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Abstract. The block mode! of lithosphere dynamics with 3D movements of blocks
is presented. A seismically active region is considered as a system of absolutely rigid
blocks separated by infinitely thin plane faults. The system of blocks moves as a
consequence of prescribed 3D motion of the boundaries and the underlving medium.
Displacements of the blocks are determined so that the system is in quasistatic equi-
librium state. Block interaction along the faults is viscous-elastic while the ratio of
tlhe stress to the pressure is below a certain strength level. When the level is exceeded
for a part of some fault a stress-drop (a failure) occurs in accordance with the dry fric-
tion model. The failures represent earthquakes. As a result of numerical simulation a
synthetic earthquake catalog is produced. Both simple enough block structures and
the structure which roughly approximates the main tectonic elements of the Vrancea
region are tested. Common and different features of 3D model and well-known 2D

model are discussed.



1. Introduction

Mathematical models of lithosphere dynamics are important tools for study of the earth-
quake preparation process. An adequate model should reproduce premonitory patterns
determined empirically before large events and can be used to suggest and to investigate
new patterns that might exist in real catalogs. The basic principles of the model under con-
sideration have been developed by Gabrielov et al. (1986, 1990). These principles essentially
lean upon the following assumption. The qualitative stability of lithosphere properties in
different seismic regions suggests that the lithosphere can be considered as a large dissipative
svstem. Behaviour of this system depends slightly on the detalization of geostructures and
geoprocesses. It is natural that such approach gives, as a rule, low order of approximation
to real events in some specific region. Its importance lies in the possibility of establishing
and analyzing general patterns and connections by means of studying synthetic earthqualke
catalogs which may cover very long time intervals (in comparison with the reliable data).

As it is known, on the one hand, 2D block model (for its detailed description, see,
for example, Panza et al. (1997) and Gabrielov and Soloviev (1997)) takes into account
only plane displacements of lithosphere blocks whereas, on the other hand. there are some
essential vertical components in movements of real blocks. Therefore the question arises:
how to involve 3D displacements of blocks into the model? Here it is presented an attempt
of 3D generalization of 2D block model, where the blocks are assumed to have six degrees
of freedom (rather than three). No doubt, 3D model preserves some assumptions adopted
for 2D model. In particular, all blocks have the same depth.

As well as in 2D model, a seismically active region is represented as a system of ab-
solutely rigid blocks forming a layer with a fixed thickness between two horizontal planes.
Lateral boundaries of blocks consist of segments of tectonic faults intersecting the layer
with arbitrary dip angles. The system of blocks moves as a consequence of action of outside
forces applied to it and is supposed to be in quasistatic equilibrium state. As the blocks are
absolutely rigid, all deformations take place in the fault zones and at the block bottoms.
The interaction between the blocks is viscous-elastic (“normal state”) while the ratio of

the stress to the pressure is below a certain strength level. When this level is exceeded



i some part of a fault plane a stress-drop (“a failure™) occurs in accordance with the drv
friction model. The failures represent earthquakes. Immediately after the earthquake and
for some time. the corresponding parts of the faults are in “creep state”. This state differs
from the normal one because of the faster growing of inelastic displacements and lasts until
the stress falls below a given level. As a result of the numerical modelling a synthetic

earthquake catalog may be produced.

2. Brief description of the model

Since we use the main constructions and ideas from the works dealing with 2D model,
only the brief description of 3D model is presented here (with the emphasis on distinctions

between the models).

2.1. Block structure geometry

The definitions and terms used in this section completely correspond to the definitions and
terms introduced for 2D model. A layer, with a depth #, limited by two horizontal planes is
considered. and a block structure is a limited and simply connected part of this layer. Each
lateral boundary of the block structure is defined by portions of parts of planes intersecting
the layer. Subdivision of the structure into blocks is also performed by planes intetsecting
the layer. The parts of these planes which are inside the block structure and its lateral
facets are called “fault planes™.

