-magnitude earthquakes is not signifi-
cant at distances of the order of hundreds of kilometers.
Thus the presence of precursor earthquakes distributed
over large distances are an indicator that the stress field
is greater than a critical threshold for fracture and this
elevation is widespread over large distances, that is, the
precursory seismicity is a qualitative stress gauge. If
the stress fields due to intermediate-magnitude earth-
quakes do not directly serve as triggers of future strong
earthquakes at distances that are orders of magnitude
larger than their scale size, the converse does not seem
to hold, which raises serious questions regarding the
physical processes that are involved. How can a strong
earthquake with fracture dimensions of 30 to 75 km ef-
fectively reduce the stress at distances of the order of
hundreds of kilometers by, as we estimate, as much as
perhaps 10 bars, and do so relatively rapidly? Clearly,
models based on the stress redistributions to be ex-
pected due to the introduction of cracks into an elastic
continuem are inappropriate. We are seeking answers
to the question by studying nonelastic processes, such
as the role of possible fluctuations of stresses due to the
presence of fluids in the fault network of the seismogenic
slab. A discussion of these issues will be presented else-
where,
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Appendix

The following are catalogs of earthquakes in the three
regions for earthquakes with magnitudes greater or
equal to 5.1. Aftershocks have been removed,

Table Al. Earthquakes of the Southern Region with
M>51

Date Time, Location Magnitude
uT °N "W
1935 Oct. 24 1448 34.10 116.80 5.1
1935 Dec. 20 0745 33.17 115.50 5.2
1937 March 25 1649 33.41 116.26 6.0
1938 May 31 0834 33.70 117.51 5.2
1940 May 18 0503 34.08 116.30 5.3
1940 May 19 0436 32.73 115.50 6.9
1940 Dec. 07 2216 31.67 115.08 6.0
1541 July 01 0750 34.37 119.58 5.5
1941 Sept. 21 1953 34.87 118.93 5.1
1942 Oct. 21 1622 32.97 116.00 6.6
1943 Aug. 29 0345 34.27 116.97 5.3
1943 Dec. 22 1550 34.33 115.80 5.3
1944 June 12 1116 33.99 116.71 5.2
1945 April 01 2343 34.00 120.02 5.1
1945 May 12 0733 31.60 115.60 5.2
1945 Aug. 15 1756 33.22 116.13 5.7
1946 March 15 1321 35.75 117.99 5.5
1946 March 15 1349 35.73 118.05 6.0
1946 July 18 1427 34.53 115.98 3.5
1947 April 10 1558 34.98 116.55 6.5
1947 July 24 2210 34.02 116.50 5.3
1948 Feb. 24 0815 32.50 118.55 5.3
1948 Dec. 04 2343 33.93 116.38 6.0
1949 May 02 1125 34.02 115.68 5.8
1949 Nov. 04 2042 32.20 116.55 5.7
1950 July 28 1750 33.12 115.57 5.4
1950 July 29 1436 33.12 115.57 5.5
1951 Jan. 24 0717 32.98 115.73 5.8
1951 Dec. 26 0046 32.82 118.35 5.9
1952 July 21 1152 35.00 119.02 7.5
1952 Aug. 23 1009 34.52 118.20 5.1
1952 Nov. 22 0746 35.73 121.20 6.0
1953 June 14 0417 32.95 115.72 5.5
1954 Feb. 01 0423 32.30 115.30 5.2
1954 Feb. 01 0432 32.30 115.30 5.6
1954 March 19 0954 33.28 116.18 6.4
1954 May 31 0806 31.60 115.20 5.2
1954 Oct. 17 2257 31.50 116.50 5.7
1954 Oct. 24 0944 31.50 116.00 6.0
1954 Nov. 12 1226 31.50 116.00 6.3
1955 April 25 1043 32.33 115.00 5.2
1955 Nov. 02 1940 36.00 120.92 5.2
1955 Dec. 17 0607 33.00 115.50 5.2
1956 Feb. 09 1432 31.75 115.92 6.8
1957 April 25 2157 33.22 11581 5.2
1958 Dec. 01 0321 32.25 115.75 5.8
1961 Jan. 28 0812 35.78 118.05 5.3
1961 Oct. 19 0508 35.83 117.76 5.4
1962 May 27 0145 31.70 115.60 5.1
1963 June 11 1523 31.80 116.27 5.8
1963 Sept. 23 1441 33.71 116.93 5.1
1964 Dec. 22 2054 31.81 117.13 5.6
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Table Al. (continued) Table A2. (continued)
Date Time, Location Magnitude Date Time, Location Magnitude
UT °N °W uT °N °W
1965 Sept. 25 1743 34.71 116.50 5.2 1979 Feb. 22 1557 40.01 120.07 5.2
