UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL ATOMIC ENERGY AGENCY @}
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

| I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

B

H4.SMR/1011 - 27

Fourth Workshop on Non-Linear Dynamics
and Earthquake Prediction

6 - 24 October 1997

Multifractal Cascade Dynamics and
Turbulent Intermittency

D. SCHERTZER

Université Pierre et Marie Curie
Laboratoire de Modélisation en Mécanique
Paris, FRANCE

MAIN BUILDING  STRADA COSTIERA, 11 TEL. 2240111 T ELEFAX 224163 T ELEX 460292 ADRIATICO G UEST HOUSE V14 GRIGNANO, 9 TEL 224241 TELEFAX 224531 TELEX 460449
MICROPROCESSOR LAB. Via BEIRUT, 31 TEL. 2249911 TELEFAX 224600 TELEX 460392 GALILEO GUEST HOUSE VIABERUT.7  TEL 2240311 TELEFAX 2240310 TELEX 460392
Enrico FerMl BUILDING  Via BERUT, & (TELEPHONE. Fax AND TELEX THROUGH MAIN BUILDING)



Fractals, Vol. 5. No. 3 (19497) 427-471
(© World Scientific Publishing Company

e

MULTIFRACTAL CASCADE DYNAMICS AND
TURBULENT INTERMITTENCY

D. SCHERTZER
Laboratoire de Modélisation en Mécanique,* Université Pierre et Marie Curie,
Paris, France

S. LOVEJOY
Physics Department, McGill University,
Montreal, Canada

F. SCHMITT
Institut Royal Météorologique,
Brussels, Belgium

Y. CHIGIRINSKAYA and D. MARSAN
Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie,®
Paris, France

Received September 2, 1996; Accepted February 13, 1997

Abstract

Turbulent intermittency plays a fundamental role in fields ranging from combustion physics and
chemical engineering to meteorology. There is a rather general agreement that multifractals
are being very successful at quantifying this intermittency. However, we argue that cascade
processes are the appropriate and necessary physical models to achieve dynamical modeling of
turbulent intermittency. We first review some recent developments and point out new directions
which overcome either completely or partially the limitations of current cascade models which
are static, discrete in scale, acausal, purely phenomenological and lacking in universal features.
We review the debate about universality classes for multifractal processes. Using both turbu-
lent velocity and temperature data, we show that the latter are very well fitted by the (strong)
universality, and that the recent (weak, log-Poisson) alternative is untenable for both strong
and weak events. Using a continuous, space-time anisotropic framework, we then show how
to produce a causal stochastic model of intermittent fields and use it to study the predictabil-
ity of these fields. Finally, by returning to the origins of the turbulent “shell models” and
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restoring a large number of degrees of freedom (the Scaling Gyroscope Cascade,
SGC models) we partially close the gap between the cascades and the dynamical
Navier-Stokes equations. Furthermore, we point out that beyond a close agree-
ment between universal parameters of the different modeling approaches and the
empirical estimates in turbulence, there is a rather common structure involving
both a “renormalized viscosity” and a “renormalized forcing”. We conclude that
this gives credence to the possibility of deriving analytical/renormalized models of

intermittency built on this structure.

1. INTRODUCTION

1.1 Why We Need Cascades

Turbulence is without any doubt one of the most
challenging and presumably also one of the most
frustrating problems in chemical engineering. It
seems rather peculiar that so many practical is-
sues still depend on a paradigm going back at least
since Richardson’s famous poem!: the paradigm of
turbulent cascades. It is already remarkable that
a rather immediate development of this paradigm
lead to the first quantitative law of turbulence: the
Richardson law of turbulent diffusion.?

It took mearly 20 years before Kolmogorov ex-
ploited cascades to derive® the scaling law for the
velocity field itself. Basing himself on three statis-
tical hypotheses, Kolmogorov postulated a “quasi-
equilibrium” for turbulence. The rate of large scale
forcing energy (at outer scale L) leads to a flux of
energy flowing through the “inertial range” of inter-
mediate scales £ (L > £ > n) towards small scales,
where (at a small “Kolmogorov scale” 7) it is dis-
sipated. In the quasi-equilibrium regime the three
quantities should be equal, at least for an appro-
priate average. The dynamics of this inertial range
are therefore explicitly dominated by an invariant
which was only casually included in Richardson’s
law: the flux of energy £. More precisely, its av-
erage € was considered. This yields the famous 2
Kolmogorov law which states that shears across ed-
dies/structures (£ being the scale, the angle brack-
ets indicate ensemble averages) scale with this %
exponent:

((Aug)?) < E3£5 (1)

This corresponds to the even more famous scaling
law, derived by Obukhov* for the energy spectrum
(E(k), k being the wave-number)

E(k) x £5k~3 (@)

1.2 Analytic Approaches to Turbulence:
Closures and Renormalization

It is remarkable that for over fifty years very little
progress has been made in improving the (nearly
hand-waving) original Richardson and Kolmogorov
arguments. This is true in spite of the development
of powerful analytical tools, including the Quasi
Normal Approximation,® the Direct Interaction
Approximation®’ and numerous related analytical
“closure” techniques (for this and related methods,
see Refs. 8 and 9 for reviews). This also in-
cludes various applications of the Renormalization
Group.l? These techniques share a similar struc-
ture which could be called “renormalized viscos-
ity /renormalized forcing” since, in their framework,
both terms correspond!! to the leading contribu-
tions from other scales to the evolution of a given
scale. Whereas the notion of eddy/renormalized
viscosity could be traced back to the notion of
mixing length,'? the notion of renormalized forcing
seems rather recent and due to the development of
these techniques. The equation of evolution of a
Fourier component of the velocity (i(k,t), k being
its wave-vector) follows an equation of evolution of
the type:

%ﬁ(k,t) + X2k, t) + ik, t) = T (k,t)  (3)

where vy is the renormalized viscosity and fr is
the renormalized forcing (° denotes the Fourier
Transform, * denotes a convolution on time) which
is usually assumed to be quasi-Gaussian. However,
without appeal to artificial ad hoc hypotheses,
these attempts have led neither to satisfactory
derivations of the Richardson nor Kolmogorov
laws. The failure of these analytic approaches is
even more striking since it was soon realized
that both are at best “mean field” laws. In
other words even these lowest order laws are
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still beyond the reach of present analytical devel-
opments! Indeed, these problems can be traced to
the presence of a very strong type of inhomogene-
ity called “intermittency” (as first pointed out by
Landau!® and Batchelor and Townsend. ) Not only
does the “activity” of turbulence induce inhomo-
geneity, but the activity itself is inhomogeneously
distributed. There are “puffs” of (active) turbu-
lence inside “puffs” of (active) turbulence.

While these analytic attempts have yielded some
insight into the structure of the Navier-Stokes equa-
tions and the first basic feature of turbulence — its
scaling® — they have been totally unable to handle
its intermittency (for example Ref. 15). It is be-
coming increasingly clear that this second feature is
neither secondary nor — as is too often suggested
(e.g. the expression “intermittency corrections”) —
second order. Indeed, although it was less and less
explicitly stated, analytical theories have remained
more or less quasi-normal and have therefore been
unable to deal with probability distributions as wild
as those of a log-normal or algebraic type (not to
mention the simple idea of puffs of activity inside
of puffs of activity).

It should now be no surprise that the cascade
paradigm not only provides a convenient framework
to study this phenomenology, but furthermore
yields very concrete models and interesting comjec-
tures. In particular, it is now increasingly clear
that a very general outcome of stochastic cascades
is multifractal measures. While the discussion of
various precise features of stochastic multifractals
are the main subject of this paper (Secs. 2-4), Sec. 5
shows that even deterministic cascades (restrictions
of which form the popular “shell models”) also yield
multifractals.

In spite of their rather distinct origins, we will
see (Secs. 4 and 5) that these techniques are all
rather closely related to the renormalized viscos-
ity /renormalized forcing structure of the analyti-
cal/renormalization techniques that we mentioned
above [Eq. (3)]. We will therefore point out that
contrary to certain claims (for example Ref. 16)
there is the possibility of deriving an analytical/
renormalized model of intermittency. In order to
emphasize the crucial importance of explicit mod-
els, let us briefly recall a further historical point.
The first concrete conjecture on intermittency —
the so-called log-normal probability distribu-

bNoi‘.wit’.hsta.nding they fail, as mentioned above, to overcome
fundamental difficulties in deriving the correct scaling law.

tion?"18 for the rate of energy dissipation ¢ was for-
mulated with reference to the notion of cascades,
but without any concrete model. It was only after
the development of an early explicit model'® that
the relevance of log-normality became contested
(Sec. 2.2).

1.3 Low Dimensional/Deterministic
Chaos and Universality

Another approach to turbulence which has received
great attention {especially} in the last twenty years,
is deterministic chaos. Although the word “chaos”
goes back to the Greeks, it has only been in this
recent period that it has taken on a highly restric-
tive meaning involving deterministic systems with
small numbers of degrees of freedom. Lorenz?® ini-
tially proposed chaos as an interesting mathemati-
cal caricature of convection. The discovery first of
“structural” and then of “metric” universality?! led
to an explosion of interest in chaotic dynamics: the
caricatures could yield some fundamental features
of wide classes of physical systems.

Applications of chaos theory were subsequently
given a big impetus with the discovery of practi-
cal methods for “reconstructing” the strange at-
tractor from time series data (e.g. the Grassberger—
Proccaccia algorithm??). However, it became clear
that such techniques are inherently incapable of dis-
tinguishing between low dimensional deterministic
systems and high dimensional stochastic systems
(“stochastic chaos”, see below), whereas the for-
mer case is a condition of applicability of the cor-
responding methods, if not of the theory. It has
become widely recognized that a small number of
degrees of freedom model is inadequate for turbu-
lence [Figs. 1(a) and 1(b)], except perhaps in the
low Reynolds number regime near (but below) the
transition to turbulence.

However, for essentially the same reasons as for
chaotic systems, cascades and their resulting multi-
fractal fields (summarized in Sec. 2) would be phys-
ically unmanageable if not for the existence of uni-
versality classes.?>2® In their absence, multifractal
models would involve an infinite number of param-
eters (e.g. the fracial codimensions). Omn the one
hand, all the details of the model would be impor-
tant, while on the other hand it would be impossible
to empirically determine an infinite number of pa-
rameters. The existence of stable, attractive univer-
sality classes {“strong universality”) has — start-
ing with Refs. 26 and 27 — now been empirically
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Fig. 1 (a) A fundamental problem in turbulence is that the number of degrees of freedom increases algebraically as we go
to smaller and smaller scales, Direct numerical simulations of fully developed turbulence would therefore require a cascade of
computers as illustrated above, i.e. a scale by scale iteration {and radical extension) of the meteorologists’ idea of “nested”
models. (b) While for direct simulations, this may be out of reach for the next few decades, this is easily accessible for cascades
models, in particular for “the Scaling Gyroscopes Cascade” (illustrated above) which is rather illustrative of Richardson's poem,
since it corresponds®® to big tops have little tops which feed on their momentum and little tops have smaller tops. ...
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confirmed in over twenty turbulent fields (for a
review see Ref. 28). Recently, a weaker type of
universality has been proposed.?®33 Section 3
provides a detailed empirical intercomparison of
the (somewhat classical) strong (Lévy generator)
universality?*¢ with the weak (Poisson generator)
universality using both turbulent velocity and tem-
perature data. We find — although both agree well
with the data for the medium intensity fluctuations
— that for both the weak and strong fluctuations
the classical strong universality is much closer to

(b)

{Continued)

the data than the weak alternative. We further add
new theoretical arguments as to why strong univer-
sality is relevant for passive scalar advection.

1.4 Stochastic Chaos and
Temporal Multifractal Modeling

While cascades are indeed the generic multifractal
process, due to the existence of thermody-
namic analogues,®™3% multifractals can also be
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formulated as an abstract (model independent)
“fux dynamics”.4%4! However, for many applica-
tions, it is important to have explicit {construc-
tive) multifractal models. These are stochastic and
therefore can provide phenomenological models for
many large number of degrees of freedom systems
including turbulence; calling them “stochastic
chaos” might be more appropriate than the term
“edge of chaos” (referring to the Lyapunov expo-
nents equal to zero in scaling systems).

The first generation of cascade models was static
(purely in the spatial domain) and involved
discrete, integer scale ratios. These include “the
pulse in pulse model”,*? the “log-normal model” ¥
the “weighted curdling model”,** the “B-model” **
the “o-model”,*® the “random A-model” * the
“p-model” %7 “Synthetic turbulence” *® etc. Second
generation, more realistic cascades, are on the con-
trary continuous in scale? (see Ref. 49 for numer-
ical implementation). However, since most turbu-
lent systems are scaling but anisotropic, full realism
requires at least spatial anisotropy. Furthermore,
since the temporal and spatial scaling exponents are
different, space-time anisotropy is required to model
temporal evolution. The basic framework necessary
to handle such scaling anisotropy — Generalized
Scale Invariance®®®® (see Refs. 51 and 52 for nu-
merical implementation) — is straightforward, and
space-time multifractals have already been explored
in the film “Multifractal dynamics”.53

These second generation space-time models still
have a significant weakness. While they do have
the correct space-time stratification, they do not
respect causal antecedence: the future remains sta-
tistically symmetric with the past. This artificial
time mirror-symmetry is broken® as soon as one
considers a (generalized) diffusion equation (of frac-
tional spatial and temporal order) for the singular-
ities (i.e. for the cascade generator). In Sec. 4, we
review this and show how these continuous, causal,
space-time multifractal models can be used to study
the limits to predictability of multifractal processes.
These results are important for developing multi-
fractal forecasting procedures which promise appli-
cations in weather forecasting (especially nowcast-
ing), and elsewhere.

1.5 Deterministic High Dimensional
Models

Although stochastic multifractal cascade models of
turbulence respect various symmetries of the dy-

namical equations — notably the scaling and the
energy flux conservation, there is nonetheless a large
gap between the deterministic Navier-Stokes equa-
tions for the (vector) velocity field and these phe-
nomenological cascades for the (scalar) energy flux.
An extension to vector cascades,’® called “Lie
cascades”, has been considered in order to bridge
the gap. However, in this framework, the extra
symmetries which must be respected are not yet
known. An alternative is discussed in Sec. 5, a de-
terministic cascade called the Scaling Gyroscopes
Cascade (SGC) model®® is likely to be be indispens-
able in overcoming this difficulty. This approach is
inspired by similarities between the Navier-Stokes
equations of hydrodynamic turbulence and the Eu-
ler equations of a gyroscope which have been noted
since at least Lamb,*® and were given new impe-
tus by Arnold®” and Obukhov.*® We discuss a pre-
cise series of approximations to the Navier-Stokes
equations which yield SGC models for respectively
3-D and 2-D turbulence. The resulting SGC model
is a “model of hydrodynamic type”®® having the
same scaling symmetries and quadratic invariants
as Navier-Stokes and the same Lie structure for a
sub-set of interactions. Furthermore, we find that
it has nearly exactly the same universal multifrac-
tal behavior as the empirical energy flux. On the
contrary, a rather different multifractality is ob-
tained for the shell-model which is derived by over-
simplifying the SGC, as done®® on a similar model
yielding the ancestor®®! of shell-models. The quan-
titative difference between the high dimensional
SGC and the derived low dimensional shell-model
brings into question- the relevance of the (popular)
shell-models for investigating intermittency.

2. FUNDAMENTAL PROPERTIES
OF MULTIFRACTAL PROCESSES

2.1 Multiscaling of Moments and
Probabilities

2.1.1 Dwmension and codimension formalisms

Multifractal processes originated from the pheno-
menological assumption (see Fig. 2 for illustra-
tion) that in turbulence the successive cascade
steps define the fraction of the flux transmit-
ted to smaller scales and that a cascade from scale
ratio A to scale ratio A = AN is a rescaled version
(by scale ratio A) of a cascade from ratio 1 to .
To fix the ideas, consider a square domain of size
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Fig- 2 Scheme of a multiplicative (discrete) cascade, the horizontal lines symbolize the scales involved. The process from
the outer scale [ to {(—, with the scale ratio A = A}, is the product of two sub-cascades, the first one occurs from the outer
scale L 1o —:%, whereas the second is a rescaled version (by scale ratio A) of a cascade developed from L to %

L x L, characterized by an intensity £g, and at any

given step n one divides the existing structures at

scale {,,_ = ,\;‘_L‘r with intensities £,_; Into /\f new

{ﬂ—l

structures at scale [, = vl )%. with intensities

En = Ep_1 X i€ where A; is an inteéer and the multi-
plicative increment ue is a positive random variable
with a second Laplace characteristic function K (q)
such that (ue?) = )\f(f"). The iteration of this gener-
ator leads, after N steps (A = AY), to an intermit-
tent field with (c%) = AN, Figure 3 shows such
a procedure (with the changes of notation: L — {
and Ay — A).

A continuous version of this model {i.e. in the
limit Ay — 1 keeping A constant) would be charac-

terized by its statistical invariance properties for
any intermediate scale ratio A, e.g. for the scaling
function moment K (q):

VAE(1LA):  (g9) ~ A (4)

where the angle brackets indicate ensemble aver-
ages and the symbol ~ denotes scaling equality,
l.e. the two sides of the equation have the same
power law but may have different prefactors, which
could be distinct slowly varying functions of the
scale ratio A.

Generally speaking, for these stochastic multi-
fractal cascades £4(x,t) is defined by an infinite
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Fig. 3 Schematic diagram showing a few steps of a discrete multiplicative cascade process.

hierarchy of orders of singularity, briefly called sin-
gularities, y. This means that at any scale resolu-
tion A = L/f (L being the outer scale, £ the scale
of observation) — this process is scaling:

Ex~ AMgq (5}

4 > 0 being indeed the algebraic order of diver-
gence of x(x,t); A — 00, and the frequency of oc-
currences of a given singularity is governed by the
codimension/Cramer function?340,62:63;

Pr(y' > y) ~ A7) (6)

where “Pr” indicates “probability”, 4’ is a random
singularity and < is an arbitrary threshold. It is
equivalent (by the Mellin transform) to consider the
scaling of the different orders ¢ of moments with the
associated scaling moment functions K(q) [Eq. (4)].

In fact, () and K(g) are simply related by the
Legendre transform®*:

K(g) = max[yq - e(v)l;  e(7) = max|yg - K(q)].
(7)
Note that this codimension multifractal {formal-
ism is rather generic for stochastic multifractals and
has indeed many advantages®® compared with the
multifractal dimension formalism of deterministic
chaos.®® In particular the codimensions ¢(y) and
singularities v are intrinsic, whereas the correspond-
ing dimension f(o) and singularities & depend on
the dimension D of the space on which the process
is observed, this is the reason we label them by a
subscript D since we have in general:

foleap)=D —¢(y); ap=D-v  (8)

and similarly:

p(9) = (¢ - 1)D - K(g). (9)

Indeed, the main difference between the two for-
malisms lies in the fact that while the dimension
formalism corresponds to enumerating (determinis-
tic) events, the codimension formalism corresponds
to defining frequencies of (stochastic) events, i.e. the
limit of the ratio of two enumerations, the ratio of
the number [N)(7)] of structures with singularities
7' > 7 to the total number of structures (Ny).