The geometry of the block structure is defined by the lines of intersection between the
fault planes and the upper plane limiting the layer (these lines are also called “faults”), and
by the dip angles of each fault plane. The geometry of the block structure on the lower plane
is assuined to be similar to the one on the upper plane. By definition, three or more faults
cannot have a common point on the upper (lower) plane, and a common point of two faults
is called “vertex”. The positions of a vertex on the upper and the lower planes, limiting the
laver. are connected by a segment {“rih”) of the line of intersection of the corresponding
fault planes. The part of a fault plane hetween two ribs corresponding to successive vertices

on the fault is called “segment”. The shape of the segment is a trapezium. The common



parts of the block with the upper and lower planes are polygons, and the common part of
the block with the lower plane is called “bottom”.

We assume that the block structure is bordered by a confirming medium, whose motion
is prescribed on its continuous parts comprised between two ribs of the block structure

boundary. These parts of the medium are called “boundary blocks”.

2.2. Block movement

As well as in 2D model, the blocks are assumed to be absolutely rigid. All block dis-
placements are supposed to be infinitely small, compared with block sizes. Therefore the
geometry of the block structure does not change during the simulation, and the structure
does not move as a whole. The gravitation forces are not essentially changed because of the
blocks displacements and, since the block structure is in quasi-static equilibrium state at
the initial time moment, it is correct to assume that the gravity does not cause movements
of the blocks.

The distinctive feature of 3D) model is that the blocks have six degrees of freedom
(rather than three) and not all their relative displacements take place along the fault planes
separating them. The displacement of each block consists of the progressive and rotation
components. The progressive component is determined by translation vector (z, y, z).
The rotation component may be described by the following way. Let us assume that the
coordinate system with axes X;, Y1, Z; is strictly connected with the mass center of the
block (it coincides under the lack of block displacements with the immovable system with
axes X, Y, Z in which we consider all movements of the block). The rotation of the block
and of corresponding system (X3, Y1, Z;) with respect to system (X, Y, Z) is described by
means of three angles =, 8, ¢ definition of which is presented in Fig. 1.

The first angle -y is defined as the angle of rotation of axes ¥ and Z around axis X
providing fulfilment of the following condition: if axis Z; is the intersection of planes X0OZ,
and YOZ, then axis Z should be mapped into axis Z2, at that ¥ — Y2. The second angle 3
is defined as the angle of rotation of axes X and Z; around axis Y, providing transformation

of axis Z; into axis Z; (it is possible since Z; belongs to X0OZ;), at that X — X;3. And



the third angle © is defined as the angle of such rotation of axes X; and Y5 around axis Z,
that Ang - Xl, }/2 — }/1
According to the definition of angles v, 3, ¢, at some point (X, Y, Z) of the block the

components Az, A, and A, of the displacement are defined by
Ar =z — (Y =Y)o+(Z - Z)8,

Ay =y + (X — Xc)tp — (Z - Zc)’)”
D, =z— (X =X )+ (Y =Y, (1)

where (X, Y;, Z.) are the coordinates of the mass center of the block, and angles (v, 3, ¢)
are supposed to be small.

All the values of the components of translation vector and the angles of rotation are
found from the condition that the sum of all forces acting on the block and of total moment
of these forces have to be zero (at every moment of time the structure is supposed to be in
a quasistatic equilibrium state). The interaction of the blocks with the underlying medium
takes place along the lower plane. The movements of the boundaries of the block structure
(the boundary blocks) and of the underlying medium are assumed to be an external action
on the structure. The rates of these movements are considered to be known.

Non-dimensional time is used in 3D} model (as well as in 2D model), therefore all quanti-
ties that contain time in their dimensions are referred to one unit of non-dimensional time.
For example, in the model, velocities are measured in units of length and the velocity of
5 cm means 5 cm for one unit of non-dimensional time. When interpreting the results a
realistic value is given to one unit of non-dimensional time. If one unit of non-dimensional

time is one year then the velocity of 5 cm, specified for the model, means 5 cm/year.