1965 Sept. 26 0700  34.71 116.03 5.1 1979 Aug. 06 1705 37.10 121.50 5.9
1966 June 28 0426 3592 120.53 5.6 1980 Jan. 24 1900 37.85 121.82 9.5
1966 Aug. 07 1736 31.80 114.50 6.3 1980 Jan. 27 0234  37.74 121.74 58
1968 April 09 0228  33.19 116.13 6.5 1980 Nov. 28 1821 39.31 120.43 b.2
1968 July 05 0045  34.12 119.70 5.3 1982 Oct. 25 2226 36.29 12041 56
1969 Oct. 22 2251  34.58 121.62 5.4 1983 May 02 2342 36.25 120.26 63
1969 Oct. 24 0820  33.29 119.19 5.1 1984 Jan. 23 0540 36.37 121.91 5.4
1969 Nov. 05 1754 3461 121.44 5.6 1984 April 24 2115 37.32 121.70 6.2
1970 Sept. 12 1430  34.27 117.54 5.2 1985 Aug. 04 1201 36.15 120.05 5.8
1973 Feb. 21 1445  34.06 119.04 5.3 1986 March 31 1156 37.48 121.69 5.7
1978 Aug. 13 2954 34.35 119.70 51 1988 Feb. 20 0840  36.80 121.30 5.3
1979 March 15 2107  34.33 116.44 5.3 1988 June 27 1843 37.13 121.88 57
1980 Feb. 25 1047  33.50 116.51 5.5 1989 Oct. 18 0004 - 37.04 121.88 7.0
1981 April 26 1209  33.10 115.63 5.7 1993 Jan. 16 0630  37.02 12146 5-3
1981 Sept. 04 1550  33.67 119.11 5.5
1982 Oct. 25 2226  36.29 120.41 5.6
1983 May 02 2342 36.25 120.26 6.3 Co
1985 Aug. 04 1201 2615 190.05 58 }‘/Izsll:;le5 1A3. Earthquakes of the Northern Region with
1986 July 08 0920  34.00 116.61 5.6 =%
1986 July 13 1347 32,97 117.87 5.4 Date Time, Location Magnitude
1987 Feb. 07 0345  32.39 115.31 5.4 UT oN oW
1987 Feb. 14 0726  36.18 120.27 5.1 :
1987 Oct. 01 1442 34.06 118.08 5.9 1965 May 31 0508  44.10 128.80 5.5
1987 Nov. 24 0154  33.08 115.78 6.2 1965 June 14 0940  44.60 129.70 5.4
1987 Nov. 24 1315  33.01 11584 6.6 1965 June 20 1805  42.90 126.10 5.6
1988 Jan. 25 1317 31.71 115.77 5.6 1967 Dec. 10 1207 40.50 124.70 5.6
1988 June 10 2306 34.94 118.74 5.4 1967 Dec. 28 0626  44.20 128.80 5.4
1990 Feb. 28 2343 34.14 117.70 5.3 1968 May 08 1217 43.57 127.90 6.4
1991 June 28 1443 34.26 118.00 5.4 1968 May 09 0303  43.44 126.97 5.1
1991 Dec. 03 1755  31.70 115.91 5.2 1968 June 26 0142 40.23 124.27 5.9
1992 April 23 0450  33.96 116.32 6.1 1969 Oct. 09 0745  43.71 127.43 5.5
1992 June 28 1157 34.20 116.44 7.3 1970 Sept. 13 2110 40.13 125.08 5.4
1992 July 11 1814 35.21 118.07 5.7 1970 Oct. 27 0238 40.40 127.00 5.1
1970 Nov. 26 0312 43.78 127.45 5.9
1971 Feb. 27 0032  40.27 12483 5.2
con Wi 1972 March 01 0929  40.67 125.25 5.2
}/[al;l‘; .#2. Earthquakes of the Central Region with 1972 April 08 1621 42.65 17632 56
= 1972 Oct. 25 0102  43.44 127.73 5.2
Date Time, Location Magnitude 1973 June 16 1444 44.98 125.77 5.1
uT °N oW 1973 Oct. 12 0554 43.74 127.47 5.2
1974 Jan. 05 1554  42.48 126.60 5.1
1939 June 24 1301 36.40 121.00 55 1974 July 03 0501  40.42 125.14 5.1
1949 March 09 1228  36.02 121.48 5.2 1974 Sept. 12 0520  41.86 126.60 5.1
1952 Nov. 22 0746  35.73 121.20 6.0 1975 June 07 0846  40.57 124.14 5.2
1954 April 25 2033 36.93 121.68 5.3 1976 Jan. 10 0859  43.55 127.43 5.4
1955 Sept. 05 0201  37.37 121.75 5.8 1976 Sept. 30 1736 43.45 126.97 5.1
1955 Nov. 02 1940  36.00 120.92 5.2 1976 Nov. 26 1119 41.29 125.71 6.4
1959 March 02 2327  36.98 121.58 5.3 1976 Dec. 09 0951  44.53 129.96 5.5
1961 April 09 0723 36.68 121.30 5.6 1976 Dec. 19 1901  42.75 125.60 5.4
1963 Sept. 14 1946 36.85 121.63 5.4 1976 Dec. 23 0939  41.78 125.95 5.3
1966 June 28 0426 35.92 120.53 5.6 1977 July 28 1522 44.24 128.97 5.4
1966 Sept. 12 1641 3942 120.15 6.0 1977 Sept. 07 0311 42.00 126.65 5.1
1967 Dec. 18 1724 37.01 121.79 5.2 1979 Feb. 03 0958  40.89 12441 5.2
1969 Oct. 02 0457  38.47 122.69 5.6 1980 March 03 1417 40.60 125.03 5.1
1969 Oct. 02 0620  38.46 122.69 5.7 1980 Nov. 08 1028 4112 124.25 7.0

1975 Aug. 01 2020 39.44 121.53 5.7 1980 Nov. 09 0409 40.50 125.34 5.2
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The Paradox of the Expected Time until the Next Earthquake
by D. Sornette and L. Knopoff

