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ABSTRACT Interdependence between geometry of a fault
system, its kinematics, and seismicity is investigated. Quan-
titative measure is introduced for inconsistency between a
fixed configuration of faults and the slip rates on each fault.
This measure, named geometric incompatibility (G), depicts
summarily the instability near the fault junctions: their
divergence or convergence (“unlocking” or “locking up”) and
accurmulation of stress and deformations. Accordingly, the
changes in G are connected with dynamics of seismicity. Apart
from geometric incompatibility, we consider deviation K from
well-known Saint Venant condition of kinematic compatibil-
ity. This deviation depicts summarily unaccounted stress and
strain accumulation in the region and/or internal inconsis-
tencies in a reconstruction of block- and fault system (its
geometry and movements). The estimates of G and K provide
a useful tool for bringing together the data on different types
of movement in a fault system. An analog of Stekes formula is
found that allows determination of the total values of G and
K in a region from the data on its boundary. The phenomenon
of geometric incompatibility implies that nucleation of strong
earthquakes is to large extent controlled by processes near
fault junctions. The junctions that have been locked up may
act as transient asperities, and unlocked junctions may act as
transient weakest links. Tentative estimates of K and G are
made for each end of the Big Bend of the San Andreas fault
system in Southern California, Recent strong earthquakes
Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both
reduced K but had opposite impact on G: Landers unlocked the
area, whereas Northridge locked it up again,

The geometry of a fault system imposes certain limitations on
the movements within it; a wide class of movements would
require a change of geometry. A simple illustration of such
limitations is the intersection (*“junction”) of strike-slip faults
(Fig. 14). If their movement could follow the arrows, the
corners A and C would penetrate each other as shown in Fig,
1B. Obviously, this is not possible, so that the movement along
the faults has to be accommedated by additional fracturing
and/or deformation, changing fault geometry near the junc-
tion point.

The concept of such phenomena was first introduced by
McKenzie and Morgan (1). They considered subduction zones,
mid-ocean ridges, and transform faults under a formulated
condition in which triple junctions of the plate boundaries were
“stable”—that is, “could retain their geometry as the plates
moved”; this was expressed as a relation between the rates of
relative plate movement at each plate boundary. Systematic
description of 125 possible types of triple junctions is given in
ref. 2.

If the stability condition were not satisfied, the plate move-
ments would lead to stress accumulation around the junction
and formation of new faults of a smaller scale (3, 4). Generally
speaking, this situation will not prevent the accumulation of

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked “advertisement™ in
accordance with 18 U.S.C. §1734 solely 1o indicate this fact.

3838

stress but only redistribute it among newly formed fault
junctions. King (3) suggested that such redistribution will lead
to generation of new faults of progressively smaller and smaller
scale, so that a hierarchical system of faults is formed around
the initial junction. This conclusion is in good accordance with
neotectonic data on specific structures that are formed around
the junctions of active faults (5), These structures, called
“morphostructural nodes” or “knots,” are wider than the
intersecting fault zones. They are characterized by particularly
intensive fracturing and contrasting neotectonic movements
with a mosaic pattern of structure and topography resulting.
Their formalized definition is described in ref. 6. It was demon-
strated in a series of studies {e.g., refs. 7, 8) that epicenters of
strong earthquakes are situated only within some of the nodes,
identified by pattern recognition.

In this paper we introduce a quantitative measure of incom-
patibility between the geometry and kinematics of a fault
system. We call this measure “geometric incompatibility.”

