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16.1 Sand-pile modeis

In the last chapter we considered the renormalization group method for treat-
ing large interactive systems. By assuming scale invariance a relatively
small system could be scaled upward to a large interactive system. The ap-
proach is often applicable to systems that have critical point phenomena. In
this chapter we consider the aliernative approach to large interactive svs-
tems. This approach is called self-organized criticality. A system is said to be
in a state of self-organized critically if it is maintained near a critical point
(Bak er al., 1988). According to this concept a natural system is in a margin-
ally stable state: when perturbed from this state it will evolve naturally back
to the state of marginal stability. In the critical state there is no longer a nat-
ural length scale so that fractal statistics are applicable.

The simplest physical model for self-organized criticality is a sand pile.
Consider a pile of sand on a circular table. Grains of sand are randomly
dropped on the pile until the slope of the pile reaches the critical angle of re-
pose. This is the maximum slope that a granular material can maintain with-
out additional grains sliding down the slope. One hypothesis for the behavior
of the sand pile would be that individual grains could be added until the
slope is everywhere at an angle of repose. Additional grains would then sim-
ply slide down the slope. This is not what happens. The sand pile never
reaches the hypothetical critical state. As the critical state is approached ad-
ditiona} sand grains trigger landslides of various sizes. The frequency-size
distribution of landslides is fractal. The sand pile is said to be in a state of
self-organized criticality. On average the number of sand grains added bal-
ances the number that slide down the slope and off the table. But the actual
number of grains on the table fluctuates continuously.

The principles of self-organized criticality are illustrated using a simple
cellular-automata model. As in the previous chapter we again consider a
square grid of n boxes, Particles are added to and lost from the grid using the
following procedure.
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h A particle 1s randomly added to one of the boxes. Each box on the
gnid is assigned a number and a random-number generator is used to
determine the box to which a particle is added. This is a statistical
model. '

() When a box has four particles it is unstable and the four particles are

redistributed to the four adjacent boxes. If there is no adjacent box

the particle is lost from the grid. Redistributions from edge boxes re-
stltin the loss of one particle from the grid. Redistributions from the
corner boxes result in the loss of two particles from the grid.

If after a redistribution of particles from a box any of the adjacent

boxes has four or more particles. it is unstable and one or more fur-

ther redistributions must be carried out. Multiple events are common
occurrences for large erids.

{+H The system is in a state of marginal stability. On average. added par-
ticles must be lost from the sides of the grid.

.-\
[¥3]

This is a nearest neighbor model. At anv one step a box interacts only
with its four immediate neighbors. However. in a muitiple event interactions
can spread over a large fraction of the grid.

The behavior of the svstem is characterized by the statistical fre-
quency-size distribution of events. The size of a multiple event can be quan-
tified in several ways. One measure is the number of boxes that become un-
stable in a multiple event. Another measure is the number of particles lost
from the grid during a multiple event.

When particles are first added to the grid there are no redistributions and
no particles are lost from the grid. Eventually the svsiem reaches a quasi-
equilibrium state. On average the number of particles lost from the edges of
the grid is equal to the number of particles added. Initially. small redisuibu-
tion events dominate. but in the quasi-equilibrium state the frequency-size
distribution is fractal. This is the state of self-organized criticality. There is a
strong resemblance to the renormalization group approach considered in the
last chapter. In the renormalization group approach the frequency-size sta-
tistics are fractal only at the critical point. In the cellular automata model the
frequency-size statistics are fractal only in the state of self-organized criti-
cality.

The behavior of a sand pile and the behavior of the cellular automara
model have remarkable similarities to the seismicity associated with an ac-
tive tectonic zone. The addition of particles to the grid is analogous to the
addition of stress caused by the relative displacement between two surface
'plates. say. across the San Andreas fault. The multiple events in which parti-
cles are transferred and are lost from the grid are analogous to earthquakes in
which some accumulated stress is wransferred and some is lost. There is a
strong similarity between the frequency-magnitude statistics of multiple
events and the Guienberg—Richter statistics for earthquakes. Before consid-
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Figure 16.1. Iliustration of
the cellular automata model
fora 3 X 3 grid of boxes.
The boxes are numbered 1 to
@ as shown in (a). Particles
are randomiv added to boxes
in (b} as shown in steps 1
and 2. In step 3a an added
particle in box 3 gives four
particles and these are
redistributed 1o the adjacent
boxes. Nine more
redistributions are required
in steps 3b to 3j before the
grid is stabilized. The first
number below the grid is the
number of boxes that have
been unsiable in the
sequence of redistributions.
The second number is the
cumulative number of
particles that have been lost
from the grid in the sequence
of redistributions.

ering the analogy {urther. we will describe the behavior of the cellulur au-
tomata model in some detail.

Ax a specific example we consider the 3 » 3 grid illustraied n Figure
16.1. The nine boxes are numbered sequentially from left to right and top 1o
hottom as illustrated in Figure 16.1(a). The cellular automata model has
been run for some time to establish a state of self-organized criticality. The

further evolution of the model is as follows and is illustrated in Figure
16.1(b).

Step I A particle has been randomly added to box 8. The number of paru-
cles in this box has been increased from two to three.

Step 2 A particle has been randomly added to box 6. increasing the number
of particles from one to two. This addition is illustrated in the
change between steps 1 and 2 in Figure 16.1(b).