2.3. Interaction between the blocks and the underlying medium

The elastic force which is due to the relative displacement of the block and the underlying
medium, at some point of the block bottom, is assumed to be proportional to the difference
between the total relative displacement vector and the vector of inelastic displacement

(slippage) at the point.
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The elastic force per unit area (fy, fi, fi') (note that component f} is introduced in

3D model) applied to some point (X, Y, Z) of the block bottom (Z = 0 corresponds to the

upper plane), at some time ¢ is defined by (see (1))

fe=Ku(87 - &), fy =Ku(&y - &), JI = KGAS, (2)
where (see (1))

A=z 2~ (Y~ Y)p~ (H+ ZMB+ (Y - You,

Ay =y —yut+ (X = XD+ (H+ 27 )7 — (X — Xe)pu,
At=zozg (X = XM+ (Y =Y+ (X =X = (¥ = Yvae  (3)

Here (A%, A¥, A}) is the total relative displacement vector, (X", Y™, Z;") are the coordi-
nates of the mass center of the block, (X, Y;) are the coordinates of the geometrical center
of the block bottom, (z, y, z) and (v, 8, ) are the translation vector of the block and
the angles of its rotation around point (X7, Y, Z7), (Zu, Yu, #u) a0d (Yu, By, ¢u) are the
translation vector of the block bottom and the angles of its rotation around point (X,, Y.},
H is the depth of the layer, (6%, é;) is the inelastic displacement vector, the evolution of

which is described by the equations

dé; v By o
E‘ = Wuf;: E = Wufy . (4:)

The coefficients K,, K* and W, in (2) and (4) may be different for different blocks.

2.4. Interaction between the blocks along the fault planes

At time moment ¢, at some point (X, Y, Z) of the fault plane separating the blocks num-
bered : and j (the block numbered ¢ is on the left and that numbered j is on the right of

the fault) the components A;, A, and A, of the relative displacement of the blocks are
defined by (see (1))

Ay =zi—z;— (Y = Y™ pi + (Y = Y™)p; + (2 — Z7)6: — (Z — ZT)B;,
Ay =yi—yi + (X = XM — (X = X, —(Z = Z] Yy + (2 — Z19);,
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Ar=zi—z;— (X = XP)Bi+ (X = XDNB+ (Y Y™y = (Y = Y™y, (5)

where (X™, Y™, Z™) and (X™, Y™ Z™) are the coordinates of the mass centers of the
blocks numbered 7 and j respectively, (z:, wi, =), (2, ¥j, %), (%, Biy wi) and (v;, 55, w;)
are the translation vectors of the blocks ¢, j and the corresponding angles of its rotation.
Since the relative block displacements in 3D model take place not only along the fault
planes (in contrast with 2D model), the displacements along the fault plane and normal to

1t are connected with Az, A, and A, by the following relations
Ay = Agez + Ayey, A= —Dgeycosa + Ayegcosa — Asina,

Ap = —Azeysina + Ayersina + A, cosa. (6)

Here A; and A; are the displacements along the fault plane, parallel (A;) and normal (4;)
to the fault line on the upper plane, A, is the displacement which is normal to the fault
plane, (e, ey, 0) is the unit vector along the fault line on the upper plane, and « is the dip
angle of the fault plane.

The elastic force per unit area (ft, fi, f=) (note that component f, is introduced in 3D

model) applied to the point of the fault plane, at some time ¢ is defined by
ft = Il’t(At — (51), f( = I(;(A[ — 51), fn = f&’n(An — 6,;) (7)

Here &, &1, 6, are the corresponding inelastic displacements, the evolution of which is de-

scribed by the equations

dé; dé; dé,
— =W — =W — =W .
It 2 fis P v, i ndn (8)

The coefficients K, K, K,, W;, Wi, and W, in (7) and (8) may be different for different
faults.

Formulas (5) are valid for the boundary faults too. In this case one of the blocks
separated by the fault is the boundary block. The movement of these blocks is described
by their translation vectors and rotation around the origin of coordinates. Therefore the

coordinates of the mass center of the block in (5) are zero for the boundary block.



2.5. Equilibrium equations

As mentioned above, the components of translation vectors of the blocks and the angles of
their rotation around the mass centers of the blocks are found from the condition that the
total force and the total moment of forces acting on each block are equal to zero. This is
the condition of quasistatic equilibrium of the system and at the same time the condition
of minimum energy.