Ni(v)

' _ .
Pr(v 2 9) = th

10
m =¥, (10)

This limit can be defined even when the determi-
nation of Ny(7) is problematic for finite Ny. When
both enumerations are well defined the relationship
between dimension and codimension [Eq. (8)] is re-
covered with the help of the heuristic:
Ny(y) ~ MPER) Ny~ AP, (11)
However, the codimension formalism allows us
to explore the interesting cases which are far be-
yond the applicability of Eq. (8) and has many in-
teresting consequences (see Sec. 2.3) which are
missed by the dimension formalism, notably the
avoidance of the so-called “paradox of negative/
latent dimensions”.

2.1.2 Increments of multifractal fields and
fractionally integrated fluzes

As mentioned above, the multifractal formalism in
turbulence was developed with respect to a scalar
measure, the flux of energy, namely its density ¢,
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(in respect to the usual volume measure) which be-
comes more and more singular at higher and higher
resolution (A —— oo). However, directly observable
quantities are rather the (vectorj velocity field or
the temperature field. A classical way>!7 of analyz-
ing these fields, which is rather reminiscent of addi-
tive stochastic processes, is to analyze their spatial
and/or temporal increments. Note that for the sake
of simplicity, we will consider here only spatial pro-
cesses, the extensions to space-time processes will
be discussed in Sec. 4. The statistical moments of
the latter are the structure functions,!®® defined by
(lax] = L)

((Apa)") = (lealx + Ax) — pa(x)|F)  (12)

{(ApA)T) ~ {(Ap1)7) A~ 10 (13)

where the scalar field p can be a passive scalar field,
the temperature (8), or one component of the veloc-
ity field (u), the ratio of scale A, corresponding to
the spatial lag is smaller than the resolution of the
data A (1 > A > A), {,(q) is the scaling exponent
of the structure function.

Dimensional analysis has been widely used to re-
late the increments of the p field to those of a related
flux densityd F:

L H
s~ (B (3) - (14)
For p = u or p = 8, F corresponds respectively
to the density of energy flux ¢ and to a product®
¢ of the former with the density of the scalar vari-
ance flux x, the involved powers being derived from
dimensional analysis®7%8;

¢ = (0 ) (en) 12 (15)

In both cases, again due to dimensional analysis,
a = H = 1/3. The statistical interrelations between
these fluxes will be discussed in Sec. 3, however let
us already mention that Eq. (14) implies with the
help of Egs. (7)—(12) for the scaling moment func-
tions {Kr(q) for the flux F):

Co(q) = ¢ — KFr(agq) (16)

©Assuming statistical transiation invariance, we may omit the
location x on the r.h.s.

d This is a inertial range version of the widely accepted
Kolmogorov refined hypothesis'™!® for the dissipation range.

whereas with the help of Eqs. (6)-(12) it implies
for the singularities (y,, 7F being respectively the
singularities of p and F, with corresponding codi-
mensions ¢, and c¢g):

(17)

It is important to note that corresponding to an
important property of the basic equations, certain
flux densities are conservative (or stationary). As
discussed in Sec. 3, it is precisely the case for den-
sities of energy () and scalar variance (x) fluxes,
whereas it is not for their product (¢). The “canon-
ical” conservation corresponds to scale independent
ensemble averages, i.e.:

Yo = ay — I eo(75) = er(F)-

{F)\) = (Fl) — Kp(l) =0 (18)
The much more demanding “microcanonical” con-
servation will be discussed in Sec. 2.3. It is also
obvious [due to Eg. (16)] that in general the incre-
ments are necessarily nonconservative, and H # 0
corresponds to a “mean” degree of nonconservation
since it is the scaling exponent of the “mean field”
increments which could be defined as:
(1Apala)* ~ A7H (19)
Beyond the statistical relationships [Eqgs. (16)-
(17)], it is rather important to look for a stochastic
model corresponding to them. The first — and we
argue still the most satisfactory -— are the Fraction-
ally Integrated Flux models (F1F) which we discuss
below. Others include “synthetic turbulence”,®® the
wavelet based approach of Benzi et al.,’® and the
bounded cascade model.”™ The first two are rather
complicated compared to FIF, but are neverthe-
less genuine multifractal models. In contrast, the
“bounded cascade” (originally developed as an ad
hoc model for clouds) is a microcanonical model
whose multiplicative factors are algebraically killed
off as the cascade proceeds to smaller scales. Al-
though it looks multifractal at large enough scales,
the singularities are in fact destroyed resulting in
a monofractal small scale limit not very different
from fractional Brownian motion. This model lacks
a physical basis, and is incompatible with the ob-
served wide range multiscaling statistics of clouds
and wind turbulence. For reasons discussed further
in Sec. 4, fractionally integrated cascade models®
have been widely used for defining the field p:

pa = 17 (F5) (20)
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the fractional integration IY of order H being de-
fined as a convolution (denoted by *) with a scaling
Green’s function G:

ITF) =G« F§ (21)

(22)

The order of fractional integration H rather corre-
sponds to a codimension, since it is intrinsic to the
process (i.e. it does not depend on the dimension
D of the embedding space) and is an increment of
dimension, and Dy is the associated dimension.
By considering the inverse G(=Y), in the sense
of convolution, of G (the identity of a convolution
algebra being the Dirac function, denoted é):

Dy=D-H: G(x)«|x| P

GG =34 (23)
it is important to note that the filtering induced by
the convolution with G [Eq. (21)] is equivalent to
solving the fractional differential equation defined
by G-t

GV xpy = F§ (24)

This equivalence will be of fundamental importance
for the anisotropic (Sec. 2.1) and/or space-time
(Sec. 4) extensions, however it is already interesting
to note that for the case of isotropic space, G(~1)
corresponds to a fractional extension of the Poisson
equation, i.e. by denoting A the Laplacian:

G = (—A)E (25)
and G is the corresponding (fractional) Poisson
solver.

Most of the previous results are easily derived
in Fourier space, since the Fourier transform of the
Green’s function satisfying Eq. (22) is:

G(k) x [k|=H . (26)

Finally it is interesting to note that the incre-
ments of a fractionally integrated flux have rather
distinct behaviors at quite larger or smaller scales
with respect to the spatial lag (Appendix A). In
comparison, their wavelet transform”™* which
has become somewhat fashionable® in multifractal
analysis, is rather trivial since it corresponds

®The increments being rather considered as a “poor man’s
wavelet”.

merely to convolving the scaling Green’s function of
the fractional integral with the analyzing wavelet,
i.e. to fractionally integrating the latter.

2.1.3 Generalized scale invariance (GSI) and
ertended self-similarity (ESS)

The usual approach to scaling is first to posit (sta-
tistical) isotropy and only then scaling, the two to-
gether yielding self-similarity. Indeed this approach
is so prevalent that the terms scaling and self-
similarity are often used interchangeably! Perhaps
the best known example is Kolmogorov’s hypoth-
esis of “local isotropy” from which he derived the
2 law for the wind fluctuations. Note this had the
unfortunate consequence of a priori restricting the
relevance of this law to small scales, whereas em-
pirically it applies up to much larger {nonisotropic)
scales. In order to overcome this shortcoming, the
GSI approach is rather the converse: it first posits
scale invariance (scaling), and then studies the re-
maining non-trivial symmetries. In fact — and this
is a common point with Extended Self-Similarity
discussed below — one defines a (generalized) scale
in a looser way than the usual a priori, academic
distance |xi, (e.g. it does not need to satisfy the
triangle inequality), but rather, GSI defines a scale
||x|| which is physically defined by the processf
For instance, in order to explain the relevance
of Kolmogorov law for large scale atmospheric
dynamics™ " (see Sec. 4.1 for further discussion),
one needs to consider a (generalized) scale defined
by a balance between kinetic energy flux (along the
horizontal) and buoyancy forces flux (along the ver-
tical). Because of a difference between vertical and
horizontal scalings, the balls By defined by this gen-
eralized scale

L
Bitxo) = {x Ix-xall £ T} (2D
are no longer self-similar spheres, but self-affine
balls (e.g. ellipsoids, if B; is a sphere or an ellip-
soid). Indeed the contraction operator of these balls
and of the (generalized) scale:

T\ By = Bp=pn (28)

TGN = A~ x| (29)

ma way analogous to that in which the distribution of mat-
ter and energy determines the metric in general relativity.
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is no longer the isotropic self-similar contraction
Ty = A7!1, but a self-affine contraction generated
by a matrix G different from the unity:
Ta(x) = A 9x = e~ 108ty (30)
These rather straightforward geometrical fea-
tures correspond to important dynamical features of
the process. Indeed, using generalized scale notions
instead of usual distances in the scaling Green’s
function [Eq. (22)] and the corresponding fractional
differential equation [Eq. (24)] one obtains self-
affine fractional integration/differentiation, i.e.
operators involving different orders of integration/
differentiation instead of a unique one. In spite of
its complexity, such an operator satisfies a unique
(generalized) scaling law [similar to Eq. (22)):
T\G ~ XPEG . (31)
On the other hand, the ratio of the volumes of
the balls By and B) corresponds to the Jacobian
of the transformation T, and therefore its scaling
yields an effective “elliptical”® dimension D,;:

D, = Trace(§) (32)

volume(B)) = A~ Petvolume( By ). (33)
Until now, we discussed only the linear and de-
terministic case of (G5I, which will indeed be needed
for Sec. 4. However, in order to address the rela-
tionship with the notion of Extended Self Similar-
ity (ESS),228081 which will be used in Sec. 3, let
us first mention that most of the linrear GSI fea-
tures remain for nonlinear and/or stochastic GSI.
indeed, as a one parameter group, GSI is defined
by its infinitesimal generator, i.e. by differentiating
Eq. (30): '
y I g
aAr
ESS corresponds to considering the scaling in a
turbulent cascade not with respect to the usual dis-
tance, but with respect to an effective scale de-
fined by the third order moment of the velocity
field. As can be inferred from the Kolmogorov 2
law [Eq. (1}], these two scales are equivalent in the
inertial range. This can be argued more rigorously

(34)

EThe term “elliptical” refers to the typical shape of the balls
under GSI transformus.

with the help of the (exact) Kolmogorov ‘—5" lawB2:

(Auel®) = — %ze. (35)

However, the situation is quite different in the
dissipation range, due to the fact the molecular vis-
cosity becomes extremely efficient in damping out
the fluctuations. Nevertheless, one may hope that
the scale defined by Eq. (35) and which decreases
much faster than the usual distance, will be the ef-
fective scale on which the scaling properties will be
observed, i.e., beyond the inertial range. If this is
indeed the case (Sec. 3) this should correspond to
a generalized (although isotropic) scale generated
by a nonlinear generator. The empirical support
for ESS, as well as a possible alternative (based
on a Lie cascade® consideration), are discussed in
Ref. 83. One may note that anisotropic ESS has
been recently used in order to establish®¥8% a sim-
ilarity between flows with different geometries (in
fact anisotropies), as foreseen in the GSI framework.

2.1.4 (enerators of the cascade

Not only is the contraction operator 75 a one
parameter group (Sec. 2.1) but it rescales the one
parameter group of the flux density F):

Fazaar = Fy - Th(Fy) (36)
which admits also a generator ') defined as:
Fy = e (37)
satisfying the additive property:
Tazax =Tx + o). (38)

In the limit A N, 1, T’y yields the infinitesimal
generator of the group. In a general way, the gener-
ator should be thought of as resulting from some
convolution (e.g. a fractional integration) from a
white-noise v, called the sub-generator of the field.??
However, due to the fact that the scaling function
K(g) of the flux F is nothing other than the
(Laplace} second characteristic function of its
generator™:

(F) = (e (39)

B1t is also called the “cumulant generating function”, since

the coefficients of its Taylor expansion define the cumulants
of the generator.
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the generator should have a logarithmic divergence
with scale in order to satisfy the multiscaling power
law [Eq. (4}]:

[y~log A (40)

This latter condition restricts the type of integra-
tion invelved, since considering:

(41)

where ¢ is the Green’s function for this convolu-
tion, and v, is the corresponding white-noise at res-
olution A, i.e. independently identically distributed
random variables over eddies/pixels of the same
size/resolution. Therefore the characteristic func-
tion (Kr,) of the generator (I'y) corresponds to a
“path integral” over all pixels () of the character-
istic function (X,,) of the sub-generator ():

Kr,(@) = 3 Koy a9(x0)

Ty=g*7,

(42)

This-equation greatly simplifies in the case of
an extremely asymmetric and centered Lévy stable
sub-generator with a Lévy index a (0 < o < 2),i
since the (Laplace) second characteristic function
of the latter has a scaling behavior (which will cor-
respond to fundamental properties to be discussed
in detail in Sec. 2.2):

Kou(9) = cag®r™" (43)
where ¢, is the singular cumulant of order a. This
yields for Eq. (42):

Kr,(q) = cc,q"'/1 i g“(x)de (44)
X

L
2%

Considering a scaling g, i.e. according to Eq. (22),
which implies that ¢* is of the same type:

g°(x) ox |x| 7P (45)
the condition of logarithmic divergence (at small
scales) corresponds to a zero dimension of fractional
integration for g, therefore a corresponding codi-

mension equal to the spatial dimension D and yields
in a rather straightforward manner the appropriate

"This index o must not be confused with the order of singu-
larity in the dimension formalism (see Sec. 2.1).

D D
Dy = P H = o (46)
where o' is the conjugate of a:
1 1
= + pvi 1 (47)

Note that extensions of these results to anisotropic
cases (thus involving GSI) are trivially obtained
by replacing D by D and || by ||.}| in the above
equations.

Finally, it is important to check that the Frac-
tionaly Integrated Flux model (FIF) is Galilean in-
variant, not only for theoretical reasons, but also
in view of practical applications (in particular for
now/forecasting}.

The Galilean transform of a scalar field X (xy, 1)
expressed in the Galilean frame R,, into Xo(xo,to)
in the Galilean frame Rg, with R, having a uniform
translation speed Uy in respect to R,, corresponds
to

Xl(X]_,t) = XQ(XQ,t) (48)

with the Galilean group Uy, transform for the
coordinates:

(Xl,h) ZUQ(X(),I) = (‘X’g— Uoi;f) (49)
Since white noises are statistically Galilean invari-
ant, we need only to consider the Galilean transform
of the Green’s functions. This is achieved by simply
changing the (generalized) scale function ||.||; into
ll.llos according to Egs. (48) and (49). The nonin-
variance of the (generalized) scale function ||.|| is
due to the fact that the scale contraction opera-
tor T does not commute with the Galilean group
Up, therefore is transformed by conjugation with the
latter:

T = uy, 70U, (50)

2.2 Multifractality and Universality
Classes

2.2.1 The general framework

Mathematically, an infinite number of parameters is
generally-necessary to specify a multifractal process.
This is because the hierarchy of singularities can
have an arbitrary {convex and increasing) codimen-
sion/Cramer function ¢(v) or — equivalently — an
arbitrary (convex) scaling moment function A'(gq).
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Besin of atirsction

Attractor

Fig. 4 Scheme of a basin of atiraction: a stochastic law
could depend on as large a number of parameters as the the-
oretician would like to introduce. Nevertheless, iterations
of the corresponding process {e.g. summing identically inde-
pendent increments for a random walk) could converge to an
attractive law depending merely on few relevant parameters
(e.g. the “universal” Brownian motion depend on only the
finite mean and variance of an elementary step) which define
the corresponding basin of attraction.

Unless only a few of the infinite number (Fig. 4
for illustration) of parameters turn out to be phys-
ically relevant, determining the universality classes
or basiis of attraction (Fig. 4 for an illustration),
such cascades would be unmanageable either theo-
retically or empirically. The pioneering claim'® on
log-normal universality in turbulent cascades was
shown to be questionable due to the singular small
scale limit.?® More recently, there had been opposite
claims®®87 denying any universality for multifrac-
tals. However, even if the singularity of the small
scale limit does indeed prevent iterations of the pro-
cess towards smaller scales from approaching a uni-
versal limit, this in no way contradicts the general
idea of universality by considering other types of
iteration.2*?5

It was shown®® that two mechanisms (with pos-
sible combination) yield universality: (i) “nonlinear
mixing” of these processes: multiplication of inde-
pendent, identically distributed processes over iden-
tical ranges of scales; (ii) “scale densification” of
the process: introducing more and more interme-
diate scales. In both cases, multiplying processes
corresponds to adding generators (Sec. 2.1).

2.2.2 Weak and strong universality

Two types of universality*® can be distinguished;
“strong universality” when the generator is stable
under renormalization [as displayed on Eq. (43)],
“weak universality” when the generator and its it-
erates are only loosely related; they no longer in-
volve stability under rescaling and/or recentering.

[t seems reasonable that one must seek weak univer-
sality only when there is a failure of strong univer-
sality. The strong universal scaling functions K(gq)
and c(vy), corresponding to a stable Lévy generator,
which process is often incorrectly called “log-Lévy™
are:

1]

Y 1\® , Ch
=C ol R { = ¥
e(v) ‘(Cla'+a> P K= =7 (" -4
(51)
However, a weak universal multifractal process
has been considered?”® yielding “log-Poisson”
statistics?1—33:
+
e
={1-
e(7) ( po

+.
T +
Xx{1-1lo ¢ Y<YT
( g C_ )) - 1

o(y) =005 7>7%

- +1¢
K(g)=¢v"+(N[7" -1c =gyt —c+ (1—15—) ¢

(53)

which turns out to be? the classical (and rather
trivial) Poisson limit (using a smaller and smaller

elementary step A;n = )\}/N — 1; N — 00) of the
a-model 458990

The latter model is the canonical (binomial)
model generated by the (Bernoulli) two-state gen-
erator 7 on elementary discrete step scale ratio Ap:

Pr(y) = A7 8yt + (1= A7)
Yy 20
M = AT L AT (1 - AT

(54)

4% is the upper bound of singularities; ¢ [= ¢(y1)]
is its codimension and can be chosen rather arbi-
trarily; v~ is the lower bound of singularities and
is constrained by canonical conservation [Eq. (18)].
The (monofractal) S-model is recovered for vy~ =
00,9t = ¢ = C;. Assuming (non-fractal, D=1)

ILet us emphasize that the terms “log-Lévy” or “log-normal”
for the process is rather misleading, because the small scale
limit of the latter, as well as its observables obtained by an
integration are no longer log-Lévy nor log-normal, due to
multifractal phase transitions {Sec. 2.3).
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filament-like structures (whereas in MHD turbu-
lence one considers extreme events on current
sheets,®%? j.e, D=2) for the highest order singular-
ity and homogeneous eddy turn over times, She and
Leveque®® therefore selected:

2
+ -
= = =
T E3

- 3
=2

=2
C s 5

(55)

This choice has some important and questionable
consequences for the extreme events {Secs. 2.3
and 3).

