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Abstract: We discuss the concept of discrete scale invariance and how it leads
to complex critical exponents (or dimensions), i.e. to the log-periodic corrections to
scaling. After their initial suggestion as formal solutions of renormalization group
equations in the seventies, complex exponents have been studied in the eighties in
relation to various problems of physics embedded in hierarchical systems. Only re-
cently has it been realized that discrete scale invariance and its associated complex
exponents may appear “spontaneously” in euclidean systems, i.e. without the need
for a pre-existing hierarchy. Examples are diffusion-limited-aggregation clusters, rup-
ture in heterogeneous systems, earthquakes, animals (a generalization of percolation)
among many other systems. We review the known mechanisms for the spontaneous
generation of discrete scale invariance and provide an extensive list of situations where
complex exponents have been found. This is done in order to provide a basis for a
better fundamental understanding of discrete scale invariance. The main motivation
to study discrete scale invariance and its signatures is that it provides new insights
tn the underlying mechanisms of scale invariance. It may also be very interesting for
prediction purposes.
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1 Introduction

During the third century BC, Euclid and his students introduced the concept of space
dimension, which can take positive integer values equal to the number of independent
directions. We have to wait until the second half of the nineteen century and the
twentieth century to witness the generalization of dimensions to fractional values.
The word “fractal” is coined by Mandelbrot [1] to describe sets consisting of parts
similar to the whole. and which can be described by a fractional dimension (see
(2] for a compilation of the most important reprints of mathematical works leading
to fractals). This generalization of the notion of a dimension from integers to real
numbers reflects the conceptual jump from translational invariance to continous scale
invariance.

The goal of this paper is to review the mathematical and physical meaning of a
further generalization, wherein the dimensions or exponents are taken from the set of
complex numbers . We will see that this generalization captures the interesting and
rich phenomenology of systems exhibiting discrete scale invariance, a weaker form of
scale invariance symmetry, associated with log-periodic corrections to scaling.

Before explaining what is discrete scale invariance, describing its signatures and
importance and studying its mechanisms. let us present a brief historial perspective.
To our knowledge, Novikov has been the first to point in 1966 that structure factors
should contain log-periodic oscillations [3]. Loosely speaking, if an unstable eddy in
turbulent flow typically breaks up into two or three smaller eddies, but not into 10 or
20 eddies, then one can suspect the existence of a preferable scale factor, hence the
log-periodic oscillations. The interest in log-periodic oscillations has been somewhat
revived after the introduction of the renormalization group theory of critical phenom-
ena. Indeed, the mathematical existence of such corrections has been discussed quite
early in renormalization group solutions for the statistical mechanics of critical phase
[4, 5, 6]. However, these log-periodic oscillations, which amount to consider complex
critical exponents, were rejected for translationally invariant systems, on the (not to-
tally correct [7]) basis that a period (even in a logarithmic scale) implies the existence
of one or several characteristic scales, which is forbidden in these ergodic systems in
the critical regime. Complex exponents were therefore restricted to systems with
discrete renormalization groups. In the eighties, the search for exact solution of the
renormalization group led to the exploration of models put on hierarchical lattices,
for which one can often obtain an exact renormalization group recursion relation.
Then, by construction as we will show below, discrete scale invariance and complex
exponents and their log-periodic signature appear.

Only recently has it been realized that discrete scale invariance and its associated
complex exponents can appear spontaneously, without the need for a pre-existing
hierarchical structure. It is this aspect of the domain that is the most fascinating
and on which we will spend most of our time.

'A further generalization to the set of quaternions (the unique non-comumnutative generalization
of complex numbers on the set of real numbers} does not bring any new structure.
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2 WHAT IS DISCRETE SCALE INVARIANCE
(DST)?

Let us first recall what is the concept of (continuous} scale invariance: in a nutshell,

it means reproducing itself on different time or space scales. More precisely, an

observable (O which depends on a “control” parameter r is scale invariant under the
arbitrary change r -+ Az ?, if there is a number u(A) such that

Ofz) = uO(Az) . (1)

Eq.(1) defines a homogeneous function and is encountered in the theory of critical
phenomena, in turbulence. ete. Its solution is simply a power law O(z) = Cz°, with

a = —:zﬁ, which can be verified directly by insertion. Power laws are the hallmark
of scale invariance as the ratio %%5)1 = A" does not depend on z, i.e. the relative value

of the observable at two different scales only depend on the ratio of the two scales
®. This is the fundamental property that associates power laws to scale invariance,
self-similarity 4 and criticality ®.

Discrete scale invariance (DSI) is a weaker kind of scale invariance according to
which the system or the observable obeys scale invariance as defined above only for
specific choices of A (and therefore u), which form in general an infinite but countable
set of values Ay, Ag,... that can be written as A, = A™. ) is the fundamental scaling
ratio. This property can be qualitatively seen to encode a lacunarity of the fractal
structure [1].

Note that, since z — Az and O{z) - pO(Az) is equivalent to y = log z — y+log A
and log O(y) — log O(y +log A) +log 1, a scale transformation is simply a transiation
of log z leading to a translation of @. Continuous scale invariance is thus the same as
continuous translational invariance expressed on the logarithms of the variables. DSI
is then seen as the restriction of the continuous translational invariance to a discrete
translational invariance: log O is simply translated when translating y by a multiple
of a fundamental “unit” size log A. Going from continuous scale invariance to DSI
can thus be compared with (in logarithmic scales) going from the fluid state to the
solid state in condensed matter physics! In other words, the symmetry group is no
more the full set of translations but only those which are multiple of a fundamental
discrete generator.

3 WHAT ARE THE SIGNATURES OF DSI?

We have seen that the hallmark of scale invariance is the existence of power laws,
The signature of DSI is the presence of power laws with compler exponents a which

“Here, we impiicitely assume that a change of scale leads to a change of control parameter as in
the renormalization group formalism. More directly, r can itseif be a scale.

3This is only true for a function of a single parameter. Homogeneous functions of several variables
take a more compiex form than (1).
. *Self-similarity is the same notion as scale invariance but is expressed in the geometrical domain,

with application to fractals.

Criticality refers to the state of a system which has scale invariant properties. The critical state
.15 usually reached by tuning a control parameter as in liquid-gas and paramagnetic-ferromagnetic
phase transitions. Many driven extended out-of-equilibrium systems seem also 1o exhibit a kind of
dynamical criticality, that has been coined “self-organized criticatity” [8].



manifests itself in data by log-periodic corrections to scaling. To see this, consider
the triadic Cantor set shown in figure 1. This fractal is built by a recursive process as
follows. The first step consists in dividing the unit interval into three equal intervals
of length § and in deleting the central one. In the second step, the two remaining
intervals of length 3 are themselves divided into three equal intervals of length 5 and
their central intervals are deleted. thus keeping 4 intervals of length é. The process
is then iterated ad infinitum. It is usually stated that this triadic Cantor set has the
fractal (capacity} dimension Dy = :%g%, as the number of intervals grows as 2™ while
their length shrinks as 37" at the n-th iteration.

It is obvious to see that. by construction, this triadic Cantor set is geometrically
identical to itself only under magnification or coarse-graining by factors Ap = 3° which
are arbitrary powers of 3. f you take another magnification factor, say 1.5, you will
not be able to superimpose the magnified part on the initial Cantor set. We must
thus conclude that the triadic Cantor set does not possess the property of continuous
scale invartance but only that of DSI under the fundamental scaling ratio 3.

