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Abstract

Transformation of microfracturing preceding the break up of steel and rock samples is similar to transformation of
earthquakes flow prior to strong earthquakes in Southern California. The break up in a sample is preceded by transition from
formation of new microcracks to coalescence or expansion of existing cracks. This is reflected in the relation between the
length and the number of the cracks. Similar transformation of seismicity precedes Southern California earthquakes with
magnitude M = 6.6, 1935-1994. Specifically, magnitude—frequency relation bends downward for magnitudes from 3 to 4.5
and upward for magnitudes from about 4.5 to 6; in the usual notations the ‘b-value’ becomes larger in the first interval and
smaller in the second one. This transformation is accompanied by the increased share of aftershocks in the earthquakes flow.
In such a way the approach of a strong earthquake is reflected in both major traits of seismicity: magnitude-frequency
relation and earthquake clustering. Imprecision of the earthquake catalog and reasonable variations in its analysis do not
change our conclusions. This phenomenon explains, so far—qualitatively, a wide set of premonitory seismicity patterns. We
give it a formal definition, allowing to test whether it takes place in other seismic regions.© 1997 Elsevier Science B.V.

a L

1. Introduction

We continue in this paper the study of transforma-
tion of earthquakes flow in the medium magnitude
range prior to a strong earthquake. We look for such
transformation in the scale, corresponding to inter-
mediate-term earthquake prediction (years X 102
km). According to the previous studies reviewed in
(Keilis-Borok, 1996), premonitory changes of earth-
quake flow can be qualitatively summarized as fol-
lows: it becomes more intense and irregular; earth-
quakes become more clustered in space and time; the
range of their correlation in space probably in-
creases. These changes are reflected in premonitory
seismicity patterns, defined in detail by Keilis-Borok

et al. (1980); Caputo et al., 1983; Keilis-Borok,
1990; Vorobieva and Levshina (1992).

Owing to the lack of an adequate theory most of
such patterns were found first in the observed seis-
micity and then in mathematical models; only few of
them were found in reverse order, that is first in
mathematical models or in a laboratory, and then in
observations (e.g. Zhurkov et al., 1978; Narkunskaya
and Shnirman, 1994; Kossobokov and Carlson,
1995).

According to current understanding, premonitory
phenomena, seismicity patterns included, are to large
extent of a universal nature: they reflect the symp-
toms of growing instability which are common for
many non-linear systems of interacting elements.

0031-9201 /97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved.
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This follows from the fact, that these phenomena, in
robust definitions, are reproduced in the models of a
simple design—e.g. in lattices of point elements
interacting in a non-linear fashion—which contain
no mechanisms intrinsic to the Earth only (Allegre
and Le Mouel, 1982, Allegre et al., 1995; Knopoff et
al.,, 1982; Smalley et al., 1985; Newman and
Gabrielov, 1991; Shaw et al., 1992; Newman et al.,
1995).

Apart from that, premonitory phenomena may
also depend on geometry of the fault system (Sher-
man et al., 1983; Gabrielov et al,, 1996). And fi-
nally, some of them may be owing to Earth-specific
processes or properties of the rocks (e.g. Barenblatt
et al., 1983; Knopoff and Newman, 1983; Pertsov
and Traskin, 1992).

Here, we continue the study of ‘universal’ pre-
monitory phenomena: the laboratory experiments on
multiple fracturing are used to formulate a hypotheti-
cal premonitory setsmicity pattern, which is then
tested on the observed seismicity.

Qur point of departure is the hierarchical, step by
step, increase of prevailing size of fractures in a
sample of solid material eventually leading to its
break up. This phenomenon is described by Syh et
al. (1985) as follows. A sample of steel is subjected
to cyclic loading. At the first stage microcracks of a
certain dominant size appear and their number grad-
ually grows while the size remains about the same.
When the density of microcracks reaches a certain
threshold the next stage starts: most of the new
cracks are formed now by extension or coalescence
(fusion) of pre-existing ones. Accordingly the num-
ber of cracks of the original size drops and the
cracks of a larger size dominate. Such fusions occur
consecutively resulting in hierarchical fracturing, un-
til the sample breaks up. This phenomenon is not
specific to any particular steel; it was observed in
experiments with rocks (Brace and Bombolakis,
1963; Shamina et al,, 1980; Scholz, 1990), clay
(Sherman et al., 1983) and other solid materials
(Zhurkov et al., 1978; Hirata et al., 1987). Theoreti-
cal analysis of this phenomenon is given by Baren-
blatt (1982, 1993), Knopoff and Newman (1983),
Barenblatt and Prostokishin (1993), Barenblatt and
Botvina (1983, 1993), Botvina et al. {1995a).