On the contrary, the central limit theorem
was used to show® that the (renormalized) non-
linear mixing of (discrete) a-models leads to a
(continuous) “log-normal” multifractal process (i.e.
a=2).

2.3 Theoretical and Observable
Bounds on Singularities,
Self-Organized Criticality

For normal and Lévy {a > 1) generators there are
no bounds on the singularities v, as is generally the
case for canonical processes [Eq. (18)]. On the con-
trary, micro-canonical conservation, i.e. per realiza-
tion of the flux of energy (e.g. the microcanonical
version of the a-model called the p-model*”):

VA ngde=/glde (56)

not only involves many artificialities,i but imposes
an upper bound: ¥ < D (the dimension of space).
For D = 1, it corresponds to Novikov’s celebrated
inequality®™ obtained in fact by imposing micro-
canonical conservation by considering, instead of
the energy flux, its dissipation, bounding it by vol-
ume integration. The relevance of the dissipation
in the inertial range is questionable, especially in
the limit of the infinite Reynolds numbers. On the
other hand, the necessity of a physical bound to sin-
gularities has been argued® on the basis of the finite
speed of sound. On the contrary, one can consider™
both incompressible Navier-Stokes equations (with-
out any characteristic velocity, infinite speeds of
sound) and the physical issues of compressible tur-
bulence involving compressibility effects. The corre-
sponding hypersonic gradients are of course beyond
the scope of incompressible Navier-Stokes equa-
tions. It can be argued®7®®% that not only do
unbounded singularities pose interesting problems
of observation and estimation, but are a requisite

to the introduction, via first crder multifractal
phase transitions, of a nonclassical Self-Organized
Criticality®®" {§0C), which is often desirable in
order to explain the phenomenology of extreme
events. For SOC singularities, the observed sin-
gularities [empirically bounded by 7, the maxi-
mum reachable singularity (see below) in the sam-
ples studied] have a codimension different from the
theoretical one given by Eq. (6):

Ys 272> vp = K'(qp)
(57)

e(7) = apy — K(ap);

where yp is the critical singularity of transition to
SOC. Therefore, the observed codimension for SOC
singularities (y; > ¢ > vp) follows the tangent in-
stead of the theoretical parabola-like codimension,
which means that the probability distribution of
these extreme events has an algebraic fall-off. Con-
sequently there is a divergence of higher order mo-
ments ¢ > gp for infinite samples. However, the
finite size of empirical datasets impose the bound
7s, and with this condition the Legendre transform
of Eq. (57) yields the following estimated K'(q):

(58)

K(g) =7:q—-cvs); ¢>4p

i.e. is also linear in g, of slope ¥;. One may note
that we have:

= ys) = erp)

4D (59)

Ys — YD
When the number of samples increases, v, —
oo which corresponds to divergence of higher mo-
ments. More precisely, the number N, of the sample
scales as N, ~ AP+ (at the resolution A), where the
exponent D, is the “sampling dimension” can be
estimated:
C("ys) = D + Ds = As (60)
s is the highest singularity almost present in the
sample and A, is the overall effective dimension of
the sample. The fact that ¢(y;) > D is the origin
of the paradox of negative/latent dimension of the
dimension formalism which we already mentioned.
One must note that iroriically the a-model was
developed to illustrate the generality of divergence
of moments for multifractal fields, which is obtained

as soon as its basic parameter gp (originally de-
noted a):

g = (c - D)/(y* - D) (61)
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is greater than 1, which correspond to ¢ > v+ >
D. However the parameters [Eq. (55)] chosen by
She and Leveque®® for the canonical a—model/log-
Poisson model do not satisfy these conditions and
therefore do not yield SOC like all microcanonical
multifractal processes [Eq. {56)).

2.4 Double Trace Moment (DTM)
and Normalized Powers of a
Multifractal Field

A striking feature of universal mulitfractals is that
their scaling functions [Eq. (58)] are nonanalytical
at ¢ = 0, with the only exception: a = 2. The Dou-
ble Trace Moment?® % technique (DTM) — which
corresponds to raising the data (at the highest res-
olution), to the power 7, then to estimating the
scaling of the corresponding (trace-) moments com-
puted at various degraded resolutions — has been
widely used to test?” the nonanalyticity of K(g)
(a < 2) at ¢ = 0. In fact, this technique corre-
sponds to estimating the scaling function K{g,n)
[similar to K(g), Eq. (4), K(q,1) = K(qg)] of the
normalized 7 power of the field®:

(m _ €3
ey = —&— 62
therefore:

K(q, TF) = K("?Q’) - QK(W) (63)

which obviously has the same type of analyticity as
K(gq). Indeed, for (strong) universal multifractals:

K(q,n) =n"K(q).

The corresponding codimension function to
K(q,7), i.e. the scaling exponent function of the
corresponding probability distribution of the singu-
larities 4 of the field:

(64)

e~ X5 Pr(y! 2 9) ~ AT

e(rm) = e (TE)

K(q,n), c(v,n) are, as K(q), ¢(7), dual for the Leg-
endre transform. The critical singularities v, and

7D, discussed in Sec. 2.3 generalized into ’an) and

71(9"), corresponding (for any given 7) respectively

to the maximum observable singularity due to the
finite size of sample [finite A; in Eq. (60)] and the

(65)
| (66)

(finite} critical order of statistical divergence for
higher order moments. They define in the plane
(n,q) two critical curves of “multifractal phase
transitions”,% respectively of second (qin)) and first
order (qg)). In the case of universal multifractals,

we have:
{n)
Ts As
cl— 1) =— 67
(na) = (67)
A 1
{n) _ L
& = (%) (68)
. D
K@) =2(5-1). o

3. VELOCITY AND TEMPERATURE
TURBULENCE: SCALING
EXPONENTS FOR
INTERMEDIATE, WEAK AND
EXTREME EVENTS

The traditional way of testing the validity of scale
invariant models in turbulence is to compare empir-
ical estimates of the structure function [Eq. (12)]
scaling exponents [Eq. (13)] to theoretical values
corresponding to different models (e.g. strong or
weak universality, Sec. 2.2). These models gener-
ally have one to three free parameters, which are
then determined using theoretical justifications or
empirically.

As we discuss below, it turns out that there
are mainly three qualitatively different ranges of
singularities:

o Intermediate range. Velocity structure functions
up to moment of order 7 can be empirically es-
timated and compared to log-Poisson and “log-
Lévy” models (i.e. with Lévy generators); this
corresponds to considering intermediate orders of
singularities. Indeed, as shown recently by an un-
successful collective attempt to reach (artificially)
a consensus,'?! clear agreement can only be ob-
tained up to moments of order 7.

o Low range. We can also focus on low orders of
singularities, associated with orders of moments
near 0; in this way, we investigate possible non-
analyticity predicted by the “log-Lévy” model in
Sec. 2.4. This is a direct test capable of sim-
ply distinguishing strong universality from other
models.
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o High range. We finally consider high order
singularities, associated with moments of order
larger than 7; this is another direct way of test-
ing the log-Poisson model which rests on an as-
sumption of a fixed largest order of singularity,
whereas the “log-Lévy” model has no upper
bound and therefore leads to multifractal phase
transitions {Sec. 2.3). This implies that the
values of the large orders of moments will de-
pend on the number of realizations studied in the
sample.

3.1 Intermediate Order Singularity
Analysis

3.1.1 The data and their specira

We consider here time series of velocity {(p = u)

and temperature measurements (p = @) recorded
with a sonic anemometer located 25 m above
ground, over a pine forest in south-west France,
sampling at ws = 10/ z (see Ref. 102 for a pre-
sentation of the dataset). We analyzed 22 profiles
of duration 55 minutes each. Samples of the veloc-
ity and temperature data are shown in Fig. 5. They
clearly show a huge intermittency, with fluctuations
at all scales.

The energy associated with each scale is given by
the power spectra, which within the inertial range

follow a scaling behavior:

E{w) ~ .w"ﬁ

(70)

over frequencies from about w,;/1000 to w;/2 (see
Fig. 6 for the two spectra). 3 is the exponent of

the scaling of the power spectra.
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Fig. 5 A sample of simultaneous velocity and temperature data, showing intermittencies at all scales.

107 e

T T TI1TT1F

T T TTTT

MR BT

Lol L

Y u (RRETIT

vi4
4

AL yLll)

N\

; I\llll! T T 1 11110
10° ¢
10° L
E 10* R SR, $h-y
Ll EEw} Velocity
E(w) Termnperature
1000 el — — - Slope=-543
100 [
-10 —uunn A1 113101 At L 1thl
0,001 0,01 0,1
w (s-1}

.I

bl 1 11!

10

Fig. 6 The Fourier power spectrum of the velocity and temperature data, in log-log plot, showing a power-laws for more
than 2 decades, with slopes of § ~ 1.70 for velocity and 8 ~ 1.62 for temperature; a dotted straight line of slope —5/3 ~ —1.67

is shown for comparison.
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the velocity data 8, ~ 1.7, which is not far from the
Kolmogorov 5/3 value® The slight difference with
the exact 5/3 value is usually attributed to inter-
mittency effects, as discussed in the next section.
For the temperature data, we obtain fy =~ 1.62,
which is less steep than the 5/3 value which would
be obtained in the case of homogeneous Obukhov-
Corrsin turbulence.57%® This is in agreement with
the value reported in Ref. 103 and shows that the
“intermittency correction” to the famous “5/3 law”
for temperature is of opposite sign as for the
velocity.

3.1.2 Structure functions: general case

We recall that dimensional analysis has been used
to relate the increments of the p field (v or #) to
those of a flux Fy. This yields Eq. {14) and con-
sequently a linear relationship [Eq. (16)] between
the structure function scaling exponent (, and the
scaling exponent of the flux K and H, the latter
corresponds at the same time to a “mean degree
of consérvation” [Eq. (19}] and to the order of the
corresponding fractionally integrated cascade model

[Eq. (21)].

3.1.3  Velocity structure functions

For velocity turbulence, F'is the energy flux den-
sity € and is usually assumed to be a canonically
conservative, i.e. K. (1) = 0 [Eq. (18)}. The
parameter values H = e¢ = 1/3, obtained by

dimensional analysis, give a third order moment of
the velocity structure function: {v(3) = 1 in agree-
ment with the Kolmogorov £ law [Eq. (35)]. There-
fore, {v(¢) [Eq. (16)] depends only on the form of
K.(q), which has different analytic expressions for
the different cascade models: see Eq. (51) for the
“log-Lévy” model and Eq. (53) for the log-Poisson
mode].

We here first test these different universal mod-
els directly using the structure functions. For better
precision their scaling exponents (y{(g) were
estimated?® with the help of extended self-similarity
techniques™*8! (ESS, see discussion above). Fur-
thermore, the use of absolute values in Eq. (12)
allows one to obtain a (near) continuous empiri-
cal curve for (y(g) whereas other works?932:33 gg.
timate only the first 10 integer moments. Fig. 7
displays our empirical estimates of {(q); ¢ € (0,7),
the empirical values of Benzi et al..®! those of Van
de Water,'® as well as the theoretical estimates of
the “log-Lévy” [with @ = 1.5 and ('} = A'(1) =
1-3¢'(3) = 0.15 for Eqs. (51) and (16), see Ref. 24]
and log-Poisson [with ¢ = 2 and v* = 2/3 for
Egs. (53) and (16), see Ref. 29] models. We see
that the different experimental estimates are in very
good agreement with each other, and that the two
models we test (with the values of the parameters
given above) are in excellent agreement with exper-
imental estimates, and therefore cannot be directly
discriminated.

This is nevertheless an important achievement,
since for now, up to moment of order 7, several
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Fig. 7 Empirical values of the structure function scaling exponent ¢v(g) for the velocity field compared to log-Poisson and
“log-Lévy models”. Up to moments of order 7 2 ¢ > 0.1 the two models provide excellent, fits and cannot be discriminated,
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teams agree on the empirical values of scaling expo-
nents of velocity structure functions. This can be
used, for example, to determine the free parameters
in the competing multiplicative models.

3.1.4 Temperature structure functions

For temperature structure functions, dimensional
arguments still give Obukhov-Corrsin law,5758 i e
H = a = 1/3, however the lux F = ¢ [Eq. (15)]
involves not only the conserved energy flux e,
but also the conserved scalar variance flux y, ~
2(A8))%Auy. It is not necessarily conserved, and
its moments have no known simple expression in the
general case. Some assumptions have to be made
for the correlations (e.g. between ¢ and x or ¢ and
Af, see Refs, 83 and 104 for more details).

¢ A simple but rather unrealistic hypothesis would
be to consider that the fluxes ¢ and x are
completely correlated.?> This leads to much
simplification:

Ke{g) = Kelq) = Ky(g): Golg) = Gulg) (71)

o The opposite extreme hypothesis,'%% corresponds
to € and x are completely independent. In this
case, the characteristic functions add, and we ob-
tain (see also Ref. 104):

Ki(g) = Ky(3¢/2) + K.(—q/2);
Co(q) = q/3 — Kr(q/3)

This hypothesis is obviously much more unrealis-
tic, due to the fact that the velocity field advects
the scalar field, so the two fluxes are likely to
be at least somewhat correlated. The negative
power in € is also a problem!® for low values of
the wind shear, which may render K.(—¢/2) di-
vergent (this is the case if ¢ is a strong universal
multifractal with 0 < a < 2).

» The correct hypothesis is obviously between the
two. MHere, the precise hypothesis we follow in
Ref. 104 is an hypothesis of independence of the
increments A# and Au (not of the fields them-
selves, which are certainly correlated). 1t has
some theoretical grounds!®® and yields the
following expression:

Kp(q) = Kx(3¢/2) - K.(q/2);
Co(g) = ¢/3 — Kr(q/3)

This was shown to be empirically verified!® up
to moment of order about 6.

(72)

(73)

In this latter case, we argued®® that, due to the
fact that nonlinear mixing (Sec. 2.2) of multifractal
processes lead to universality,® the fluxes ¢ and y
belong to the same universality class (i.e. the same
value of «), as well as the flux ¢. Eq. (73) then
yields:

Cir = (3/2)°Ciy — (1/2)%Che (74)

We empirically obtain a, =~ 1.5 £ 0.1 and a, =~
1.4 £ 0.1, which is compatible with a ~ 1.45 % 0.15
and (using Cy, =~ 0.16 + 0.02, C, ~ 0.22 £ 0.02)
Cir =~ 0.34 £ 0.04 (see Ref. 83), the flux ¢ is not
conserved, because Ky(1) = K, (3/2) — K.(1/2) ~
0.19 £ 0.02 # 0.

On the contrary, the log-Poisson model is not
strongly universal and therefore is not stable un-
der nonlinear mixing. Indeed the form of K(g)
in Eq. {53) is not closed under linear combination
as given by Eq. (73). As a result, we see that it
is rather impossible for temperature turbulence to
have log-Poisson statistics in the case where the
two fluxes € and y do have log-Poisson statistics.
Nevertheless, we empirically test the proposal of
Ruiz Chavarria et al.!%7 who merely assumed that
the temperature fluctuations follow a log-Poisson
law [see Eq. (53)] for (a(q) = q(s(1) — K(gq), with-
out considering the problem of the nonlinear prod-
uct between two fluxes {Eq. {15)]. They proposed
on empirical grounds the following values: (5(1) ~
0.37+£0.02; v* >~ 031 ¢~ 084 +£0.1.

For precise empirical estimates of (y(g), we used
the ESS, as in Ref. 103 and 107. Fig. 8 displays the
resulting function (p(g), for moments up to order 5
(with a 0.1 increment). For comparison, the empir-
ical results'9%108 are plotted on the same figure.

The very good correspondence observed in this
figure indicates that the two universal models with
the above parameters are compatible with the data
through the medium range of moments (¢ < 5).
Despite the incompatibility of the log-Poisson
assumption for velocity and at the same time for
temperature (they can hardly simultaneously have
log-Poisson statis*ics), we use below more sensitive
techniques in order to discriminate log-Poisson and
log-Lévy models, using methods dealing with low
order singularities.

In the case of passive advection, it indeed corresponds to
the original “test field” argument.?®
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Fig. 8 Our estimates of (4(g) plotted versus ¢, for moments up to 3 2 ¢ 2 0.2. Also shown for comparison the values reported
in other studies: all the empirical data we report here are very close to each other. The thin continuous lines correspond to
the theoretical models proposed in the text: this shows that the fits are very good, and that each of these two models can be

considered to be compatible with the data for ¢ € 5.

3.2 Low Order Singularity Analysis

3.2.1 General case

In order to better discriminate the models, we must
use analysis technigues directly dealing with the
nonlinearity of the {(g) curve. This is done using
two different methods.

The first one is the DTM technique (Sec. 2.4),
which can be applied to a positive multifractal flux.
The non-conservative data (if {(1) # 0) must then
be transformed through a fractional derivative be-
fore applying the DTM (see Ref. 27).

The second method involves analysis of the func-
tion f(g) = ¢¢'(0) - ((g) (see Ref. 109); note that
finite difference approximations for ¢'(0) are often
adequate. We have already discussed (Sec. 2.4)
the fact that K(g), K(g,m), ((¢), and other re-
lated quantities (such as f(g) when a > 1), are
non-analytical at ¢ = 0. In general (when o # 2)
this latter quantity is precisely [as is K(g,7)] a non-
integer power law. This can be seen using the fol-
lowing expressions:

((q) = qH — Kr(aq) = ¢((1) - a"Kr(q) (75)

¢(0) = (1) +a 2 (76)
' Cir

£(9) = 4€'(0) ~ C(g) = a* Ego (1)

Therefore, in a log-log plot, f(¢)} versus ¢ should
display a slope of a.

These methods are useful in order to directly de-
termine the main multifractal parameter, a. The
value of Cyif is then only a multiplicative constant
which is much easier to determine. These analy-
sis techniques help to discriminate between different
universal models. They show the relevance of the
Lévy generator for the low and intermediate orders
of singularities.

3.2.2 Low order singularity analysis
for velocity data

The velocity data have been transformed into
energy flux through a fractional differentiation
(for details see Ref. 27). The DTM technique is
then applied: this is applied in Fig. 10; it clearly
shows that log-Lévy universality is closer to the
data than log-Poisson, especially for low order
singularities.

We also applied the “f(q) technique” directly on
the velocity data. The result is shown on Fig. 9:
it clearly yields @ ~ 1.5 instead of a=2 for the log-
Poisson model and a-model-(see theoretical curves).
In Sec. 5, we also show that similar values for a are
obtained from numerical simulations of SGC, which
could be considered as Navier-Stokes caricatures.