Abstract We show analytically that the answer (o the question, (can it be that)
“The longer it has been since the last earthquake, the longer the expected time till
the next?” depends crucially on the statistics of the fluctuations in the interval times
between carthquakes. The periodic, uniform, semi-Gaussian, Rayleigh, and truncated
statistical distributions of interval times, as well as the Weibull distributions with
exponent greater than 1, all have decreasing expected time to the next earthquake
with increasing time since the last one, for long times since the last earthquake; the
lognormal and power-law distributions and the Weibull distributions with exponents
smaller than 1 have increasing times to the next earthquake as the elapsed time since
the last increases, for long elapsed times. There is an identifiable crossover between
these models, which is gauged by the rate of fall-off of the long-term tail of the
distribution in comparison with an exponential fall-off. The response to the question
for short elapsed times is also evaluated. The lognormal and power-law distributions
give one response for short elapsed times and the opposite for long elapsed times.
Even the sampling of a finite number of intervals from a Poisson distribution will
lead to an increasing estimate of time to the next earthquake for increasing elapsed

time since the last one.

Introduction

While small earthquakes after removal of aftershocks
have a Poissonian disiribution {Gardner and Knopoff, 1974),
intermediate and large earthquakes in a given region are
clustered in time (Kagan and Knopoff, 1976; Lee and Bril-
linger, 1979; Vere-Jones and Ozaki, 1982; Grant and Sieh,
1994; Kagan and Jackson, 1991, 1994; Kagan, 1983; Kno-
poff et al., 1996); “clustering” is taken to mean that the
earthquakes do not have a purely Poissonian, memoryless
distribution of time intervals. According to this interpreta-
tion, periodic earthquakes are the extreme limit of clustering
and can be predicted exactly. More generally, if there is tem-
poral clustering, the estimate of the probability of occurrence
of a future earthquake in a given time interval is improved
if there is a knowledge of the times of previous events, since
clustering implies a memory. To express this property quan-
titatively, we relate the elapsed time since the last earthquake
in a region to the conditional probability of occurrence of
the next earthquake within a given time interval from the
present. Davis et al. (1989) have posed a version of this
problem in the form of the following question (hereafter re-
ferred to as QQ.):

{can it be that) “The longer it has been since the last
earthquake, the longer the expected time till the next?”

The observation of Davis et al. for the log-normal distribu-
tion was that the answer to Q. is positive. Ward and Goes
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{1993) and Goes and Ward (1994) showed numerically that,
in the case of the Weibull distribution, the response to Q.
can be either yes or no, depending on the exponent in the
distribution. The positive responses would seem to be coun-
terintuitive, since it is to be expected that an earthquake
should be more likely to occur with increasing time in re-
sponse to an inexorable tectonic loading that brings a faulit
ever closer to its finite threshold of fracture.

The intuitive interpretation is of course consistent with
simple relaxation oscillator medels of the earthquake pro-
cess, such as the slip- or time-predictable models. But these
models should be reconsidered if the stress field is altered
on a given fault segment due to redistribution derived from
earthquakes on nearby fault elements; these interactions can
cause fluctuations in the stress field, with consequent fiuc-
tuations in the interval times. Knopoff (1996) has proposed
that the fluctuations in the interval times between great earth-
quakes on the San Andreas Fault (Sieh et al, 1989) may be
associated with stress interactions between the San Andreas
Fault and other nearby faults.

Below, we give a rigorous statistical framework for the
derivation of a quantitative response to Q. Statistical esti-
mates of recurrence times will be found to be very sensitive
to assumptions about statistical distributions. Cur results
confirm, quantify, and extend the numerical analyses of
Davis et al. (1989), Ward and Goes (1993), and Goes and
Ward {1994) by providing an analytic basis for the problem.
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The Time to the Next Earthquake

Let p(r) be the probability density of the time intervals
between earthquakes. If the time (now) since the last earth-
quake is #, what is the probability density function P{¢') that
we must wait an additional time 1" until the next earthquake?
From Bayes' theorem for conditional probabilities, cited in
elementary statistics textbooks, the probability that an event
A, given the knowledge of an event B, is simply the quotient
of the probability of the event A without constraint and the
probability of event B:

P(A
P(AIB) = FEE;' (1)

Applied to this problem, P(A) = p(r + '), which is the
probability that the next earthquake will occur at time ¢’ from
now, and P(B) = 7 p(s)ds, which is the probability that no
earthquake has occurred up to now. Thus,

pu + 1y

Pt = '
“) JTp(s)ds

(2)

which is normalized.
We calculate the expected time until the next earthquake
{¢') as a function of the time since the last one.

(A.) The answer to Q. is given by the sign of d{t'\/dt,
if {t) exists.

From equation (2), the average expected time to the next
earthquake is

_ Jot'pt + thar'

r 3
“ J7 pluydu &)
By a simple change of variable,
J7u = Op(u)du
(ry = L2 (4
7 p(uwdu )
We integrate the numerator of (4) by parts and get
, Cds [T plud
(f) - J-_..J:LJ (5)

I puydu

The denominator and numerator of (5) are the familiar first
cumulative integral and the less familiar second cumulative
integral of p(u). For simplicity, we write (5) as

S

'y = T

(6)

where f"(1) = p(1); that is, f(r) is the second cumulative
integral of p(x). Thus,
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% =0 if A0 — I[F'H)P >0, (7a)
Equivalently,
ary g0 o w
& T 0F =0 if g'(n<o, (7b)

where we have set fit) = ¢ ~#". The signs are appropriately
reversed in the case g“(f) > 0. Equation (7b) especially fa-
vors an appreciation of the behavior at large values of
elapsed time r.