Step 3a A particle has been randomly added to box 3. increasing the number
of particies from three to four and making it unstable; the four parti-
cles are redistributed to the four adjacent boxes, increasing the num-
ber of particles in box 2 from three to four, the number of particles in
box 4 from three to four. the number of particles in box 6 from two
to three. and the number of particles in box 8 from three 1o four.
Boxes 2, 4, and 8 are now unstable. No particles are lost from the
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grid. This redistribution is illustrated in step 3a in Figure 16.1(b).
The numbers below the ¢grid are. on the left. the cumulative numbers
of boxes subject to redistribution and. on the right. the cumulative
number of particles lost from the grid.

Step 3b Since several boxes are now unstable. an arbitrary choice must be
made about which box will be considered first for further redistribu-
tion. The choice does not have a significant effect on the statistical
evolution of the system. The four particles in box 2 are redistributed.
One is lost from the grid and box 3 becomes unstable with four parti-
cles. Boxes 3. 4. and 8 remain unstable. In this sequence of redistri-
butions two boxes have been made unstable and one particle has
been lost from the grid.

Step 3¢ The four particles in box 3 are redistributed. Two are lost from the
grid and box 6 becomes unstable with four particles. Boxes 4. 6. and
8 remain unstable. In this sequence of redistributions three boxes
have been made unstable and three particles have been lost from the
grid.

Step 3d The four particles in box 4 are redistributed. One is lost from the
grid and box 1 becomes unstable with four particles. Boxes 1. 6, and
8 remain unstable. In this sequence of redistributions four boxes
have been made unstable and four particies have been lost from the
grid.

Step 3e The four particles on grid point § are redistributed. One is lost from
the grid and boxes 7 and 9 become unstable with four particles.
Boxes 1, 6, 7, and 9 remain unstable. In this sequence of redistribu-
tions five boxes have been made unstable and five particles have
been lost from the grid.

Step 3f The four particles in box 9 are redistributed. Two are lost from the
grid and box 6 is now unstable with five particles. Grid points 1, 6.
and 7 remain unstable. In this sequence of redistributions six boxes
have been made unstable and seven particles have been lost from the
arid.

Siep 3g Four of the five particles in box 6 are redistributed. One is lost from
the grid and box 5 is now unstable. Boxes 1, 5. and 7 remain unsta-
ble. In this sequence of redistributions seven boxes have been made
unstable and eight particles have been lost from the grid.

Step 3 The four particles in box 5 are redistributed for the second time. No
particles are lost and no boxes are made unstable. Boxes | and 7 re-
main unstable. In this sequence of redisuributions seven boxes have
been made unstable and eight particles have been lost from the grid.

Step 3i The four particles in box 7 are redistributed and two are lost from the
grid. No boxes are made unstable so that 1 is the only remaining un-
stable box. In this sequence of redistributions eight boxes have been
made unstable and ten particles have been lost from the grid.
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Figure 16.2, Statistics for a
cellular-automata model on a
50 » 50 grid. The number

A of events in which a
specified number A of boxes
became unstable is given as a
function of A.

Step 3i The four particles in box 1 are redistributed and two are lost from the
erid. No boxes remain unstable so that the sequence of 10 redistribu-
tions has completed step 3. During step 3 all nine boxes were unsta-
ble and 12 particles were lost from the grid.

Step4 A particle has been randomly added to box 5. increasing the number
of particles from zero to one.

Step 5 A particle has been randomly added to box 6. increasing the number
of particles from two 1o three.

This relatively simple example illustrates how the cellular automata
mode! works. To develop significant statistics larger grids must be consid-
ered. Kadanoff er al. (1989) have carried out extensive stdies of the behav-
ior of this model as a function of grid size. One statistical measure of the size
of an event is the number of grid points that become unstable. The results for
a 50 X 50 grid of boxes are given in Figure 16.2. The number of events Nin
which a specified number of boxes A participated is given as a function of
the number of boxes. A good correlation with a fractal power law is ob-
tained. with a slope of 1.03. Since the number of grid points is equivalent 1o
an area. the equivalent fractal dimension is D = 2.06. This statistical behav-
jor appears to resemble that of distributed seismicity. However. the statistics
in Figure 16.2 are not cumulative. In fact a fractal relation is not obtained for
the cumulative statstics.

log(N)
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. \ l
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A number of groups have studied the frequency—size siatistics of
avalanches on real sand piles. and in some cases fractal distributions have
been found (Evesque. 1991: Nagel. 1992: Puhl. 1992). Held er al. (1990
found fractal staustics applicable for small avalanches but not for large
avalanches. Bretz er al. (1992} and Rosendahl er al. (1993) found near-peri-
odic large avalanches and a fractal disuibution of small avalanches. Segre
and Deangeli (1993) have developed a more realistic cellular-automata
model for actual landslides. The fractal staristics of actual landslides have
been considered by Yokoi er al. (1995).

Turbidite deposits are associated with sjumps off the continental margin.
These avalanche-like events can be considered a natural analog for sand
slides and thus for the cellular-automata model considered above. Turbidite
deposits are generallv composed of a sequence of lavers. each laver repre-
senting a distinct event {slump). Each layer is composed of an upward grada-
tion from coarse-grained sediments to fine-grained sediments. and individ-
ual lavers are generally separated by well-defined bedding planes.