3.2.3 Low order singularity analysis
for temperature data

As for the velocity case, we intend to discriminate
the models using another analysis technique. The
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Fig. 9 Double trace moment estimate of the energy flux: K(3,n) versus 5 in a log-log plot, where K(q,7) = K(gq) — g K (n).
The log-Poisson model yields a slope (=a) of 2 (due to analyticity), whereas empirical values yield o ~ 1.5.

Fig. 10 A direct test of the non-analyticity of the velocity data, using the f(g) function (see text). The data are compatible
with the “log-Lévy” model, showing non-analyticity, and at the same time are not compatible with log-Poisson model for

weaker events, because the latter is analytic.

DTM technique is not applied here because the cor-
responding flux is not simple, as shown above.

Also shown in Fig. 8 are respectively the ho-
mogeneous Obukhov-Corrsin case ((4(qg) = ¢/3),
and the tangency at ¢ = 0 [(o(g) = g(;(0)] with
(;(0) ~ 0.53. Using this latter estimate, Fig. 11
displays a log-log plot of f(g) versus ¢. The thick
and straight line corresponds to the universal model
with a = 1.45, which fits the data rather well,

although there is a discrepancy for very low order of
moments/singularities, which is presumably due to
the sensitivity limitation of the measuring sensor.
The dotted line represents the log-Poisson model.
One may note that the deviation between the two
models will be clearer as soon as one explores suf-
ficiently low orders of moments: since we consider
shears, this requires storing data using more digits
(larger dynamical range).
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Fig. 11 The non-analyticity tested on the temperature data, compared to the two models studied here, in log-log {decimal
log) plots. A straight line of slope smaller than 2 is an indication of non-analyticity, and thus a confirmation of the validity

of the log-Lévy model.

3.3 High Order Singularity Analysis

3.3.1 Q@General case

The main physical feature of the log-Poisson model
is in fact an hypothesis of a fixed maximum singu-
larity. Because it is universally fixed, this maximum
singularity should be the same for any number of re-
alizations: it should be reached already for one real-
ization; it should also not depend on the sampling,
and be stable even if the number of realizations
increases.

In order to check this, we studied the influence of
the number of realizations, 1.e. we decomposed our
data series into 704 different portions of length 512
datapoints each, because the maximum scale ratio
for the scaling range is about 500. First, we con-
sidered the estimation of {(g) for one realization:
for this, for each portion ¢ of the dataset, we esti-
mate one ('(g). We then take the mean of all these
exponents (*(¢) as being (;(¢), the scale invariant
function for one realization:

Gl == ¥ ¢

1=1,704

(78)

For 704 realizations, we evaluate (704(q) using an
ensemble average for all the realizations.! In case

Let us note the distinction: {r04(g) is obtained through a
log-log plot of the ensemble average of all the values of the
moments, whereas {1(g) is the mean of all the values obtained
through a log-log plot of the moments for each realization.

of a first order multifractal phase transition (see
Sec. 2.3), associated to a divergence of moments at
g = gp, we have the following behavior for {(g):

Croa(q) = Gilg); g <4qp (79)

(N(g) =c(yv)—INg g24g9p  (80)
where vy is the maximum singularity reached for
N realizations. When N increases, the slope —yy
of the straight line for ¢ > ¢p decreases, and the
intercept c(yn) increases.

Therefore, as shown in Refs. 24 and 102, a
study of the large ¢ asymptote of ({g) for 1 and
704 realization is a way to directly detect the diver-
gence of moments and quantitatively estimate its
order.

3.3.2 High order singularity analysis
for velocity data

In Fig. 12 we apply the method described above
to velocity data. The linear asymptote for 1 real-
ization has the equation (;(g) = 0.205¢ + 0.5, for
g > 7. We see also that the estimates for 1 and 704
realizations deviate significantly from each other for
moments order ¢ > g¢p ~ 7% 0.5 and that for these
values ((g) is linear as predicted by Eq. (80) (with
Ys,u = —0.205 and —0.124 and ¢(vsu) = 0.5 and
1.11 for 1 and 704 realizations respectively). We
may note that in the log-Poisson model there is also
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a linear asymptote: ((g) = §¢ + 2. This behavior
is clearly not compatible with our data: for 1 real-
ization, the asymptotic slope is too large, and if we
increase the number of realizations, it decreases, be-
coming smaller than %. This would have been more
obvious if we had more realizations, but even here
for 704 realizations the intercept of the asymptote is
clearly too small to be compatible with log- Poisson
extreme events.

We finally note that the critical moment gp =
7. £ 0.5 of the order of divergence of moments was
previously estimated with different methods.!?? As
was done in Ref. 102, we predict here that all struc-
ture function scaling exponents are linear for

moments larger than this critical value, with a slope
which decreases with the number of realizations as
more and more SOC structures are analyzed (see
Ref. 77 for meteorological implications). This seems
to be implicitly confirmed by the “consensus
paper”!®! where the only agreement obtained be-
tween different researchers for turbulence structure
functions was the value of ((g) up to order 7. The
different teams involved in this paper had differ-
ent numbers of realization in their data sets, giving
different values for the asymptote, easily explaining
why a “consensus” cannot be reached for a universal
and definitive value for the empirical asymptote of

(g)-

Fig. 12 The asymptotic behavior of the scale invariant moment function for the velocity field, for 1 and 704 realizations,
compared to the log-Poisson model. We may note that an empirical departure from the “bare” log-Lévy model is expected,
because observables are associated to multifractal phase transitions. This arises here at the moment of order 7.

Fig. 13 The asymptotic behavior of the scale invariant moment function for the temperature field, for 1 and 704 realizations,
compared to the two models studied here. As for the velocity data, we observe a first order multifractal phase transttions at
the moment of order 5: for larger moments, an asymptotic straight line is reached, with a slope depending on the number of

realizations.
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3.3.3 High order singularity analysis for
temperature data

As done for the velocity, we study the temperature
structure functions for 1 and 704 realizations. This
is shown in Fig. 13. For moments larger than 5 the
empirical values become linear, with an asymptote
whose slope decreases with the number of realiza-
tions. For one realization we obtain {1(¢) = 0.11g+
0.68. When 704 realizations are used, the linear
asymptote has the equation (704(q) = 0.06¢ + 0.78,
for ¢ > 5. One may note that is not far from the em-
pirical asymptote 0.06¢+ 0.84 proposed in Ref. 107.
But this does not mean that the log-Poisson is con-
firmed: these values were fitted in Ref. 107 us-
ing their empirical asymptote, which happens to be
roughly the same as ours (because we had roughly
the same number of realizations as they did).
However, the log-Poisson model assumes that this
asymptote is already reached for one realization,
whereas we just saw that this is not the case. This
change of the slope and intercept of the asymp-
tote with the number of realizations is therefore
another strong piece of evidence against the log-
Poisson model. Even if we did not find it here,
we can infer that with a larger dataset one obtains
an asymptotic slope smaller than that proposed in
Ref. 107.

We may note finally that the value of gp for tem-
perature fluctuations is smaller than for velocity.
The consensus on empirical values of (4(g) should
therefore be restricted to lower moments than for
velocity.

4. CAUSAL SPACE-TIME
MULTIFRACTALS

4.1 General Considerations

A general feature of turbulence is that for struc-
tures with given size £, there is a typical lifetime
(e.g. “eddy turn-over time”) 7, related dimension-
ally by the shear velocity (see below). In such a sys-
tem, and notably for atmospheric turbulence, the
velocity itself is scaling over much of the dynami-
cally significant distances, and one is immediately
led to a space-time scaling model in which space-
time is stratified due to the scale dependence of
the velocity, while a scale independent velocity, the
original Taylor’s hypothesis of frozen turbulence,!10
would yield isotropic space-time. This space-time
model is quite at odds with the usual meteorological
phenomenology which posits on purely phenomelog-

ical grounds a whole hierarchy of qualitatively dif-
ferent dynamical (highly scale dependent) mecha-
nisms. Fig. 14 illustrates this with a reproduction of
the standard view of the atmosphere indicating the
typical lifetimes and sizes of various atmospheric
phenomena. This figure — or close variants — can
be found in almost all introductory meteorological
texts. Indeed, so different is this from the scaling
approach discussed here that at first sight, it is not
obvious how the two can be reconciled. However, it
is easy to see that this schematic is not only compat-
ible with scale invariance, but even demands it! The
reason is that the phenomena all lie along a diagonal
on the log-log plot indicating that the lifetime/size
relation is a power-law; that the law has no charac-
teristic size (in this scale invariant view, the spread
of values about the straight line is simply a manifes-
tation of intermittency, stochasticity). Better still:
the slope is very close to the (Kolmogorov) value of
2/3 which is theoretically predicted using cascade
processes and dimensional analysis (see below). In
short, a priori, it is sufficient to simply drop the ad
hoc supposition that differences in appearance cor-
respond to qualitative dynamical differences. This
alternative view, the “unified scaling” model,?®7®
of the atmosphere involving anisotropic but scaling
multifractal cascades, is indeed the only one com-
patible with these observations, especially within
the “meso scale” range (around 10 km, the scale
corresponding roughly to the “thickness” of the
atmosphere}. ‘

In turbulence, experimental methods for mea-
suring the intermittency are mostly based on 1-D
time series; thus purely spatial and purely tempo-
ral properties are very rarely analyzed all together.
Instead, they are usually linked through Taylor’s
hypothesis. Historically, a very different approach
was needed for rainfall fields; such fields have been
shown to respect scaling symmetries, on wide ranges
of scales,"!! perhaps from 1073 m to 10% - 107 m.
Although rain is certainly far from being simply a
passive scalar advected by the atmospheric turbu-
lence it may nevertheless respect the same cascade
phenomenology. Indeed, the use of radar data (1-D
time series of 1 to 3-D spatial scans), and the sta-
tistical link between radar reflectivity and rainfall
intensity, have given an original view on the rela-
tionship between spatial and temporal properties of
the cascades. Quite naturally, Taylor’s hypothesis
was questioned?®!11-114: mare precise assessments
of the dynamics of the spatial cascade had to be
investigated.
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Fig. 14 Schematic diagram showing a typical phenomenoclogist’s view of meteorology (reproduced from Atkinson!® who
adapted it from Orlanski''®*. The straight line, added by the authors, is the Kolmogorov scaling 7, ~ £2/* where we have
made the interpretation that the lower right corner of the inner frame is 2 m and 10 s, whereas the upper left intersection of
the inner frame with the extension of the line corresponds to one month.
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Recently, two models have been proposed for
rainfall (Over and Gupta''” and Marsan et al.®*
for rainfall and turbulence), while another model!!®
was dealing with turbulence, all going beyond
the simple Taylor’s hypothesis. However, the
models proposed in!!7'1!® are based on Markovian
Lagrangian dynamics; this is in contradiction with
the fact that the Navier—Stokes equations possess
scaling symmetries along both the spatial and the
temporal axis {a property that is expected to hold
for rainfall). Building directly on these symmetries,
the model described in Ref. 54 (see also Brenier
et al.>3 for a similar but non-causal approach) is
a natural extension of traditional cascade models,
classically defined on a spatial domain, to space-
time domains, taking into account both the scaling
anisotropy between space and time (accordingly to
the Kolmogorov--Obukhov theory, for turbulence)
and the breaking of the mirror symmetry along the
temporal axis, i.e., causality. Note that, similarly,
the SGC model detailed in Sec. 5 (see also Ref. 30)
leads also to multiscaling in both space and time.

In this section, we will consider the space-time
extension of fractionally integrated flux models, and
study both their predictability limits and their fore-
casting capacity.

4.2 Causal Cascade Models

4.2.1 Space-time anisotropy

As explained in Sec. 2.1, cascade models operate
through a scale-invariant generator acting from the
largest scale L down to the smallest scale { = %
of the system, A being the maximum resolution or
scale-ratio, thus creating structures at all scales.
These structures created at all scales £ € [{; L] are
interpreted as typical eddies transferring energy to
smaller scales through a shearing process; such ed-
dies possess a typical lifetime 7, depending on £,
after which they are considered to have been swept
by other structures. In the framework of homoge-
neous turbulence,®* this lifetime is a characteristic

time for each scale, and scales like:

e~ £33 (81)
with € being homogeneous in space, in time and in
scale. For inhomogeneous turbulence,!™!® the same
scaling relation should hold only on the average,
whereas at any given scale £, the eddy turn-over
time 7y is spatially and temporally intermittent, and

depends on the non-homogeneous ¢, rather than on
€.
In the (D+1-dimensional} space (D-dimensional)-
time (1-dimensional) domain, Eq. (30) becomes
Ty : (x,1) = A79(x,1) (82)
The Kolmogorov-Obukhov theory leads to choosing
the matrix G as

1
- (5 1 u)
0 1-H,
with H, = % (for turbulence) measuring the de-
parture from isotropy, and 1p the identity D x D
matrix (thus isotropic for all purely spatial cuts;
note however that atmospheric turbulence has been
found*® to exhibit a scaling anisotropy between the
vertical and the two horizontal directions). The
operator is characterized by the elliptical dimen-
sion D such that the Jacobian of the transform
of Eq. (82) is AP« This dimension is simply the
traceof G,ie, Dyg=D+1- H,.
The generalized scale function |}.||, introduced in
Sec. 2.1.3 [Eqs. (27) and (29)] has the property:

(83)

IT5 G Ol = A7 )] (84)
4.2.2 Causaelity
In the space-time domain, Eq. (41) becomes
Talx,1) = g(x,) % 74 (x, 1) (85)

For self-affine, space-time cascades, we are led to
consider the filter

Dy
i~

9{x, 1) ~ |(,1) (86)

In order to generate a causal™ multifractal, the filter
¢ should be defined as a retarded Green’s function.
Thus g “contains” the main characteristics of the
cascade, i.e., anisotropy and causality:

m&ﬂz{Mmmrf‘t>o (57

0 t<Q

In Fourier space, the determination of an explicit
form for ¢ can be quite involved (it is the convolu-

tion of [i(k,w)||~ P/, 14+ L =1, with the Fourier

Mecausal® used here as an abbreviation for “causal an-

tecedence”, or even space-time contiguity, as described in
Ref. 119.
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Transform of the Heaviside generalized function).
However, one can always choose the simple form5*

)|
D D
k| = (i) =70

9(k,w) ~ (88)

The causal generator is therefore the solution of the
generalized diffusion equation

gV AT, 1) = 1a(x,8)  (89)

gt=b corresponding to a fractional space-time dif-
ferential operator.

For illustration, we can single out two simple ex-
amples, both with a = 2 (the generator has Gaus-
sian statistics): (1) D = 2 (i.e., two spatial dimen-
sions and one temporal dimension), H; = —1, thus
T~ M2 giving the same anisotropy as for Brown-
ian motion; the diffusion equation reduces to (8, —
AJTA(x,t) = y4(x, 1), which is nearly the heat dif-
fusion equation, except for the limited integration
domain (-4 is filtered so to remove its components
||(k,w}|| outside of the range [1;A}), responsible for
the stationarity of the generator; (2) D = 1, H, =
0 (isotropic case) giving [8; + (=AY (z,t) =
Ya(z,1); this is to be compared with its purely spa-
tial (i.e., non-causal) version, given for any D by
§71(k) = |k|™. This simple case is indeed at the
origin of the model. Note that a non-limited in-
tegration domain version of this diffusion equation
would lead to an equivalent Langevin description
corresponding to “Cauchy flights”.120

4.2.3 Causal fractionally integrated
flux model

For the space-time domain, non-conservative mul-
tifractals py, like the turbulent velocity (at least
scalar, i.e., corresponding to a single component of
the vector) or the scalar concentration, are deduced
from their corresponding fluxes Fj through a causal
fractional integration of order H:

palk,w} = G(k,w)Fg(k,w) (90)
with G(k,w) being a causal version of II(k, w)|} =4,
the simplest choice corresponds to Ref. 121

1

G(kaw) ~ |k|H _ (z'w)H/(l—Hr) ;

(o1)

In fact the large flexibility on the choice of the
Green’s function satisfying the adequate scaling can
be used in order to establish some contact with the

notions of renormalized viscosity and renormalized
forcing. Indeed, Eq. (3) corresponds to:
GR'(k,w)a(k,w) = fr(k, w) (92)
where the renormalized Green’s function GA'}}1 is of
the form:
Gr'(k,w) = —iw + vp(k, w)k? (93)
Therefore, Egs. (92) and (93) and Egs. (90) and
(91) are equivalent if:

G(k,w) ~ GRIU=HO )y (94)

frk,w) ~ GE™ (kw)Fi(k,w)  (95)

This points out that the renormalized forcing should
be rather extremely intermittent, whereas, until
now, the analytical/renormalization approaches
presupposed a quasi-Gaussian behavior.

We have simulated a causal scalar turbulent ve-
locity shear field on a 2-D (in space) 1-D (in time)
domain (Fig. 15), for o = 1.5, H, = 1/3, H = 1/3,
a = 1 and 7 = 0.1. Note the longer lifetimes of
the largest structures, compared to the lifetimes of
smaller structures.

4.3 Decorrelation Process of
Causal Multifractals

4.3.1 Predictability

The sensitivity of nonlinear dynamics to small per-
turbations has been widely popularized with the
help of the “butterfly effect” metaphor in deter-
ministic chaos (few degrees of freedom). Two flows
initially very close in phase-space will tend to di-
verge exponentially with time, becoming fully un-
correlated in a finite characteristic time {the inverse
of which is the Lyapunov exponent). For fully de-
veloped turbulence (infinite number of degrees of
freedom), due to scaling both in space and time,
there is no characteristic time of the process, and
one thus expects an algebraic decorrelation in time.
The characterization of this phase-space divergence,
or decorrelation process, in turbulence has been dis-
cussed mainly for atmospheric flows (Lilly'?? and
Houtekamer!?® for reviews). Closure techniques for
homogeneous turbulence: Quasi-Gaussian appro-
ximations,'* the Test-Field model,}?5 or the
EDQNM model,'?® lead to a characterization of the
temporal evolution of the cross-correlated energy
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Fig. 15 Numerical simulation of a causal turbulent scalar velocity shear field, on a 3-D domain {2-D in space, 1-D in time);
@=15,C1 =01, H =1/3, H=1/3,a = 1. We display six spatial 2-D scans, the first scan at the upper left corner, followed
by three consecutive scans (at regular intervals corresponding to a time step, the typical lifetime of the smallest structures)
from center to bottom, left column, and upper right corner, then (from center to bottom, right column) the scans at 8 and 16
time steps after the first scan.
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spectrum for two flows initially differing only for
wavenumbers larger than an “error cut-off wave-
number” k.(t = 0). These models are intrin-
sically limited by strong assumptions on the statis-
tics of the solution, thus missing the essential
feature of the intermittency of the process. More re-
cently, an approach based on shell-models has been
proposed,!?”!'*  defining generalized Lyapunov
exponents. However, shell-models drastically lose
their spatial dimensionality (see Ref. 30 and Sec. 5
for discussion and alternatives) and keep only a very
reduced number of degrees of freedom, chosen typ-
ically around 30 for numerical purposes; therefore
their relevance to turbulence predictability issues
remains questionable.