In accordance with formulas (2), --(3), (5)~(7) it is possible to obtain the following system

of equations which describes the equilibrium state
Aw = b. (9)

Here the components of the unknown vector w = (wy,ws,...,wsn) are the components
of translation vectors of the blocks and the angles of their rotation (n is the number of
blocks), i. €. Wem—5 = Tm, Wom—4 = Ymy Wem-3 = Zm, Wem-2 = Tm, Wem-1 = Bm, Wem = @m
(m =1,2,...,n). The moment of forces acting on a block is calculated relative to its mass
center.

The elements of matrix A (6n x 6n) and vector b (6n) are determined from rather

complicated formulas, and, for brevity sake, these formulas are omitted in this paper.

2.6. Discretization

In computational purposes, time discretization is performed by introducing a time step At
(by full analogy with 2D model). The state of the block structure under consideration is
determined at discrete time moments ¢; = tq + iAt(i = 1,2, ...), where o is the initial time.
The transformation from the state at t; to the state at ¢;;; is made as follows: (a) new
values of inelastic displacements 6%, 8y, &, &, 6, are calculated from equations (4) and (8);
(b) the translation vectors and the rotation angles at t;,, are calculated for the boundary
blocks and the underlying medium; (c) the components of b in system (9) are found, and
this systemn is used to determine the translation vectors and the rotation angles for the
blocks. Since the elements of A in {9) do not depend on time, this matrix can be calculated

only once, at the beginning of the process.



Space discretization is performed according to the scheme worked out for 2D model. It
is defined by parameter ¢, and it is applied to the surfaces of the fault segments and to the
block bottoms. The discretization of a fault segment is performed as follows. Each fault
segment is a trapezium with bases a and b and height 2 = H/sin o, where H is the depth

of the layer, and « is the dip angle of the fault plane. We define
ny = ENTIRE(hfc)+ 1, ny=ENTIRE(maz(a,b)/e)+1

(here ENTIRE is the integer part of a number), therefore the trapezium is divided into
ninz small trapeziums which are called “cells”. The coordinates X, ¥, Z in (5) and the
inelastic displacements &;, &, é, in (7) are supposed to be the same for all points of a cell.
It should be noted that the coordinate Z may be calculated by means of X, ¥ and & for
any point of a fault.

The bottom of a block is a polygon. Before discretization it is divided into trapeziums
(triangles) by segments passing through its vertices and parallel to axis Y. Discretization
of these figures is performed in the same way as in the case of the fault segments. The
small trapeziums (triangles) are also called “cells”. For all points of a cell the coordinates
X, Y and the inelastic displacements 6}, 6, in (2) are assumed to be the same. Notice that
the coordinate Z = —H for all points of a block bottom.

In calculations, certain concordance of space and time discretization steps is recom-

mended.

2.7. Earthquake and creep

At every time {; we calculate (as well as in 2D model) the value of the quantity & by the

following formula

o= _H_.M__‘M ] (10)

P—f,’
where P is the parameter which may be interpreted as the difference between the lithostatic
and the hydrostatic pressure (P has the same value for all faults).

For each fault the three levels of x are fixed
B> Hf > H,.

10



It is assumed that the initial conditions for numerical simulation of block structure dynamics
satisfy the inequality x < B for all cells of the fault segments. If, at some time moment ¢;,
the value of & in any cell of a fault segment reaches the level B, a failure (“earthquake”)
occurs. By failure we mean slippage during which the inelastic displacements &, &, 8, in
the cell change abruptly to reduce the value of « to the level H;. Note that this procedure
for 3D model essentially differs from the analogous procedure for 2D model. The new values

of the inelastic displacements in the cell are calculated from
& =&+ 8, H=b+7f, & =0+, (11)

where 8;, &1, 6., fi, fi, fa are the inelastic displacements and the components of elastic force
vector per unit area just before the failure. The coefficients {; = K}/ K, (& =0 if K; = 0)
and ¢, = K1/ K, (&, = 0if K, = 0) account for nonhomogeneity of displacements along the
fault plane (in different directions) and normal to it (they reflect the assumption that the
same value of the elastic force per unit area results in different values of rates of changing

different inelastic displacements). The coefficient ° is given by

76"_‘ Vft2+f12_Hf(P_fﬂ) . (12)
Ki/ {2+ fE+ KaH b fa

It follows from (7), (10)-(12) that after calculation of the new values of the inelastic dis-