Several studies of the thickness statistics of turbidite deposits have been
carried out. Rothman er al. (1994) carried out direct measurements on an
outcrop of the Kingston Peak Formation near the southern end of Death Val-
ley. California. Their results are given in Figure 16.3(a): an excellent corre-
lation with the fractal relation (2.6) is obtained taking D = 1.39. Hiscott et al.
{1992) have studied a volcaniclastic turbidity deposit in the [zu—-Bonin fore-
arc basin off the shore of Japan. Laver thicknesses were obtained from for-
mation-microscanner images from well logs in the middle to upper
Oligocene part of the section. Results for two DSDP holes located 75 km
apart are given in Figure 16.3(b): a good correlation with (2.6) is obtained
taking D= 1.12.

It is difficult to make a direct comparison between the thickness statis-
tics of the sedimentary layers and the volume statistics of sand piles. How-
ever. the laver statistics appear 1o be scale invariant to a good approximation.
It is interesting to note that the fractal dimensions of the thickness statistics
are greater than one. For such a one-dimensional sequence it would appear
that this would be tmpossible considering the examples given in Figure 2.1.

The constructions illustrated in Figure 16.4 show that D can in fact be
greater than one. The standard Cantor set is illustmted in Figure 16.4{a): one
laver. N, = 1. with thickness r, =3 two layers, N, = 2, with thickness r, = 3.

four lavers N, =4 with th1ckness r, =%. From (" 1YD=1n2/n 3 =0.6309.
In Figure 16. 4(b) a stretched Cantor set is illustrated, At each step the re-
maining segments are stretched b} a factor of two before being further sub~
divided. This gives N| = | with r =3, N, =2 withr, : N,=dwithr, = =.
From(2.1) D =1In ”fln 3/ = 1. 710 The length L of Lhe set is unbounded.
L —» oo as r — 0. For real data sets with both upper and lower bounds on r,
this construction illustrates that values of D greater than one are acceptable.
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Figure 16.3. Cumulative
frequency—thickness
statistics for wrbidite
sequences of sedimentary
layers. (a1 Kingston Peak
Formation near the southern
end of Death Vallev. CA.
{b) Izu-Bonin forearc basin
off the shore of Japan. The
roll-off for thin lavers

is attributed to loss of
resolution. The straighi-line
correlations with the fractal
relation (2.6) give D= 1.39
intayand D=1.12in (.

To model crustal seismicity. Barriere and Turcotte (1994) introduced a
cellular-automata model in which the boxes have a scale-invariant distribu-
tion of sizes. The objective was to model a scale-invariant distribution of
fault sizes. When a redistribution from a box occurs, it is equivalent to a
characteristic earthquake on the fault. A redistribution from a small box (a
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foreshock) may trigger an instability in a large box (the main shock). A re-
distribution from a large box alwavs triggers many instabilities in the
smaller boxes taftershocks).

As a specific example we again consider the surface exposure of the frac-
tal fragmentation model given in Figure 3.3. A fifth-order realization of this
construction is given in Figure 16.5. We have N, = | box with r =4. N,=3
boxes with r. = 4. N, = 9 boxes with r, = £. N, = 27 boxes with r, = £ and
N; = 108 boxes with r, = 55. Except for N the N, are related to the r, by the
fractal relation (2.1) with D =1n 3/In 2 = [.5830.
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Figure 16.4. (a) Cantor set
N o=1r =:]=:!\’:= 2. r:=£:
N.=4.r,=%:D=ln2n
3=10.6309. (b) Stretched
Cantor set N, = 1.r = l
Ny=2r=5.N, =4

710.

Figure 16.5. [llustration of
the fractal cellular model
corresponding to the discrete
maodel for comminution
illustrated in Figure 3.7
carried to fifth order. D = In
3n 2 =1.585.
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Figure 16.6. Cumulative
frequency-magnitude
statistics for unstable events.
The number of events N, in
boxes equal to or smaller
than r is divided by the total
number of events N and
given as a function of r. The
correlation is with (2.6)
taking D = 2.5

The standard cellular-automata rules are applied to this model:

(1)

(2)
(3

4

Particles are added one at a time to randomly selected boxes. The
probability that a particle is added to a box is proportional to the area
A,=riof the box.

A box becomes unstable when it contains 4A, particles.

Particles are redistributed to immediately ad’jacent boxes or are lost
from the grid. The number of particles redistributed to an adjacent
box is proportional to the linear dimension r, of that box.

If, after a redistribution of particles from a box, any of the adjacent
boxes are unstable, one or more further redistributions are carried
out. In any redistribution, the critical number of particles is redis-
tributed. Redistributions are continued until all boxes are stable.

The cumulative frequency-magnitude statistics for main shocks of a
seventh-order (128 X 128) version of the model are given in Figure 16.6. We
find an excellent correlation with the fractal relation (2.6) taking D = 2.50
{b = 1.25). This is significantly higher than the observed values for distrib-
uted seismicity. Evernden (1970) has obtained b-values for regional seismic-
ity and concludes that b = 0.85 * 0.20. It was also found that 31.5% of the
largest events had foreshocks. This is in reasonable agreement with studies
of actual earthquakes; von Seggern et al. (1981) found that 21% of the earth-
quakes studied had foreshocks and Jones and Molnar {1979) found that 44%

109

101
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1074
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Box Sizer



SELF-ORGANIZED CRITICALITY

325

of larger shallow earthquakes that could be recorded teleseismically had
foreshocks. The aftershocks also correlate well with (2.6) taking D = 2.02
(b = 1.01). A similar model has been proposed by Henderson et al. (1994).