The causal cascade model for turbulence indeed
allows for a complete description of this decorrela-
tion process, i.e. its average behavior given by the
classical spectra (second order statistics), as well
as its strong variability by considering higher or-
der statistics. It is important to note, as described
in Appendix B, that the decorrelation of two fields
identical up to a time t; and then diverging, as their
subgenerators become independent, is statistically
similar to the auto-decorrelation in time of a single
field. Temporal increments Apy a; over time-lags
At:

APA,At(xa t) - pA(xst + At) - PA(x’t) (96)
are the relevant quantities of interest in order to
study this process, not only at all scale, but also at
all order (i.e. with help of the corresponding struc-
tures functions). A dipole effect (see Appendix A)
points out that there should be a sharp contrast be-
tween scales larger and smaller than the time lag At
occurring at all order statistics. Indeed, for scales
larger than the time lag, the effective order of frac-
tional integration is decreased, whereas for smaller
scales the increments are rather similar to the orig-
inal field, because the two terms on the r.h.s. of
Eq. (96) are independent.

4.3.2 Spectrel decorrelation

The energy spectrum of the increments Apy as(x, 1)
is the spectrum of (auto-) decorrelation:

Ep, (k,At)5(k + X)k|*-P

= (Apyak, D)App o (K, 1)) (97)

whereas the correlated energy spectrum Ew, is:
Ew, (k,At)8(k + k) |k|1~?

= (palk, Opa(K 1+ A1) (98)

and

En(k) = Ew,(k,At) + Ea, (k,At), VAt (99)
where Ex(k) is the classical spectrum (e.g. giving
for p = u the Kolmogorov law k=5/3) of the field
pa- The dipole argument yields (Appendix A}:

k< k(At) = Ea,(k,At) = k™2Eq(k) (100}

k> k(AL) = Ea (k,At) ~ Ep(k) (101)
ko(At) ~ At~1/(=H:) being the cut-off wavenumber
and indeed it was shown!3! that:

s (k,At) = Ep(k) (1-(k,A1)  (102)
where @ is a cut-off function of the form ®(&,At) =
lI(, ﬁ)“—{HzHHK{Q,R) (the spectral exponent is
equal to —5/3 + K(2,1/3) for turbulent velocity).
For k > k(At), ¢(k,At) ~ k~U+2H)+E(2a) &
and thus Ea, (k,At) = Ep(k), i.e., the small scales
are completely decorrelated, while for & < k.(At),
¢(k,At) = 1, and thus Ea,(k,At) = 0, i.e., the
large scales are still completely correlated.

We simulate the decorrelation of a field py with
universal parameters @ = 1.1 and C; = 0.82, on a
2-D space-time cut (1-D in space and 1-D in time).
The anisotropy exponent H, is taken equal to 1/3,
and the field is fractionally integrated (order H =
1/3, and a = 1). The ensemble average is done on
10000 realizations.

Fig. 16 displays Ea, for these simulations.
Though the large scales [k < k.(At)] do contain
uncorrelated energy, it is clear that it is negligi-
ble compared to the correlated energy at the same
scales; with At increasing, the cut-off wavenumber
kc(At) decreases, and the uncorrelated energy spec-
trum tends to the classical energy spectrum (for our
simulations corresponding to a k~'-7® law) over the

whole range £ > k.(At).

4.3.3 Quantifying the intermitiency
of the decorrelation process

However, as already argued in Ref. 121 the spectra
defined above are not sufficient on their own to
account for the intermittency of the decorrelated
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Fig. 16 Uncorrelated energy spectra for temporal intervals At increasing linearly, from bottom to top. Universal parameters
are: e = 1.1, €y = 0.82, and the anistropy was given by H. = 1/3. The field has been fractionally integrated (order H = 1/3,

a = 1). The dashed line corresponds to the |k[=*" law.

process. Indeed, Fig. 17 shows, for a single realiza-
tion of the simulations described for Fig. 16, the
quantity IE;A_m(k,t)P for k = kmax = 64 and
At = Atyin > 0, thus At being the typical lifetime
of the structures at the smallest scale of resolution.
The uncorrelated energy spectrum is the ensemble
average of this (stationary) quantity {called here-
after “elementary” uncorrelated energy spectrum);
the process now is seen as being strongly variable,
and looks much more like an intermittent succes-
sion of violent and sudden “bursts” of decorrelation
rather than smooth and predictable. The spectra
defined above are only relevant for the prediction of
the average behavior of this process.

A crucial question is then how to define the per-
tinent measures in order to properly quantify the
intermittency. As was argued in Ref. 121 for fluxes
Fy, a very straightforward idea would be to define
generalized (all order statistics and not only second
order statistics) spectra, i.e., correlated and uncor-

related energy spectra of the normalized n-power of
Fy:

B (k, At)é(k + K')|k[* P

(FAtk, OF (Kt + At))
(FR)?
which can be directly deduced from the correlation

measure C}\I)(F,n,/_\x,&t) defined in Appendix B
(see Ref. 121). It was shown in Ref. 121 that, for a
given 7, such spectra completely characterize the
decorrelation process for a single order of singularity

A

(103)

(n _ 4K(g = 2,7m)

T = dq
thus really corresponding to a mono-fractal mea-
sure; among these spectra, we recover for n = 1 the
set of spectra defined in the previous section, which
clearly indicates their intrinsic limitation. In the

(104)
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Fig. 17 “Elementary” uncorrelated energy spectrum (see text for definition) for At equals to the time-step, i.e. the typical
lifetime of the structures at smallest scale, for a single realization of the field pa, at wavenumber k = 64. Same field as in the

previous figure.

contrary, by letting »n vary so that 'yﬁf) explores the
whole range of orders of singularity of the multi-
fractal Fy, we are able to give a proper account of
the complete statistics (average behavior and strong
variability) of the process.

For fractionally integrated multifractals py, the
equivalent of Eq. (103) is somewhat more involved,
and does not seem to be explicitly solvable. How-
ever, one can argue that, since the transition from a
flux F to its fractionally integrated form p merely
consists in shifting the orders of singularity of F by
the fractional order H, it is expected that Ew, for

pa indeed singles out the order of singularity 'yf,n)

such that

dK(g = 2,an)

,),’()n) = i

+H. (105)

Another approach is to define a different set of
measures; indeed, the specira

£ (k,w) (e, )|~ P+ 8(k + k' )o(w + ')

_ (B )" ()
(Fx e

(106)

are more easily derivable. We derive it for n = 2

(see Appendix C); an interpolation of this result to
all n leads to

£ (kyw) ~ [|(kw)|7Hn 21Dt K 2ne)
. (107)

Note that the two known cases (7 = 1 and n = 2)
are retrieved here.

It is easy to check that SJ(\"), in the same way as

the generalized spectra E‘(ﬂl and Eg’g, singles out
for every n a different order of singularity. There-

fore, we conclude that the spectra Ei(\”) are indeed
pertinent for characterizing the variability of the

decorrelation process.

4.4 Forecasting

We now test the forecasting capacity of the causal
space-time cascade models. It was already argued
in Ref. 54 that one can compute a predictor of a flux
Fj known up to a given time ¢y from the retrieved
subgenerator, thus defined up to {fp; indeed,
the construction of universal, causal, space-time
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multifractals can be seen as the causal mapping of
the subgenerator v(x,1t) to the multifractal Fa(x,1)

v{x,t) — Fa{x,1) {108)
for (x,t) belonging to a given domain. The inverse
operation

Fa(x,t) — 7(x,1) (109)

is naturally possible, and we thus define, for Fy(x,1)
known up to tp, the “past” subgenerator y,(x,1).
A possible realization of the future of Fa, thus
Fa(x,t = 1o + At), is given by the direct causal
mapping of y(x,t < tg + At) such that
t < ip

¥(x,t) = 7p(x,1), (110)

t> 1o (111)

7(x1 t) = 7f(x1t)$
where 7; is a realization of a Lévy white noise (thus
independent of v,). It is easy to see that Fj(x,¢ =
to + At) is decomposable in two multiplicative

terms:

Faix,to + At) = Fp'A(X,tO + Ai)Ff‘A(X,iU + At)
(112)

where the two terms Fy, 4 and Fy 5 have very differ-
ent meanings: I, is the mapping, in the future,
of %p; it is thus entirely determined by the past,
i.e., from the known values of the field Fy up to
to, and corresponds to a relaxation from the past,
known field to 1 {constant in both x and t) as At in-
creases and eventually reaches 1 (the integral time).
In contrast Fya is the mapping, in the future, of
Y¢; it is thus purely stochastic, does not depend on
the past, and corresponds to a normalization term.
Thus the optimum forecast of Fa(x,t > tg) given
Fa(x,t € tg) is

(FR(x,tg + At)|Fa(x,t < 1))

= Fg_A(x, to + At) (Ff 4 (x,t0 + At))
(113)

Fig. 18 The generation of the two contiibutions Fpa and Fya to Fy. The figure on top shows that Fp, A is constructed by
limiting the integration domain of ¥(%,t) on the “past” field (in gray), while (bottom figure) the corresponding domain for
Fp  is only on the “future” field, and the generated Fy , is therefore the result of a space-time cascade with a scale-ratio of

i1, agl.
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Finally, we note that (F}’!A(x,to-fAt))~(A,\;1)K(q)
with A7 = [[(1, At)||, since Fy 5 simply results from
a cascade developed from the cut-off scale A, down
to the maximum resolution A (see Fig. 18). We then
obtain

(FR(x,to+ At)[Fa(x,t < to))
= i (x b0+ At) (ANHMO 0 (114)

A similar development can be obtained for the
fractionally integrated field p4; however, an explicit
expression corresponding to Eq. (114), in this case
of a non-conservative multifractal, does not seem to
be easily derivable. An exception is for the moment
of order 1, giving

(p/\(x7 o+ At)lpA(x:t £ tU))

= pp(X,t0 + A1) (115)

where ppa(X,t) = G(x,t) x I7,(x,t). An exam-
ple is given in Fig. 19; we display the predicted
field {pa(z,t0 + At)|pa(z,t € o)) for a simulated
pa(z,t < to) (see caption for parameters). Since,
for the moment of order 1, the normalization term
is equal to 1, as given by Eq. (115), we observe
here only the relaxation term. The predicted sig-
nal is then merely a filtered signal, since at Af,
all the components at wavenumbers k& such that
k > k¢(At) are smoothed out.

5. SCALING GYROSCOPES
CASCADE (SGC)

5.1 Shell-Models and Beyond

The complexity and unsolvability of the Navier-
Stokes equations have lead to the consideration of

Fig. 19 An example of predicted pa(z,? = Al +15), for a 2-D cut (1-D in space and 1-D in time); parameters are: o = 1.5,
Cy =015 H =1/3, H=1/3,a =1, A =512. We display 1-D spatial cuts of the field at At =1,2,3,5,9 and 20 times the
typical lifetime at the smallest scale (from top to bottom and left to right).
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some simplified caricatures of them, which never-
theless preserve some fundamental properties of the
original ones. One well-known example is the Burg-
ers equation, which as a 1-D turbulence model gives
precious hints on intermittency although it has un-
fortunately the drawback of introducing compress-
ibility. The so-called “shell-models”®%®! have been
very popular caricatures of Navier-5tokes equations
from which they conserve the quadratic interaction
and invariance for the flux of energy, however in
an extremely simplified framework since they are
only scalar {not vector) models and retain only the
spatial scale dependence instead of location depen-
dence. Indeed, these models consider the time evo-
lution of the averaged characteristic velocity shear
uy, (with corresponding vorticity knu,) on the shell
defined by the wave-vectors |k| ~ k,, the wave-
number k;, being the inverse of scale of the corre-
sponding eddies which is discretized in an exponen-
tial way (I, = L/A", L being the outer scale). Their
equation of evolution is of the following type:

(% 3 Vk;‘:) Uy = Kplnlin.y — kn+1ui+1 . (116)

We will show below that these models correspond
to an over-simplification of a more complete model.
This model, which is obtained by keeping only cer-
tain types of interactions of the Navier-Stokes equa-
tions, is indeed needed since the spatial dimension
is absent in shell-models, whereas it is crucial for
the development of intermittency. The relevance
of this drastic dimensional reduction was already
questioned, 3”12 a5 well as the relevance of models
having a number of eddies which do not increase al-
gebraically with the inverse of the scale. Indeed this
number N{f) should scale as N(£) ~ £~P where ¢
is the scale and D is the dimension of the model.
D can be lower than the dimension of the turbu-
lence itself (e.g. for a D-dimensional cut, D being a
number independent of the scale!3?).

In order to take into account the spatial dimen-
sion, while keeping an exponential discretization of
scales (which is not manageable with fast Fourier
transforms), we introduce a tree structure of eddies:
each eddy having N(}) = AP sub-eddies whose lo-
cation is labeled by (z) (in correspondence to its cen-
ter xt, the distance between two neighboring cen-
ters being of the order of {,,). This type of space and
scale analysis has been widely used for phenomeno-
logical cascade models and is indeed a precursor of
orthogonal wavelet decompositions.’>® To the eddy
of size !, and a location xf,_ corresponds a velocity

field (G%) and vorticity field (W) Fourier/wavelet
components, as well as the corresponding wave-
vector (ki ):

u, = (k) ko = k|-

(117)

Along this tree-structure, we show that for 3-D
turbulence as well as for 2-D turbulence, the equa-
tions of evolution due to direct interactions between
eddies and sub-eddies are analogous to the FEuler
equations of a gyroscope. The corresponding in-
direct interactions are obtained by coupling an in-
finite hierarchy of gyroscopes. Overall we derive
from rather abstract considerations on the structure
of the Navier-Stokes equations (its Lie structure)
dynamical space-time models which can be called
Scaling Gyroscope Cascade (SGC) models. It is
interesting to note that the recognition of the
similarities®”® between the Navier-Stokes equa-
tions of hydrodynamic turbulence and the Fuler
equations of a gyroscope can be traced back to
Lamb.%6

The SGC yields concrete models which can be
used to investigate fundamental questions of tur-
bulence, in particular its intermittency. Not only
does the SGC yield the inverse energy cascade sub-
range as well as the direct enstrophy sub-range for
the two-dimensional turbulence, but the multifrac-
tal characteristics of the former are extremely close
to those of the direct energy cascade of three-
dimensional turbulence. We also find a surprisingly
close agreement with various empirical studies of
atmospheric turbulence.

o SR =1,
w, = tkj, A t};

5.2 Navier—Stokes Equations
and Euler Equations of
a Gyroscope; Arnold’s Analogy

Consider the Navier-Stokes equations, for the ve-
locity field u(x,t), written in the Bernoulli form
(@ being the kinematic pressure, i.e. for barotropic
flows: a = f ;c(% + “—;, p being the (static) pressure;
v is the fluid viscosity):

(% - uA) u(x,t) = L(x,t) — grad(«) (118)

where L is the Lamb vector and w is the vorticity
field:

L{x,t) = u(x,t) A w(x,t) (119)

w(x,t) = curl{u(x,?)) (120)
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with the associated incompressibility condition:

div(u(x,?)) = 0. (121)
The curl of Bernoulli’s equation [Eq. (118)] corre-
sponds to the well-known vorticity equation:

(% - yA) wi(x, 1) = {wix,t),u(x,t)] (122)

the Lie bracket then being defined as:

[X,Y] =Y -grad(X) - X -grad(Y). (123)
The analogy pointed out by Arnold®” is between
the vorticity equation {Eq. (122)} and Euler’s gyro-
scope equation.
Consider the first Euler’s theorem or Euler’s gy-
roscope equation (i.e., equation for a rotating rigid
body attached to a fixed point with no torque}:

@z[M,Q]EMAQ

o (124)

where M is its angular momentum and € its ro-
tation (both relative to the body frame); the Lie
bracket being defined by the vector product A. The
(quadratic) non-linearity of this (apparently linear)
equation results from the linear relationship be-
tween angular momentum and rotation via the
(second order) moment of inertia tensor I or its in-
verse (J = I7'), both being symmetric:

M=I-Q;, Q@Q=J-M (125)
Therefore, the gyroscope equation is quadratic in
the angular momentum. The equation of motion
relative to the body frame [Eq. (124)] is equiva-
lent to Newton’s law of the conservation of angular
momentum relative to space (M;):

dM,
dt

0. (126)

This second Euler’s theorem is in fact a particu-
lar case of Noether’s theorem stating that there is
an invariant associated with every equation of mo-
tion. There are two associated quadratic invariants
to [Eq. (124)], the first one being the square of the
angular momentum (M?). The second quadratic
invariant is the kinetic energy of the body:

1 1

M- 1=

T= SM-(3-M).

(127)

One may note that the Fourier components of
the fields require us to consider the rather straight-
forward extension to complex gyroscopes (complex
conjugates being denoted by an overbar):

dM
— =[M, ].

— (128)

The Hermitian extension of the Euclidean strue-
ture preserves the quadratic invariants, since the
notion of mixed product {denoted by (.,.,.)]" is un-
changed:

2
ﬁ—?ft(z\/[,n,n)so; ﬂ—zR(M,Q,M)so

dt dt
: (129)

R denoting the real part of complex variable.

In the perspective of Arnold’s analogy, the vortic-
ity and the velocity are respectively the analogues
of the angular momentum (M) and of the rota-
tion (£2), the field analogue of the inertial tensor,
is the curl. However, there are fundamental dif-
ferences between their respective Lie algebra. In-
deed, while the Lie algebra {so(3)] corresponding
to Euler’s gyroscope, associated with the Lie group
[SO(3)] of rotations in the three-dimensional space,
is finite (since it can be defined as the set of three
dimensional vectors (f3) with the vector product
[Eq. {124)]), the Lie algebra corresponding to the
vorticity equation (on a sub-set D of ®3) is infi-
nite. Indeed, the latter can be defined as being
the set of divergence-free vector fields and it is as-
sociated with the group (being noted SDiff D by
Arnold) of the one-to-one volume preserving trans-
formations of D. Both are obviously infinite.® The
infinite dimensionality is not only related to the in-
tervention of partial instead of ordinary differen-
tiations, as well as to the field nature of the ve-
locity, but fundamentally to the phenomenology of
fully developed turbulence. Indeed, an infinite num-
ber of degrees of freedom should intervene when
considering the singular limit of the viscosity go-
ing to zero (or correspondingly the Reynolds num-
ber going to infinity): one expects the development
of a spectrum similar to the Kolmogorov-Obukhov

M(a,b,c)=a-(bAc)

°Tt might be important to note that the intrinsic dimensions
of the algebra or groups, are not to be confused with the
dimension of the spaces on which one of their representations

acts. Indeed, the latter could be infinite even in the case of
a finite algebra.
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spectrum®? down to a viscous scale which goes to
zero, i.e. a range of scales” goes to infinity. A linear
drag can be introduced into Euler’s gyroscope equa-
tion [Eq. (124)] in analogy to the viscous term of
Navier-Stokes equation {Eq. (118)]. However, the
singular perturbation corresponding to the latter
has a global effect by creating a flow of energy down
to smaller scales in 3-D) turbulence {of enstrophy in
2-D turbulence), although it intervenes directly only
in the viscous range. This fundamental scale prob-
lem clearly points out the necessity of dealing with
an infinite dimensional Lie algebra. As shown in the
following sections, it rather involves an infinite hi-
erarchy of gyroscopes rather than being analogous
to one of them. Furthermore, even for a finite num-
ber of modes, the Lie bracket {Eq. (123)] defined
by the vorticity equation [Eq. (120)] does not corre-
spond to the vector product. It is not dimensionless
and introduces therefore a scale dependency. How-
ever, it is relevant for 2-D turbulence, but in a new
context.