If p(¢) is finite at + = 0, we can find yet a third version
of (5), which is useful for small ¢, A straightforward expan-
sion for small 1 shows that

im 40 _ -
lim == = p(O)A - 1, (7¢)

i

where

A= J:o ds J;m pluddu = (&),

The result of the integration follows directly from (5); (¢) is
the average (unconditional) time of recurrence between two
earthquakes. Let 1 = 1/p(0), where 7 is the estimate of the
waiting time unti! the next earthquake made immediately
after the occurrence of the preceding earthquake. We call ©
the instantaneous estimate of #'. Thus, d{¢')dt can be re-
written in the simple form

lim ar) = @ - 1. (7d)

o+ dt T
* If the instantaneous estimate 7 of the waiting time is
smaller than the average waiting time {f), the time to the
next earthquake increases with increasing time since the
last one for smalt £ this reflects the fact that the average
waiting time (1) is formed by contributions from the dis-
tribution over all time, and a value of {¢} larger than 7
indicates contributions from the distribution that are larger
than t at nonzero times; in this case, lim,_,, d{t'}dt > 0.
If {#) < 7, the reverse is true, shorter and shorter timescales
are sampled on the average as time increases, and the time
to the next earthquake decreases with increasing time since
the last one for small ¢,

In particular, if p(0) = 0, then lim,_4, d(¢'Vdt = —1, and
the time to the next earthquake decreases with increasing
time since the last one for small #; if, however, p(0} = o,
then lim, ,_ d{¢'}/dr = o, and the time to the next earth-
quake increases with increasing time since the last one for
small ¢,

re
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The generalization of (7¢) to times other than r = 0 is
the criterion (7a), when the mean {f) exists. When it does
not exist, as, for example, when the tails of the distributions
decay slower than 1™, we must compare P(t') as given by
(2), with p(?').

Exponential Distribution

In order to develop some intuition, we first consider the
exponential distribution, which is the familiar case of Pois-
sonian statistics,

— g

pt) = o

where 1, is the mean interval time between earthquakes.
From equation (2),

e t'figy

Py =

(8)

fo

Not unexpectedly, the estimate of the time of occurrence of
the next earthquake does not depend on the elapsed time:
the average time from now to the future earthquake is £, no
matter what the value of ¢. This case is memoryless; indeed,
it is the only distribution that has no memory. The expected
time to the next earthquake is {t') = 1,; there is no need to
invoke the machinery of (7) to dertve &{¢')/dt = 0. The Pois-
son distribution is the unique case g"(r) = 0, which gives
the same result.

The exponential distribution is the fixed point of the
transformation p(r) — P(r'); that is, it is the solution to the
functional equation

P('y = p(e). &)

To verify that (8) is the solution to (9), differentiate (2) with
respect to ¢ and substitute in (9). We get

dp(t + 1)

dt (10)

—plp(t’) =

Take the Laplace transform of (10) with respect to ', with
1/14 the transform variable. The result (8) follows. Thus the
exponential distribution is the fixed point of (2).

We restate these results: Except for the Poisson distri-
bution, all statistical distributions must have an average time
from now to the future earthquake that depends on the time
since the last earthquake. If the long-time tail of the function
A1), defined as the integral of the integral of the distribution
p(r), falls off at a rate that is faster than exponential, the
expected time to the next earthquake is reduced, the longer
the elapsed time since the last, and vice versa. The Poisson
distribution is the crossover between the two states. The ex-
ponential case has neither a positive nor a negative response
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to Q., since the time since the last earthquake has no influ-
ence on the time of the next,

Other Conditional Distributions

We calculate the expected time to the next earthquake
for several examples of statistical distributions p(f) with
memory. We illustrate the results in Figure 1 by displaying
the average time to the future earthquake ¢ plotted against
the time since the last earthquake ¢ for selected distributions
p(t); whether the values are greater or less than 1 gives the
answers to (). The details of the calculations are given in the
Appendix.

The analytical results are summarized in Table 1. The
times in the table are scaled by a characteristic time #, for a
given distribution; the precise definition of 1, for each dis-
tribution is given in the Appendix. In general, ¢, is of the
order of the mean time between earthquakes, if it is not so
exactly. In most cases, we can give an answer A, that is valid
over the entire range of elapsed times since the last earth-

<t'>/<t>
Powar Iaw
10 4 SO S S G
Exponential
T — \ : C Y L
' R : /
F “. oK
L /\ \ . Log-normal
01+ - _- Yoo o le=tg) 4
L Pericaic} ‘;\un"orm ‘
0.01 by :
0.1 1 t/t, 10 100
Figure 1. Expected time of the next earthquake as

a function of the elapsed time since the last one. The
response to Q. is given by the value of the curve with
respect to 1.

Table }
Response to Q.