Let us outling basic definitions. Consider a system of blocks
scparated by faults. At each intersection of the faults (fauit
junction) the slip rates #; on faults at the junction point should
satisfy the condition of Eq. 1

> =10, [1]

which is a discrete analogue of a well-known Saint Venant
compatibility condition in continuum mechanics. Here the
sum is taken over all fanlts entering the junction, This condi-
tion ensures that the relative movements on the faults can be
realized through the absolute movements of the volumes
(blocks) separated by the faults. The valtue of K computed from
observations may differ from zero because of observational
errors or because some deformations are not allowed for.
Accordingly, we call K the Saint Venant incompatibility,

However, the Saint Venant condition is not sufficient to
ensure that faults movements are possible without a change in
the fault system geometry around the junction. For example,
if the rate of movement along each fault in Fig. 12 is the same
for both sides of the junction point, the Saint Venant condition
is satisfied. Nevertheless, the movement requires a geometric
change; otherwise the junction point would split into a paral-
lelogram (Fig. 1b). After a time interval 1 the (oriented) area
of this unrealizable parallelogram would be [#;, #]i2. In
general case, a junction point would split into a polygon with
area

K

S(t) = Gr¥/2. [2]
The coefficient G is our measure of geometric incompatibility.
It depends on all the slip rates ¥; at the junction point, In our
example, G = 2[i, ¥2}. Note that in this case G is negative
because the corners A and C overlap. In such cases, compres-
sion concentrates at the junction, locking it up. Fig. 2 shows an
example of a junction with all corners diverging; then G is
positive, and the junction is unlocked by tension.

Below we derive the formulas for geometric incompatibility
in a fault system with many junctions. In such a system, Saint
Venant and geometric incompatibilities depend also on rota-



Geophysics: Gabrielov ef al.

Fic. 1. Example of geometric incompatibility near fault junction.
1, Faulis; 2, horizontal component of absolute movement of a block,
fi;; 3, horizontal component of slip rate on a fault, ¥ A, B, C, and D,
corners of the blocks; a, initial position of the blocks; b, extrapolation
of initial movement. Corners A and C are converging and would
overlap; this indicates that the movement cannot be realized without
the change of the fault geometry.

tion and deformation of blocks separated by the faults. Both
measures of incompatibility have the following useful prop-
erty, reminiscent of the Stokes formula: To estimate their
values in a whole region, it is sufficient to know only the
movements on the faults that cross the boundary of this region.

Analytical expressions for G are derived below first for a
single junction and then for a system of faults with many
junctions within a given contour, The expressions for a single
junction are the same for rotating and nonrotating blocks. For
a fault system with many junctions these expressions are

FiG. 2. Example of geometric incompatibility. Notations are the
same as in Fig. 1. Geometric incompatibility eads to divergence of the
block corners.
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different for deformable/rotating blocks; we consider this case
in the Appendix.

Geometric Incompatibility for a Single Junction

Consider n fault segments with a common junction point; a
fault crossing this point is regarded as two segments. We
choose some segment as the first one, and assign the numbers
from 2 to n to the other segments counterclockwise. The n
blocks separated by these faults meet at the junction. We
number them in such a way that the ith fault separates the
blocks i and ¢ + 1.

Let &; be the rate of movement of the ith block at the
junction point, and ¥ = ii;+; — i the rate of relative movement
on the ith fault. We always set b4 = fy and f—y = H,.
Because we consider only horizontal components of the move-
ments, the vectors it; and ¥, are_two-dimensional. For two such
vectors, & = (ay, a») and b = (b, b2), we define the
cross-product [&@, b] = a1b2 — aab;. After a time period ¢ the
junction, which we place at the origin, becomes, due to block
movement, a polygon with the vertices iiyt, ..., &,f. Comput-
ing the (oriented) area of this polygon, we obtain the following
expression for the geometric incompatibility G defined in ref.