5.3 Alnalogy Based on the
Lie Structure of Turbulence

For 3-D turbulence an analogy rather opposite to
Arnold’s one can be considered: the velocity, the
vorticity, the energy and the helicity are respec-
tively the analogues of the angular momentum (M),
of the angular velocity (2), of the square of the
momentum (M?) and of the energy (M - 2). This
analogy can be better appreciated when one consid-
ers interactions which yield a divergence-less Lamb
vector. Indeed, the pressure gradient does not in-
tervene any longer (since it is only needed to enforce
incompressibility) in the r.h.s. of Bernoulli’s equa-
tion [Eqgs. (118)-(120)] which is therefore analogous
to the Euler equation [Eq. (124)]:

(gf - yA) u(x,t) = u{x,t) Aw(x,t). (130)

More generally, one may introduce in the Ber-
noulli equation [Eq. (118)] instead of the pressure
gradient the projector P(V) (resp. f’(k) in Fourier
space) on divergence-free vector fields:

P (V) = 6;—~ViV;ATY Bj(k) = 6 —kik; /K2
{131)

PHowever, as discussed in the next section, the number of
degrees of freedom is larger than the range of scales.

which yields? an expression (either in physical space
or in Fourier space) rather similar to the Euler equa-
tions of rigid body motion [Eq. (124)]:

(;% - VA) u(x,t) = P(V)-u(x,t) A w(x,t)
(132)

(% + ukz) a(k,1)

=P [ dpi(p,0) A F(a,).
k+p+q=0

(133)

In a general manner, the Navier-Stokes equations
(in the Fourier space) for 3-D turbulence corre-
sponds to an infinite hierarchy of gyroscope-type
equations. The (complex) analogues of M and Q2
being respectively the triplet [u(k), u(p), u(q)]
and [w(k), w(p), w{q)] of a triad (k+p+q = 0) of
direct interactions, the Lie bracket being the vector
product modulated by the projector P(k).

It is well-known that 2-D turbulence is rather pe-
culiar, since it has a family of invariants rather dif-
ferent from the 3-D case (or from any extensions
to dimensions d > 2). This is due to the simple
fact that the vorticity (w), as well as the poten-
tial vector (¥) of a 2-D flow are orthogonal to the
plane of the flow and are therefore defined by their
scalar components along the axis perpendicular to
the flow:

w=wz; Y=Vz; w=-AV (134)

¥ being the stream function, z is the unit vector in
the z direction. This orthogonality introduces some
simplifications in the vorticity equation {Eq. {122}]
and its corresponding Lie bracket [Eq. (123)]:

(w(x,t),u(x,t)] = —u(x,t) - grad(w(x,t)) (135)

there is only advection, the stretching term [w -
grad(u)| being strictly zero. This introduces the
enstrophy (w?) as a second quadratic invariant,
whereas the helicity (w - u) is strictly zero. The
Fourier transform of the vorticity equation:

(% + uk2> Sk, 1) = fkﬂ)ﬂ:o d*pl¥(p),w(q)]
(136)

SIndeed P(V}(u) = u and P(V)(grad(e)) = 0.
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involves the following Lie bracket:

[¥(p),(a)) = 5(ap,2)(¥(p)3(a) - 2(p)E(0))
(137)
and corresponds to an infinite hierarchy of
gyroscope-type equations. The (complex) analogues
of M and £ being respectively the vectors [w(k),
w(p), w(q)] and [¥(k), ¥(p), ¥(q)] of a triad (k +
p + q = 0) of direct interactions. The enstrophy is
therefore the analogue of the square of the momen-
tum, whereas the (turbulent) energy is the analogue
of the energy of the gyroscope. The Laplacian is the
analogue of the inverse of the inertial tensor.

5.4 Discretization of Scaling Cascades
of Gyroscopes

The projector P(k) [Eq. (133)] corresponds to the
velocity-vorticity vertex of interactions for a triad of
wave vectors (k, p, q) maintaining merely the or-

thogonality condition corresponding to incompress-
ibility [Eq. (121)):

k-tu(k,t)=0 (138)
it has the advantage of being dimensionless.
However, this projector reduces® at first order
to the identity for nonlocal direct® interactions
(max(k,p,q) > Amin(k,p,q), A being the arbi-

trary nonlocalness parameter) which satisfy some
orthogonal conditions ({|k| < |p! ~ |q| and p L
k} and {|p! € |k| ~ lq] and u(p)i|k}). This non-
local orthogonal approximation yields estimates of
the renormalized forcing and viscosity (see Sec. 1.2)
of Eq. (133}

(%wk?) a(k)= d*pii(p) A F(p)
IpI2 K]

¥ (/|P|<)\_1|k| ddpﬁ(p)) A (k)
) (139)

The similarity considered in Sec. 5.3 is more ob-
vious after discretization of nonlocal orthogonal ap-
proximation along the tree-structure of interactions
(see Fig. 20) based on the fundamental triads of
(direct) interactions (ki _;, kZ~!, k'), between a
mother and two daughter eddies (i = 1,2"~1). And
for 3-D turbulence, one obtains®® the following
equation of evolution (omitting temporarily the in-
teractions outside of the triad (ki,_,, k%1, k%) as
well as the viscous term) for the analogues of the
momentum (ﬁ) and of angular velocity (ﬁ)

=
= ML A
1t

— Tt At
Qn—l - Jn—l ‘ M'n—l

(140)

Fig. 20 Schematic diagram of a discrete Scaling Gyroscope Cascade model. In this one-dimensional cut, each eddy is a
daughter of a larger scale eddy and the mother of two smaller scale eddies. The light thin line indicates interactions for eddy
(3;3) in 3-D turbulence, whereas the dashed line indicates its interactions in 2-D turbulence. The thick line points out one of
the possible most energetic paths, corresponding to a possible reduction to a shell-model.
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with the following matrix representations:

r ﬁii

ﬁi;—l [M% 1]
(141)

~ (o]

and the analogue {3}, _;) of the projection of inverse
of the inertia tensor on the triad corresponds to:

0 0 1

Y i=kK; [K]=[0 0 0 (142)
1 0 0O

The equation of evolution of %), corresponds

therefore to the coupling of two equations of gy-
roscope type [Eq. (140)], therefore to the following
(in general complex) scalar equation of evolution

for the-velocity amplitude %/, of the wave vector
ki

d 2 2
(dt + vk} ) = K41 [|“rr{+11|2 — | +1| ]
D kalniny  (143)
a(j) bemg the location index of its “ancestor”

(= E(-Z—-—)] E(z) being the integer part of the real

z [E(x ) <z < E(z)+ 1]. In this equation, the two
first terms of the r.h.s. correspond to a renormal-
ized forcing, whereas the last one to the renormal-
ized viscosity.

The SGC model for 3-D turbulence can be re-
duced to the shell-model defined by Eq. (116), as
soon as one observes {as done on a similar model®®)
that at each time there is a most active path on
the tree connecting the largest structures to the
smallest ones (with a unique eddy at each level)
along which most of the energy transfer occurs (see
Fig. 20). This very crude understanding of intermit-
tency corresponds to eliminating the spatial index j
in Eq. (143) with the very unfortunate consequence
of eliminating the crucial spatial dimension, as dis-
cussed above.

The first order approximation used for discretiza-
tion in the case of 3-D turbulence cancels in the 2-D
case since the Lie bracket [Eq. (137)] is strictly zero
for any interaction triad having two parallel wave-
vectors. One has therefore to consider a second

order approximation!?®: instead of considering di-

rect interactions between eddies of two successive
levels (mother and daughters), one has to consider
interactions between three successive levels (mother,
daughter and grand-daughter). This implies (see
Fig. 20) that direct interactions link a given level
{m) of the cascade to the two previous ones (m — 1,
m — 2) as well as to the two following ones (m + 1,
m + 2). This yields an algebra more involved than
for the case of 3-D turbulence [Eq. (143)] and which
is generated by commutators of ¥ and &

Cit, = (qﬂr,pi,Z) [\I’ (p;) , W (qj;)]

oY (C,‘ffi’;f‘ifll

d{j)=225=1 225

S c‘f"g""(«”) _
dQ(j)=24j—2,2*1 ,
(144)

The analogues of the energy and of the square
of angular momentum are indeed invariant, since
we have the detailed conservation laws [similar to
Eq. (129)] for any triad {(k,p,q); k+ p + q = 0]:

[T(p), w(@)]¥ (k) + [¥(q),w(k)]¥(p)+

[¥(k),w(p)]¥(q) =0
) (145)

[Y(p)wlallw(k) + [¥(q),w(k)lw(p)+

[¥(k),w(p)lw(q) = 0.
(146)

Due to the existence of these two invariants, the
5GC yields a spectrum subrange (with slope ——)
which corresponds to an inverse energy cascade as
well as spectrum subrange (with slope ~3) which
corresponds to a direct enstrophy cascade (see

Fig. 21).

5.5 Multifractal Features of SGC

Contrary to the multiplicative processes!®'13 the
SGC models are fundamentally deterministic: only
the forcing could be stochastic. However, it was
checked that the SGC is rather independent3? of
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Fig. 21 The energy spectrum {averaged over 1024 realiza-
tions} of-the SGC for 2-D turbulence (forcing at level n =
10) displays an inverse energy cascade for low-wave numbers
(levels n < 10) with an algebraic slope close to 8y = 1.67, as
well as a direct cascade of enstrophy for high wave numbers
(levels n > 10), with a slope close to f2 = 3.0. Logs are
base 10.

the type of forcing used. Therefore, we used for
simulations a constant unit forcing which intervenes
only at a given level of the cascade (on the level
n = 1 and on the level n = 10 for the 3-D case
and the 2-D case respectively). Long runs for large
Reynolds numbers (e.g. 1024 large eddy turn-over
times) are easily performed on work stations, using
an accurate fourth-order Runge-Kutta scheme. In
order to exhibit clearly the two scaling subranges
for 2-D turbulence simulations were used 32 levels
of the SGC and for 3-D turbulence simulations 19
levels of the SGC yielding Re = 6 - 107. Spectra
in the 3-D case simulations display®® an absolute
slope close to the Kolmogorov-Obukhov®* § = &
which corresponds to the trivial scaling of Eq. (143)
when assuming a constant flux of energy. Spectra
of 2-D case simulations (Fig. 21) yield clearly the
energy subrange (algebraic slope extremely close to
1 = 1.67) as well as the enstrophy subrange (slope
extremely close to 8y = 3.0).

However, spectra do not give direct insights on
intermittency. We characterized this intermittency
in the framework of universal multifractals. 3-D

Fig. 22 Curves of DTM with the order of moment ¢ = 1.5
for 3-D SGC at medium level n = 7 and its corresponding
“shell-model]”: o — the spatial flux of energy of SGC [a =
1.4 3+ 0.05 (the slope of the curves} and €y = 0.25 + 0.05
(the intercept with the vertical axis)]; ¢« — the time series
of energy flux of 8GC (o = 1.5 + 0.05, C; = 0.25 % 0.05);
<4 — the time series of energy flux of “shell-model” (a =
0.6 +0.05, €, = 0.4 £ 0.05). The latter estimate with a < 1
qualitative different behavior of multifractality: singularities
are bounded.

SGC numerical simulations clearly support (Fig. 23)
strong universality (Sec. 2.2} (the misnamed log-
Lévy processes) rather than weak universality (e.g.
log-Poisson statistics), only the former possess at-
tractive and stable properties. Log-Lévy statistics
of (conservative) fluxes are defined by only two pa-
rameters: the mean fractality ; and the Lévy in-
dex a of multifractality. We estimate (Fig. 22) them
by a DTM analysis (Sec. 2.4) with an order of mo-
ment ¢ = 1.5, starting from' the level 7 of 3-D SGC
simulations. Similar results were obtained with var-
ious values of order of moments ¢ € {0.8,2). These
results, 'y = 0.25 £ 0.05, ¢ = 1.4 £ 0.05 for the
spatial flux of energy of SGC and C; = 0.25 £
0.05, o = 1.5£0.05 for the time series of energy flux
of SGC are close to those obtained for atmospheric
turbulence.27%%77:132 Op the contrary, the one-path
model or shell model [Eq. (116)] for 3-D turbulence
yields €y = 0.4 £0.05 and & = 0.6 + 0.05. The lat-
ter estimate with o < 1 corresponds to qualitative
different behavior of multifractality?®#8; singulari-
ties are bounded, whereas they are unbounded for
a >l
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Fig. 23 Estimate of the scaling function K'(g) obtained on the SGC runs (dotted line), as well as the theoretical curves
corresponding respectively to the strong universal multifractal corresponding to the SGC (C; = 0.25, & = 1.5), to the
weak universal multifractal (dashed lines) based on the She and Leveque choice of parameters, and its approximation by a
corresponding strong universal multifractal (i.e. C; = 0.11 and a = 1.62). Solid lines correspond to empirical and theoretical

curves K(q) obtained for “shell-model” with o = 0.6 3 0.05 and C; = 0.4 £ (.05,

6. CONCLUSIONS

We have argued that intermittency is a fundamen-
tal aspect of fully developed turbulence and can
only be understood as the result of cascade pro-
cesses acting over wide raunges of scales involving a
large number of degrees of freedom. We first re-
viewed some of the salient features of cascades em-
phasizing their generic multifractal limit and some
basic multifractal properties (including multifractal
phase transitions and the link with self-organized
criticality). We argued that — just as for low-
dimensional chaos — that without the existence
of stable, attractive universality classes, that mul-
tifractals would involve an infinite number of pa-
rameters and would hence be unmanageable. They
would be useless both theoretically and empirically.
Fortunately, both strong and weak types of univer-
sality classes exist; we outlined the current state of
the debate and showed -— using turbulent velocity
and temperature data — that only strong univer-
sality is compatible with the data for both weak
and extreme events. Since it has not yet been con-
vincingly demonstrated that the weak universality
classes are really attractive, this may not be too

surprising; in any case it clearly poses the question
as to which is the physically appropriate route to
universality (“nonlinear mixing”, “scale densifica-
tion”, a combination of the two, or other).

The bulk of the paper was devoted to develop-
ing cascades in two directions. First, we show how
they can be used for anisotropic, causal, continu-
ous, space-time turbulence modeling. This takes
us far beyond the usual static, discrete, isotropic
and acausal multifractal processes which dominate
the multifractal literature. On the other hand, we
address the fundamental criticism of multifractal
turbulence modeling: the gap between the phe-
nomenological (and stochastic) cascades and the dy-
namical (and deterministic) equations. The history
of the attempts to overcome this gap go back over
twenty-five years to the development of shell mod-
els. Collectively, these are systematic sets of ap-
proximations to the Navier-Stokes equations which
keep many of the symmetries (such as quadratic
invariants) and scaling but reduce the nonlinear in-
teractions to a fixed finite (and small) number per
wavenumber octave. We show that a more consis-
tent set of approximations (in 2-D as well as in 3-
D turbulence) maintains the spatial dimensionality
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and a number of degrees of freedom incrzasing al-
gebraically with wavenumber, and yields a Scaling
Gyroscopes Cascade model. We show numerically
that (contrary to shell models), this is in nearly an
identical universality class to the turbulence data.
These developments furthermore point out that
there is a rather common structure of the different
models involving a subtle balance between a renor-
malized viscosity and a renormalized forcing. How-
ever, we showed that the latter is rather far from
being quasi-Gaussian as hypothesized in the ana-
lytical closures or renormalized techniques which
failed to obtain its mean field behavior (without
rather ad hoc hypothesis) as well as its large fluc-
tuations, i.e. its intermittency. Going well beyond
curing the deficiencies, this should give the possi-
bility of deriving analytical /renormalized models of
intermittency built on this structure.
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APPENDIX A

Increments of a Fractionally
Integrated Flux

We first consider the properties of (space) increment
of the fractionally integrated field pa of a flux Fj,
defined by Eqs. (20) and (21):

Apaax(x) = pa(x + Ax) ~ pa(x) (147)

Due to the linearity of the convolution, this in-
crement is the convolution of the flux Fi, but with
the increment of the corresponding Green’s func-
tion, i.e.:

AG ax(x) = G(Ax + %) — G(x) (148)

To first order we obtain a “dipole effect” at large
scale:

x| > |AX] 3 AGar(x) ~ X . Ax2E )
|| d|x|

The order of integration for the increment is there-
fore decreased by one compared to the field p, itself,

(149)

while at small scales we obtain rather a “unipole
effect”:

|x + Ax| < |Ax| = AGax(x + Ax) =~ G(x + Ax)
(150)

x| € |Ax| 2 AGax(x) ~ -G(x) (151)
the increment corresponds to the difference of two
independent fields (the domains of integration of the
two contributions do not overlap), therefore has the
same behavior as the field py. There is therefore
a sharp contrast between scales larger and smaller
than the space lag. Nevertheless, the scales of the
order of |Ax| yield the main contributions of the
convolution corresponding to the two approxima-
tions, as soon as both diverge with this scale, i.e.
structure functions of order ¢ do scale with |Ax], as
soon as K(gq) satisfies:
oH - 1)< K(q) < gl (152)
The same considerations hold when considering
a generalized scale (||x|f instead of |x|),although its
gradient [which intervenes in the r.h.s. of Eq. (149)]
is slightly more involved (due to the fact that the
generator G # 1). For temporal increments and
corresponding causal Green’s function (Sec. 4), we
have the same phenomenology, although one may
rather consider directly the time partial differenti-
ation of this Green's function, which yields in cor-
respondence to Eq (149):

] > |At] = AGau(x,t) >~ At8G(x,t)  (153)

Eqgs. (150) and (151) remain rather unchanged.