This can be quantified as follows. Call N.(n) the number of intervals found at the
n-th iteration of the construction. Call 2 the magrification factor. The original unit
interval corresponds to magnification 1 by definition. Obviously, when the magnifi-
cation increases by a factor 3, the number N (n) increases by a factor 2 independent
of the particular index of the iteration. The fractal dimension is defined as

NI‘ . l NJ:; 1 2
D= lim 28N InNe(n) _log2 00 (2)
T—+00 Inz z—0 lnzx lOg 3

However, the calculation of a fractal dimension usually makes use of arbitrary values
of the magnification and not only those equal to z = 37 only. If we increase the
magnification continuously from say z = 3* to z = 3?*!, the numbers of intervals in
all classes jump by a factor of 2 at z = 37, but then remains unchanged until z = 37+,
at which point they jump again by an additional factor of 2. For 3* < z < 3r+! N:(n)
does not change while r increases, so the measured fractal dimension D{z) = '—“{%ﬂ
decreases. The value D = 0.63 is obtained only when z is a positive or negative
power of three. For continuous values of z one has

_ pp(logz
N:(r) = Ni(n)z P(logg), (3)

where P is a function of period unity. Now, since P is a periodic function, we can
expand it as a Fourier series

p (logl‘) — Z Cn EXP (QnmE—;) . (4)

log 3 )

Plugging this expansion back into {3), it appears that [ is replaced by an infinity of
compiex values
2

log 3

Dn=D+ni {5)

We now see that a proper characterization of the fractal is given by this set of com-
plez dimensions which quantifies not only the asymptotic behaviour of the number of
{ragments at a given magnification, but also its modulations at intermediate magni-
fications. The imaginary part of the complex dimension is directly controlled by the
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prefered ratio 3 under which the triadic Cantor set is exactly self-similar. Let us em-
phasize that DSI refers to discreteness in terms of scales, rather than discreteness in
space (eg like discreteness of a cubic lattice approximation to a continuous medium).

If we keep only the first term in the Fourier series in (4) and insert in (3), we get

Vo= NP {15 2] (‘osian"‘lnm (6)
Nl = Nvnyx -r-_CO, S{anm 1113} )
where we have used c_; = ¢, to ensure that N(n) is real. Expression (6) shows

that the imaginary part of the fractal dimension translates itself into a log-periodic
modulation decorating the leading power law behavior. Notice that the period of the
log-periodic modulation is simply given by the logarithm of the prefered scaling ratio.
This is a fundamental result that we will retrieve in the various examples discussed
below. The higher harmonics are related to the higher order dimensions.

It is in fact possible to obtain directly all these results from (1). Indeed, let us
lock for a solution of the form O(z) = Cz®. Reporting in (1), we get the equation
1 = A%, But 1 is nothing but ™ where n is an arbitrary integer. We get then

log p ; 2mn

Tlogh | log A

(7)

which has exactly the same structure as (5). The special case n = 0 gives the usual
real power law solution corresponding to fully continuous scale invariance. In contrast,
the more general complex solution corresponds to a possible DSI with the prefered
scaling factor A. The reason why (1) has solutions in terms of complex exponents
stems from the fact that a finite rescaling has been done by the finite factor A. In
critical phenomena presenting continuous scale invariance, (1) corresponds to the
linearization, close to the fixed point, of a renormalization group equation describing
the behavior of the observable under a rescaling by an arbitrary factor A. The power
law solution and its exponent o must then not depend on the specific choice of A,
especially if the rescaling is taken infinitesimal, i.e. A — 17. In the usual notation,
if A is noted A = e%¢, this implies that p = e*¢' and o = —%ﬁr’- 1s independent of the
rescaing factor ¢. In this case, the imaginary part in (7) drops out,

4 WHATIS THE IMPORTANCE AND USEFUL-
NESS OF DSI?

4.1 Existence of relevant length scales

Suppose that a given analysis of some data shows log-periodic structures. What can
we get out it them? Iirst, as we have seen. the period in log-scale of the log-periodicity
is directly related to the existence of a prefered scaling ratio. Thus, log-periodicity
must immediatly be seen and interpreted as the existence of a set of prefered charac-
~ teristic scales forming all together a geometrical series ..., A=P, A=P+L A A2 An
The existence of such prefered scales appears in contradiction with the notion that
a critical system, exhibiting scale invariance has an infinite ~orrelation length, hence
only the microscopic ultraviolet cut-off and the large scale infra-red cut-off (for in-
stance the size of the system) appear as distinguishable length scales. This recovers



the fact that DSl is a property different from continuous scale invariance. In fact, it
can be shown [9] that exponents are real if the renormalization group is a gradient
flow. a rather common situation for systems at thermal equilibrium, but as we will see,
not the only one by far. Examples when this is not the case can be found especially
in random systems. out-of-equilibrium situations and irreversible growth problems.
[n addition to the existence of a single prefered scaling ratio and its associated log-
periodicity discussed above. there can be several prefered ratios corresponding to
several log-periodicities that are superimposed. This can lead to a richer behavior
such as log-quasi-periodicity. Quasiperiodicity has been suggested to describe the
scaling properties of diffusion-limited-aggregation clusters {10].

Log-periodic structures in the data indicate that the system and/or the underlying
physical mechanisms have characteristic length scales. This is extremely interesting
as this provides important constraints on the underlying physics. Indeed, simple
power law behaviors are found everywhere. as seen from the explosion of the concepts
of fractals, criticality and self-organized-criticality [8]. For instance, the power law
distribution of earthquake energies which is known as the Gutenberg-Richter law
can be obtained by many different mechanisms and a variety of models and is thus
extremely limited in constraining the underlying physics. Its usefulness as a modelling
constraint is even doubtful, in contradiction with the common belief held by physicists
on the importance of this power law. In contrast, the presence of log-periodic features
would teach us that important physical structures, that would be hidden in the fully
scale invariant description, existed.

4.2 Non-unitary field theories

In a more theoretical vein, we must notice that complex exponents do not appear
n the canonical exactly solved models of critical phenomena like the square lattice
Ising model or Bose Einstein condensation. This is because such models satisfy some
sort of unitarity. From conformal invariance [11], it is known that the exponents of
two dimensional critical models can be measured as amplitudes of the correlation
lengths in a strip geometry. Since the Ising model transfer matrix can be written in
a form which is symmetric, all its eigenvalues are real, therefore all its exponents are
real. The other standard example where exponents can be computed is ¢ expansion.
However in that context, there is an attitude, inherited from particle physics, to
think mostly of Minkowski field theories. For instance in axiomatic field theory,
Euclidian field theories are defined mostly as analytic continuations of Minkowski
field theories. Now complex exponents. as we have argued (7], make perfect sense
for Euclidian field theories, but lead to totally ill-behaved Minkowski field theories,
with exponentially diverging correlation functions. An approach based on any sort
of equivalence between the two points of view is bound to discard complex exponents
(as well say as complex masses). The complex exponents can thus be viewed as
resulting from the breaking of equivalence (or symmetry under Wick rotation) of the
Euclidian and Minkowski field theories. As it is now undertood that quantum field
‘theories are only effective theories that are essentially critical ® [12], could there be

5The ticroscopic cut-off is the Planck scale ~ 10=3m while the macroscopic cut-offs {or cor-
relation lengths) corresponding to the observed particle masses such as for the electron are of the
order of 10" "®*m. This is a situation where the correlation length is thus 10! times larger than the
“lattice” size, very close indeed to criticality!



a relation between the spectrum of observed particle masses and the characteristic
scales appearing in DSI and its variants and generalizations?