placements and the elastic forces the value of « in the cell is equal to Hy. Here it should
be noted the following facts. The new values of the elastic forces calculated according to
(7), (11) are to have the same signs as the values just before the failure. Therefore the case
when (1 — Kpén7e) < 0 (and f, changes its sign) is to be considered in its own right as well
as the case when (1 — Kiv.) < 0 (and f; and f; change their signs). It may be proved that
the second situation is possible only if f, < 0. In the both cases we assume

b =Any, = VIt I - HiP
" ’ Ki/fE+ f?

After calculations described above for all the failed cells, the new components of vector

b are computed, and from the system of equations (9) the translation vectors and the
angles of rotation for the blocks are found. If for some cell(s) of the fault segments « > B,

the whole procedure is repeated for this cell (or cells). Otherwise the state of the block
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structure at time ¢;4; is determined as follows: the translation vectors, the rotation angles
for the boundary blocks and for the underlying medium, and the components of b in (9)
are calculated, and then the system (9) is solved.

The cells of the same fault plane in which failure occurs at the same time form a single
earthquake. The parameters of the earthquake are defined as follows: (a) the origin time
is t;; (b) the epicentral coordinates and the source depth are the weighted sums of the
coordinates and depths of the cells involved in the earthquake (the weight of each cell is
given by its square divided by the sum of squares of all cells involved in the earthquake};

(c) the magnitude is calculated in accordance with Utsu and Seki (1954) from
M = 0.98 log;y S + 3.93, (13)

where S is the sum of the squares of the cells included in the earthquake.

Immediately after the earthquake, it is assumed that the quaked cells are in the creep
state. It means that, for these cells, in equations (8), which describe the evolution of inelastic
displacements, the parameters W7 (W2 > W), W2 (WP > W), and W2 (W? > W,,) are
used instead of Wy, W), and W,. They may be different for different faults. The quaked
cells are in the creep state as long as k > H,, while when & < H;, the cells return to the

normal state and hereinafter W, W;, and W, are used in (8).

2.8. Connection between 2D and 3D models

As mentioned above, here it is presented the attempt of 3D generalization of the well-
known 2D block model. The aim of this section is to show that with appropriate choice
of parameters (e. g. coeflicients in the equations for determination of the elastic forces,
inelastic displacements etc.) the results of 3D simulation of dynamics of a block structure
are close to the resulis of 2D simulation of dynamics of the same structure. To achieve it,
the following ideas are used: (a) the same displacementsin 2D and 3D models should induce
the same elastic forces at the bottom and at the faults; (b) the equations for determination
of the inelastic displacements should be the same; (¢} earthquakes should be processed “in
the same manner”. The matter is that in 2D model all relative displacements take place

only along the fault planes (in contrast with 3D model). The following relations are valid
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(see Fig. 2):
2D: Ny=Agfcose, 3D: A =Al/cosa, (14)

where A, A} are the relative displacements of the blocks along the fault line (in 2D and 3D
cases respectively), A,, Al are the relative displacements along axis z on the upper plane
(in 2D and 3D cases respectively), a is the dip angle of the fault plane (for simplicity it is
assumed that the displacements take place only along axis z).

From relations (7) and (14) it is easily seen that the conditions providing the equality
of the forces fi, fi, fr in 2D and 3D models without considering the inelastic displacements

are the following

K! =K, K!=K/cos?a, K!=K]/cos?a, (15)

where K}, K}, K are the coefficients in (7) for 3D model, K is the analogous single coeffi-
cient for 2D model. By analogy the conditions providing the equality of the displacements

8:, 61, 6, may be derived in the form
Wl=W, W!=Wcos’a, W!=Wcos?a, (16)

where W}, W}, W} are the coefficients in (8) for 3D model, W is the analogous single
coefficient for 2D model. The corresponding coefficients for the creep state are connected
in the same manner.

To provide the equality of the elastic forces and inelastic displacements at the bottom

for 2D and 3D models, it should be assumed that
Kl=K, W!=W, KM=, (17)

where K, W}, K2 are the coefficients in (2), (4) for 3D model, K,, W, are the analogous
coefficients for 2D model.