Distribution Short Times Long Times

Exponential 0 0

Periodic

Uniform

Gaussian
Semi-Gaussian -
Lognormal -
J'Ie ;‘ —
Welbull (m > 1) —
Rayleigh (m = 2) -
Weibull (m < 1} +
+

I+ + 1

Power law
Truncated power law

i+ +
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guake. In some cases, we can only give the answer for the
limits of short and long time since the last earthquake. The
table is arranged to favor the limiting responses, even though
we may have the complete solution. In the case of the ex-
ponential distribution, the response is neutral, as we have
already discussed. In the cases of the periodic and uniform
distributions, the response is only meaningful for times up
to 1g; in the case of the Gaussian distribution, the response
is meaningful for long elapsed times, as we discuss in the
Appendix. In the cases of the Weibull distribution with
m > 1 and the semi-Gaussian distnbution, the response can
be proved to be negative for both short and long elapsed
times and can be inferred to be negative for all elapsed times.
For the Weibull distribution with m < 1 and the power-law
distribution, the response is positive for both short and long
elapsed times and can be inferred to be positive for all
elapsed times. For the lognormal, power-law, and truncated
power-law distributions, there is one response for short
elapsed times and the opposite response for long elapsed
times, with the implications of a crossover and hence neutral
response at an intervening time scaled by f,; the lognormal
and truncated power-law distributions have opposite re-
sponses to each other in the long and short time regimes.

Since the truncated and ordinary power-law distribu-
tions give opposite results for long elapsed times, it follows
that the answers to Q. are unstable with respect to the pres-
ence or absence of a cutoff in the distributions. It is by def-
inition problematical that a presumed existence of a cutoff
can be identified from a finite set of observations of interval
times: there is no guarantee that a presumed cutoff will not
disappear with a future observation of a longer interval be-
tween earthquakes. Thus a positive response to the question
for long elapsed times since the last earthquake is only con-
jectaral; that is, it is only as strong as one knows the distri-
bution to times longer than have been observed, which is
impossible. Of course, the distribution can always be pos-
tulated a prieri, as in the numerical exampies of Davis et ai.
(1989) and Ward and Goes (1993), but the postulate does
not ensure that it represents nature.

Estimate of #;

Suppose that we do not know a priori the characteristic
time 1, of time intervals between successive earthquakes. We
then have to estimate it from a finite suite of observations
of interearthquake time intervals. Assume that (n — 1) ob-
servations of time intervals 1, ¢, ..., #,_; are made pre-
cisely; we ignore here the additional problem of the uncer-
tainties in the time intervals that occur for historical
earthquakes; this can be treated by standard statistical
methods (Sich er al., 1989). Suppose that the time since the
last event is ¢. Then, in the case of the Poisson distribution
p() = e~ "™, the standard maximum likelihood method
gives the estimate of #, as the value that maximizes
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1 n—1

tg i=1

that is,

n—1

th = L Erj). (11)

n j=1
Thus, even for the Poissonian case, the use of the informa-
tion that no event has occurred since ¢ gives an estimate of
the average recurrence time f, for the next event that in-
creases with 1! The Poisson distribution is memoryless only
if its parameter ¢, is known a priori,

The calculation (11) can be generalized for the other
distributions discussed above. Qur previous results must thus
be reconsidered if the parameters of the distributions are
themseives not known precisely but are estimated using
presently available information. This does not pose any dif-
ficulty in principle, but must be addressed case by case. This
simple calculation demonstrates the sensitivity of the “pre-
diction™ to the assumptions concerning what is really known
and what is only inferred from the data.

Summary
These observations can be summarized as follows:

* The Poisson or exponential distribution is memoryless and
the expected time until the next event is independent of
previous observations and of the elapsed time since the
last earthquake. The exponential thus acts as a fixed point
in the space of distributions of the transformation (2) and
sits at the boundary between the positive and negative
classes of memory, that is, at the boundary between pos-
itive and negative responses to Q. Any statistics of the
fluctuations of recurrence times that is different from Pois-
sonian entails the explicit assumption of a memory.

Any distribution that falls off at large time intervals at a
faster rate than an exponential, such as the periodic, qua-
siperiodic, umiform, and semi-Gaussian distributions, and
the Weibull distribution with m > 1, has the property “the
longer it has been since the last earthquake, the shorter the
expected time until the next.” The truncated power-law
distribution for times close to the cutoff time also has this
property.

Any distribution that falls off at large time intervals at a
slower rate than an exponential, such as the Weibul! dis-
tribution with m < 1, the unbounded lognormal and
power-taw distributions, and the truncated versions of
these distributions for times remote from the cutoff, has
the property “the longer it has been since the last earth-
quake, the longer the expected time till the next.”

All distributions that have an instantaneous expectation
time interval between earthquakes smaller than the aver-
age waiting time between earthquakes have the property
of an increasing time to the next earthquake for an increas-
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ing time since the last one, for short times since the last
one. This inciudes the cases p(0) = w«,
All distributions that have an instantaneous expectation
time interval between earthquakes larger than the average
waiting time between carthquakes have the property of a
decreasing time to the next earthquake for an increasing
time since the last one, for short times since the last one.
This includes the cases p(0) = 0.
Caution should be exercised in the use of statistics of fluc-
tuations of interval times deduced from data sets that de-
scribe only the distributions for short time intervals between
earthquakes. This is because of the strong dependence of
our result for long times, and in some cases for short times
as well, on the properties of the tails of the distributions
as well as on the values of the parameters of the distri-
butions.

* The estimate of the time until the next earthquake depends
on a precise estimate of the tail of p(r) and is unstable with
respect to presently available data for the recurrence of
large earthquakes. Even a finite sampling of the Poisson
distribution will lead to an estimate of the time to the next
earthquake that increases with increased time since the last
one.