Gz[ﬁlaaZ]-*-[E?.v ﬂ3]+...+[ﬂ,,,ﬁs]. [3]

We casily verify that this sum does not change when we add a
common vector to all the rate vectors ii;. Replacing &; by &; —
ity and substituting &; — &, = ¥, + ... + %-1, we can rewrite
G in terms of the relative movement rates ¥

G =[P, Pa] +[FL+ Vs, ¥l + ... H[P1+ ... F V0 f»,,_[,d].
1

This formula depends on the arbitrary choice of the first
segment. However, it will lead to the same values of G, for any
choice, if K = 0—i.e., if the observed values of ¥ satisfy the
Saint Venant condition Eq. 1. If this condition is not satisfied—
e.g., due to observational errors or block deformation, we have
to satisfy it by modification of ¥. This can be done in a
nenunique way. In the absence of additiona] information we
simply subtract from each of ¥; a fraction of K proportional to
the absolute value of v;:

VEVT R [51
The following properties of G may be of interest: {{} The value
of G does not change when all slip rates reverse directions. ()
For intersections of strike-slip faults, a negative sign of G
indicates the tendency of the blocks to “penetrate” each other
at the junction (Fig. 1), so that the movement along cne fault
focks up another fault, On the contrary, if G were positive, the
movement on one fault unlocks another one (Fig. 2).

Geometric Incompatibility for a System of Faults with
Multiple Junctions

We consider here the case of rigid nonrotating blocks, which
is analytically simpler than the general case and can be of
independent interest. Generalization for the case of deform-
able and/or rotating blocks is given in the Appendix.

Suppose we have a map with a system of blocks divided by
faults. Consider on this map a simply connected region D
surrounded by a boundary L. Because the blocks do not rotate,
the rates of block movement are the same at all points of a
block, and the rates of relative fault movements are the same
between fault junctions,

As before, we number the blocks crossing the boundary L of
the region D counterclockwise, and number the faults crossing
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L in such a way that the ith fault separates the blocks { and {
+ 1. Let 4; be the rate of movement of the ith block crossed
by L, and ¥; be the slip rate along the fth fauit crossing L. These
rates do not change when we deform the boundary L of the
region, as long as it does not cross any fault junctions and no
intersection points of L with faults appear or disappear.

The Saint Venant condition is again expressed by Eq. 1 with
the new definition of the sequence ¥,

Let us define now geometric incompatibility G. Consider the
contour L drawn at a time moment fp. At a time ¢t > {5, this
contour will be deformed into a contour L,. For example, if L
is the external boundary in Figs. 14 and 24 then L, is the
boundary in Figs. 1B and 2B. Generally, L, is defined as
follows. The segments of L within blocks move together with
blocks. Each crossing of L with a fault splits into two points.
To form a closed contour L,, we connect these points by a
segment of a straight line. Let §(¢) be the area of the region
bounded by L,. We define the geometric incompatibility as

asi)

G = dt2 ,=,0'

[6]

It can be shown that ({) G can be computed from slip rates ©;
by the same formula (Eq. 4) as for a single junction, but with
the new meaning of #;, and (if) the value G for the region D
equals the sum of the values G for all fault junctions that exist
inside D at the time moment {g.

Application to Southern California Fault Junctions

To illustrate the method suggested here, we considered a
schematic representation of two nodes with multiple fault
junctions around the ends of the Big Bend segment of the San
Andreas fault. Only a few major faults out of the much more
complicated fault system are allowed for in our analysis. Such
a fault may actually represent a set of faults with a common
dominant orientation. With the data available, we could only
get an insight into the range of the values of geometric
incompatibility.

We used the slip rate data from comprehensive summaries
(9) and (10). _

The values of K and G were computed from formulas (Eq.
1) and (Eq. 4), which do not allow for rotaticn, little known so
far, or for blocks deformation.

Fig. 3 shows a simplified scheme of the Big Bend, after (ref.
9, Fig. 3). We analyze separately two nodes of the Big Bend
shown in Fig. 3 by dashed ellipses.
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FiG. 3. Scheme of the Big Bend in San Andreas fault system,
Southern California (9, 10). Dotted lines, fault breaks during Landers,
1992 (L), and Northridge, 1994 (N}, earthquakes; dashed ellipses,
contours within which geometric and kinematic incompatibilities are
estimated,
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North-West Node. This area encompasses the junction of
San Andreas and Garlock faults. One of the two stronpest
earthquakes of this century in Southern California (Kern
County, M = 7.5, 1952) occurred on the adjacent White Wolf
fault. Ironically, it is sometimes not regarded as a major fault,
probably due to the small slip rate, which is 2 mm/yr. .

