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Hamiltonian plasma dynamics and topological
invariants, self-similar solutions, spatial structures
in collisionless reconnection

F. Pegoraro

Dipartimento di Fisica. Universita di Pisa, 56100, Pisa, Italy

SCHEMATIC NOTES OF THE LECTURES

1 Hamiltonian structure

In this section we generalize the “reduced” MHD (RMHD) model and include electron and ion
diamagnetism, finite ion gyroradii and finite electron mass effects which dominate the plasma
dynamics at small scales. In a high-temperature plasma, the electron inertial skin depth is
smaller than the gyro-radius of a thermal ion. These equations can be cast in (noncanonical)
Hamiltonian form. It is shown that infinite sets of conserved quantities (Casimirs) exist. Suf-
ficient conditions for stability are discussed on the basis of the second variation, at comstant
Casimirs, of the Hamiltonian functional.

We consider a geometry with magnetic field B and electric field £

= . ~ By ov¥
B=By(e.+& xVV¥), E=-Vé+2_¢, (1)
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where ¥ is the flux function. ¢ is the electrostatic potential. Assuming that the parallel ion
velocity is much smaller than the electron velocity v,, Ampere’s law reads (see Appendix 1)
v, & —J./eng = —(cBo/4meny)Vi¥. where ng is a reference value. The parallel momentum

balance and the continuity equation of the electrons are
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respectively. Here, ¥, = ¥ — d.°V? ¥ is the generalized flux function, d. = ¢/wy. is the electron
inertial skin depth, the brackets are defined by [f.g] = €, - Vf x Vg, & = e¢/T, J = V3 ¥,
a = cT/{eBg), and G, = drngT/Bo?. Finite electron mass effects are taken into account.
Temperatures are taken to be constant throughout the fluid.

The electron density n is related to the jon density through the quasi-neutrality condition. The
ion respouse is given by:
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where p? = Tymic?/(eBo)?, = = T/Ti, and h = 7;® + lnn/ng. Since Eq.(4) can be viewed as

a nonlinear generalization of the Pade approximation to the linear ion response for arbitrary

values of the ion gyroradius' we assume it to be valid for all values of the gyroradius. Its leading

order solution in the large gyroradius limit is the adiabatic response Inn/no(Z) + ri® = 0.
The nonlinear equations [23. 24. 4] can be written in Hamiltonian form?

%%’ = {Ee > H}, i = 172133 (5)
where the noncanonical variables £; are
G= ., & =defPn—. € =deB)? (p,-2v2h ~In —“—). (6)
ng g

The Hamiltonian is the energy functional
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The noncanonical Poisson brackets are a generalization of the brackets given in34
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where z; = (z,y) and the symmetric matrices W;; and W,-J-(’) are defined by

£ & O 0 1L 0
I%:(&EZU).Wf:(IOO) (9)
0 0 & 0o 0 O

We consider localized phenomena and disregard boundary effects. The brackets (8) are anti-
symmetric and satisfy the Jacobi identity {F. {G, H}} +{G {H,F}} + {H,{F,G}} = 0. Apart
from the &; contribution to the integrand in the second term in Eq.(8), we see from the form
of the matrices (9) that the Poisson brackets do not contain any coupling between £ 2 and &3.
Coupling arises when ion currents are no longer negligible and/or when charge neutrality is
violated. It can easily be seen that the choice of new variables £+ = 1/2(&; + &) diagonalizes
the Poisson brackets, but not the Hamiltonian.