4.3 Prediction

Lastly, it is important to stress the practical consequence of log-periodic structures.
For prediction purposes. it is much more constrained and thus reliable to fit a part of
an oscillating data than a simple power law which can be quite degenerate especially
in the presence of noise. This remark has been used and is vigorously investigated in
several applied domains, such as earthquakes (13, 14, 15, 16], rupture prediction [17]
and financial crashes [18. 19, 20].

5 SCENARIOS LEADING TO DSI

After the rather abstract description of DSI given above, we now discuss the physical
mechanisms that may be found at its origin. [t turns out that there is not a unique
cause but several mechanisms may lead to DSI. Since DSI is a partial breaking of a
continuous symmetry, this is hardly surprising as there are many ways to break down
a symmetry. We describe the mechanisms that have been studied and are still under
investigation. The list of mechanisms is by no mean exhaustive and other mechanisms
may exist. We have however tried to present a rather complete introduction to the
subject.

It is essential to notice that all the mechanisms described below involve the exis-
tence of a characteristic scale (an upper and/or lower cut-off) from which the DSI can
develop and cascade. In fact, for characteristic length scales forming a geometrical
series to be present, it is unavoidable that they “nucleate” from either a large size
or a small mesh. This remark has the following important consequences: even if the
mathematical solution of a given problem contains in principle complex exponents,
if there are no such cut-off scales to which the solution can “couple” to, then the
log-periodicity will be absent in the physical realization of the problem. An example
of this phenomenon is provided by the interface-crack stress singularity described
below.

5.1 Built-in geometrical hierarchy

The most obvious situation occurs when some physical system is put on a pre-existing
discrete hierarchical system, such as the Bethe lattice, or a {ractal tree. Since the
hierarchical system contains by construction a discrete hierarchy of scales occurring
according to a geometrical series, one expects and does find complex exponents and
their associated log-periodic structures. Examples are fractal dimensions of Cantor
sets [21, 22, 23], percolation {24], ultrametric structures [25], wave propagation in
fractal systems [26], magnetic and resistive effects on a system of wires connected
along the Sierpinski gasket[27], Ising and Potts models [28, 29], fiber bundle rupture
/[30, 15], sandpiles [31].

It



5.1.1 Potts model on the diamond lattice

Let us now give some details to see more clearly how physics on hierarchical systems
leads to log-periodicity. As a canonical example, we treat the Potts model (32] on
the diamond lattice [28]. This lattice is obtained by starting with a bond at magni-
fication 1. replacing this hond by four bonds arranged in the shape of a diamond at
magnification 2. and so on, as illustrated figure 2. At a given magnification 2”, one
sees 47 bonds, and thus %(2 + 47} sites.

The spins g, are located at the vertices of the diamond fractal. In the same way
that the lattice appears different at different scales from a geometrical point of view,
one sees a different number of spins at different scales, and they will turn out to
interact in a scale dependent way. For a given magnification z = 2”, the spins we can
see are coupled with an interaction energy

E=-J Z d(oi0,), (8)
<ig>

where J is the coupling strength, the sum is taken over nearest neighbors and the deita
function equals one if arguments are equal, zero otherwise The system is assumed at
thermal equilibrium, and the spin configurations evolve randomly in time and space
in response to thermal fluctuations with a probability proportional to the Boltzmann
factor e=#% where 3 is the inverse of the temperature. The partition function Z at
a given magnification z = 27 is

Zp = Z e PE
{7}

where the sum is taken over all possible spin configurations which can be seen at that
scale. We do not compute Z, completely, but first perform a partial summation over
the spins seen at one scale and which are coupled only to two other spins. This is
how, in this particular example, one can carry out the program of the renormalization
group by solving a succession of problems at different scales. Let us isolate a particular
diamond, call ¢y, o the spins at the extremities and 51, 82 the spins in between as in
figure 2. The contribution of this diamond to e~#£ ig

K8tensi)+o(o2,51)+8(01,82)48(02,52)

where we have defined i' = ¢/ Since s,, s, enter only in this particular product,
we can perform summation over them first when we compute Zyp. The final result
depends on whether ¢, and o, are equal or different:

Z [\'6(0’1,51)+6(02,31 JHé(o1.52)+8(e2.52) — (21{ + Q _ 2)‘2 o ?é o (9)

$1452
= (Kz*’@*l)za T =09, (10)
SO we can write

Z Jo8es 1)+, )+8(0152)+6{ag.57)

' 51,52

(11)

_ K+ Q-2 [I . ((A’; +Q~1)2 1) 5(01,02)J

(2K +Q — 2)?
= (2K +Q —2)* ")
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where we used the identity

Ketere) = | 4 (K = Dé(oy, 02) (12)
and we set !
RP+0Q -1y

A (Qfx’rQ"?) "

If we perform this partial resummation in each of the four diamonds, we obtain exactly
the system at a lower magnification £ = 2°71. We see therefore that the interaction of
spins tranforms very simply when the lattice is magnified : at any scale, only nearest
neighbor spins are coupled, with a scale dependent coupling determined recursively
through the renormalization group map

P KI+@Q -1 :
TR, F Q-2

i

Blhy) (14)

The spins which are “integrated out” by going from one magnification to the next
simply contribute an overall numerical factor to the partition function, which is equal
to the factor (2K + @ — 2)? per edge of {12). Indeed, integrating out the spins s;
and s; leaves only o, and o, whose interaction weight is by definition A"¢(evo2) if
K’ represents the effective interaction weight at this lower magnification 27~!. The
additional numerical factor shows that the partition function is not exactly invariant
with the rescaling but transforms according to

Zp(K) = Zp-1[(K))(2K +Q - 2)**, (15)

since there are 47 bonds at magnification 2°. Now the free energy, which is defined
as the logarithm of the partition function per bond, reads

f(K) = = In Z,(K)

4p+1
From (15), we deduce the following
. | y
Fo(K) = 9K + 2 pmt (7). (16)
where |
g(K)=5h(2K+0Q-2). (17)

For an infinite fractal. the free energy for some microscopic coupling A satisfies
therefore

f(K) = g(K) + ifux") . (18)

where pp = 4. This explicit calculation makes clear the origin of the scaling for the free
energy : the interaction weights remain of the same functional form at each (discrete)
level of magnification. up to a multiplicative factor which accounts for the degrees of
freedom “left-over” when integrating from one magnification to the next. This is the
-physical origin of the function g in (i8).