An easiest-to-observe consequence of this phe-
nomenon is that the distribution of the size of the

fractures ! s changing in a certain way, described
below, with the approach of a break up. We will
show that at least in Southern California the distribu-
tion of the magnitude of the earthquakes M is
changing in a similar way with the approach of a
strong earthquake. In the first approximation these
distribution are usually represented as dN ~
107754S, where S is a measure of the event {/g/ or
M), dN is the average number of events in the
interval (S, § + dS). Each of the measure is defined
both for fracturing and for seismicity: M as a loga-
rithmic measure of elastic energy release, and / as a
characteristic linear dimension of either faultbreak in
an earthquake source or a fracture. However, M is
usuvally determined for earthquakes and / for frac-
tures; nevertheless their distributions are comparable,
since Igl is roughly proportional to M. A compre-
hensive discussion of both distributions can be found
in Molchan and Podgaetskaya, 1973, Molchan et al.,
submitted); Barenblatt {1993); Turcotte (1992). The
distribution of M is called in seismology the magni-
tude—frequency relation (Gutenberg and Richter,
1954), since N, normalized by time, is the frequency
of earthquakes occurrence.

Relevant to our study is the similarity of these
distributions in a remarkable variety of conditions.
The evidences of this are the following.

(i) These distributions are reproduced by a diver-
sity of models, stochastic and deterministic ones, not
specific to a solid body only (e.g. Gabrielov et al.,
1990; Yamashita and Knopoff, 1992; Newman et al.,
1994; Blanter et al., 1996; Langer et al., 1996).

(ii) In the samples of metals and rocks the b-value
happens to be very close for different microstruc-
tures; for plastic and superplastic flows, creep and
brittle fracturing; for fractures and other defects,
such as pores; and for compression and tension.
Comprehensive summary of the evidences of such
similarity is given by Botvina and Barenblatt (1985).

Also, that statistics of rock’s fragmentation is
self-similar, with a uniform self-similarity index,
independent of microstructure (Turcotte, 1992).

(iii) The changes of such distributions in favor of
the larger events were observed in models, samples
and seismicity. This change is expressed in the de-
crease of the average b-value, or in the upward bend
of the large-size end of a distribution (see references

to (i)).
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These evidence support, though do not prove, the
hypothesis, that the phenomenon, considered here,
takes place in seismicity.

2. Transformation of magnitude-frequency rela-
tion

2.1. Hypothesis

Size distribution for different stages of fracturing
of steel is shown in Fig. 1 {after Botvina et al.,
1995b). Different curves correspond to different time
remained until the break up; this time is measured by
the ratio w=1—n/n, where n is the number of
cycles, and ng is the value of n at the break up
point.

Each curve on Fig. | may be roughly divided into
three straight segments. The left one is horizontal,
the & values for other two are shown in Table 1. We
see that far from the break up point (w = 0.83 and
w=0.57) b, <b,. However, with the approach of
the break up point {(w=0.15 and w=0.03) the
following transformation occurs: b, decreases and
b, becomes larger than b,. This transformation is

i 11}

1

100

i IIIIII1

1

10

L illllll

1 T T T l,mm
0.01 0.10 1.00

Fig. 1. Magnitude—frequency relation for the fractures in steel
samples {after Botvina et al., }995b). Time, remained until the
break up. is characterised by parameter @ defined in the text.
Value of w: 0.83 (circles), 0.57 (squares), 0.15 (triangles). 0.03
(dots).