APPENDIX B

Predictability and Auto-Decorrelation

We show that, for a space-time causal multifractal
field Fj, the two measures

C}(\l)(F,r;,Ax,At) = (FY(x, 1) FY(x + Ax,1 + At))
(154)
for a single field Fy, and

Cc(F,n, Ax, At)

= (F\""(x,t0 + Aty F{P"(x + Ax, 1o + Al))
(155)



-+ A=l (&x, At)]|

Hg.lﬁ‘
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Fig. 24

Two structures, at resolution A, separated by (Az, At), are correlated through their common ancestor at maximum

resolution A = [|(Az, At)]| 7. The two paths, from A to A, ate independent.

for two- fields F,(\l) and F ,(\2) identical up to time
to and diverging after fy (for universal multifrac-
tals, this can be restated at the subgenerator level:
for t < to, YV (x,t) = v¥(x,1), and for ¢ > to,
~(M(x,1) and ¥(3)(x, 1) are two independent realiza-
tions of the same white noise), are statistically iden-
tical, and characterize two similar processes (the
loss of predictability is the consequence of the di-
vergence of a field and its “perturbated” copy, or

equivalently the temporal auto-decorrelation of a
single field).

Indeed, in the case of C{!), the two terms Fa(x,1)
and Fj(x 4 Ax,t 4+ At) result from the same path
of the cascade down to the resoclution A such that
A7l = ||(Ax,At)||. This classical argument (for
self-similar fields,!913%13 for self-affine fields®) is
based on the fact that two structures, at a given res-
olution, of a cascade are correlated through their
common ancestors. The cascading process being
Markovian, this correlation is determined by look-
ing at their common ancestor at the largest resolu-
tion, thus at resolution A = ||(Ax, At)||~!. The two
remaining paths from A to A are independent (see
Fig. 24).

On the other hand, the two terms Fkl)(x,to-i-At)
and F,(\z)(x + Ax,ty + At) of C')(\z) can similarly be
linked. Let X = |A#j~1/(~H) gnd A* = |Ax|~!. In-
deed, Fﬁl)(x, to+At) and Ff)(x, i) have their com-
mon ancestor F(,l)(x,to) at maximum resolution \';

the same observation can be made for Fj(\z), and se-

lect F;E,z)(x + AX,t0) as the common ancestor at
maximum resolution. Consider the two extreme
cases: (1) A » A", then the two structures de-
fined above at resolution A’ are indeed identical, and
(2) A" <« A", then we need to look to the structures
at resolution A", The two corresponding structures,
F)(x,16) and F&(x,1p), are identical.

We have shown that the two structures involved
in Cf) are correlated through their common ances-
tor at resolution A = min{)\, A"}, or more directly*
A = {[(Ax, At)["Y. Thus €5 and ¢ both obey

the same scaling law®!:

C‘,(\l)(F, N, Ax, At)
= ¢ O(F,n, ax, At)

~ O (Aax, A)|IEE (156)

Note that the existence of the cut-off scale is easily
deduced from Eq. (156): for [Ax] > |Az.(At)]| ~
|At|ﬁ, the correlation measure follows the
|Ax|~ K2 taw, wlile for |Ax| < |Az.(AL)] it
scales as |Ax|% the process can be characterized
by the cut-off scale |Az.(At)] ~ |At|ﬁ.

"the function max{|Ax|, |At|'/*~#)} is a possible choice for
the scale function |[{Ax, At)]].
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APPENDIX C

Determination of 6'!(\")

We derive the expression of Ej(‘”) for the 2-D cut,
ie, D = 1, thus 1-D in space and 1-D in time.
The extension to higher dimensional case is obvi-
ous, 51(\2) is the product of a non-causal Green’s
function G*(k,w)G*(—k, —w) [see Eq. (90)] with a
convolution product involving a four-point correla-
tion on the conservative field Fy:

(PA(k,w)ph (K, o)

= b(k+k")8(w+w') GP(k,w)G2(—k,—w) (157)

x FT[(F3(0,0)F3(Azy, Aty)

X FK(AZQ,Atg)FK(Aﬂig,Aig)” (158)

where the Fourier Transform (FT) acts on Azq,
Azg, Azs — k and Aty, Aty, Aty — w. The four-
point correlation term can be solved identically as
the more traditional two-point described above; we

find
(FX(U, O)FK(AJ}], Atl)FK(AEQ, Atg)
X F§(Azs, Ats)) (159)

3
~ A4f\"(a) P H “(Axn’Atn)”—K(n+1,a)+]\'(n,a)
n=1

(160)
where P is the operator of permutation on the in-
dexes (6 permutations for 3 indexes). Given the
symmetry in the indexes in Eq. (158), we eventu-
ally get

(PR (K, w)p3 (K", w"))
= §(k + k')8(w + ') AYE(2)

% ||(k,w)”—‘!H—E:Da-—l-{-K(‘I,E) (161)

Interpolating this result to all 7, we expect £ to
scale like
g}(\ﬂ)(k’w) ~ “(k,w)”—-2Hn—2(n—1)Deg-1+K(2n,a)
(162)

The terms in the scaling exponent of |{(k,w)|| are
understood as: (1) —2H7 is the contribution from
the Green’s function of Eq. (90); (2) —2(n—1)D,;—1

results from the equivalent of 27 vectorial Fourier
Transform [acting on (Az, At)], one leading, due to
the invariance by translation, to the § functions;
we then obtain 25 — 1 times —D,, a scaling in
l(Az,At)||7? leading to a scaling in the Fourier
spacein ||(k,w)|;~P=+2; finally, the integration term
in [|{k,w)[|7P«*! [Lhs. of Eq. (106)] gives the
—2(n — 1}D¢ — 1 contribution; and (3) the inter-
mittent correction K (27,a).
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Previous studies have examined the spatial, temporal or magnitude distributions of
earthquakes. Moreover, others have shown that the spatial distribution of earth-
quakes is multiscaling. We extend these studies by incorporating the magnitude
of the events when examining the scaling properties of the statistics of the earth-
quakes. We introduce seismic fields as deduced from the maximum ground motion
of seismic events (i.e. earthquakes). We then show that these fields are multifrac-
tals. Moreover, using a technique called the double trace moment (DTM) analysis,
we present here the estimates for the lower bound of the universal exponents of
seismic fields: a = 1.1 = 0.1. We also estimate C; = 1.35 = 0.05. It is suggested
that while the value of Cy changes from year to year, the estimate of the Lévy index
remains relatively constant.

1. SCALING

In general, a process is said to exhibit scaling, if over a range of scales (i.e. sizes—whether
that be in space or time), quantity (e.g. the number of pair of earthquakes, N(€) , which
are separated by less than the given scale, £) can be expressed as

N{&y =P, (1)
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The exponent D is often called the fractal dimension. The symbol “~" indicates equality
to within constant factors.

Many geophysical fields are known to exhibit scaling (or self-similarity), whether observed
in the power spectra, box-counting relations, pair correlation, or in the scaling of statistical
moments (described below). Indeed, many features of earthquakes and earthquake distri-
butions have been shown to exhibit scaling. For example, in time, Omori showed that the
distribution of the number of aftershocks which occur after a larger earthquake (i.e. the
mainshock) followed a power law .! Others have shown that hypocenters and epicenters of
earthquakes could be treated as geometric fractal sets whose scaling could be characterized
by fractal dimensions ranging between ~ 1.1-1.6 .27 Recent multifractal analyses of the
spatial density of earthquakes ®° has confirmed the spatial multiscaling and have given a
more complete description.

While the Omori law coupled with the scaling of the positions (and corresponding spatial
density) of the seismic events clearly show that the dynamics underlying the occurrence of
seismic events is a scaling space- time process, it still provides only a very limited description.
This is because the spatio-temporal position of events does not take into account their
intensities which for earthquakes have long been known to vary tremendously even at a fixed
location. Conversely, the other basic empirical seismological law—the Gutenberg-Richter
law!®—ignores an event’s space-time location, and relates its magnitude to its probability
of occurrence.

2. THE SEISMIC FIELD AND MULTISCALING

2.1 The Seismic Field

The basic seismological fields are the stress and strain tensors, and given the evidence for
scaling discussed above, the natural framework is multifractal processes. However, the stress
and strain tensors are generally not directly observable; the primary seismic observations
are of the seismic displacements® of each event together with the associated position of the
hypocentre. Consider a seismic zone size L. The natural way to create a multifractal field,
is therefore to use a grid size £ < L , and sum the amplitudes over all the events that occur
within each grid element. We define the seismic field as

S
* fBA dDI 1 (2}

where the subscript A = L/€(>> 1) denotes the resolution of the seismic field. The subseript
A > A > 1 indicates the very small intrinsic resolution of the catalogue data. The dimen-
sion of the constructed seismic field is denoted D (here, D = 2, the earth’s surface), and
B, is a grid box of scale A (size L/A). The denominator normalizes the integrated power of
the displacement. One can think of the seismic field, at a given scale, as the average seismic
activity in each of the sub-boxes which cover the seismic zone. Presumably, since multifrac-
tals are generic scaling fields, if the seismic fields are multifractal then the nonlinear process

“The term seismic displacement (and amplitude) here and throughout this paper refers to the maximum
ground motion due to the seismic waves (normalized to 50 km) not to the slip parallel to the fault plane of
the adjacent sides of the tectonic plates.
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which generated these fields is also multifractal. A fundamental problem in seismology will
he to relate the scaling properties of the seismic fields to those of the underlying tensor
fields.

In this study, we treat each earthquake as a point process. On the one hand this treatment
is similar to previous studies of the density of events and on the other hand this simplistic
assumption will only affect our definition of seismic felds for the few earthquakes which have
rupture areas targer than the minimum resolution of the constructed seismic field {which,
for this study, is typically around 2 km—see below).

2.2 The Statistical Moment Scaling Exponent

To test these ideas we used data from the CALNET local earthquake catalogue® of earth-
quakes in Centrai California compiled by the United States Geological Survey (USGS) at
Menlo Park, California. This study is based on earthquakes occurring between January
1*, 1980 and December 31°, 1990 (approximately 4000 days}. These earthquakes which
were used were located in an area defined by the 35° and 39° N and 120° to 123° W. Ap-
proximately 129,000 earthquake events in the catalogue were in this region. The maximum
ground motion (normalized to 50 km from the epicenter) was extracted from the catalogue,
which uses information derived from the California seismic detection network (CALNET).
The depth and time coordinates were ignored; that is, only the earthquake epicenter and
magnitude were used in this study. It is notable that while most earthquake catalogues are
inhomogeneous in space and time with respect to detection sensitivity, these multifractal
analyses have results which are apparently robust under such changes. Indeed, it is shown in
a separate study 11 that the statistical moment scaling function and probability histograms
are afected by such changes in a manner consistent with the notion of seismic fields being
multifractals.

The seismic fields were produced on 512 by 512 square grids over a 400 km by 300 km
region yielding a minimum resolution of ~1 km. This resolution was chosen so as to be larger
than the accuracy of the location measurements while simultaneously frequently containing
more than one earthquake per grid box. The latter conditions are necessary since both
measurement errors, and the finite number of events in the sample will introduce spurious
breaks in the scaling at large A {small distances). Note that many of the grid boxes contained
no events; this is either due to their small amplitude (the minimum reported amplitude
corresponded to magnitude 0), or due to the fact that seismicity even at extremely small
amplitude levels is confined to a fractal subspace with D < 2.

The basic scaling properties we are interested in are the behavior of the different statistical
moments of Sy as the resolution {Le. A) is varied. In the scaling regime, we define the
statistical moment scaling function K(g) as follows

(S3) = A, (3)

where “(}” indicates statistical (ensemble} averaging. This averaging is necessary since we
treat the seismic field as the outcome of a stochastic seismic process.

A geometric multifractal approach was emploved by both Geilikman et al. (in the two
horizontal dimensions®) and Hirata and Imoto (in the three spatial dimensions®). Geilikman

*Earthquake data (eg. position, time, magnitude, etc] are generally compiled into compendia called
catalogues.
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et al. studied earthquakes {rom two regions from Russia and one in California, while Hirata
and Imoto analyzed the Kanto region of Japan. In this case the number density field of
earthquakes epi- and hypocenters, respectively, were considered to be the multifractal feld
(i.e. assigning each event the same magnijtude). A spectrum of dimensions was obtained
using the multiscaling of the statistical moments of the probability distribution as a function
of the scale length. This spectrum of dimensions is called the generalized dimension, Dy,
where the subscript g is the order of the statistical moment.'? The generalized dimension
function!®~13 is given by

Dy=D-—= (4)

and the box counting and correlation dimensions of seismic events are the special cases Dy,
D, respectively >>"® The connection between the strange attractor notation for the scaling
of the statistical moments.'® 7(g} and this notation being:

7(q) = (¢ - 1)D - K(q). (5)

2.3 Universality

We can exploit the basic scaling properties of the different moments of 5, 5 as the resolution
{(i.e. A) is varied. In the scaling regime, we define the double-moment scaling function
Ki{q,n) as follows:

(59} = ARG, (6)

where the symbol “~” indicates equality to within constant factors. We have already
mentioned that all the previous scaling results on earthquakes are obtained with n =0. In
order to estimate K (g, n) for each field we use a generalization (due to ensemble averages)
of the partition functions used in literature called the trace moments. This is equivalent to
a double trace moment {DTM) analysis'” of the underlying A, field. The trace moment of
Sp,a is defined as

q
Tr{(sn.)«)q] = <Z (S,?,A,;,\_D)q> = <2 (/B -_4:3\0{‘93;) > = )\K(qrﬂ)—(q—'l)D‘ (7)

1

where the sum is over all the grid elements at scale A and indexed by 1.
For universal multifractals, the explicit functional form of the moment scaling exponent
is given by
- o g Gpeie-g) ifarl,
K(g.n)=n"K{g)={ a-1 (8)
Ciqnla(g) ifa=1

One can see that there are two factors: one which depends on the universal parameter a
only while the second, called K(g), is determined by the two parameters o and C}. The
parameter 7 is a arbitrary, as outlined above, while o and C) are considered constant for
the process. We will be able to describe all the statistical properties and simulate the
process given knowledge of the values of o and Cy. To determine the value of «, one plots
log(K'{q,n)) versus log(n) and determines o from the slope of the line. Once can then
deduce ', using this value and knowledge of K(g.n = 1). If the process is a universal
multifractal, the value of @ will be independent of . We estimate a lower bound of the
universal exponents of seismic fields: o = 1.1 £ 0.1. We also estimate ¢} = 1.35 £ 0.05.
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3. CONCLUSION

We have introduced seismic fields as deduced from the maximum ground motion of seismic
events (i.e. earthquakes). We then show that these fields are multifractals. Using a tech-
nique called the double trace moment (DTM) analysis, we present here the first estimates
for the lower bound on the universal exponent of seismic fields: a = 1.1 £0.1. We also
estimate C; = 1.35 = 0.05. Knowledge of these values are useful when simulating seismic
fields and hence, earthquakes.
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Abstract. Fractal and occasionally multifractal be-
haviour has been invoked to characterize (independently
of their magnitude) the spatial distribution of seismic
epicenters, whereas more recently, the frequency distri-
bution of magnitudes (irrespective of their spatial loca-
tion) has been considered as a manifestation of Self-
Organized Criticality (SOC). In this paper we relate
these two aspects on rather general grounds, (ie. in
a model independent way), and further show that this
involves a non-classical SOC. We consider the multifrac-
tal characteristics of the projection of the space-time
seismic process onto the horizontal plane whose values
are defined by the measured ground displacements, we
show that it satisfies the requirements for a first order
multifractal phase transition and by implication for a
non-classical SOC. We emphasize the important con-
sequences of this stochastic alternative to the classical
{deterministic) SOC.

1 Introduction

One of the oldest scaling laws in geophysics is the Omori
law (Omort, 1895). It describes the temporal distribu-
tion of the number of aftershocks which occur after a
larger earthquake (i.e., the mainshock) by a scaling re-
lationship (power law). In the 1880, due to the impe-
tus of fractal geometry, scaling ideas were also applied
to the spatial distribution of earthquakes. Others have
shown that hypocenters and epicenters of earthquakes
could be treated as geometric fractal sets whose scaiing
could be characterized fractal dimensions ranging be-
tween 1.1 ~ 1.6 (Kagan and Knopoff, 1980; Sadovskiy
et al., 1984; Qkubo and Aki, 1987; Aviles et al., 1987:
Hirata et al., 1987, Hirata, 1989). Recent multifrac-
tal analyses (Geilikman et al., 1990; Hirabayashi et al.,
1992; Hirata and Imoto, 1981) of the spatial density of
earthquakes have confirmed the spatial scaling and have
given a more complete description.

Correspondence to: C. Hooge

While the Omori law coupled with the scaling of the
positions (and corresponding spatial density) of the seis-
mic events clearly show that the dynamics underlving
the occurrence of seismic events is a scaling space-time
process, it stil} provides only a very limited description.
This is because the spatio-temporal position of events
does not take into account their intensities which for
earthquakes have long been known to vary tremendously
even at a fixed location. Conversely, the other basic
empirical seismological law, the Gutenberg-Richter law
{Gutenberg and Richter, 1944), ignores an event’s space-
time location, and relates its intensity (amplitude and
hence magnitude) to its probability of occurrence. It is
therefore natural to combine the two types of informa-
tion — i.2. on the one hand the space-time location of
seismic events in a given area and during a given period,
and on the other hand the intensity of each event — into
a space-time process whose values are the intensities. In
this paper, in order to have the highest possible density
of events, we will pursue the slightly more modest ap-
proach of considering only the spatial projection of such
a process. We will however make an important exten-
sion of previous analyses by systematically considering
the different powers n of the process. One may note
already that the above mentioned geometric studies of
the density of epicenters corresponds to n = 0. To our
knowledge there has been until now a single multifractal
study for n # 0, using the value n = 1.5 which is an estl-
mate of the distribution of seismic energy (Hirabayashi
et al., 1992). In any event, the treatment of such gener-
alized seismic fields takes us beyond geometric consid-
eratlons on the space or time distribution of the centers
to consider processes?.

During the 1980’s it became increasingly clear that
whereas the general framework for scaling geometric sets

1In the following we will employ interchangebly the terms fields
and processes to indicate space-time dependencies although the
former emphasizes the spatial dependency while the latter, the
temporal dependency.
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was fractals, for scaling processes it was rather multi-
fractals. Furthermore, it was recognized that a generic
feature of the general (stochastic, canonical) multifrac-
tals was the appearance of qualitatively different weak-
/strong soft/hard behaviour — initially termed hyper-
bolic intermittency (Schertzer and Lovejoy, 1985) —
also characterized by power law probabilities (Schertzer
and Lovejoy, 1987, 1992). Due to the existence of a for-
mal analogy between multifractals and thermodynam-
ics, qualitative changes of this sort are termed muitifrac-
tal phase transiions; the soft/hard transition discussed
here is an example of a first order, low temperature tran-
sition (Schertzer et al., 1993). Recentlv this combina-
tion of spatic-temporal scaling with power law proba-
bilities has been taken as the hallmark of Self-Organized
Criticality (SOC, Bak et al., 1987) and it has been ar-
gued that this is the result of deterministic rather than
stochastic “toy” models. Several tarthquake models of
this sort have since been proposed {e.g. Tto and Mat-
suzaki, 1990). However many criticisms of this “clas-
sical” SOC scenario have been made. For example, it
is not consistent with the presence of foreshocks or af-
tershocks (Barriere and Turcotte, 1391). This defect is
fundamental since it results from the fact that classi-
cal SOC cannot deal with interacting avalanches (i.e.
events): it requires a vanishing flux whereas stochastic
SOC deals with non—zero flux and interacting avalanches
(see discussion in Schertzer and Lovejoy (1994b)).