The slip rate vectors are given in Table 1, The values of K
and G are given in the first two lines of Table 2. Line 1
corresponds to the case when only the San Andreas and
Garlock faults are considered. The Saint Venant incompati-
bility lies within 12% of the slip rate on the San Andreas fault.
We can reduce K by taking into account the White Wolf fault
(line 2 in Table 2), The value of G daes not change much. Its
negative sign indicates that this node is “locked up”.

South-East Node. This area encompasses the branching of
the San Andreas fault into at least three faults: San Andreas
proper, 8an Jacinto, and Elsinore. The San Andreas fault is
joined here from the west by a complicated series of bilateral
thrusts represented in Fig. 3 by the Sierra Madre fault, The slip
rate vectors are given in Table 1. The values of K and G are
given in lines 3-6 of Table 2.

Line 3 corresponds to four major faults only, after ref. 9. We
see that K is rather large, of the same order of magnitude as
slip values on some faults. To reduce K, we take into account
3 mm/yr horizontal shortening across the Sierra Madre fault,
and change the slip rate on the Mojave segment of San
Andreas fault from 34 to 30 mm/yr, as suggested in ref. 10,
table 5. The results are given in line 4 in Table 2. We see that
only the lateral component of X is noticeably reduced by these
changes. .

Finally, we can reduce K to acceptable limits by increasing
the slip rate on Sierra Madre fault from 3 to 8 mm/yr, which
is within the difference between estimates by different authors
(see ref, 10); the results are given in line 5 of Table 2. We see
that this junction is also locked up by geometric incompati-
bility.

Note that G cannot be reduced to zero in such a configu-
ration of faults without reversing the movement on some faults
or introducing new faults.

Impact of Strong Earthquakes. Qualitatively, an earthquake
is equivalent to additional slip rate directed as the slip vector
in the earthquake source. Let us discuss now how the values of
K and G may be influenced by two strongest recent earth-
quakes in this region, Landers {1992, M = 7.3) and Northridge

Table 1. Slip rates along the faults in the Big Bend junctions

Slip rate, mm/yr

Fault name Azimuth Tangent Normal
North-West node
San Andreas N 318 34 0
San Andreas S 118 34 0
Garlock 57 -10 0
White Wolf 55 0 -2
South-East node
San Andreas N
After ref. 9 298 34 0
After ref. 10 298 30 0
Elsinore 125 5 0
San Jacinto 132 10 (]
San Andreas S 133 19 0
Sierra Madre
After ref. 10 270 0 -3
Madified 270 0 -g*
“Landers” 0 5 0

Data are taken from ref. 10 unless otherwise indicated. Tangent
component is positive for right-lateral strike-stip; the normal compo-
nent is positive for extension,

*Closer to the upper estimate indicated in ref. 10.
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Table 2. Saint Venant (f() and geometric {G) incompatibiiities in
the Big Bend junctions

K, K,
East, North, G,
No. mm/yr mm/yr mm?/yr®
North-West end of Big Bend
1 -1.1 39 —326.7
2 0.0 22 —3243
South-East end of Big Bend
3 ~4.6 —-6.6 ~224
4 -1.1 -5.4 —106.9
5 -1.1 -4 —234.1
6 -1.1 -04 300

(1994, M = 6.7). The corresponding fault breaks are indicated
on Fig. 3 by dotted lines.

To analyze the impact of the Landers earthquake, we
included in our computation $ mm/yr of right-lateral slip along
the meridional part of its fault break. The rest of the param-
eters were the same as for line 4 of Table 2. The resulis are
shown in line 6. Comparing these lines, we see that the Landers
earthquake leads to a reduction of both incompatibilities and,
because G becomes positive, unlocks the junction.