Thus the positive response of Davis et al. (1989) to Q.,
“the longer it has been since the last earthquake, the longer
the expected time till the next,” is shown to arise from the
use of a distribution that decays slower than an exponential
and that is unbounded for large time intervals; the result is
valid for other distributions as well. If a slowly decaying law
itself undergoes a transition at even longer intervals to a
more rapidly decaying law, as in the extreme case of a dis-
tribution with a cutoff, one can expect that evenmally the
next earthquake will become more and more probable, The
response to the question (Q.) is also related, in part, to the
finiteness of the number of observations of time intervals
between earthquakes that gives the estimate of the distribu-
tion p(t); the extrapolation of the estimate of the distribution
to its asymptote for very large time intervals is exceedingly
dangerous, since this procedure is likely to be based on few,
if any, observations. The results of this exercise suggest that
caution be used in the extrapolation of statistics deduced
from short timescale data sets to long timescales.
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Appendix

We calculate the expected time to the next earthquake
for several examples of statistical distributions p(r) with
memory.

Periodic Distribution

The simplest of the distributions with memory is the
periodic distribution,

plty = d(ty — 1.
By inspection, we have

Py =00 —t' ~ 1), {()=1—1t

Thus, d{t')/dt = —1 without invoking the generalized ma-
chinery. In this simplest of cases, the expected time of the
forthcoming earthquake decreases as the elapsed time since
the preceding earthquake increases. Extension to quasiperi-
odic cases can be made.
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Uniform Distribution

The uniform distribution is

1
piy = — 0=1t=2,

2t

where 2/, is the maximum interval between earthquakes and
L, is the mean. From equation (2), we get

Py = 0=r=2 -1t (A1)

2 — ¢

P(r') is independent of ¢'; that is, it is itself a uniform dis-
tribution, but its value is dependent on ¢. The probability that
an earthquake will occur at any time in the future up to ¢
increases as the time since the last earthquake increases and
becomes infinite as t — 2¢,, which simply expresses the in-
tuitive result that the event will occur with certainty before
24,. It is easy to see that the average time to the future earth-
quake from the present is {¢') = Y2(2t, — ). The negative
value of d{t')/dt gives the answer (A.): the expected time to
the next earthquake decreases with increasing time since the
last earthquake. In Figure 1, we show the average time to
the future earthquake plotted against the time since the last
earthquake; both coordinates are normalized by the mean
time between earthquakes, #,. The linear relationship be-
tween (¢} and ¢ is strongly curved on the log-log plot.

In Figure Al, we display the probability that the next
earthquake will occur at time ¢ from now. We show the
unconditional probabaility, that is, the probability as though
we knew the distribution of intervals p(r) but did not know
the time of the last earthquake. We also show the (condi-
tional) probability of an earthquake in the future knowing
that the last earthquake took place at time 1.33¢, in the past.
In the latter case, no earthquake can occur after 0.67¢, from
now; according to (A1), the probability of occurrence of the
future earthquake is higher by a factor of 3 than the uncon-
ditional probability and is independent of the time of the
future earthquake.

(Semi)-Gaussian Distribution

The Gaussian distribution is

1

oo

plt) = e~ - arnat

where ¢, is both the mean and the most probable time interval
of earthquake recurrence; the standard deviation is #. The
Gaussian distribution has a finite probability that the next
earthquake will occur before the preceding one. The draw-
back is minor if ¢ < #,, a condition that describes a nearly
periodic distribution; we have considered the periodic case
above. To restrict the problem to cases of positive ¢, we could
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Figure Al. Uniform distribution: p(¢') and P(r")

fort = (4/3),.

truncate the distribution at ¢ = (; however, this leads to
messy mathematics; for large times, the drawback is minor.

For the simpler problem ¢ > f,, we use the approxi-
mation

2
ply = S-e” O, 120,
an)

which is the semi-Gaussian distribution; that is, it is a Gaus-
sian centered at £ = 0; the mean time interval of earthquake
recurrence is fy, and the most probable time for recurrence
is of course zero for this distribution. Formally, equation (2)
yields

—(t+r )-'Um%

by = 2
r k]
o erfc(—f-)

where erfc(x) is the usual complementary error function.

If the elapsed time since the last earthquake is very
large, t = t;, we can use the first term of the asymptotic
expansion of the second cumulative integral that is

(A2)

—2imid
e teineg

Then g(r) ~ £ + O(log 1), g"(#) > O for large ¢, and from
(7o),

d)

dr 0

For short times, we use (7¢) with p(0) = 2/(nt,) and A =
I, and get

ar) 2
dt Fia
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Thus in both the short and long time limits, the expected
time until the next earthquake decreases as the time since
the last one increases.

Lognormal Distribution
The lognormal distribution is
l 1 e—(log UigPria?

J2na ¢ (A3)
1

2nat,

p(t) =

e 1R20%log Hity+ o) + 5212
’

which is similar in shape to the Rayleigh distribution (see
below) near ¢t = 0 but has a much more stowly decaying tail
for large times. In this case, £ is the median time; the mean
time is {f) = £,¢”"; the most probable time is tye ~. From
{A3), we can write
t t
gl = (log(t—) + &) + Oflog log (t—)],
0

0

whence
" 2 i
g’ 3 (1 a® — log fo).

For 1 2 1y, " < 0, and hence d{t')/dr > 0. For t < t,,, g" =
0, and d(t'Y/dr < 0; alternatively, we note that p(0) = 0, and
hence from (7¢), dt{¢'}/dt < 0, which is the same result. Thus
the lognormal distribution has a crossover in response to Q.