16.2 Slider-block models

Slider-block models that exhibit self-organized criticality can also be con-
structed. In Chapter 11 we showed that a pair of interacting slider blocks can
exhibit deterministic chaos. This model is easily extended to include large
numbers of slider blocks. Carlson and Langer (1989) considered long linear
arrays of slider blocks with each block connected by springs to the two
neighboring blocks and to a constant-velocity driver. They used a velocity-
weakening friction law and considered up to 460 blocks. Slip events involv-
ing large numbers of blocks were observed, the motion of all blocks in-
volved in a slip event were coupled, and the applicable equations of motion
had to be solved simultaneously. Although the system is completely deter-
ministic, the behavior was apparently chaotic. Frequency—size statistics
were obtained for skip events and the events fell into two groups: smaller
events obeyed a power-law (fractal) relationship but there was an anom-
alously large number of large events that included all the slider blocks. This
model was considered to be a model for the behavior of a single fault, not a
model for distributed seismicity. The large events were associated with char-
acteristic earthquakes on the fault and smaller events with background seis-
micity on the fault between characteristic earthquakes.

Nakanishi (1990, 1991) proposed a model that combined features of the
cellular-automata model and the slider-block model. A linear array of slider
blocks was considered but only one block was allowed to move in a slip
event. The slip of one block could lead to the instability of either or both of
the adjacent blocks, which would then be allowed to slip in a subsequent
step or steps, until all blocks were again stable. Brown er al. (1991) proposed
a modification of this model involving a two-dimensional array of blocks.
Other models of this type have been considered by Bak and Tang (1989),
Takayasu and Matsuzaki (1983), Ito and Matsuzaki (1990), Sornette and
Sornette (1989, 1990), Langer and Tang (1991), Carlson (1991a, b}, Carlson
et al. (1991, 1993a, b, 1994), Matsuzaki and Takayasu (1991), Rundle and
Brown (1991), Feder and Feder (1991), Chen et al. (1991), Shaw et al.
(1992), Huang et al. (1992), Christensen and Olami (1992), Olami and
Christensen (1992), Olami ef al. (1992), Vasconcelos er al. (1992), de Sousa
Vieira (1992), Cowie ez al. (1993), Shaw (1993a; b, 1994, 1995), Rundle and
Klein (1993, 1995), de Sousa Vieira et al. (1993), Schmittbuhl er al. (1993),
Knopoff er al. (1993), Ding and Yu (1993), Lu et al. (1994), Senatorski
(1994), Xu and Knopoff (1994), Pepke and Carlson (1994), Pepke et al.
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Figure 16.7. INustration of
“the two-dimensional slider
block model. An array of
blocks each with mass m is
pulied across a surface by a
driver plate at a constant
velocity V. Each block is
coupled 1o the adjacent
blocks with either leaf or coil
springs with constant & . and
to the driver plate with leaf
springs with spring constant
k,. The extension of the (i, j)
pulling spring is x,.

(1994), Rubio and Galeano (1994), Robinson (1994). Espanol (1994), and
Lin and Taylor (1994). McCloskey (1993}, and McCloskey and Bean (1994)
considered arrays of slider blocks connected to two driver plates, and these
driver plates were treated as a pair of interacting slider blocks.

The standard two-dimensional array of slider blocks is illustrated in Fig-
ure 16.7. In the cellular-automata approximation it is assumed that during
the sliding of one block, all other blocks are stationary; this requirement lim-
its the system to nearest neighbor interactions, which is characteristic of cel-
lular-automata systems. To minimize the complexity we considered a dis-
continuous static—dynamic friction law. After non-dimensionalization of the
governing equations, the governing parameters are o = k_/k, (k_is the spring
constant of the connector springs, &, is the spring constant of the puller
springs),  is a measure of the stiffness of the system, ¢ = F,/F; (the ratio of
the static friction F, to dynamic friction F;), and N the number of blocks
considered. In this model the parameter ¢ can be eliminated by rescaling.
Thus for large systems (N very large) the only scaling parameter is the stiff-
ness a. Frequency—size statistics for a 50 X 50 (N = 2500) array are given in
Figure 16.8 for several values of the stiffness parameter «. A good correla-
tion is obtained with the fractal relation (2.6) with D = 2.72. The fre-
quency-size relation shows a roll-off from the power law near the larger end
of the scaling region. This deviation is reduced as the parameter o increases.
Frequency—size statistics for several different size arrays are given in Figure
16.9. When the parameter a/N'? is greater than one, we observe an excess
number of catastrophic events that include the failure of all biocks. The fail-
ure statistics of these multiple-block systems clearly indicate a self-orga-
nized critical behavior and are remarkably similar to distributed seismicity.

Plate

Driver
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The frequency-size distribution of events assoctated with self-organized
crticality certainly resembles the regional distribution of earthquakes in a
zone of active tectonics. This suggests that interactions between faults play
an essential role in the behavior of such zones.
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An important consequence of a critical state in the crust is the large
range of interactions. A basic question is whether an earthquake on one part
of the planet, say Mexico, is correlated with an earthquake at a large dis-
tance, say Japan. The classical approach to earthquakes would say that this is
impossible. The stresses associated with seismic waves are too small to trig-
ger an earthquake and there is no conclusive observational evidence for cor-
related events on this spatial scale. The stress changes associated with the
fault displacement are localized and are damped by the athenospheric vis-
cosity. However, interactions at large distances are a characteristic of critical
phenomena. The interactions are not through the direct transmission of stress
but through the interactions of faults with each other. Scholz (1991) has ar-
gued that the entire earth’s crust is in a state of self-organized criticality. He
sites as direct supporting evidence the induced seismicity associated with
dams and other sources. Whenever a reservoir is filled behind a large new
dam, extensive swarms of earthquakes are generally triggered. This is evi-
dence that the crust is at the brink of failure even at large distances from
plate boundaries.