At the same time, this earthquake created a new junction
and therefore new incompatibility on the bend of its own fault
break.

The Northridge earthquake occurred on a bilateral thrust
fault in the above-mentioned compression zone represented in
our scheme (Fig. 3) by the Sierra Madre fault. The Landers
earthquake, although more complicated, started as a sub-
meridional right-lateral strike-slip. Though different in mech-
anism and location, both earthquakes reduce K similarly.
However, their contribution to G is opposite.

The Northridge earthquake is equivalent to an increase of
the thrust rate on Sierra Madre fault. Comparing lines 4 and
5 in Table 2, we see that, due to such an increase, the
meridional component of K would be reduced. However, |G|
becomes larger, so that this earthquake locks up the region.

Coarse quantitative estimates can be done as suggested in
ref. 11. Consider a fault with length L and width ff. An
earthquake on this fault causes a fault break of length / and
width 4 and an average slip vector 4. We spread this slip over
the whole fault and over the recurrence time T. The additional
slip rate on the fault is roughly estimated as

3 Ih
T YLHT

Ve

Because this relation is very coarse, we can use, at the best, only
the orders of magnitude for all parameters involved, taking the
values indicated in ref. 10.

Assuming / = 10° km, h = 10! km, d = 10° mm, L = 10°
km, H = 10! km, T = 102103 yr, we get for additional slip rate
an estimate v, = 10°-10" mm/yr. Comparing these numbers
with numerical experiments in Table 1, we see that the
contribution of strong earthquakes to geometric and kinematic
incompatibilities is indeed essential. For example, Landers
earthquake alone could well unlock the region completely,
reversing the sign of G.

Discussion

(/) This work is a continuation of the quest for integral
parameters that control the dynamics of seismicity. Geometric
G and kinematic K incompatibilities in an active fault system
seern to be highly relevant for this purpose, representing the
tendency of a system to stress and strain accumulation and
fracturing. This interconnection may determine some of the
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features of seismicity, regardless of the physical processes
involved.

Geometric incompatibility seems to be the only known
parameter that gives a comprehensive description of fault
junctions.

The analogs of the Stokes formula established here allow
one to estimate G and X in a complicated area from obser-
vations on its boundary, thus reducing the requirements for
observations.

(if) Because geometric incompatibility depicts the locking up
or unlocking of the fault junctions, it may be one of the major
factors controlling nucleation (triggering} of strong earth-
quakes. It is generally accepted that earthquakes occur when
the stress exceeds the static friction (strength). Traditionally,
such triggering is assigned to “strong’ fault segments. Actually,
this condition will be first reached rather near a fault junction
where both factors are more favorable: The strength may be
much smaller due to intense fracturing. And the stress itself
may rise faster due to geometric incompatibility.

This conjecture is in accordance with the well-confirmed
conclusion that epicenters of strong earthquakes—that is, their
nucleation areas, are, as a rule, confined to the vicinity of fault
junctions (7, 8).

(iif) Existing observations allow, at best, only coarse esti-
mates of G and K. Stil}, they provide important insight into how
different faults and earthquakes may affect the general equi-
librium of a region. In particular, the impact of a strong
earthquake cannot be neglected: it is comparable with the role
of long-term (“geodetic”) movements and, moreover, it may
reverse the geometric incompatibility, locking the junction up
or unlocking it. A junction that is locked up may act as a
transient asperity until it is broken by a strong earthquake or
unlocked by subsequent impacts. A junction that is unlocked
may act as a “weakest link” in the earthquake triggering or,
alternatively, as a relaxation barrier.

In this way, geometric incompatibility and, therefore, seis-
micity may migrate within a fault system.

(i) Simplifications in our analysis may be summarized as
follows: we considered rigid blocks and horizontal movements;
in computations possible rotation, being unknown, was not
allowed for. When more data are available, these simplifica-
tions may have to be removed.