5.1.2 Fixed points, stable phases and critical point

Consider the map K’ = @(A) (14). It exhibits three fixed points (defined by
K" = K = ¢(N)) located at A = I, A" = oo, A = K, where K, is easily deter-
mined numerically, for instance A, a2 3.38 for Q = 2. . ~ 2.62 for @ = 1. That
K =1 and K = oo are fixed points is obvious. The former corresponds to totally
uncoupied spins, the latter to spins which are forced to have the same value. In
both cases, the dvnamics disappears completely. and one gets back to a purely ge-
ometrical problem. Observe that these two fixed points are attractive. This means
that if we start with some coupling say & > K. deep down in the system, that is
for very large magnifications. when one diminishes the magnification to look at the
system at macroscopic scales. spins appear almost always parallel, and therefore are
more and more correlated as one reduces magnification. Similarly if we start with
K < K. spins are less and less correlated as one reduces magnification. The condition
K > K. together with the definition &' = %/ implies 3 > 3., i.e. corresponds to
the low-temperature regime dominated by the energy. The physical meaning of the
attraction of the renormalization group flow to the fixed point K = oo, i.e. zero
temperature, means that the macroscopic state of the spins is ferromagnetic with a
macroscopic organization where a majority of spins have the same value. Similarly,
the condition X' < K, implies 3 < 3., i.e. corresponds to the high-temperature
regime dominated by the entropy or thermal agitation. The physical meaning of
the attraction of the renormalization group flow to the fixed point A" = 0, i.e. infi-
nite temperature, means that the macroscopic state is completely random with zero
macroscopic magnetization.

The intermediate fixed point K, which in contrast is repulsive, plays a completely
different and very special role. It does not describe a stable thermodynamic phase
but rather the transition from one phase to another. The repulsive nature of the
renormalization group map flow means that this transition occurs for a very special
value of the control parameter (the temperature or the coupling weight K = K).
Indeed, if we have spins interacting with a coupling strength right at A at microscopic
scales, then even by reducing the magnification we still see spins interacting with a
coupling strength right at A.! This is also a point where spins must have an infinite
correlation length (otherwise it would decrease to zero as magnification is reduced,
corresponding to a different effective interaction): by definition it is a critical point.

Close to I, we can linearize the renormalization group transformation

K'— K.~ MK - K,), (19)

where A = dif%h\'c > 1. For couplings close enough to the critical point, we now see
that as we increase magpification, the change in coupling becomes also very simple;
only, it is not the coupling that gets renormalized by a multipiicative factor, but the
distance to A.. ‘

The equation (18) together with (19) provides an explicit realization of the pos-
tulated functional form (1} {up to the non-singular term g), where the coupling
. parameter A" (in fact A"~ A.) plavs the role of the control parameter z.

10



5.1.3 Singularities and log periodic corrections

The renormalization group equations (14) and (18) can be solved for the free energy

by
> 1
)= 2 ol
th

where (" is the n** iterate of the transformation ¢ (eg 2 = ¢[¢(z)]). Now it
is easy to show [100] that the sum (20) is singular at A’ [\c. This stems from
the fact that A, is an unstable fixed point, so the derivative of pat A.is A > 1.
Therefore if we consider the k** derivative of f in (20) it is determined by a series

gle™ (1)}, (20)

whose generic term behaves as ()L—k)n which is greater than 1 for & large enough, so
this series diverges. In other words high enough derivatives of f are infinite at A
Very generally, this implies that close to A, one has

FIR) x (K = K™, (21)

where m is called a critical exponent. For instance if 0 < m < 1, the derivative
of / diverges at the critical point. Plugging this back in (18), we see that, since g
is regular at A as can be checked easily from (17), we can substitute it in (18) and
recover the leading critical behavior and derive m solely from the equation (K —
K)™ = ;1‘—[/\([{— K.)]™ involving only the singular part, with the flow map which has
been linearized in the vicinity of the critical point. Therefore, the exponent satisfies
A™ = 4, an equation that we have already encountered and whose general solution is
given by
ln,u 2T

m, = fn R + mm .
To get expression (22), we have again used the identity 2™ = 1. We see that
because there is discrete scale invariance (namely (18) holds which relates the free
energy only at two different scales in the ratio 2), nothing forces m to actually be
a real number. In complete analogy with the case of complex fractal dimension, a
critical phenomenon on a fractal exhibits complex critical exponents. Of course
[ is real, so the most general form of f close to the critical point should be

(22)

fK) = (K- R )™ {ao + Y ancos2mnQin(A — K,) + ‘I’n]} , (23)
n>0
where ; |
e -
P x T (24)

hence exhibiting the log-periodic corrections. Derrida et al. [28] have studied this
example more quantitatively and find that the amplitude of the log-periodic oscil-
lations are of the order of 107 times less that the leading behavior. This is thus a
small effect. In contrast, the examples below exhibit a much stronger amplitude of
the log-periodic corrections to scaling, that can reach 10% or more.,

5.1.4 Related examples in programming and number theory

Log-periodicity, many of which are of a fractal nature. are found in the solutions of
algorithms based on a recursive divide-and-conquer strategy [33] such as heapsort,
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mergesort, Karatsuba’s multiprecision multiplication, discrete Fourier transform, bi-
nomial queues, sorting networks, etc. For instance. it is well-known that the worst
time cost measured in the number of comparisons that are required for sorting n
elements by the MergeSort procedure is given by n log, n to leading order. It is less
known that the first subleading term is nP{log, n). where P is periodic [33].

Reducing a problem to number theory is like striping it down to its sheer fun-
damentals. In this vein. arithmetic functions related to the number representation
systems exhibit various log-periodicities. For instance. the total number of ones in
the binary representations of the first n integers is 2nlog, n +nF(log, n), where F is
a fractal function, continuous, periodic and nowhere differentiable (34].

5.2 Diffusion in anisotropic quenched random lattices

In this scenario, the DSI hierarchy is constructed dynamically in a random walk
process due to intermittent encounters with slow regions (35]. Consider a random
walker jumping from site to site. Bonds between sites are of two types: (1) directed
ones on which the walker surely goes from his site to the next on his right (“diode”
situation}; (ii) two-way bonds characterized by a rate u (resp. v) to jump to the
neighboring site on his right (resp. left). The fraction of two-way bonds is | — p
and the fraction of directed bonds is p. We construct a frozen random lattice by
choosing a given configuration of randomly distributed mixtures of the two bond
species according to their respective average concentration p and 1 — p. The exact
solution of this problem has been given in [35] and shows very clearly nice log-periodic
oscillations in the dependence of (z?) as a function of time, as seen in figure 3.

We now present a simple scaling argument [15] which recovers the exact results.
To do so, we assume 2 << 1—p << 1. We are thus in a situation where most bonds
are directed and dilute clusters of two-way bonds are present. In addition, the two
bonds are strongly impeding the progress of the walker as the forward rate to the
right is much smaller than the backward rate to the left,

In this situation, the random walker progresses at constant velocity to the right as
long as it encounters only diode bonds and gets partially trapped when it encounters
two-way bonds. To see how DSI is spontancousty generated, we estimate the typical
number of jumps 7, needed for the random walker to pass k adjacent two-way bonds,

v i

te. a connected cluster of % two-way bonds. In the limit << Ly~ (;)
Using the fact that the average separation between k-tuples of two-way bonds is
approxirately (1 — p)~*%, if % << (1 = p), the typical number of jumps needed for
the random walker to go beyond the first k-tuple of consecutive two-way values is
completely dominated by 7. One thus expects the rate as a function of the number of
jumps to exhibit local minimaat 7 = 7;: these are the jump-numbers time scales. The
second part of the scaling argument consists in recognizing that the random walker has
to cover a typical distance from the origin to encounter the first k-tuple of consecutive
‘two-way’ values, of the order of (1 — p)=*. In the limit where < (l—p) <<,
we can thus write the approximate renormalization group equation

r(r} = (1 = pje(dr) +9(r) | (25)