This action at a distance may help to explain the apparent success of the
earthquake-prediction algorithms developed at the International Institute for
the Theory of Earthquake Prediction and Theoretical Geophysics in Moscow
under the direction of Academician V. 1. Keilis-Borok. This approach is based
on pattern recognition of distributed regional seismicity (Keilis-Borok, 1990;
Keilis-Borok and Rotwain, 1990; Keilis-Borok and Kossobokov, 1990). The
pattern recognition includes quiescence (Schreider, 1990), increases in the
clustering of events, and changes in aftershock statistics (Molchan et al.,
1990). In reviewing regional seismicity after a major earthquake it is often
observed that the regional seismicity in the vicinity of the fault rupture was
anomalously low for several years prior to the earthquake (Kanamori, 1981;
Wyss and Haberman, 1988). This is known as seismic quiescence. The prob-
lem has been to provide quantitative measures of quiescence prior to the ma-
jor earthquake. We discussed the fractal clustering of earthquakes in Chapter
6. The clustering of regional seismicity appears to become more fractal-like
prior to a large earthquake. There also appears Lo be a systematic reduction
in the number of aftershocks associated with regional intermediate-sized
earthquakes prior to a major earthquake. Pattern-recognition algorithms
were developed to search earthquake catalogs for anomalous recursory be-
havior. Premonitory seismicity patterns were found for strong earthquakes in
California and Nevada (algorithm “CN”) and for earthquakes with M > 8
worldwide (algorithm “M8”™). When a threshold of the anomalous behavior
was reached, a warning of the time of increased probability (TIP) of an
earthquake was issued.

On a worldwide basis TIPs were triggered prior to 42 of 47 events. TIPS
were released prior to the Armenian earthquake on December 7, 1988, and to



SELF-ORGANIZED CRITICALITY

3289

the' Loma Prieta earthquake on October 17, 1989. These are illustrated in

Figure 16.10. The TIP issued for region 3 in the Caucasus during January

1987 was still in effect when the Armenian earthquake occurred in this re-
gion on December 7. 1988, TIPS were issued for region 5 in California dur-
ing October 1984 and for region 6 during January 1985. These warnings
were still in effect when the Loma Prieta earthquake occurred within these
overlapping regions on October 17, 1989. .

The fault rupture of the Loma Prieta earthquake extended over about 40
km. However, the prediction algorithms detected anomalous seismic behav-
1or over two regions with diameters of 500 km. Self-organized criticality can
explain anomalous correlated behavior over large distances.

This approach is certainly not without its critics. Independent studies
have established the validity of the TIP for the Loma Prieta earthquake;
however, the occurrence of recognizable precursory patterns prior to the

Landers earthquake are questionable. Also, the statistical significance of the
size and time intervals of warnings in active seismic areas has been ques-

tioned. Nevertheless, seismic activation prior to a major earthquake cer-

tainly appears to be one of the most promising approaches to earthquake pre-
diction.
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Figure 16.10. Illustrations of
the Armenian (December 7,
1988) and Loma Prieta
{October 18, 1985, Moscow
time) earthquakes by Keilis-
Borok (1990). In (a) the
Caucasus region is broken up
into 10 areas with diameters
of 500 km; two warnings (for
region 3 and 9) are shown on
the right. The locations and
times of four earthquakes are
also given. In (b) the
California—Nevada region is
broken up into eight areas
with diameters of 500 km.
Four warnings (for regions
4—6, 8) and the locations and
times of four earthquakes are
given.
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Although long-distance correlations between earthquakes are a subject
of considerable controversy, such correlations have been widely accepted in
China and Russia (as well as the former Soviet Union). A striking example
was a sequence of five earthquakes that occurred in China between 1966 and
1976. These were the m = 7.2 Shentai (1966), m = 6.3 Hijien (1967), m= 7.4
Bo Sea (1969), m = 7.3 Haicheng (1975), and the m = 7.8 Tangshan (1976)
earthquakes. These earthquakes spanned a distance of some 700 km, and the
Haicheng earthquake was successfully predicted by the Chinese, at least par-
tially on the basis of seismic activation (Scholz, 1977). However, the Tang-
shan earthquake was not predicted and estimates of fatalities in this earth-
quake range from 250,000 to 450,000.

Seismic activation has been previously recognized in association with an
increase in seismicity that occurred in the San Francisco Bay area prior to
the 1906 earthquake (Sykes and Jaumé, 1990). Earthquakes with estimated
magnitudes between 6.5 and 7.0 occurred in 1865 (Santa Cruz Mountains),
1868 (Hayward), 1892 (Vacaville), and 1898 (Mare Island). There is a seri-
ous concern that a similar seismic activation is now underway in southern
California. A number of intermediate-size earthquakes have occurred in
southern California in the last 45 years. These include the m = 7.4 Kemn
County earthquake on July 21, 1952, the m = 6.4 San Fernando earthquake
on February 9, 1971, the m = 7.6 Landers earthquake on June 2§, 1992, and
the m = 6.6 Northridge earthquake on January 17, 1994.

The Landers earthquake provided direct evidence that faults interact
with each other over large distances (Hill er al., 1993). The Landers earth-
quake triggered earthquakes at 14 distant sites scattered over the western
United States. The farthest site was Yellowstone National Park in Wyoming,
1250 km from Landers. Just how information is transmitted over these dis-
tances is uncertain. One hypothesis is that the surface waves of the Landers
earthquake were responsible. However, the stress levels associated with sur-
face waves at this distance are no larger than the daily variations in stress as-

.sociated with the earth tides.