We express these results graphically, For the case
o = 1y, we display P(r') for times t = 2¢, and t = 5¢, (Fig.
A2) together with the unconditional lognormal distribution
p(t}. From Figure A2a, we see that P(t') is significantly
smaller than p(¢') for times comparable to the elapsed time
t, but P(1") 1s, as expected, larger than p(t') at large times
(see extension of Fig. A2a to long times in Fig. A2b). This
is a small effect for t = 24, but is much stronger for 1 = 5¢,
and alt the more so if ¢ increases even more. Thus, numeri-
cally as well as analytically, for early elapsed times ¢ that
are comparable to the peak of the distribution, the longer the
elapsed time since the last event, the shorter the time until
the next event; but for large elapsed times since the last
carthquake, the longer the time since the last event, the
longer the time until the next one. In the lognormal case, it
is correct to state that “the longer it has been since the last
earthquake, the longer the expected time until the next” but
only for elapsed times greater than times of the order of the
characteristic time. The lognormal distribution is an example
of a case that has one answer to Q. for short times since the
last earthquake and the opposite answer for long times. Of
course, the crossover takes place at elapsed times that are of
the order of the characteristic time ;. Note that the proba-
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Figure A2. Lognormal distribution with 6 = g
p(t')yand P(t") for t = 2ty and r = Siy: (a) short times
and (b) long times.

bilities for long times in the future are, as might be expected,
very small, The lognormal case is an example of a distri-
bution with a taif that decays slower than an exponential.

To illustrate more concretely the properties of a system
that has a crossover response to Q., we concoct the distri-
bution

1 ¢ s
1= — [TV
PO = N

which probably has no redeeming virtue in nature but has
the property that it has easily calculable integrals. It is evi-
dent that this distribution has both a long-time tail that de-
cays slower than exponential, and the property p(0) = 0, as
in the case of lognormal distribution. Thus we are guaranteed
that there is a crossover in the response to Q. More precisely,
the criterion function (7a) is A — [0 = %0 +
4 + 4x — 4)e” > where x = \f;’t_o. The criterion has a
crossover in sign between x small and large at t/f, = 0.3532.
The lognormal distribution has similar properties.
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Weibull Distribution

The Weibull distnibution is

p(r) = mzo—mrmfle"(r/lq)”" 0 < ®, m -8 0,

having a most probable value (m — 1), a mean a(m)z,
where a(m) = [§ e~ df, and median (log 2)""™t,. Values
of m smaller than 1 correspond to p(z) decaying slower than
an exponential for large ¢ and give the so-called stretched
exponential distributions, while values of m larger than 1
lead to a decay that is faster than exponential. For large m,
p(?) approaches a delta function centered on #,, that is, to the
periodic distribution we have considered above. Ward and
Goes (1993) and Goes and Ward (1994) have studied the
degree of earthquake clustering as a function of m; in their
notation, v = 1/m. Equation (2) yields

P(f') = mig™ (1 + ¢yl MG (Ag)

The first term of the asymptotic series for A¢), which is the
second cumulative integral of p(f), is

e—(ﬂ'fo)”'
(I)S(m— n =
Iy

Evidently, g(1) ~ ¢™ + O(logs), and hence g"(f) ~ m(m — 1)
™= Thus if 0 < m < 1, then g"(¢) < 0, and d{¢'/dt > 0 for
large 1, while if m > 1, then g"(t) > 0, and d{:'¥dr < O for
large r. For small ¢, p(0) = 0, m > 1, and it follows from
(7c) that d{s'")dr < 0. For cases m < 1, p(0) = o, and from
{7c), d{t'Ydt > Q. Thus there is a reversal in response be-
tween the cases m < | and m > 1, in agreement with the
result of Ward and Goes.

In Figure A3a, we exhibit the interesting subcase of the
Weibull distribution with m = 2, which is appropriate for
rectified Gaussian noise and is known as the Rayleigh dis-
tribution. The Rayleigh distribution has a tail with similar
properties to that of the Gaussian and decays faster than an
exponential. We show P(t') for times t = tyand 1 = 24, Tt
is clear that P(¢') has a progressively shrinking width to the
origin as ¢ increases; that is, the expected time decreases as
the waiting time ¢ increases. The answer A. is negative for
both short times and long times, the latter property evidently
connected with the rapid fall-off in pir) for large /.

The opposite situation is found in the case m << 1; in
Figure A3b, we plot the case m = % and show P(t') for
times £ = fy, t = 21y, and t = 104, as well as p(s). It is clear
that P(') lies well above p(¢') at long times ' > 1, and all
the more so as r increases. Thus the longer we wait, the
longer the time to the next event, in this case.

e~ (#py™ ~ 3m — log ey

A~
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Figure A3. Weibull distribution. (a) m = 2 (Ray-
leigh distribution), corresponding to a tail decaying
faster than an exponential. P(t') is shown for 1 =
and t = 2¢, together with p(t'). (b) m = ‘% corre-
sponding to a tail decaying slower than an exponen-
tial. P(¢') is shown fort = 1y, r = 215, and 1 = 10z,
together with p{r').

Power-Law Distribution

The unconditional power-law distribution is

piy =0, 0<t<y, (AS5)

u = {1+
p(t)=—(—) v =t S0, 0<<puy <o

I\

The characteristic timescale f, is proportionat to the mean
(u/(p — 1) 1y for 4 > 1 and the median £, 2'%; for u < 1,
the mean is infinite. This is an example of a distribution with
a waiting time and has been used in the case g = Y2 in short-
term earthquake prediction calculations by Kagan and Knop-
off (1981, 1987).