Table 1
Values of # in magnitude-frequency relation for different stages
of steel fracturing

w b b,y

0.83 1.03 5.5
0.57 4.5 5.0
0.15 2.8 2.2
0.03 1.57 1.4

schematically illustrated in Fig. 2. Our hypothesis is
that a similar premonitory transformation takes place
in magnitude—frequency relation for the earthquakes.

2.2. The problem

As in the search of premonitory seismicity pat-
terns (e.g. Keilis-Borok and Rotwain, 1990) we dis-
tinguish time intervals of three types: D, g years
before a strong earthquake, X, g years after it, and
N, all remaining intervals. Qur problem is to find the
difference of magnitude frequency relation in inter-
vals D and N. We will explore representation of the
magnitude—frequency relation as a continuous bro-
ken line

IEN(M)=a,—bMM, <M <M, ,i=12,...

i
+1°*
Here N is the average annual number of earth-
quakes with magnitudes M % ¢; a,, b, and ¢ are

logN

M

Fig. 2. Scheme of premonitory transformation of magnitude—
frequency relation: solid line corresponds to approach of the break
up.
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numerical parameters, and M, are the thresholds
which divide the curve /gN(M) into approximately
straight segments.

2.3. Observations

We consider the earthquakes in Southern Califor-
nia (Fig. 3) for the period 1935 to February 1994.
This territory is chosen because the quality of the
earthquake catalog is exceptionally high there since
the times of B. Gutenberg. We used the Catalog of

Earthquakes of Southern California, 1994. The distri-
bution of earthquakes of different magnitudes (Table
2) shows that it is reasonably complete at least for
M > 3. The values of magnitudes in this catalog are
rounded up to 0.5 before 1944, to 0.25 for 19441966
and to 0.1 henceforth; we assume the lowest resolu-
tion, 0.5, for the whole period.

Earthquakes with M > M, are regarded as strong;
the value of M, is chosen as in previous studies on
earthquake prediction {e.g. Keilis-Borok and Rot-
wain, 1990)—by condition that their average recur-

124W  123W  122W 121w 120W  TTOW  118W  117W  116W  T15W 114w 113w
39N 39N
38N - 38N
SN — 37N
36N - 36N
35N 35N
34N - 34N
33N 33N
32N - 32N
31N 31N

124W  123W  122W  121W 120w T19W  11BW  1TTW  116W  115W 114w 113w

Fig. 3. Earthquakes in S. California, 1935-1994, Epicentres: dots, M = 4.5; circles, M = 6.6. Solid line is the boundary of the teritory

considered.
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Table 2
Cumulative number of earthquakes in 2 years time-window, after
CIT catalog 1994. The first column shows the beginning of the
window

M< 30 35 40 45 50 55 60 65 70 75
years

1935 548 247 110 31 7 1 1

1937 381 190 83 24 5 2 1

1939 500 298 146 57 14 6 2 1
1541 463 261 138 48 16 7 2 ;
1943 351 173 68 20 4

1945 423 222 81 26 15 4 1

1947 520 205 82 33 6 2 2 1
1949 539 233 73 29 7 4

1951 567 361 229 88 25 14 5 1 1 1
1953 752 294 131 49 19 8 3

1955 499 279 199 134 32 9 4 1
1957 326 157 65 25 6 2

1959 326 152 72 16 2

1961 360 133 57 19 7

1963 364 179 77 23 5 2

1965 297 130 51 17 4 2 1

1967 495 176 62 12 4 1 1 1
1969 502 18% 82 50 27 5

1971 705 285 80 21 6 3 1 1
1973 386 101 28 8§ 2

1975 568 170 57 18 3

1977 415 123 36 8§ 4 1

1979 1734 566 182 60 19 10 5 2
1981 653 205 59 16 5 4

1983 1057 373 106 36 13 6 2

1985 1024 287 92 34 12 5

1987 650 190 64 29 10 4 2 i
1989 358 76 26 9 2

1991 1953 646 209 59 21 7 3 1
1993 769 256 80 32 11 3 3 2

rence time is about 7 years. With the catalog used
here this condition gives M, = 6.6 (Table 3); for the
previous version of the catalog M, = 6.4.