It is known from statistical mechanics that near a critical point spatial
correlations extend to large distances. To better understand the statistical
mechanics of slider-block models, we consider a two-dimensional array of
slider blocks without a driver plate. Each block is connected to its four
neighbors with springs (spring constant k) and is confined to move in the
x-direction. The slider blocks interact frictionally with a surface; however, to
conserve energy the dynamic friction is assumed to be zero. The problem is
specified by the static friction and the initial total energy in the system. The
force on a block (4, j) is

Foj=k X o+ x4 x5, ;- 4x) (16.1)
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A block slides 1f|F i+ > F_, where F_is the prescribed static friction force. To
simplify the analy51s and sxmulauons only one block in the array is updated
during each microscopic time step. Before the update there are two possible
states:

(N The block was stuck after the previous update | F, |.+ < F, How-
ever, the forces on the block have changed because of subsequcnt
updates on neighboring blocks, there are now two possibilities:

(a) The block is still stable, |F, | _ < F_, and the update is termi-
nated.

(b) The block is still unstable,
the single slider block is glven by

> F In this case moticn of

d’
_._l_ o]
m 22 F =0 (16.2)

The slipping block executes one-half of an harmonic cycle and
sticks when the velocity is again zero. The change in the posi-
tion of block (i, f), Ax , is related to the initial force on the block

(F i j)ﬂ+l“‘ b)’
Ax,; = (ifz)k*i (16.3)

The new net force on the block (F} 4414 18 determined, again

there are two possibilities:

(i) If|F, },44+ < F, the block remains stuck until the next up-
date,

(i) If |F, J|ﬂ +1+ > F, the block slips until the next update.

2) The block was shppmg after the previous update |F | > F_. But
again the forces on the block have changed because of subsequem
updates on neighboring blocks. There are two possibilities:

(a) The block is now stable, |F,._j" +1—- < F,, and the step is termi-
nated.

(b) The block is still unstable |F, | +1- > F, and then (16.3) is used
to determine the new posmon of the block and the new net force
on the block (F, )n+l+ is determined. Again there are two possi-
bilities:
() If|F

date. -
(ii) If |F

» < F, the block remains stuck until the next up-
i jint+1+ s

> F, the block slips until the next update.

i j|n+ I+
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The slider blocks are considered sequentially using a checker-board algo-
rithm to sweep across the two-dimensional array.

It is convenient to introduce the nondimensional variables F =F, IF,
x=klF, t=tVk/m,and E = kE /F2where E_ is the energy in sprmg k: The
nondlmensmnal forceona block is

Foi=% ot X T X+ Xy — 4 (16.4)

- F‘ e 16.5
df- - (16.5)
If |_I~:,.J.‘_ > 1, block (i, j) is unstable and its nondimensional slip is given by

1 -
i 5 Fiio (16.6)

At 7 = 0 the blocks are given a random distribution of dlsplacements of the
nondimensional energy in spring & is E The only parameter in this problem
is the mean energy per spring mtroduced at t = 0, E, which is given by

E= \Ek) (16.7)

Since no energy is dissipated, this value remains constant and we use itasa
control parameter for the model. If £ is large, very few blocks will stick and
we would expect that the system should behave like a set of harmonic oscil-
lators with 2 Maxwell-Boltzmann (Gaussian) distribution of displacements.

If the distribution of displacements of individual block (i, j) is Gaussian,
the distribution of spring displacements will also be Gaussian. If this is the
case, the probability distribution function for the energies in the springs E,
will be given by

exo (- 72)

exp 2E

p(E) = - (16.8)
Y NamEE,

One of the questions we address is whether the system evolves to this.
Maxwell-Boltzmann distribution. The corresponding probability distribu-
tion function for the forces on the springs is
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p(Fk) = -)Vr—‘__‘_— (169)

M

However, the slip condition for a block is determined by the statistical distri-
bution of forces on the blocks. From (16.4) it is seen that the random force
on a block is the sum of four random forces on the neighbor springs. These
forces are not independent as one can see from (16.4) and the Gaussian dis-
tribution of forces on the block is

F3,
_ exp( - ﬁi)
p(F”) = 4@ (16.10)

Ablock can slip if |I?UI > 1. Using (16.10) the probability that a block will be
slipping P_is

F.
Sy
P (E)=2 :Mdf' —erfc( = ) (16.11)
s fl 4VInE h V32E '

We will show that our results satisfy this condition.

We have carried out a series of simulations on square arrays of up to
2000 X 2000 blocks. Springs on the boundaries of the array are attached to
fixed walls. Random initial displacements were given to the blocks corre-
sponding to specified values of E. Various initial distributions of energy
(non-Gaussian) were used, and in all cases the system evolved to the
Maxwell-Boltzmann distribution (16.8). A typical example is given in Fig-
ure 16.11 with E = 1. The statistical distribution of forces on the blocks was
also determined and was found to be in excellent agreement with (16.10),
The fraction of the blocks that are slipping P_are given for several values of
the mean energy E in Figure 16.12. Good agreement with the equilibrium
prediction (16.11) is found.