“and not T ~ kx. This is due to the fact that the walker goes back many times before escaping
from the cluster of size k.
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where we have set A = £ and g(7) is some regular function taking into account various
local effects that correct the main scaling. Notice the similarity with (18). Because
this renormalization group equation can be written only at scales which are powers
of A, we are back to the situation discussed before. We see in particular that z ~ ¥
with
logil —p) . 27n
v o= - +1 .
log{u/v) log(u/v)

This result for the exponent v turns out to be exact. Furthermore, the range of
parameters over which this holds is much larger than suggested by this intuitive

argument. More precisely, as soon as £ < (1—p), one finds () ~ T”P(ﬁ%ﬁ), where

and P is a periodic function of unit period. This prediction is remarkably

(26)

_ log(t—p
T loglu/v) )
well-confirmed by numerical simulations and recovers the exact calculation of [35].

This is shown in figure 3.

This mechanism for generating log-periodic oscillations makes use of an interplay
between dynamics and quenched randomness leading to a regime where the dynamics
is highly intermittent. The presence of the discrete lattice and the mesh size is
essential. Similar intermittent amplification processes have been studied in [36, 37].
Log-periodicity found in the solutions of boolean delay equations [38, 39} stems from
a similar mechanism.

5.3 Cascade of ultra-violet instabilities: growth processes
and rupture

5.3.1 Log-periodicity in the geometrical properties

Numerical analysis of large diffusion-limited-aggregates have uncovered a discrete
scaling invariance in their inner structure, which can be quantified by the introduc-
tion of a set of compler fractal dimensions [10]. The values of the complex fractal
dimensions can be predicted quantitatively from a renormalization group approach
using the quasi-periodic mapping found in [40].

A theoretical investigation of a simplified model of DLA, the needle problem,
which is also of direct application to crack growths has been done to identify the
underlying physical mechanism [41]. Based on perturbative analysis and some exact
results from the hodograph method in the 2D conformal plane, we find that the two
basic ingredients leading to DSI are the short wavelength Mullins-Sekerka instability
% and the strong screening of competing needles. The basic simple picture that
emerges 15 that non-linear interactions between the unstable modes of the set of
needles lead to a succession of period doubling, the next sub-harmonic catching up
and eventually screening the leading unstable mode. The succession of these period
doubling explains the existence of discrete scale invariance in these systems. We thus
think that short wavelength instabilities of the Mullins-Sekerka type supplemented
by a strong screening effect provides a general scenario for the spontaneous formation
of log-periodic structures. This scenario provides, in addition, an explanation for the
. observation of a prefered scaling ratio close to 2.

®The Mullins-Sekerka instability is nothing other than the “lightning rod effect” well-known in
celectrostatics, according to which large curvature concentrate the gradient of the potential field.
Here, the growth velocity is proportional to the gradient of the concentration field.
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Numerical simulations of the needle problem, using various growth rules (DLA,
angle screening, n-model, crack approximation) on systems containing up to 5000
needles confirm clearly the proposed scenario, as shown in figure 4. The density of
needles as a function of the distance to the base presents clear evidence of log-periodic
modulations of the leading algebraic decay. Geological data on joints competing in
their growth in a similar fashion also exhibit approximately the log-periodic structure
[41, 42]. [43. 44] present further data on joints which, in our eyes, exhibit clearly
log-periodicity, even if the authors were not aware of the concept. Various previous
investigation of the growth of arrays of cracks have shown the log-periodic structures,
even if the authors neither point it out nor explained the mechanism 145, 46].

What we learn by comparing these different systems, with various growth rules, is
that the spontaneous formation of DSI seems robust with respect to significant modi-
fications. The improvement of our understanding of DLA resides on the identification
of a spontaneous generation of an approximately discrete cascade of Mullins-Sekerka
instabilities from small scales to large scales. This discreteness results from a cascade
of mode selections by a nonlinear nonperturbative coupling between modes of growth
[41]. Let us mention that, in the early eighties, Sadovskiy et al. have argued for the
existence of a discrete hierarchy in fracture and rock properties (47], with a prefered
scaling ratio around 3.5. Borodich 48] discusses the use of parametric-homogeneous
functions for a parcimonious mathematical representation of structure presenting a
hierarchy of log-periodicities.

5.3.2 Log-periodicity in time

A growing body of evidences indicate that the log-periodic oscillations appear in the
time dependence of the energy release on the approach of impending rupture in lab-
oratory experiments [17], numerical simulations [49, 50] and earthquakes (13, 14, 15,
16, 51, 52, 53]. It is thought that a similar type of cascade, from progressive damage
at small scale to coalescence and unstable growth, is controlling the appearence of
log-periodicity. The typical time-to-failure formula used in these works is

- . _log(t, —¢) .
E~t,—1t) [1+Ccos(24l—-5-é-/\—+lp)] , (27)
where E is the energy released or some other variable quantifying the on-going dam-
age, t- is the time of rupture, m is a critical exponent, and U is a phase in the
cosine that can be get rid of by a change of time units. It has been found that
the log-periodic oscillations enable a much better reliability of the prediction due to
“lock-in" of the fit on the oscillating structure. Physically, the oscillations contain
information on ¢, and thus help significantly in its determination. A link between
log-periodicity in space and in time is given in [34]. A typical fit by expression (27)
to acoustic emission data is presented in figure 5.

5.4 Cascades of sub-harmonic bifurcations in the transition
to chaos

An area where log-periodic structures should be expected is low-dimensional dynami-
cal systems exhibiting the Feigenbaum sequence of subharmonic bifurcations to chaos
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[55]. Indeed, this route to chaos can be understood from an asymptotically exact dis-
crefe renormalization group with a universal scaling factor. The existence of this
prefered scaling ratio shouid thus lead to complex exponents and log-periodic oscilla-
tions around the main scaling as the dynamics converges to the invariant Cantor set
measure at criticality. It was noticed quite early [56] that the length of the stable pe-
riod diverges as a power law with log-periodic modulations as the control parameter
approaches the transition to chaos. Argoul et al. [37] have studied the transitions to
chaos in the presence of an external periodic field and show figures exhibiting very
clearly that the Lyapunov exponent has a power dependence with log-periodic oscil-
lations as a function of the amplitude of the external field. Similarly, the topological
entropy at the onset of pruning in generalized Baker transformations is a power law
function of the distance to the onset of pruning with log-periodic oscillations [59].
The oscillations are due to the self-similar structure of the Cantor set forming the
attractor [56, 58).

5.5 Animals

We have notice [7] that., in contrast to common lore. complex critical exponents
should generally be expected in the field theories that describe geometrical systemns,
because the latter are non unitary. In particular, evidence of complex exponents in
lattice animals, a simple geometrical generalization of percolation has been presented
[7]. The model of lattice animals is the most natural generalization of the percolation
model, which itself is the prototype of disordered systems. The animal problem is
the statistics of connected clusters on a lattice [60, 61] and thus also describes un-
rooted branched polymers. Using transfer matrix techniques, the number of unrooted
branched polymers of size IV is found to exhibit a correction to the main scaling with
a complex exponent.