Aftershocks are analyzed separately. They were
identified by time and space windows R(M,),
T(M_), M, being the magnitude of a main shock.
We used the same robust estimations, as in the
previous studies of this region: R=150 km and T
increasing from 23 days for M,, = 3 to 730 days for
M, > 6.4. The fixed distance R = 50 km is too large
for the smallest and possibly too low for the strongest
main shocks considered. The results of our analysis
remain about the same with the alternative windows
given by Gardner and Knopoff (1974).

Table 3

Strong earthquakes, M = 6.6, 1935—1994, after CIT catalog, 1994
No. Date  Time ¢("N) A(CW) H(km) M
| 5.19.1940 436 3273 115.50 0 6.9
2 7.21.1952  11:52 35.00 119.02 0 7.7
3 2.9.1956 1432 31.75 115.92 0 6.8
4 2.9.1971 14:0 3441 118.40 8 6.6
5 10.15.1979 23:16 32.61 11532 12 6.6
6 11.24.1987 13:15 33.01 115.84 2 6.6
7 6.28.1992  11:57 34.20 116.44 1 6.7
8 1,17.1994  12:30 34.21 118.54 18 6.6
9 1.17.1994  12:30 34.22 118.54 17 6.6

Last earthquake (No. 9) is disregards, as a close second to
preceding one.

2.4. Magnitude—frequency relation for D and N in-
tervals

Choosing g =3 years, we have the intervals D,
N, and X as listed in Table 4; in case of overlaps
priority is given to intervals X. Let us first lump
together all the intervals of the same kind. Total
duration of intervals D and N is 17.58 years and

Table 4
D, N and X intervals

Time interval Type  Duration, Number of
of the years mainshocks,
interval M=z3
1935.1.1-1937.12.31 X 3 244
1937.12.31-1940.5.19 D 242 174
1940.5.19-1943.5.19 X 3 191
1943.5.19-1946.5.19 N 3 187
1946.5.19-1949.5.19 N 317 229
1949.5.19-1952.7.21 D 3 231
1952.7.21-1955.7.21 X 3 226
1955,7.21-1956.2.9 D 058 36
1956.2.9-1959.2.9 X 3 210
1959.2.9-1962.2.9 N 3 234
1962.2.9-1965.2.9 N 3 222
1965.2.9-1968.2.9 N 3 206
1968.2.9-1971.2.9 D 3 299
1971.2.9-1974.2.9 X 3 297
1974.2.9-1976.10.15 N 27 224
1976.10.15-1979.10.15 D 3 266
1979.10.15-1982.10.15 X 3 231
1982.10.15-1984.11.24 N 21 203
1984.11.24-1987.11.24 D 3 265
1987.11.24-1990.11.24 X 3 257
1990.11.24-1992.6.28 D 258 153
1992.6.28-1994.2.9 X 1.7 179
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N
1000 —
100 —
10 —
T T T T T 1 M
3.0 4.0 5.0 6.0

Fig. 4. Magnitude—~frequency relation for the intervals D {dots and
solid lines) and N (squares and dashed line}. Aftershocks are not
counted in. N(M) is the average number of earthquakes per 10
years in the magnitude range (M £0.25).

19.97 years respectively, average annual number of
main shocks with M >3 is 81 and 75. The corre-
sponding magnitude—frequency relations are com-
pared in Fig. 4. Comparison of b-values is given in
Table 5; b, corresponds to 3 <M <5, and b, to
4.5 < M < 6. The earthquakes with 6.0 <M <6.5
are not included, since their number is too small. We
see, that at least qualitatively transformation of mag-
nitude—frequency relation is the same as described
above for fracturing (Fig. 2).