The system of Eqs.(5) has two types of invariants: those related with the symmetries of the
Hamiltonian and those related with the algebraic structure of the Poisson brackets.
When the Hamiltonian has a continuous transiational symmetry in z,y and/or rotational sym-
metry, the functionals P, and/or P,. that generate translations, and the angular momentum
functional L., that generates rotations in (&.y),

Py = f P (yo—e) & + &), Ly=- / 3z 1€ + £3)/2 (10)

are conserved, as is the case for the Hamiltonian (7). The operators Pry and L, satisfy the
appropriate commutation relations {L.. Pi} = Py . {L,,P,}=—P, and {FP;,P,} = J Bzt +
&)

The invariants of the second set are called (asimirs and are functionals that commute with all



functionals F,i.e. {C,F} =0. We treat 2D cases and take all quantities to depend on t, z, and
y. In these cases the brackets (8) admit two infinite sets of Casimirs,

Cy = fd%: fell1 £ &) = ]0«'255 fe(¥, £ 8%, Inn/ng), (11)

with fi arbitrary functions. These functionals depend only on the dynamics of the electrons
and do not depend on the ion response.

In the limits m. — 0. Inn/ng — p2V?® | the Casimir {(11) become those of RMHD? In
the cold ion limit. 7; — 0. the last term in (8) vanishes. Then the system contains an infinite
number of Casimirs involving £;3

Cy = /d3a: G(&). (12)

with G' an arbitrary function. Note that in this limit & = deﬂgﬂ(pEVZQ — In(n/ng)) with
p? = 7ip?. In the model of reduced magnetohydrodynamics (RMHD) &; vanishes. Then the
Casimirs (12) become trivial. Eq.(11) implies that magnetic reconnection in ¥, and/or ¥ can
occur in the presence of an infinite set of conservation laws. This is related with the fact that
inertia is particularly important in regions where the reconnection process can occur. The
existence of these infinite sets of Casimirs is equivalent to the special properties of the equations
of motion (23, 24) and (4) under time transformations.

In terms of the variables (£,. £_. £3), where £4 = $(&1 £ &) so that 6H 66+ = 6H[88 +
6H [6&;, the equations of motion (5) read in the limit T; — 0,

Bl ) O _od ) (13)
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We remark that Eqs.(13) and the corresponding Poisson brackets (8) are invariant under coor-
dinate transformations in the plane that leave the Jacobian equal to unity. The Hamiltonian,
however, is only invariant under translations and rotations. Equations (13) also take the same
form after the transformations ¢;(&;)d» — dr; and OH/[6& — g7 '6H/6E;. This is equivalent to
redefining the time in Eq.(5} and changing the diagonal matrix W; according to & — g 'é;.
Since the ¢;(&;)’s are arbitrary. this invariance is equivalent to the existence of three infinite sets
of Casimirs. In terms of the new Poisson brackets the translation and rotation operators (10)
become

Pl 12 = [ @ oo —r/2) [on(60)6s - 9-(E)6 + b)), (14)

The existence of the Casimir invariants restricts the possible plasma motions to hypersurfaces
in the infinite dimensional phase space. This restriction can be used to describe the stationary
solutions and the stability of the Hamilton equations (5) with the help of a variational principle.
Variations of the field variables that conserve automatically all Casimir invariants, have been
introduced by Arnold® for the Fuler equation. A generic variation A which conserves all the
Casimir invariants is Af; = 0, + ;6% + ..., with

88y = [px. £4]. 083 = [0, &3], (15)

p+(z.y) and o(z.y) being arbitrary functions. The first variation of H gives the stationary

solutions of Egs. (13),
all §H
Eé_j:— Fr(és), E— U(&3). (16)
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These equations can be written as F1p(§+) = —J:{:ﬁyzd;l(ln n/ng—®),and U(&) = ~ :lzde_l@.
When the Hamiltonian is minimized under the constraint of a constant operator (14), propa-
gating solutions are obtained wlere each ¢ propagates with a velocity that is constant on the
corresponding & = const surfaces. When all g; = 1, all velocities are equal and a stationary
equilibrium is obtained.