(v) Summing up, geometric incompatibility deserves atten-
tion as an important integral characteristic of the tectonic
development of fault systems. In particular, it may be one of
the parameters that controls the dynamics of seismicity.

Appendix: Incompatibilities for Deformable and
Rotating Blocks

For a system of deformable blocks, the Saint Venant compat-
ibility condition, in the integral form, can be written as follows
(ref. 12, see also ref. 13). Let &i{x) be displacement rate vector.
Its components u,(x) are smooth functions within each block,
with discontinuities at the block boundaries. Let L be a closed
contour crossing the block boundaries at the points x1, .. -, X»
counterclockwise, and let xg be a fixed reference point. For v
=1,...,n leta"(x) and &*(x,) be the rate of movement
ti{x, ) in the blocks that contain the contour L before and after
it crosses the block boundary at x,, and let ¥(x,) = &* (%) —
i~ {x.) be the rate of relative movement of the two blocks at
.. Then

de; de de;
_ k ik ki il !
i"“""’ - 3§( - S

v
+ E[v,-(xv) +(x5—xf)gvk(x..)] (A1)
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should be zero, for all i. Here eu(x) = % (3ui/ax* + duy/axh)
is the strain tensor.
Linearization of &(x) defines affine operators
. X ‘ ol
Uldy) =a(x) + (pf —x il [A2]

For x = x,, let U be the operators corresponding to 7=(x,).
The operator V, = U} — U7, linearization of the relative rate
of movement of two blocks at x,, does not depend on the rate
of movement of the coordinate system. Expression in brackets
in Al can be rewritten as the ith component of the vector
Z Viu(x0). :

When the blocks are rigid, the integral in Al vanishes, and
the Saint Venant compatibility condition is satisfied if and only
if the affine operator

K=V, [A3]

is zero. This is an element of the Lie algebra o of the
orthogonal affine group. This operator is a natural generali-
zation of the Saint Venant incompatibility X. Note that K
satisfies an analog of the Stokes formula: its value on any
contour is equal to the sum of its values over the junctions
within the contour. This can be easily deduced from Al.

Geometric incompatibility for a system of deformable blocks
can be defined as

G=§U,/\du,+ 2UL NUL. [A4]
L v

It is easy to check that the value of G does not depend on the
rate of movement of the coordinate system, Thus G is an
invariant of the rate of deformation.

For rigid blocks, the integral in A4 vanishes, and the
geometric incompatibility becomes

G= 22U, AU, [A5)

similar to Eq. 3. This is an element of & A s, the external
square of the Lie algebra & of the orthogonal affine group. If
K = (, this can be rewritten as

G=V1/\V2+(V1+V2/\V3)
oo+ (V+ L+ VAV, [A6]

similar to (Eq. 4). Otherwise, V;, should be modified as in (Eq.
5) to make K = 0.

For a system of rigid blocks, an analog of the Stokes formula
is valid for G: its value for a contour is equal to the sum of its
values over the junctions within the contour, when the Saint
Venant incompatibility is zero for all these junctions.

Proc. Natl. Acad. Sci. USA 93 (1996)

For a system of two-dimensional rigid blocks, ket x = (x, y),
and Vifx, y) = (X, — yw,, Y, + xw,). Here (X,, Y.) is the
relative displacement rate at the origin, and w, is the relative
rotation rate of the two blocks adjacent at x,. In this case, o
is three-dimensional, and the Saint Venant incompatibility has
three components:

K= ( EX‘.,ZY‘.,ZQ),,). [A7]

The space o /A & is also three-dimensional. Accordingly, the
geometric incompatibility G has three components:

G= (E(X:Y: ~ Y X7), 22X wf - wlXh),

Xﬁd—dﬁﬂ [A8]

Here (X7, Y7, o)), define the operators UZ in Eq. AS.
Expression A6 can be rewritten similarly in terms of X,, Y.,
and e,.
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