Let us consider now individual I and N intervals,

Table 5
Values of b in magnitude—frequency relation for D and N inter-
vals

D intervals N intervals
Aftershocks b, b, b, b,
included 0.81 0.58 0.64 0.94
eliminated 0.89 0.87 0.85 1.09

b, correspond to magnitude interval 3 < M <3,
b, correspond to magnitude interval 4.5 < M <6.

b,
1.6 —
i O
1.2 —
| o ‘62 ,/fo
| e 50 - o1
68 e
| O
O 5 e
0.8 — o
46 . pd .
N o D49 ../, e 79
i e O g4 92
0.4 — // ® 52
-1 [ ]
71
: / ® 6
0.0 T T T T T T T . 8% b1
0.0 0.4 0.8 1.2

Fig. 5. Values of b, and b, for individual intervals D {dots) and
N (squares). Year refers to the end of an interval. Aftershocks are
not counted in.

listed in Table 4. Estimations of b, and &, for the
end of each interval are given in Fig. 5; we can see
that intervals D and N of two types (with only two
exceptions) are well separated by the line b, — b, =
0.1. Fig. 6 shows the change of Ab(1) = b (1) — b,(1)
with time. The values of Ab(:) are computed in the
sliding time-window (7 — 3, t) years, with a step of 2
months. We see that each strong earthquake, except
the first one, is preceded by a rise of Ab above the
level 0.45, with the lead time from O to the half of
year; and 4 times such rise followed a strong earth-
quake within 3 years. Maximal of Ab(t) may be
reached not immediately before a strong earthquake;

Ab

MU

T T T T T T T T T T T T T T T YT Y Y YT

1940 190 1% 1970 1980 1990 years

Fig. 6. Function Ab{t) = b,(t)-b,(2) in a sliding time window of
{t -3 years, 1) With a step of 2 months. Vertical lines show the
moments of strong earthquakes; dashed horizontal line is retro-
spective threshold for prediction.



I. Rotwain et al. / Physics of the Earth and Planetary Interiors 101 (1997) 61-71 67

-
o
|

2]
o

tn
[=]

o~
o

W
o

]
[=]

_,I..LL...J.&...LLLLJ.I.I..I..LL...I.LJ_UH.[.I.LIII.LJ._..ILLLIII.IIl:ll._!lll:llll.l

-
(=]

T I T T T ] m
4.0 5.0 6.0

«
o

Fig. 7. Values of Na/N for the intervals D (dots and solid line)
and N (squares and dashed line).

hence the difference between the thresholds 0.1 in
Fig. 5 and 0.45 in Fig. 6.

2.5. Transformation of clustering

Here we demonstrate that the transformation of
magnitude frequency relation described above is
connected with the changes in the earthquakes clus-
tering. This is indicated by the fact, that transforma-
tion of the whole seismicity is much less pronounced
(Table 5, last line).

Exploring further evidence, we consider the rela-
tive number of aftershocks, N,(m)/N(m), where N
is the total number of earthquakes, N, is the number
of aftershocks among them; both are counted in the
magnitude range M > m. (Note, that we consider the
aftershocks, generated by the main shocks with
medium magnitude 3 <M < 6, and not by strong
earthquakes; practically all the aftershocks of strong
earthquakes are anyhow eliminated, since they be-
long to the 3 years long intervals X, following each
strong earthquake.) The values of this function in the
intervals D and N are compared in Fig. 7, we see
that distinctly more aftershocks are generated during
the intervals D. However, this particular measure of
clustering does not allow to discriminate the individ-
ual intervals D and N.

3. On earthquake prediction

Here we show that the transformation of magni-
tude—frequency relation (Sections 1 and 2) and of
earthquake clustering (Section 3) may explain—so
far, qualitatively—many other premonitory phenom-
ena. We formulate then a hypothetical prediction
algorithm, to be tested in other regions and in the
models.

3.1. Premonitory phenomena

(i) Several algorithms for intermediate-term earth-
quake prediction are based on the following charac-
teristics of earthquake flow, which tend to increase
before a strong earthquake:

+ The number of aftershocks (abnormally large
clusters of aftershocks appear).
- The average area of rupture in a source.

Spatial concentration of sources: the ratio of their

average radius to average distance between them.
+ The ratio n{M+ d)/n(M), where n(M) is the

number of main shocks with magnitude above M,

d is a numerical parameter.

Different combinations of these characteristics are
used in different algorithms; exact definitions are
given by Keilis-Borok (1990).