The second variation of the Hamiltonian functional is

§*H = [d% (fbfm.} FAUFL 86, + FL8E_Y + Ag(684 — SE_)2/d:

~ B6BpIV8% — U'(E3)(663)%) (17)

NI Y -1
where 87 = (1 — d2V2)7'V266,. 0& = (do3 7 p2V?)  (862+ 683),and Ay = —(FL+FL)Y!, Az =
1—d2(F\ F")/(F} + FL). The first and fourth terms in (17) are positive definite. Sufficient con-
ditions for stability are A, > 0

FiL+ FL <0, —(F + FLy> —dZF, F., U’ <. (18)

In the RMHD limit, & is not an independent variable and the last contribution to (17) has
t0 be omitted and the last condition of {18) does not apply. Also in the large-p; limit, £3 is
not an independent variable. The equilibrium is given by the first two eqs in (16) and by the
relationship In n/no(&) + 7® = 0. Instead of (17), we obtain

§2H = [d‘-’-x (wég,w v AFLeE, + FLoE) + —3—;—(&@ - 65_)2) . (19)

where Ag = 7-1-‘1 + A,. In this case the suflicient conditions for stability read Al.,ziz > 0 In the
limit of zero electron mass d. — 0. these two conditions reduce to a single one on the profile of
the equilibrium current deusity® &J/0€&, = &4 /0¥ > 0.
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2 Self Similar Solutions

In this section we study a special solution of The hamiltonian equations given above.
When the system is energetically closed. the energy functional is the Hamiltonian and non-
canonical Poisson brackets can be defined. The system possesses two infinite sets of invariants



(Casimirs) that arise from the structure of the equations. They reflect the invariance of the
topology of the configuration. The plasma dynamics in the neighbourhood of critical points (X-
and O-points) of the magnetic coufiguration is investigated in terms of scale-invariant equations.
Their solutions correspond to upen systems which, in general, do not have well defined Casimirs.
However, the scale-invariant members of the families of Casimirs of the closed system survive,
These surviving elements are not related to simple power expansions in the fields. When the
fields are analytical. they can be expressed as polynomials and the system has a finite number
of degrees of freedom. This truncated system is Hamiltonian and integrable. Most of the initial
structures lead to a collapse ol the magnetic separatrices with a velocity that grows as (¢ — tol_l-

We consider a geometry with magnetic field B = Bg (€: + €, x V¥) and electric field £ =
~Vo+(Bo/c) (OW /) €,, where ¥(a,y,t)is the flux function and ¢(z, y,t) the electric potential.
Assuming that the parallel ion velocity is much smaller than the electron velocity v,, Ampere’s
law reads v, = —.J,/eng = —(cBy/4meny)V?¥, where ng is a reference value. The parallel
momentum balance and the continuity equation of the electrons are ([7])

1 g n
¢ ] = 20
GRS UL LT (20)
and 1 ¢ 1
i@ - [T, J] =0, (21)
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respectively. Here, ¥, = ¥ — f[r_"!VilL' is the generalized flux function, d. = ¢/w,. is the electron
inertial skin depth, the brackets are defined by [f,g] = €, - Vfx Vg, ® =e¢/T, J=Vi¥ qg=
¢T'/(eBy), and B. = 4m noT/By*. Finite electron mass effects enter through d.. Temperatures
are taken to be constant throughout the plasma. The electron density n is related to the
ion density through the quasi-neutrality condition. In the limit of large ion gyroradii, the ion
response is adiabatic,

lnn/ng(Z)+ 9 =0 . (22)

Then, with the normalizations ¢ — [3.7;(1 + 7;)]'/%® and t — [1;8./a?{1 + 1;)]'/?t, the electron
momentum balance (20) and coutinuity equation (21) become

B‘Pe T

0d

2 = ez =
o e1=0, (¥, J] =0 (23)

The energy functional is
| .
= / d*z (\—wz vy 4 @2) ) (24)

In terms of the proper variables. the nonlinear equations (23) can be written in Hamiltonian
form with non-canonical Poisson brackets ([6]. [7]).

This Hamiltonian system has two tvpes of invariants: those related to the symmetries of the
Hamiltonian and those related 1o the algebraic structure of the equations i.e. of the Poisson
brackets. The equations (23) admit the two infinite sets of Lagrangian invariants Fy[¥. F(7/1+
7:)Y/%d ®)], with Fy arbitrary functions. These two sets are advected with different velocities.
In the case of closed systems. the volume integrals of these invariant functions are the Casimirs
of the noncanonical Poisson brackets. In the limit of vanishing electron inertia (d. — 0), these
invariants become

/ e PV, / Pz dG(V) . (25)

In this limit Egs.(23) do not contain an explicit length scale.