As the fraction of slipping blocks increases with increasing values of E, a
path of slipping blocks across the array is eventually established. This strongly
resembles the percolation threshold for the site-percolation model considered
in Chapter 15. Both are critical points and the critical value of E is 0.213 with
the corresponding fraction of slipping blocks P_ = 0.583. This value can be
compared with the critical point for the site percolation model where the prob-
ability that a lattice percolates is p* = 0.5927. The small discrepancy between
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Figure 16.11. The probability
distribution p(£',) of the _
nondimensional energies £,
in the springs of a multiple
slider-block model. The
crosses are the result for a
2000 X 2000 array of slider
blocks with E= 1. The
solid line is the Maxwell-
Bolizmann distribution of
energies given in (16.8).

Figure 16.12. The fraction of
the blocks that are slipping
P_(E) is given as a function

" of the mean energy E. The
crosses are results fora
1000 % 1000 array of slider
blocks. and the solid line is
the prediction from (16.11).

the two values is attributed to correlations between blocks in the slider-block
model. Figure 16.13 shows the frequency-size distribution at this critical
point (£ = 0.213) and, as a reference, the frequency—size distribution for the
site-percolation model with p = 0.5927; the two distributions are virtually
identical power laws. A typical slider-block configuration with a continuous
path of slipping blocks across the array is shown in Figure 16.14. It is clearly
very similar to the site-percolation distribution given in Figure 15.11(a).
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This simple energy-conserving system exhibits behavior that is quite
similar to the seismicity in active tectonic regions such as California. In
southern California the seismic activity level in the magnitude range 2 <
M <3 not only satisfies the fractal Gutenberg—Richter frequency—magni-

10° + o stider block model
p=0213
! sita percolation
10° ¥
Ng t
10° ©
10"
10° -
10° 10’

Figure 16.13. Number of
clusters n_of sizesas a
function of s. The solid line
is the distribution of
percolating clusters for a
2000 X 2000 array with the
critical percolation
probability p =0.5927. The
dashed line is the distribution
of slipping clusters of blocks
on our 2000 X 2000 array of
slider blocks at the critical
point £ =0.213.

Figure 16.14. Mustration of
atypical configuration of
sliding blocks at the critical
poin. £=0.213 fora 64 X
64 array. White blocks are
stuck and black blocks are
sliding. A continuous path of
sliding blocks across the
array is present.
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tude scale, but also, the level of activity does not vary from year to year (see
Figure 4.3). Earthquakes in this magnitude range strongly resemble the sta-
tistical fluctuations of the slider-block array near its critical point.

Further evidence supporting the applicability of the “percolation”-like
model comes from the spatial distribution of seismicity in southern Califor-
nia. The distributions given in Figure 4.12 appear to correspond to the fractal
dimension of the percolation “backbone” of a critical three-dimensional per-
colation cluster. It appears that the earthquakes on a complex array of faults
form a connected path across the zone of crustal deformation in direct anal-
ogy to the “percolation backbone™ of slipping blocks in the array. Rundle er
al. (1995) found that the block energy distribution for a driven slider-block
model is a Maxwell-Boltzmann distribution as the model approaches the
mean field where fluctuations are minimal.

16.3 Forest-fire models

We next consider a class of models that are referred to as forest-fire models.
These models generally exhibit self-organized criticality. We consider a
square grid of sites, with each site designated by two numbers ij, where i is
the row and j is the column. At each time step either a tree is randomly
planted on a site or a match is dropped on the site. The sparking frequency f
indicates how many trees are planted before a match is dropped. If r = ﬁ, 99
trees are planted (or are attempted to be planted) before a match is dropped.
If a match is dropped on an empty site, nothing happens. But if a match is
dropped on a tree, it ignites and all immediately adjacent trees burn.

As a specific example of our forest-fire model we consider the 10 X 10
erid illustrated in Figure 16.15. The model has been run for some time to es-
tablish a state of self-organized criticality and its initial state is given in Fig-
ure 16.15(a). We take f= % so that four trees are planted before a match is
dropped. Between Figures 16.15(a) and (b) there are 5 time steps and the
randomly selected grid points were 71, 76, 56, 81, and 93, Trees were
planted on 71, 56, and 81; 76 already had a tree, and a match was dropped on
95. This tree ignited and 35 adjacent trees also burned. Note that only trees
immediately above, below, or to the sides of a burning tree also ignite. Fol-
lowing this forest fire 10 additional time steps are carried out to reach the
distribution illustrated in Figure 16.15(c). The 10 randomly selected grid
points are 72, 36, 00, 88, 08, 65, 44, 30, 45, and 44. Trees were planted on
72, 36, 88, 65, 44, 30, and 45; 00 already had a tree. The match dropped on
08 did not ignite because there was no tree on the grid point. The match
dropped on 44 ignited this tree and burned the adjacent tree on 45. Following
this small fire 25 additional time steps are carried out to reach the distribu-
tion illustrated in Figure 16.15(d). The 25 randomly selected grid points are
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36. 36. 05, 15, 25, 68. 40. 52, 18, 81. 03. 79. 35. 35. 93, 56. 59, 80. 51. 07.
. 20, 56. 86. 46, and 30. Trees were already planted on 36. 05. 79. 35. 56. and
56. The matches dropped on 25, 81, 95. and 07 did not ignite because there
were no trees on these grid points. The match dropped on 30 ignited this tree
and burned six adjacent trees,