Premonitory raise of the first characteristics can
be explained by the increase of the rate of after-
shocks, and by the decrease of Ab for the other
three. The above mentioned algorithms consider also
premonitory variations of the number of main shocks;
this is not necessarily connected with parameters b,
b, and may reflect the changes of the level of
seismicity a,, a,.

(ii) Premonitory ‘vpward bend’ of the large size
end of the magnitude frequency relation was found
in a mathematical model of seismicity called ‘Shnir-
man tree’ (Narkunskaya and Shnirman, 1990). In the
subsequent test on observations such bend precedes
about 75% of strong earthquakes in several regions
of the world (Narkunskaya and Shnirman, 1994).
This is accordance with premonitory decrease of Ab.

In cases (i) and (ii) the averaging of earthquake
flow was about the same as in the present study. In
the following cases the intervals of averaging were
MOore Narrow,
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(iii) Premonitory increase in the number of after-
shocks was noticed in the rocks fracturing (Hirata,
1987). It was expressed in the lowering of the pa-
rameter p in the Omori law, n(r)=K/(1 + )"
Here, n is the number of the aftershocks; time ¢ is
discretized by days. This is in accordance with pre-
monitory increase of clustering, described above.

(iv) Premonitory decrease of the average b-value
was found also within few months before a strong
earthquake, in the vicinity of its source (Knopoff et
al., 1982). Particularly prominent decrease, by factor
2, is established for the foreshocks which were iden-
tified by statistical analysis of seismicity (Molchan
and Dmitrieva, 1990). This is in accordance with
premonitory drop of b,, described above.

4. A possible premonitory pattern (a conjecture)

The increase of the function A b(r) before a strong
earthquake (Fig. 6) suggests the following hypotheti-
cal prediction algorithm: an alarm is declared, while
Ab> & for v days more. We add also a condition,
that within @ days after each strong earthquake the
alarms are not declared. Here 8, 7, € are adjustable
numerical parameters.
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Fig. 8. The error diagram. Vertical axis shows the rate of failures
to predict #°= n /N; N is the total number of strong earthquakes,
n shows how many of them are not predicted by the algorithm.
Horizontal axis shows the relative duration of alarms 7°=75 /T,
here 75 is the total duration of alarms and T is the time period
considered. Different squares correspond to combinations of ad-
justable parameters listed in Table 6. Solid square correspond to
minimal value of 7°+ 7°)

Table 6

Parameters of the prediction algorithm and 7°, 7° values

5 7, days 8, days n° (%) T° (%}
(.45 365 g 25 32
0.45 270 0 25 30
0.45 210 0 25 29
0.45 180 0 25 28
0.45 210 365 25 24
043 210 730 25 17
045 ° 210 1095 25 10
0.45 365 1095 25 14
0.4 365 1095 25 16
0.35 365 1095 25 17
0.3 365 1095 25 20
0.35 365 365 13 33
04 365 365 13 32
0.4 365 0 13 38
0.48 365 1095 38 10
0.5 365 1095 50 9
0.48 365 730 38 16
0.48 365 365 38 24

* Corresponds to a minimal value of 1°+ 7°=35%.

Fig. 8 shows for this algorithm an error diagram
such as introduced in seismology by Molchan (1994).
It indicates the rates of errors of two kinds: the
relative number of failure to predict, n° and the part
of time, occupied by all alarms, 7°. Different points
on the diagram correspond to different combinations
of adjustable parameters listed in Table 6. The choice
of combination to be used for prediction depends of
the relative price of alarms and failures to predict. If
his ratio is not specified, the quality of prediction
may be characterized by the sum %° + 7°. Points,
corresponding to a random (binomial} prediction, lie
on the diagonal 1°+ 7°= 1, shown by the dotted
line. The points below it correspond to predictions,
which are better than random; this alone does not
guarantee their high statistical significance, not men-
tioning that the whole analysis here is a retrospective
one. Minimal rate of errors of both kind (35%)
corresponds to parameters marked by star in Table 6.
With these parameters, the above algorithm gives the
alarms shown in Fig. 9. We see that they occupy
10% of total time and: precede 6 out of & strong
earthquakes with one false alarm in 1982--1984 and
two failures-to-predict. Obviously, this algorithm re-
mains a hypothetical, one. until it is tested by ad-
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Fig. 9. ‘Alarms’ and strong earthquakes. Bars show the alarms;
striped bar is the false alarm. Solid and dashed vertical lines
indicate strong earthquakes, respectively preceded and missed by
the alarms.

vance predictions in different regions and explored
on the models.