- W <

"H N T W T OWYT T

T YT IW T Y



The plasma behaviour in the neighbourhood of critical points, such as X- and O-points, is
studied by referring to a class of solutions of Fqs (23) that are scale invariant ({Pegoraro et al. 1994]).
As will be shown, this class contaius solutions that describe the collapse of the magnetic con-
figuration in a finite time. We look for solutions that leave Eqs(23) unchanged under the trans-
formation t — £, (z,y) — (ax. ay). Adopting polar coordinates, such spatially self-similar
solutions are of the form

U= S, b= rih(8,t) . (26)
Equations (23) become
71 . 7. S
C;—t+2¢\l’()—3¢9‘1’ = (. %—t+3q’ Jog— Ve =0, (27)

where J = 9¥ + ¥4y is the current density. and the subseript denotes differentiation. It is clear
that this self-similar system is not energetically closed, since fluxes will cross the boundaries
of the system. In general, such open systems will not possess invariant integrals over a fixed
domain. However. one expects that in a scale-invariant system the integrals of Lagrangian
invariants that scale inverselv with the volume will still be conserved. This is because the fluxes
through nested, closed surfaces are equal. This leaves the following two invariants

j{ §=2/340. fﬁ'(inir‘*ﬁda . (28)

These integrals reflect the geometrical structure of the configuration. Their values are con-
trolled by the maguetic separairices ¥ = 0. It can easily be verified that, independently of the
relationship between ¥ and ./. these integrals are indeed constants of the motion described by
Eq.(27). The invariants (23) are not related to power expansions of the functions in Eq.(25).
The additional invariant ¢ $dé is the remnant of the rotational invariance of the Hamiltonian
(24).

By expanding ¥ and & in a Fourier series in #. we obtain from Eqs.(27) a set of coupled
ordinary differential cquations for the Fourier coefficients ¥,,, = ¥*_,;, and @,, = ®"_,,

W, =iy (50— 2m) W@, (29)
{

b= 0> (=) — m Wy o (30)
where a dot denotes time differentiation. This infinite system becomes finite if it consists only of
the harmonics ¥4 ,. Y43, 5 and ¢4, Note that $g is a constant. The resulting set of equations
describes a finite-dimensional svstem with six degrees of freedom. In Cartesian coordinates the
fluxes are given by

U, y.t) = Yool ) + VBV (dy + V3V 1(t)ey” + Paa(t)y® (31)
Doty = Gag(t)r + Oy (thay + Poa(t)y® . (32)
These fluxes correspond to lincar velocity lields and to magnetic fields with either one or three

real separatrices. ‘L'his finite Fourier svstem is Hamiltonian with conjugate variables
{a} = (U . 1/2 00 3200 {pi} = (U1, 1/2 85, 3170 ) (33)
that are also each others™ complex conjugates. The Hamiltonian is

Is == SV3i(prgap. + qipets) — il e + ¢t 2) + 2i®o{qip1 — 3eaps) - (34)



This Hamiltonian does not depend explicitly on the angle 6 and, thus, is invariant under rotations
8 — @ + . As a consequence. the equations for the Fourier amplitudes are invariant under the
transformation £, — €™§, with £, = (¥,,. ®.,) and group parameter ¢ = expiy. This
symmetry implies the conservation of the momentum

Iy = 20-qip1 + 2q2p2 + 3gaps) = =201 W1 + 18U3¥_5 + 8285 (35)

which is an energy-like variable. It can easilv be verified that the standard canonical Poisson
brackets {Iz, I3}, vanish.
Introducing the new variables

Q1 =202+ Q) = P2 — P - Q2 = 2i(22 — ®—2) = ¢ , (36)