Frequency-size statistics for forest fires can be determined. Two exam-
ples for a 100 X 100 tree forest are given in Figure 16.16. The number of
buming clusters N is given as a function of their size A for f= 1 and f = Tl
For the larger value f'= 5 fires consume the forest before large clusters can
form. A reasonably good correlation with the fractal relation (2.2) is ob-
tained taking D = 2.00. The roll-off from the power law near the larger end
of the scaling region is very similar to that illustrated for the slider-block
model in Figure 16.8. When the sparking frequency fis reduced to ﬁ we
observe an excess number of catastrophic fires that consume all or nearly all
of the 10,000 trees. Again this is very similar to the behavior found for slider
blocks when the stiffness parameter is large as illustrated in Figure 16.9.
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Figure [6.15. [Hustration of
the forest-fire model on a

10 X 10 grid of points. Each
point is identified by its ij
coordinates (i-row. j-column).
We take f= ;' {a) Grid points
with trees are indicated by
circles. Between (a) and (b)
trees have been planted on
points 71, 56. and 81:a
match was then dropped on
point 95, igniting the tree
(indicated by m) and burning
35 adjacent trees {indicated
by xs). Between (b) and (c)
trees were planted on points
72.36.88,65,44, 31, and
45: a match was dropped on
point 44, igniting this tree
(indicated by m} and burning
the adjacent tree at 45
(indicated by an x). Between
(c) and {d) trees were planted
on points 36, 15, 68, 40, 52,
18. 03, 35, 59. 80. 20, 86,
and 46: a match was dropped
on 30 (indicated by m) and
burmed 6 adjacent trees
{indicated by xs).



338 SELF-ORGANIZED CRITICALITY

Best fit line
- glope =-1.00

Best fit line
4 slope =-1.13

1/100 spark rate
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It is also of interest to compare the results of forest-fire models with the
frequency-size statistics for actual forest fires. Data for forest and brush
fires in the Australian Capital Territory for the period 1926-1991 are given
in Figure 16.17. A reasonably good straight-line fit with the fractal relation
(2.6) is obtained taking D = 1.18. It should be emphasized that this is the cu-
mulative number. whereas the model results given in Figure 16.16 are non-
curnulative.

The model results given in Figure 16.16 clearly illustrate the “Yellow-
stone Park™ effect. After a massive forest fire covered a significant fraction
of Yellowstone National Park, it was argued that if smaller fires had been al-
lowed to bumn, the massive forest fire could have been prevented. Allowing
small fires to burn is equivalent to having a larger sparking frequency. The
results given in Figure 16.16 illustrate how the small fires prevent the occur-
rence of catastrophic fires that burn essentially the entire model forest.

A variety of authors have studied forest-fire models, including Drossel
and Schwabl (1992a, b, 1993a. b, 1994), Mosner ef al. (1992), Bak er al.
(1992), Drossel er al. (1993), Henley (1993), Christensen e al. (1993}, and
Clar et al. (1994), and Strocka er al. (1995). Johansen (1994) has applied the
forest-fire model to the spread of diseases.

Problems

Problem 16.1. Consider the evolution of the cellular-automata model illus-
trated in Figure 16.1(b). (a) Which boxes have an additional particle in
steps, 6, 7,9 and 107 (b) Which bexes are unstable and how many parti-
cles are lost from the grid in steps 8, 11a, 11b, 11c, and 11d?

Problem 16.2. Consider the evolution of the cellular-automata model illus-
trated in Figure 16.1(b). (a) Which boxes have an additional particle in
steps 12, 13, 14, and 15? (b) Which boxes are unstable and how many
particles are lost from the grid in steps 16a, 16b, 16¢, 16d, 17a, and 17b?

Problem 16.3. Consider the evolution of the cellular-automata model illus-
trated in Figure 16.1(b). (a) Which boxes have an additional particle in
steps 18 and 197 (b) Which boxes are unstable and how many particles
are lost from the grid in steps 20a, 20b, 20c, 20d, and 20e?

Problem 16.4.

2
- 433241332314342113212134323

(a) (b)

Consider a 2 X 2 grid of four boxes as illustrated above in (a). Also
given above in () is a sequence of random numbers in the range 1—4.
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Use the random numbers to assign particles to boxes and carry out the
celiular automata model described in this chapter.
Problem 16.5.

1234

Consider the linear grid of four boxes illustrated above. Use the se-
quence of random numbers given in Problem 16.4 to assign particles to
the four boxes. Use the following rules: When a box has two particles it
is unstable and they are redistributed to the two adjacent boxes. If either
of these boxes has two elements, they are again redistributed. Particles
are lost from the ends of the linear grid.

Problem 16.6. Consider the evolution of the forest-fire model illustrated in
Figure 16.15. Consider the configuration given in (d) and determine its
subsequent evolution using the random number sequence 96, 09, 35, 67,
13, 33, 94, 44, 66, 37. (a) How many trees are planted? (b) How many
forest fires occur and how many trees are burned in them?

Problem 16.7. Consider the evolution of the forest-fire model illustrated in
Figure 16.15. Consider the configuration given in (d) and determine its
subsequent evolution using the random number sequence 15, 81, 55, 25,
33, 65, 29, 17, 73, 56. (a) How many trees are planted? (b) How many
forest fires occur and how many trees are burned in them?

Problem 16.8. Consider a linear (one-dimensional) forest-fire model using a
grid of 10 points numbered sequentially from 0 to 9. Consider p = 4 so
that after three trees are planted on random points, a match is dropped on
arandom point. Assume initially that trees are planted on points 1, 3, and
5 and consider the random sequence 0, 1,7,7,3,2,6,4,0,7,7,4,9,4,7,
6. (a) Which points have trees after these 16 time steps? (b) How many
forest fires occurred and how many trees burned in each fire?