For i > 1, we evaluate d(¢')/dt for this case by applying
the criterion function (7a), which gives (10/1)2“ Ve — 1)
Thus d{¢')dt > O for all x > 1 and all ¢ > 4,
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For g = 1, (£} diverges, and the criterion {7a) cannot be
used. In this case, we have to examine the conditional dis-
tribution (2) directly and compare it with the unconditional
distribution. This general method is also applicable to the
case 4 > 1. Substitution of (A5} in equation (2) yields

ey — {1 +u)
PUY = ‘?‘ (1 + ’?) . (A6)

Formula (A6) is aimost the same as the unconditional dis-
tribution, except for the additional ! in the parentheses; the
two expressions are identical in the limit ¢' = r except for
obvious scaling factors. Thus, in this Timit, the distribution
P(t') is also a power law with a characteristic scale given by
the waiting time 1, instead of ¢, for the unconditioned p(r’).
Thus the longer it has been since the last earthquake, the
longer the expected time until the next, for all cases 4 > 1.

Figure Ada shows P(t') for r = 101 and ¢ = [00g,
together with p(f) for an exponent # = 3 (for this choice,
p(t) possesses a finite mean and variance}. We observe the
asymptotic power-law behavior of P(1') at times ¢’ > r with
amplitude significantly larger than p(t'), showing the en-
hanced probability for large conditional waiting times. Fig-
ure A4b shows P(t") for t = 10t and ¢+ = 100¢, together
with p(r) for the threshold case of exponent 4 = 1, in this
case, the mean and variance are not defined. This is an il-
lustration of a power law with a very weighty tail. The be-
havior of P(¢') is qualitatively similar to the previous case.

Truncated Power-Law Distribution

Except for the uniform and periodic distributions, we
have considered thus far only distributions of fluctuations in
interval times that extend to infinity. In these cases of dis-
tributions with long-time tails, there is a finite but small
probability that a second earthquake will occur after a very
long time interval after the first. If the distributions describe
the sessmicity of a region, rather than that of an individual
fault, the very long time intervals imply very large accu-
mulations of deformational energy and hence very large
fracture sizes. To avoid the problems of earthquake sizes
greater than the size of a given region, we consider a cutoff
in the distributions p(r} (Knopoff, 1996). To demonstrate the
influence of a cutoff, we restrict the previous case to

1 ¢ —(E+p)
plt) _____p‘_‘(_) C IS E e
1_(’max) lU IU
Iy

=0 ,

(AT)
0 <t <1,

which is normalized. Substitution in equation (2) yields

U 1

(t + ) e g

P’y =

(A8)
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Figure A4, Power-law distribution. (a) 4 = 3; p(r)

possesses a finite mean and variance. P(¢') is shown
for¢ = 101y and t = 1004, together with p(¢'). (b)
= |, the mean and variance are not defined. P(t") is
shown for ¢t = 10r, and ¢+ = 100, together with p(¢').

For t < t,,, the second factor of (A8} is #, which is the
same as letting ¢_,, — ®. Thus we recover the previous case
of the simple power law without truncation.

The interesting regime is found when ¢ is not very small
compared to t,,,,. Consider the case t — #,,,,. From equaticn
(AB), we get

P(t') = ! ,

max —F

(A9)

which is independent of ¢+ and becomes very large as
t = t0x. This case is identical to that of the uniform distri-
bution (Al} above. Thus it is not unexpected that the longer
we wait, the shorter will be the expected time until the next
event. Without truncation, the result is reversed. There is a
crossover between the truncated and untruncated cases, as
illustrated in Figure AS. In the figure, we take g = 3 ag in
Figure Ada, t,,, = 100z, and show P(t"} for ¢ = 101,, 90¢,,
and 98¢,. Fort = 10¢,, P(t'} is found to be much larger than
p(1") in the tail, as in the previous untruncated case. For
t = 90t,, P(¢') is defined only for O = " = 101, In agree-



798
Truncated power law
{tmax = 100 t , and p=3
0.6 } # f f
Pty (t=981, )
- 0
£ 0.5 e | o T
& p(t')
804+ , I
>0.3 1 P(t') ,(' =10 t, ) 1
§ 02l Pt) (t=901,)|
0
2 0.1 frmmmms N\ —ann e ke SRREETE SEEECRERN
a e,
0 1 : t e
0 2 4 6 8 i0
t'/to

Figure A5. ‘Truncated power-law distribution with
k= 3and . = 1001, P(') is shown for t = 104,
901y, and 981,

ment with (A8), we see that P(¢') becomes almost constant
and close to 1/10¢,. For t = 98¢, P(t') is defined only for
0 = ¢' = 215 and is close to Yaty. This illustrates the crossover
from a longer expected time when ¢ is small to a shorter
expected time as 1 approaches f,,.

D. Somette and L. Knopoff

Since the truncated power-law distribution is very close
to a uniform distribution for times near 7,,,,, we expect that
the truncated lognormal distribution and truncated Weibull
distmbutions with g << 1 will alsoc have a shorter time until
the next event, the longer we have been waiting for an earth-
quake to happen; thus we expect a crossover in the response
to Q. between these truncated and untruncated cases as well.
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