However, there is an insurmountable distinction in calculative parts of 2D and 3D mod-
els. It is substantially that in 3D model the moments of rotation about axes X and Y
determining angles v and 3 are necessarily generated and taken into account in the system
(9) whereas in 2D model, according to its definition, these moments are ignored but they
really exist because of the fact that the forces acting on the faults applied to points of dif-

ferent depth. It is therefore concluded that the results of simulation of the block structure
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dynamics by means of 3D model with the values of parameters (15)—(17) and if the depth
of the layer H tends to zero (or another condition providing the moments of rotation about
axes X and Y to be small is fulfilled) should tend to the results of simulation of the same

block structure dynamics by means of 2D model in the following sense:
max fw; — wi| — 0,

where w! = (2',y',2',7", 8%, ') represents the translation vector and the rotation angles

of the block structure for 3D model, w = (z,y,0,0,0, ¢) represents analogous characteristics
for 2D model.

It is not difficult to show that under concordance of parameters (15}, (16) the procedures
processing earthqukes in 2D and 3D models work almost “in the same manner” (see (10)-
(12)), moreover the less is the value of H, the closer are the results.

Thus, there are no such relations between parameters that dynamics of 3D model may
be exactly reduced to that of 2D model. However, there exist the conditions providing

closeness of 3D movements of blocks to 2D movements of the same blocks.

3. Numerical simulation of 3D block structure dynamics

On the basis of 3D model an interactive program was created. The program enables to
specify arbitrary block structures and to obtain synthetic earthquake catalogs as a result
of simulation. Both simple enough block structures and the structure which approximates
the main tectonic elements of the Vrancea (Romania) region were tested by means of the
program to find the existence of premonitory patterns and features detected in real catalogs.
Here only the first simulation results obtained in accordance with the scheme worked out
for testing 2D model are presented.

To study clustering of earthquakes in the model and dependence of frequency-magnitude
relation on structure geometry the dynamics of block structures BS1, BS2, and BS3 shown
in Fig. 3 was simulated. On the upper plane each of them is a square with a side of
320 km divided by faults into smaller squares. Structures with the similar geometry were
considered, for example, by Bariere and Turcotte (1994) and by Keilis-Borok et al. (1997).

The depth of the layer is 20 km. The same movement of boundaries was specified for all the

14



structures. The sides of the largest squares move progressively with the constant velocities
(for their directions, see Fig. 3). The underlying medium does not move. The numerical
simulation was made with time step At = 0.001, spatial step ¢ = 5km, with zero initial
conditions (zero displacement of boundary blocks and the underlying medium and zero
inelastic displacements for all cells).

Investigation of clustering of earthquakes is exceptionally important for comprehension
of seismicity and specifically for earthquake prediction. This phenomenon was studied by
many re;searchers, e.g. Kagan and Knopoff (1978). It is vital, is clustering caused by specific
features of tectonics of a region under consideration or it is a phenomenon which reflects
general features of systems of interacting blocks of the seismoactive lithosphere. Clustering
of earthquakes in synthetic catalogs arising from modelling of dynamics of simple block
structures is in favour of the second supposition (Maksimov and Soloviev, 1996). The
moments of earthquakes in structure BS1 are shown as vertical lines in Fig. 4 for the
segment and for the whole structure for the interval of 3 units of non-dimensional time
which begins at ¢ = 75. Clustering of earthquakes appears clearly on the most of fault
segments. The picture for the whole structure looks likely, however, groups of earthquakes
can be identified. Clustering of earthquakes for other time intervals is not substantially
different from that presented in Fig. 4.

The accumulative frequency magnitude relations obtained for the synthetic catalogs for
the same time period are shown in Fig. 5. It follows that the number of earthquakes with
magnitude less than 5.2 increases while the structure complexity increases. Number of
earthquakes with magnitudes from 6.1 to 6.7 is maximum for BS2, and with magnitudes
greater than 6.7— for BS1. The curve for BS3 is more straight than the other two and
provides the Gutenberg—Richter low fulfillment better. The histograms of the number of
events for different magnitude intervals and time periods were obtained (see Tables 1-3).
They show that t'hé seismic flow does not have a long-term trend, and the annual number
of events is stable after some interval.