Below, using multifractal analysis techniques involv-
ing the different normalized powers 1 of space-time sets-
mic processes, we simultaneously analyze the position
and amplitude of the seismic processes {(using the USGS
catalogue). As mentioned earlier, we omit the time de-
pendency proceeding to a multifractal analysis of the
projection on the space of the space-time process, pre-
serving its multifractal space-intensity properties.

We go on to show that the critical (generalized Guten-
berg-Richter) exponents characterizing the multifractal
phase transitions obey a relationship predicted by multi-
fractal theory. We specifically show that the critical or-
ders of statistical moments {gp ,) of the first order mul-
tifractal phase transition of the n (normalized) power of
the process, generalize the Gutenberg-Richter exponent
b(1) = qp.n (the usual Gutenberg-Richter exponent is
b = 5(1)). Indeed, the statistical moment scaling ex-
ponent of order g of the n (normalized) power of the
process, K(q,n), follows aspecial theoretically predicted
linear form: K(gp.y,n) = {¢p ,—1)D for ¢ > gp , where
D is an empirical constant. By varying 7, we are able
to determine the non-linear dependence upon 7 of the
critical order moment gp ,,. The value of D is shown to
be independent of the parameter 7. Since qp , changes
with  while D does not, D is a more fundamental con-
stant with which to describe the earthquake process.
‘These results show that the origin of self-organized crit-
lcality in earthquakes may be in stochastic, space-time
tensorial multifractal processes.

2 Normalized Powers Of Seismic Processes

Scaling ideas have evolved rapidly since the early 19807
and many geophysical fields or processes have now been
shown to be scaling, sometimes over very large ranges
of space and time scales. Indeed, it has been argued
for some time (e.g. Schertzer and Lovejoy (1991) and
references therein) that this ubiquity is not surprising
since scaling can be regarded as a symmetry principle.
Viewed in this way, geophysical systems are expected
to be scaling because few geophysical processes have
specific mechanisms which operate at unique scales and
which are strong enough to break the scaling. However,
treating scale invariance as a symmetry principle does
more than simply explain the presence of scaling; it gives
us quite specific predictions about the overall dvnamics
and statistics. For example, when nonlinear dynamical
processes are scale invariant, it is now becoming clear
that the resulting fields are multifractals, whereas asso-
ciated scale invariant geometric sets are fractals. Var-
ious theoretical properties of multifractals can then be
exploited including the occurrence of rare but violent
events (“hard” behavior) and the possibility of univer-
sality (i.e., behaviour independent of many of the details
of the process, see Schertzer and Lovejoy {1987, 1992},
in earthquakes, see Hooge (1993)).

The basic seismological fields are the stress and strain
tensors, and given the evidence for scaling discussed
above, the natural framework is multifractal tensor pro-
cesses (see Schertzer and Lovejoy (1994a) for the gener-
alizations of multifractals beyond positive scalars using
Lie cascades). However, the stress and strain tensors are
generally not directly observable; seismic observations
are based on the ground displacements of each event.
This data is then used (via inversion techniques) to de-
termine the position of the hypocenter, the origin time,
and seismic moment tensor. Consider a seismic zone
size L. The natural way to create a multifractal field
is therefore to use a grid size ! < L and sum the am-
plitudes over all the events that occur within each grid
element. Since by itself the sum of maximum ground
motion amplitudes A over a grid has no.obvious phys-
ical significance, we are thus lead to define the various
(normalized) powers of seismic fields, indexed by the
parameter n:

fa, (An)"d%
Sq‘A = BIB ddI ] (1)

where the subscript A = L/I{> 1) denotes the resolu-
tion of the seismic field. The subscript A > A > 1
indicates the very small intrinsic resolution of the cata-
logue data. d denotes the dimension of the constructed
seismic field (here, d = 2, the earth’s surface), and B, is
a grid box scale A (size L/)). The denominator normal-
izes the integrated n power of the ground displacement,.
When 7 = 0, each event is given the same weight; Sp



will be the density of the number of events at scale A,
the statistics will be the same as in the geometric multi-
fractals references discussed above. Since sermu-empirical
models of earthquake processes relate the amplitudes to
moments and energies of individual events, seismic fields
with specific values of  (such as 5 = 1.5 for seismic en-
ergy (Hirabayashi et al., 1992)) could be regarded (due
to the normalization) as generalized moment or energy
fields. Similarly, by studying preobability distribution
of S, 1, we will obtain a family of exponents indexed
by 1 which are generalizations of the Gutenberg-Richter
exponents {below, we show that with 7 =1, the gener-
alized {normalized) exponent equals the usual, (unnor-
malized) one). As we increase the parameter 5 we place
increasing weight on the extreme events: by studying
the statistical properties of the entire family of 5,5 as
functions of resolution A, we obtain a complete char-
acterization of the scaling properties of the earthquake
catalogue. This technique has the advantage that as 7
increases, it is less and less sensitive to the minimum
detection of the network, unlike either the box-counting
or pair correlation techniques mentioned above (Hooge,
1993). Presumably, since multifractals are generic scal-
ing fields, if the seismic fields are multifractal then the
nonlinear process which generated these fields is also
rnultifractal. A fundamental problem in setsmology will
be to relate the scaling properties of the seismic fields
to those of the underlying tensor fields.

One may note that for the present time we have only
scalar and pointwise data. The effect of the latter may
not be too severe since only some of the larger events will
have rupture areas larger than our resolution (= 2km).
Due to the sparseness of the network, some weaker events
may be missed. However, the measuring network can be
seen as another, independent, multifractal phenomenon
{see Tessier et al. (1994)), and given this, will not break
the scaling {although it may modify the multifractal
exponents). A more significant limitation is that our
scalar analysis is unable to take into account the strong
anisotropy of individual events associated with fault di-
rections; Lie analysis (Schertzer and Lovejoy, 1994a) is
required to proceed with more sophisticated data includ-
ing tensorial information. However, there is still 2 strong
anisotropy of the observed scalar process; this takes us
beyond self-similar processes requiring the framework
of Generalized Scale Invariance (Schertzer and Lovejoy,
1985), and will be investigated in future papers.

In this study, we treat each earthquake as a point pro-
cess. On the one hand this treatment is similar to previ-
ous studies of the density of events —we simply consider
7 not restricted to only zero —on the other hand this
simplistic assumption will only affect our definition of
seismmic fields for the few earthquakes which have rupture
areas larger than the minimum resolution of the con-
structed seismic field (which is typically around 2km).
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A=32

Fig. 1. The seismic field for various values of the parameter
X with 7 = 1. This figure shows how the picture changes with
resolution (i.e. A).

3 Multiscaling Properties Of Seismic Fields

To test these ideas we used data from the local earth-
quake catalogue of earthquakes in Central California
comnpiled by the U. S. Geological Survey (USGS} at
Menlo Park, California. This study is based on earth-
quakes occurring between January 1°%, 1980 and De-
cember 31°*, 1990 (approximately 4000 davs). These
earthquakes were situated in an area bounded by the
lines of North latitude 33°30” and 43°10” and lines of
West longitude by 115°00” to 128°48”. There were ap-
proximately 235,000 earthquake events in this catalogue
which uses information derived from the California seis-
mic detection network which now, for example, com-
prises more than 300 seismological stations (there were
roughly 200 statious in operation as of 1990 — see Marks
and Lester {1980}). The fields for several values of A
are shown in Fig. 1 using a gray scale rendering. Fig-
ure 2 shows the same region at maximum resolution (z.e.
A = 512). The maximum ground motion {normalized



Fig. 2. The seismic field at the finest resolution (512 x 512 grid)
with n = 1.

to 50 km from the epicenter) was determined from the
catalog. The depth and time coordinates were ignored,
that is, only the earthquake epicenter and magnitude
were used in this study. In the future we hope to apply
multifractal techniques to more complete descriptions of
the earthquake process (e.g. incorporate the depth and
time coordinates, employ the seismic moment tensor,
2L, ).

The setsmic fields were produced on 512 by 512 square
grids over a 1000km x 1000km region yielding a mini-
mum resolution of = 2km. This resolution was cho-
sen so as to be larger than the accuracy of the location
measurements while simultaneously frequently contain-
ing more than one earthquake per grid box. The latter
conditions are necessary since both measurement errors,
and the finite number of events in the sample will intro-
duce spurious breaks in the scaling at large A (small
distances). Note that many of the grid boxes contained
no events; this is either due to their weak intensity (the
‘minimum detectable amplitude corresponded to magni-
tude 0), or due to the fact that seismicity — even at
extremely low intensity levels — is confined to a fractal
subspace with d < 2 . We discuss this further below.

The basic scaling properties we are interested in are
the behavior of the different moments of S; 5 as the
resolution (i.e. A)Y is varied. In the scaling regime, we
define the moment scaling function K{gq,n) as follows:

((Saa)) m AFE0), (2)

where “{ )" indicates statistical (ensemble) averaging.
This averaging is necessary since we treat the seismic
field as the outcome of a stochastic seismic process. The
symbol = indicates equality to within constant factors.
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Fig. 3. Multiscaling of statistical moments for earthquakes in the
period 1980-90. The range of scaling for this (and all subsequent
earthquake analyses) is from 2km (logyp(A) = 2.7) to 1000km
{logyo(H) = 0).

We have already mentioned that virtually all the pre-
vious scaling results on earthquakes are obtained with
n = 0, for example, the generalized dimension func-
tion (Grassberger, 1083; Hentschel and Proccacia, 1983;
Schertzer and Lovejoy, 1983) is given by Dy = D -
K(g,0)/(g = 1) and the box counting and correlation
dimensions of seismic events are the special cases Dp,
D, respectively (Kagan and Knopoff, 1980; Aviles et
al., 1987; Hirata et al., 1987; Hirata, 1989; Geilikman
et al., 1990). In order to estimate K(g,7n) for each 5, x
field we use a generalization (due to ensemble averages)
of the partition functions used in literature called the
trace moments. This is equivalent to a double trace mo-
ment (DTM) analysis (Lavallée, 1991) of the underlying
Ap fleld. The trace moment of S, 5 is defined as:

= <Z (Sn.x,w\'D)q>

Tr((Saa)1]

1

- (2 (], wrer))

AKGm=(e-1)D (3)

where the sum is over all the grid elements at scale A
and indexed by 7.

In Fig. 3 one can observe scaling over the entire range
of A, from 2km to 1000km. Figure 4 shows a plot of
K (g, n) versus g for various values of . If the field were a
monofractal, the lines in Fig. 3 would have slopes which
increase as a linear function of ¢ which is not the case,
hence seismic fields are multifractal processes. At both
the larger and smaller values of ¢, the K(g,n) becomes
linear. At smaller values this is due to weak order sin-
gularities {i.e. smaller earthquakes) either as a result
of the detection limits of the seismological network, or
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Fig. 4. Statistical Moment Scaling funetion, A'(g,7n). versus g for
various values of 7.

the absence of such events in the underlving multifractal
seismic process. The reason K(q,7n) becomes linear for
larger ¢ will be explained below in terms of a first order
multifractal phase transition.

4 Generalized Critical Exponents,
First Order Multifractal Phase Transitions
and Self-Organized Criticality

To generalize the Gutenberg-Richter law to the seismic
fields we define the following set of critical exponents
dDn:

Pr{Sya>s)xs7 9 fors>1 {4)

where Pr indicates “probability”, and gD o is the gener-
alized Gutenberg-Richter exponent. This notation an-
ticipates the independence (due to the scaling) of ¢p ,
on the resolution A, but to its nontrivial dependence
on the effective dimension D, and the index 5. Be-
cause of its power {aw form, the Gutenberg-Richter law
is often called “scaling” which is unfortunate since it is
only “scaling” with respect to the intensity of the event,
whereas the term “scaling” is more properly reserved
for power law behaviour under changes in spatial (or
temporal) size/resolution. Since the above implies the
divergence of high order statistical moments:

((Sn.)\)q) — 00, for ¢ > 4D g (3)

9D n is more properly called the critical exponent of “di-
vergence of moments” and separates two qualitatively
different behaviors: the low ¢ soft behavior and the high
¢ hard behaviour (Schertzer and Lovejoy, 1992). Fig-
ure 5 shows the probability histograms for several of the
Sn,a fields defined above. One can see that the proba-
bility tail is linear for each value of 7 ; we estimate 90 1
from the negative asymptotic slopes.

One of the attractive features of our multifractal mo-
del of seismicity is that multifractal processes generical-
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Fig. 5. This figure show the logio(relative frequency of an event)
versus [0g19(Sy,2), using a 512 x 512 grid, for three values of
n = 0,1,1.5. The corresponding negative slopes are equal to 1.2+
0.1,1.0%£0.1,0.5 %+ 0.1.

ly lead, via a specific mechanism called “dressing” de-
scribed below, to this type of divergence. Since diver-
gence of rnoments coupled with scaling has been taken
as the basic features of “self-organized criticality” (Bak
et al., 1987, 1988), Schertzer et al. (1993) and Schertzer
and Lovejoy (1994b} have argued that “self-organized
criticality” may be a multifractal phenomenon. In any
case, no matter what is the origin of the divergence,
it will be associated with a qualitative change in the
K(g,n) function estimated with a finite sample size.
'This is apparent since empirical values are always finite:
for ¢ > qp ;. the empirical estimates of {{S, 1)¢) will de-
pend on sample size and D in a precise way; Schertzer
and Lovejoy {1994b) show that empirical K'(q,7) func-
tions undergo discontinuities in their slopes at ¢ = ¢p ,,
after which they are linear. The amplitude of the discon-
tinuity is determined by the sample size and D. Figure 4
shows this linear behavior for ¢ > gp ,. Since there is
a formal analogy between multifractals and thermody-
namics, such qualitative changes are cailed “multifractal
phase transitions”, here they are first order {discontinu-
ities in the second derivative can also arise due to sam-
pling effects. even if there is no divergence of moments,
see Schertzer and Lovejoy (1994b}).

As a multifractal process proceeds to smaller and smal-
ler scaies, it becomes more and meore intermittent, being
characterized by increasingly violent regions (the sin-
gularities) and increasingly calm regions (the regulari-
ties). The small scale limit is mathematically singular;
in order to obtain well defined limiting properties, it is
necessary to integrate (i.e. average) the process over
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Qp, 1

Fig. 6. This figure shows the relation between K{gp . n and
qp,n for values of n ranging from 0.0 to 2.0 — 100 values of 5
between. The slope of the bestfit line is 1.1, with an intercept
roughly zero. Using earthquake data from the years 1980-90.

finite sets with dimension d. For low order moments,
the resulting “dressed” field will have the same scaling
properties as the nonintegrated (“bare”) process; how-
ever, for ¢ > qpn the integration fails to sufficiently
smooth out the process, one obtains violent “hard” sin-
gularities and divergence of the corresponding moments.
The exact order is given by the solution of the following
equation:

K(gpnm =(gon— 1D (6)

which is a consequence of applying the formula for 7 = 1
to n powers of the underlying (bare) process (Schertzer
and Lovejoy, 1987, 1994a). It should be emphasized
that this equation is a theoretical prediction of the the-
ory of general (“canonical”) multifractals and applies
only when the source of the divergence is this dressing
(smoothing/averaging) mechanism. It is therefore of in-
terest to test this equation so as to discover whether the
observed K{g,n) and gp , can be explained this simple
way. Due to the difficulty of measuring very weak but
frequent seismic events, it is not immediately obvious
whether or not seismic processes generate such events.
If they do not, and the process is confined to a frac-
tal subspace, thep the dimension D in Eq.(6) will be
less than d. Here we rather regard D as an empirically
determined parameter, which we estimate directly by
plotting K(gp »,7n) against gp p-

Figure 6 shows this relation for values of n ranging
from 0.0 to 2.0 and using earthquake data from the years
1080-90. The slope of the line is 1.1. This confirms the

relation with a dressing dimension of D & 1.1.

-

5 Conclusions

Until now, the two basic empirical laws about earth-
quakes, the spatial scaling of their distribution (the hyp-
ocenters form a fractal set, the density, a multifrac-
tal measure), and the divergence of statistical moments
(the Gutenberg-Richter law) have not simultaneously
coexisted in a coberent theoretical framework. Even
deterministic models exhibiting self-organized critical-
itv fail to provide a general connection between the
two. Largely as a consequence of this, empirical analy-
ses have generally not been able to simultaneously deal
with the spatial distribution of the earthquakes and with
their intensities. We have argued here that the funda-
mental seismic processes are scaling space-time tenscr
{e.g. stress-strain) processes involving (tensor) space-
time multifractal fields resulting from Lie cascades. Al-
though the observed ground displacements (and the as-
sociated seismic fields) are non-trivially (and nonlin-
early) related to these processes, we will nevertheless
expect multifractals to provide the appropriate theoreti-
cal framework and analysis methods. This motivates the
study of the (normalized) powers of seismic fields from
the USGS earthquake catalogue by summing various
powers of ground displacements onto grids. With only
one exception (7=1.5, Hirabayashi et al. (1992)) exist-
ing scaling analysis has been on the special case n =0 —
the only case with no intensity information. By apply-
ing a multifractal analysis technique (trace moments)
on all the members, we show that the seismic fields
exhibit characteristics typical of multifractals. Finally,
using multifractal theory, we show that multiscaling of
the seismic fieids leads via multifractal phase transitions
to (generalized) Gutenberg-Richter exponents ¢p,5- An
important consequence is that multifractality, although
theoretically present for any 1 and ¢ is only directly
observable for ¢ < gp,. These exponents are shown
to obey a simple theoretically predicted formula which
arises due to the “dressing” of the fundamental seismic
fields. Contrary to the usual deterministic framework
which situates the origin of the self-organized critical
behaviour of earthquakes in deterministic toy-models,
we demonstrated the possibility of an alternative: self-
organized criticality of earthquakes can originate from
stochastic space-time tensorial multifractal processes.
We also pointed out the necessity to proceed to mul-
tifractal tensorial analysis with the help of Lie analysis
to better taking into account many features of the seis-
micity which are bevond the present scalar multifractai
analysis.
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