Recall that in the percolation problem, bonds are occupied with a probability p
and unoccupied with probability 1~ p. For a given configuration, connected parts are
called clusters. To study the statistics of one percolation cluster, one can sum over all
configurations for the bonds that do not belong to this cluster nor to its perimeter.
Since they are either occupied or inoccupied, the sum over all configurations just gives
2 unit weight. Hence in percolation, clusters are simply weighed with p™(1 — p)Ne
where N, is the number of bonds in the cluster, N, the number of bonds of the
perimeter. Now the animal problem is a more general model where a cluster is
weighed by p™¢™ with general values of p,q. By varving p,q a critical point is
met which is always in the same universality class of so-called animals. Only when
p+ ¢ = 1 is this critical point in a different universality class, percolation, which
therefore can be considered as a tricritical point in the animals parameter space.

The result of the analysis of [7] is that the number Ty of unrooted branched
polymers of size /V in the plane is given by

N
Ty =~ (q) [NU(Z-MI)—3 + NV 2%28=3) 066 (29X, 11 log N + qs)] . (28)

Pe
where v is the radius of gyration exponent, v &~ 0.64. Recall that the leading term
in (28) is actually known exactly v(2 — 2X;) -3 = —1 (62]. Hence we see log-
periodic terms to appear in the next to leading behaviour of Ty. Unfortunately,
since conformal invariance is broken. this argument does not allow us to make any
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predictions on the amplitude of these terms, which might well be very small. The
DLA problem is much more favorable in that respect probably due to enhancement
effects stemming from the long-range interactions of Laplacian fields.

9.6 Quenched disordered systems

Renormalization group analysis of a variety of spin problems with long-ranged quenched
interactions have found complex critical exponents [63, 64, 65, 66, 67]. However, these
authors have in general remained shy as to the reality of their results. Indeed, one
could argue that uncontrolled approximations (present in all these works) rather than
physics could be the cause of the complex exponents. Derrida and Hilhorst have also
found log-periodic corrections to the critical behavior of 1D random field Ising model
at low temperature by analyzing products of random non-commutative matrices [68].

With the qualitative understanding of the ultrametric structure of the energy
landscape of spin glasses [69, 70] in the mean field approximation, one could conjecture
that these above results could be the observable signature of the hierarchical structure
of energy states in frozen random systems. The problem is that, even if hierarchical,
the ultrametric structure is believed to be continuous and it is not clear what could
produce the discrete scale symmetry. It is generally believed that such topology occurs
more generally in other complex systems with highly degenerate, locally stable states
(71). However, much works remain to be done to clarify this problem. The additional
presence of long-range interactions complicate the matter further.

A dynamical model describing transitions between states in a hierarchical systemn
of barriers modelling the energy landscape in the phase space of meanfield spinglasses
leads again to log-periodic corrections to the main log ¢ behavior [7].

Let us also mention that mth critical Ising models {m = 1 for the Gaussian model,
m = 2 for Ising, m = 3 for tricritical Ising, ...) have a free energy exhibiting log-
periodic oscillations as a function of the control parameter for large m, a signature
of the geometrical cascade of multicritical points [72, 73, 74, 7].

6 Other systems

6.1 The bronchial tree

It has been pointed out that the morphology of the bronchial airway of the mam-
malian lung is roughly hierarchical leading to a log-log plot of the average diameter of
a branch of a mammalian lung (for human. dog, rat and hamster) as a function of the
branch order which exhibits a full S-osciilation (log-periodic) decorating an average
linear (power law) dependence. This fractal structure has been argued to allow the
organ to be more stable with respect to disturbance {75, 76, 77, 78] but the physical
mechanism underlying its appearence is not understood.

6.2 Turbulence

Probably the first theoretical suggestion of the relevance of log-periodic oscillations to
physics has been put forward by Novikov to describe the influence of intermittency in
‘turbulent flows [3]. The idea is that the DSI could stem from the existence of a pref-
ered ratio in the cascade from targe eddies to small ones. The existence of log-periodic
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oscillations has not been convincingly demonstrated as they seem quite elusive and
sensitive to the global geometry of the flow and recirculation {79, 80]. Shell models of
turbulence, which have attracted recently a lot of interest [81] construct explicitely
a discrete scale invariant set of equations. In these models, self-similar solutions of
the cascade of the velocity field and energy in the discrete log-space scale have been
unravelled {82]. whose scaling can be related to the intermittent corrections to Kol-
mogorov scaling. \We note that some of these solutions rely on the discrete scaling
shell structure and would disappear in the continuous limit. However, the relevance
of these discrete hierarchical models and more generally of log-periodic oscillations
have not been explored systematically and their confirmation in turbulence remains
open.

6.3 Titius-Bode law

Dubrulle and Graner {83] have noticed that the Titius-Bode law of planets distance
to the sun r, = roA™ with & =~ 1.7 can be seen a discrete scale invariant law (K
then plays the role of A in our notation). They show that all models that have
been proposed to explain the Titius- Bode law share the common ingredient of scale
symmetry. Assuming a discrete symmetry breaking in the rotation invariance, they
thus show that any such mechanism is compatible with the Titius-Bode law. As a
consequence, this law cannot a priori be used to constraint the mechanism of planet
formation and their organization around the sun. What is however not understood
is the physical mechanism, if any, at the basis of the breakdown of continuous to
discrete scale invariance embodied in the Titius-Bode law.

6.4 Gravitational collapse and black hole formation

Choptuik [84] has recently shown that, in contrast to the general view, black holes of
mass smaller than the Chandrasekkar limit could be formed and that, in the process of
formation, the solutions would oscillate periodically in the logarithm of the difference
between time and time of the formation of the singularity. This gravitational coilapse
is an example of critical behavior, describing how the mass M of the black hole
depends on the strength p of the initial conditions: M ~ (p — p™)” for p > p* and
0 otherwise, where p" is the threshold value. It has been shown that classical close-
to-critical black holes (obeying Einstein’s equations) coupled to a massless complex
scalar field have a leading real exponent v and a subleading complex exponent {84],
which would correspond to a log-periodic spectrum of masses. Alternatively, the real
and complex exponents control the time development of the black hole instability
which is also log-pertodic in time, corresponding to continuous phase oscillations of

the field.

6.5 Rate of escape from stable attractors

Let us also mention the recently discovered log-periodic behavior of the rate of escape
' from a stable attractor surrounded by an instable limit cvcle as a function of the
strength of the white noise [85). This is an example where the rate of escape, as
-calculated from a Fokker-Planck equation, is non-Arhenius.
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6.6 Interface crack tip stress singularity

Complex singularities are also found in the divergence of the stress as a function of
the distance to the tip of a crack at the interface between two different elastic media
[86]. The standard ¢ ~ r~ ¥ singularity, where r is the distance to the crack tip and
o is the stress, is replaced by ]

g~ Tt (29)
where 1

1
o= og ) ulz
2 =24
2 L

Subscript 1 and 2 refer to the material in y > 0 and y < 0, respectively; x = 3 — 4p
3—vu

for plane strain and & = 7. [or plane stress. v is the Poisson ratio and 4 is the
shear modulus. Interface cracks have tmportant practical applications since inter-
faces between composite media are often the locii of damage nucleation leading to
the incipient rupture. The existence of this complex singularity suggests that the
mechanism of damage and rupture at interfaces could be quite different from that in
the bulk [87]. Following this work, a wealth of studies have followed (see [87] and [88]
and references therein), but the physical understanding of the appearance of a com-
plex critical singularity has remained elusive. Since the solution shows that the two
modes of deformations in tension and shear (modes I and IT) are intrinsically coupled
for an interface crack in constrast to what happens for a crack in an homogeneous
medium, one could hope to identify the physical origin of the complex exponent in
this coupling. Let us also mention that the pressure distribution as a function of dis-
tance to the corner in the Hertz problem of two different elastic spheres compressed

against each other is also described by a power law with complex exponent [89)].