Fig. 6 shows another type of regular behaviour. There is a fault segment which is divided
into cells. Empty cells are in normal condition, black colored cells denote earthquake and

dashed cells are in creep state. A sequence of the segment states for rather close moments of
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non-dimensional time is presented. In this sequence one can identify existence of foreshocks,
main shock, and aftershocks. A main shock happened at ¢+ = 7.65. The rest events are
foreshocks and aftershocks belonging to the group of earthquakes. A series of groups of
events like this occurs on the segment approximately every 3 units of non-dimensional
time, and this corresponds to the concept of the seismic cycle. For all active segments the
existence of periods of post-seismic relaxation and inter-seismic stress accumulation between
the strongest earthquakes is clearly observed. Every segment has its own characteristic time
interval between these earthquakes.

The stmulation of dynamics of the block structure approximating the tectonic structure
of the Vrancea region was also carried out. Vrancea is a relatively small seismoactive region
with a high level of seismic activity, mainly occurring at intermediate depth. In accordance
with Arinei (1974) the main structural elements of the Vrancea region are: (1) the East-
European plate, (2) the Moesian, (3) the Black Sea, and (4) the Intra-Alpine subplates
(Fig. 7). The main directions of the movement of the structural elements are also shown.
This information is sufficient to define a block structure which can be considered as a rough
approximation of the region for numerical simulation of its dynamics. The present work
continues studies for Vrancea which were made by Panza et al. (1997) with 2D block model,
and some values of the model parameters and the data on the observed seismicity of the
region were taken from the paper mentioned above.

The synthetic earthquake catalog is obtained as the result of the simulation for the
period of 200 units of non-dimensional time, starting from the initial zero conditions. The
synthetic catalog contains 31650 events with magnitude between 5.3 and 8.5. The minimum
value of magnitude corresponds, in accordance with (13), to the minimum square of one
cell. Space distribution of the number of events shows that the most synthetic events occur
on faults 6 and 9 (see Fig. 7) which correspond to the subduction zone of Vrancea where the
most part of the observed seismicity 1s concentrated. The distribution is similar to that for
2D block model. The frequency-of-occurrence curve for the synthetic catalog is presented
in Fig. 8. Tt is almost linear, and it has approximately the same slope as the proper curve
for the observed seismicity. It should be noted that here the preliminary results of the

simulation of the dynamics of the Vrancea region are presented. But some features of the

16



synthetic catalog which are similar to those of the real one make possible to hope for some

adequacy of 3D model to the real seismic process.

4, Conclusion

Thus, an attempt of considering 3D movements of blocks in the model of block structure
dynamics is presented. The brief descriptioh of 3D model is given with the emphasis on
distinctions between 3D and 2D models. Relations between parameters connecting 3D and
2D models are discussed. Some preliminary results of the numerical simulation of dynamics

of different block structures are obtained.
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Table 1 Histogram of the dependence of the number of events on magnitude

intervals for the catalog obtained for structure BS1;

AM =0.2, At = 5 years.
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Table 2 Histogram of the dependence of the number of events on magnitude

intervals for the catalog obtained for structure BS2;
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Figure captions

I'igure 1 Definition of rotation angles ~. 3. .
Figure 2 Relations between displacements in 2D and 3D models.
Figure 3 The block structures under consideration a— BS1, b— BS2, ¢ BS3.

Iigure 4 The moments of earthquakes (vertical lines) a— for the segment and b— for the

whole structure BS1 for the time interval of 3 units.

Iligure 5 Frequency-of-occurence plots for the synthetic catalogs for structures 1— BS1, 2—
BS2. 3— BS3.

Figure 6 The sequence of cell states for the segment of BS3.

Figure 7 The Vrancea region: the main structural elements and the block structure used
in the simulation with the numbers of the faults (1-9). The arrows outside and inside
the structure indicate the movement of boundary blocks and the underlying medium
respectively.

Figure 8 Frequency-of-occurence plots for the synthetic catalog for block structure of the

Vrancea region.
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