5. Discussion

5.1. Alternatives in the data analysis: Could they
change our conclusions?

5.1.1. Uneven distribution of strong earthquakes

The time span 1979—1984 contains three intervals
D and only one interval N (Table 4); moreover, the
latter was not discriminated by the values of Ab
(Fig. 6). The question may arise—what is really the
reason for the transformation of earthquake flow,
described above: is it the approach of a strong
earthquake or the general change of seismicity since
19797 The first answer is supported by the fact that
after and before 1979 the high values of Ab are
equally confined to a time preceding a strong earth-
quake.

5.1.2. Potential artifacts caused by compilation of
the catalog

The average annual number of earthquakes with
magnitudes from 3 to 3.5 jumped from 130 between
1935-1978 to 373 since 1979 (Table 2). One cannot
exclude a possibility, that actual numbers were about
the same, but after 1978 the catalog became more
complete for lower magnitudes, causing an apparent
increase of b,. The evidence that follows shows that
this is not the case. We shifted the lower magnitude
cutoff M, from 3.0 to 3.1, starting from 1967 (when
the decimals became indicated for magnitudes). The

number of earthquakes became about the same for
the whole time considered; however the results of
retrospective prediction did not change much: n° +
7° is decreased from 35% to 39%. Furthermore, one
may always suspect, that an observed phenomenon is
caused by unannounced change of the magnitude
scale. It is hardly possible however, that such changes
preceded strong earthquakes as it is shown in Fig. 9.
Foreshocks were counted together with the main
shocks. To check, that premonitory increase of b,,
described above, is not owing to the foreshocks, we
eliminated them from the catalog; this did not change
our results.

5.2. What did we learn about premonitory seismicity
patterns?

(i) Introduction of a premonitory phenomena is
inevitably followed by the question—what specific
mechanism is it owing to? Here, we learned that
coalescence and expansion of the cracks is a mecha-
nism, which may explain a wide set of premonitory
seismicity patterns. This mechanism is specific not to
the Earth only, but also to fracturing in solids under
wide variety of conditions. One should note, how-
ever, that this mechanism probably reflects even
more general features of hierarchical non-linear sys-
tems, since it is reproduced on the models, not
specific to fracturing only (Allegre and Le Mouel,
1994; Narkunskaya and Shnirman, 1990; Turcotte,
1992; Newman et al., 1994, 1995).

(ii) Premonitory patterns, mentioned above, re-
flect the change in the two major features of the
earthquakes flow: magnitude—frequency relation and
earthquake clustering. Accordingly, these patterns
may be possibly expressed through a limited number
of parameters, e.g. Ab, N,/N and a; or a,. This
offers the hope in a long-standing problem: how to
reduce the number of adjustable parameters in a
definition of a set of premonitory patterns, In prac-
tice, however, it may remain necessary to use a
sufficient diversity of such patterns, even if they are
interdependent: in this way it is easier to cope with
random fluctuations of earthquake flow.

(iii) Premonitory change of the magnitude—
frequency relation in favor of strong events was
reported in numerous studies of fracturing and of
seismicity. Our results suggest more comprehensive
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transformation of magnitude-frequency relation,
schematically shown in Fig. 2; at least in seismicity,
this transformation is accompanied with an increase
of clustering.

(iv) The next problem is to outline the conditions,
under which the phenomenon, described here, takes
place; first of all it has to be tested on observations
in other regions. The studies, discussed above,
demonstrate, that many premonitory phenomena are
similar in a wide variety of conditions; this may be a
natural consequence of the partly universal nature of
these phenomena. However this similarity is still
limited. In particular, under certain conditions strong
events may occur on the low background, without
significant activity in the medium magnitude range.
Model of such kind is described by Knopoff and
Newman (1983), among possible natural examples
are American Midwest and Mid Atlantic rift.
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