(30)

6.7 Eigenfunctions of the Laplace transform

Log-periodicity and complex exponents play a very important role in integral equa-
tions of the type g(r) = [° K (vr)p(v)dv. with 0 < 7 < oo where the kernel I has
the property [5° A (z)|z™1/%dz < co. This class of equation includes the Laplace
transform, the Fourier sine and cosine transforms and many other integral equations
of importance in physics. It is notorious that the inversion problem of getting p(v)
from the measurement of g(7) is ill-conditioned. This can be seen to result from
the form of the eigenfunctions and eigenvalues of the Laplace transform and simi-
lar dilationally invariant Fredholm ntegral equation [91]. For instance, the eigen-
functions of the Laplace transform, which form a complete orthogonal basis, are
ot (v) = v cos(wlnv — 0.) and ¢7(v) = —v™"?sin(winv — 8.), where 0, is a
function of w. The eigenvaiues are exponentially decreasing with w and this controls
the ill-conditioned nature of the Laplace inversion. The tog-periodicity of the eigen-
functions lead to an optimal sampling determined by a generalized Shannon theorem
which obeys a geometrical series [92].
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7 Applications

7.1 Identifying characteristic scales

In our opinion. the main interest in identifying log-periodicity in data is the charac-
terization of the characteristic scales associated to it. Indeed. it must be clear that
the log-pertodic corrections to scaling imply the existence of a hierarchy of character-
istic scales (in space or time). For instance, in the time-to-failure analysis given by
(27), the hierarchy of time scales is determined by the local positive maxima of the
function £. They are given by

te =ty =TAT (31)
where T oc exp(—'%sf—tan‘l mfo”gA). The spacing between successive values of t, ap-
proaches zero as n becomes large and ¢, converges to {,. This hierarchy of scales
tr — L are not universal but depend upon the specific geometry and structure of the
system. What is expected to be universal are the ratios “!:—_';:L = A2, From three
successive observed values of i, say £,, {,4; and .., we have

t2 0 — tneatn (32)

r

B 2tn+1 —ty — tn+2 .

This relation is invariant with respect to an arbitrary translation in time. In addition,
the next time t,,3 is predicted from the first three ones by

t,zH_l <4 t?ﬂ_g - tntn+2 - tn+1tn+2

by = (33)

tn+1 - tn
These relations have been used in [30, 16, 51]. Physically, time or space scales give
us access to additional information and clues about the underlying processes and the
existence of a hierarchy of prefered scales, as in DSI, will tell us something about the
underlying processes. This is lost in usual critical behavior in which all scales are
treated as playing the same role.

7.2 Time-to-failure analysis

Another important application of log-periodicity is its use in making more robust
and precise time-to-failure analysis. We have already mentionned the importance of
log-periodicity for predictions [13, 14, 16, 17, 18, 20]. The derived time-to-failure
analysis is now being implemented for routine industrial testing in the space industry
in Europe. As already mentionned, t he reason for this improvement is that a fit can
“lock-in” on the oscillations which contain the information on the time of failure and
thus lead to a better prediction.

7.3 Log-periodic antennas

Let us mertion the engineering application of antennas using log-peritodic electro-
magnetic antennas (93, 94, 95, 96, 97, 98, 99]. The DSI structure provides an optimal
compromise between maximizing bandwidth and radiation efficiency.
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7.4 Optical waveguides

Graded-index optical waveguides with optimized index profiles can support a family
of weaklv localized modes with aigebraic tails with log-periodic modulations in the
evanescent fieid [90]. The log-periodic oscillations result from an interplay between
the critical nature of the modes and absorption 1complex index of refraction). This
could have applications in technigues using evanescent waves,

8 Open problems

8.1 Nonlinear map and multicriticality

In this brief review, we have kept the analysis of the renormalization group at the level
of a linear expansion of the flow map. Taking into account the nonlinear structure
of the flow map, as for instance in (14), may lead to an infinite set of singularities
accumulating at the main critical point or even to the whole axis of the control
parameter being critical {in the chaos regime of the flow map [100]). The question of
the relevance of these regimes to nature is still open (see [14] for a proposed application
to earthquakes). Generalization to several control parameters and multicritical points
would be useful.

8.2 Multilacunarity and quasi-log-periodicity

We have seen that DSI embodies the concept of lacunarity. The set of complex expo-
nents or singularities has been called multilacunarity spectrum [22]. Generalizations
with several different incommensurate log-frequencies would be of great interest and
seem to appear for instance in the DLA problem [10]. Complex multifractal dimen-
sion spectrum in the presence of disorder can be handled using probabilistic versions
of the renormalization group {101] and their development and impact are just emerg-
ing. Note also that the set of complex exponents provides a better characterization
of the underlying multiplicative process and could improve the conditionning of the
inverse fractal problem (102]. The g-derivative is a natural tool to discuss homoge-
neous functions with oscillatory amplitudes. It has recently been used to describe
cascade and multifractal models with continuous scale changes {103].

8.3 Effect of disorder

A very important practical question is the effect of disorder and the process of aver-
aging. Disorder is expected to scramble the phases of the log-periodic oscillations and
it is a priori not clear whether the log-periodic oscillations are robust. It turns out
that small fluctuations around the log-periodic structure do not seem to spoil DSI,
as found in many examplies quoted above. For instance, in the needle DL A problem,
intervals between needles were taken to fluctuate by a few percent without altering
significantly the log-periodic structure of the growth process [41]. DLA clusters them-
 selves are formed under a very strong annealed noise, corresponding to the random
walk motion of the sticking particles. Nevertheless, clear evidence of log-periodicity
in the mass as a function of radius has been found [10] giving confidence in their



robustness with respect to disorder. This has been further substantiated by explicit
calculations [7] showing generally that the complex exponents are robust.

9 Averaging: grand canontcal versus canonical

However, we must stress that disorder introduces a sensitive dependence of the phase
in the cos log formula : different realizations have a different phase and averaging will
produce a “destructive interference” that makes vanish the log-periodic oscillations.
It is thus important to carry out analysis on each sample realization separately,
without averaging. For instance, in the DLA case. 350 clusters of 10° particies have
each been analyzed one by one and an histogram of the main log-frequencies has been
constructed. Theoretically, preventing averaging is a problem as one is usually able
only to calculate quantities averaged over the different realizations of the disorder.
However, it must be stressed that the fact that log-periodic oscillations are mainly
present before averaging tells us that they are specific fingerprints of the specific
system one is looking at. This is obviously a desirable property for prediction purposes
in engineering and other practical applications. An open problem however is to devise
optimal tools to decipher the log-periodic structures in highly noisy data, as is usually
the case due to limitation of sizes for instance. We note also that going to very large
systems will in general progressively destroy the log-periodic structures as they are
often correction to scaling °. Random versions of Cantor fractal sets have recently
been shown to exhibit robust log-periodic structures even when averaging [104].
Pazmandi et al. {106] have recently argued that the standard method of averaging
carried out in disordered systems introduces a spurious noise of relative amplitude
proportional to the inverse square root of the system size. This so-called “grand
canonical” averaging can thus destroy more subtle fluctuations in finite systems,
controlled by a correlation length exponent less than 3 (% is the minimum value of
the correlation length exponent that would not be hidden by the usual grand canonical
averaging). Pazmandi et al. thus propose an alternative averaging procedure, the
so-called “canonical” averaging, which consists in tdentifying, for each realization,
the corresponding specific value of the critical control parameter . The natural
control parameter then becomes A = (K — K®)/AH and the act of averaging can
then be performed for the samples with the same A. We have used this procedure to
identify log-periodicity in the elastic energy £ prior to rupture in a dynamical model
of rupture in heterogeneous media. Previous works have shown that E follows a power
law £ ~ (¢, — t)~% as a function of the time to failure [107]. Performing the usual
(grand canonical) averaging over twenty different realizations of the disorder provides
very good evidence of the power law but no evidence of log-periodicity. We have thus
developed the following alternative averaging procedure [108]. We constructed the
second derivative of £ with respect to time for each realization, thinking of it as a
kind of susceptibility. The time ¢ at whichthis second derivative is maximum has
been identified and this point has been used as the effective value of the time t,
of rupture for each realization. Then, the first derivative, giving the rate of energy
- released, is averaged over all samples with the same (¢f--1}/t®. The result is presented
in figure 6 in a log-log scale. Four to five approximately equidistant spikes (in log

*This is often due to the disorder which can be shown to renormalize the real part of the complex
exponents so that they correspond to sub-leading correction to the main scaling behavior 7, 10].
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scale) are clearly visible. The log-period allows us to identify a prefered scaling ratio
A =2.5%0.3. It is probable that similar averaging procedures better tailored to get
rid of spurious fluctuations from realization to realization will play an increasing role
in the physics of disordered and turbulent media.

9.1 Amplitude of log-periodicity

Log-periodicity is found in spin systems in hierarchical lattices. However, the effect is
usually very small, typically 107 or less in relative amplitude. In contrast, we have
found it much stronger in rupture and growth process, typically 10~} or so in relative
amplitude. The reason is not very well understood but might stem from the strong
amplification effects occurring in such Laplacian fields.

9.2 Where to look for log-periodicity

From the point of view of non-unitary field theory, we should expect generically the
existence of complex exponents. However, there is no known recipe to tell us what are
the relevant observables that will have complex dimensions. Practically, this means
that it is not a priori obvious what measure must be made to identify log-periodicity.
In other words, it is important to look carefully at available data in all imaginable
angles to extract the useful information. Of course, one must always been aware of
statistical traps that noise can be taken for log-periodicity. Analysis must thus be
carried out with synthetic tests for the null hypothesis, bootstrap approach, etc (see
for instance {16, 41] for the application of statistical tests and the bootstrap method
in this context).

9.3 Prefered scaling ratio around 2?

Another puzzling observation is the value of the prefered ratio A ~ 2, found for a
wide variety of systems, such as in growth processes, rupture, earthquakes, financier
crashes. H. Saleur (private communication ) has noticed that 2 is in fact the mean field
value of A obtained by taking an Ising or Potts model (with Q states} on a hierarchical
lattice in the limit of an infinite number of neighbors. Consider a diamond lattice
with n bonds connected to the upper and lower nodes (the usual diamond lattice
discussed above has n = 2). The discrete renormalization group equation connecting
K = A’ where 3 is the inverse temperature and J the coupling coefficient, from one
generation to the next is the generalized version of (14) to n-bonds connectivity :

K*+Q -1

K'(K) = [f(K)]" = (m)n

(34)
In the limit n — oc where the number of coupled nodes increases without bounds,
we expect physically the ordered-disordered transition to occur at larger and larger
temperature, corresponding to a fixed point of (34) A/(K*) = K* — |. Expanding
caround 1, we indeed find A" = 1 + —f’% asymptotically. The linearization of the
renormalization group map (34) gives A/ — A™* = AMAN—K")with A = n[{"—L"ﬁ.—i’K' —
2 in the limit n — co. Can this argument be extrapolated to out-of-equilibrium
systems?



9.4 Critical behavior and self-organized criticality

Time-to-failure analysis of earthquakes seem at variance with the globally stationary
view point, for instance captured by the concept of self-organized criticality as applied
to plate tectonics [105]. Recently, it has been shown {54] that a simple model of earth-
quakes on a pre-existing hierarchical fault structure exhibits both self-organization
at large times in a stationarv state with a power law Gutenberg-Richter distribu-
tion of earthquake sizes. In the same token. the largest fault carries irregular great
earthquakes preceded by precursors developing over long time scales and followed by
aftershocks obeying the 1 Omori’s law of the rate of seismicity after a large earth-
quake. The cumulative energy released by precursors follows a time-to-failure power
law with log-periodic structures, qualifying a large cvent as an effective dynamical
(depinning} critical point. Down the hierarchy, smaller earthquakes exhibit the same
phenomenology, albeit with increasing irregularities. The study of the robustness of
this scenario for other models and situations is an open question.
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FIGURE CAPTIONS:

Figure 1: Construction of the triadic Cantor set: the discrete scale invariant
geometrical structure is built by a recursive process in which the first step consists
in dividing the unit interval into three equal intervals of length 1 and in deleting the
central one. [n the second step. the two remaining intervals of length 1 are themselves
divided into three equal intervals of length § and their central intervals are deleted,
thus keeping 4 intervals of length 3, and so on.

Figure 2: Construction of the hierarchical diamond lattice used in the Potts model.
This lattice is obtained by starting with a bond at magnification 1, replacing this bond
by four bonds arranged in the shape of a diamond at magnification 2, and so on. The
spins are placed at the sites. At a given magnification 27, one sees 47 bonds, and thus
2(2 + 47) sites.

(e
tZuA

Figure 3: , where vg = %ﬁ-}l is the real part of (26) as a function of Int.

The averaging has been performed over different realizations of the random walk
(taken from {35]).

Figure 4: a) Map of 5000 needles which have grown according to the DLA rules
from an initial configuration where all the needles were approximately of the same
length equal to their average separation. We have used a periodic lattice and added
a small random value (a few percent of the period) for their lateral position. This
configuration corresponds to the time when the largest needle has a length equal to
one-third of the size of the system. b) The probability density function of the needle
lengths shown in a) in where very clear log-periodic oscillations decorate the power
law behavior. (see [41]).

Figure 5: Logarithm of the acoustic emission energy released as a function of the
pressure (in bars) applied within a pressure tank made of matrix-fiber composite at
the approach of rupture. The continuous lines correspond to the best fit by expression

(27) (see [L7]).

Figure 6: Rate of elastic energy released as a function of the logarithm of the time
to failure in the dynamical model of rupture with damage introduced in [107]. The
dots have been obtained using the “canonical” averaging procedure discussed in the
text.
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