Eqs(29)and (30) give i 5 .
Q1 = ~3200Q1 +2Q1(Q% + Q3) — 480Q; (37)

and 3 .
Q2 = —320,Qq + 2Q2(QF + Q3) + 480Q1 . (38)

Equations (37) and (38) are Hamiltonian in terms of the variables @y, (2 and the conjugate
momenta P, = Q1 + 29¢Q,. P, = Q, — 2940, with Hamiltonian

Lo= 1/2(Py — 20000 + 1/2(1, + 200Q1)* - 1/2[161, — (QF + @3] . (39)

In terms of this reduced set of canonical variables, I3 is proportional to the angular momentum
M,
Iy = —(1/‘32)4‘5[. with W 2212@0—(Q1P2—'Q2P1) . (40)

Expressing I, in terms of the canonical variables (33), it turns out that it depends only on the
Fourier components of ¥. 1n addition it can be shown that the invariants I, f3 and I are
independent and in convolution. Thus the scale-invariant system is integrable.

An exact solution of Eqs.(37. 38) can be obtained by writing them in the form of the reduced
nonlinear Schrodinger equation

iy, + by + 32450, — 328y | By 7= 0, (41)

where | @ |*= ®,®_,. Fquation (41) has the following integrals of motion

= 2 ?f i = d == I — ¥ 2 2 2
J =| &, | +m(¢z¢r<p2 @.2)412_5;13, L= @ P-16(10 P -L) . (42)

Substituting ®, = o'/?exp(i) into (11), with © and w real functions, we obtain
S=2Bg( o= 1) . 0P+ 0% — 160(¢ — L) = Iio (43)

which can be solved for ¢ explicitly in terms of the Weierstrass elliptic functions.

However, it may be more transparent to look for approximate solutions of Egs. (37)-(38).
For simplicity, we take ®¢ = 0. Fxpressing the Hamiltonian (39} in terms of the radial variable
R=(Q%+ Q%)l"'2 aud of the invariants I and M = R2E, with £ the polar angle, we obtain

Iy= RE/24+160L,R% — RY/2 + (M?/2R?) . (44)

The maximum and winimum values of the vifective potential in (44) are determined by the
roots of a 37 order polynowial in £°. Tle sign of the discriminant is given by M? — (3213/3)°.
If the discriminant is positive. there are no positive real roots and the potential is everywhere

e o)



repulsive. This means that cach initial configuration collapses in a finite time, i.e., that the
magnitude R of the velocity potential & becowes infinite with a (tg — ¢}~ behaviour for large
R. If the discriminant is negative, there exist. besides the collapsing solutions, also oscillatory
solutions.

In these collapsing solutions E vanishes as (tg—¢)? and thus the system tends to become one-
dimensional and the coordinate system can be chosen in such a way that asymptotically R — @,.

The structure of the collapsing maguetic configurations can be studied more conveniently in
terms of the Cartesian forms (317 and (32).

The magnetic separatrices of the configuration correspond to ¥ = 0. Because of flux con-
servation, they remain distinet at all times, Their number is determined by the discriminant
of the resulting equation. In rthe present case of a cubic equation, it can be shown that this
discriminant is proportional 10 the invariant /. The configuration has a single separatrix when
Iy > 0 and three separatrices when [, < 0.

The behavior of a magnetic collapse can be described in the asymptotic state where $5 and
—®_, remain bounded as ¢ — /. and £ = ) i.e. where ®pg, $op and 3WaoWo3 — Vo ¥, remain
bounded. Under these conditions the leading order terms in the equations of motion expressed
in Cartesian variables take the simple form ‘ilu‘ A2 by Py ¥;, with bg = 3 and b1 = 1. Recalling
that R~ &, ~ (t, —1)~'. the solution of these equations for ¢ close to the collapse time tg is

Waot!) » (g — 077 0 Wap(t), ®qa() o< (g — £) 7" (45)

The other cartesian coefficients remain bounded. It can be concluded that all separatrices
collapse towards the y-axis.

The treatment given in this paper can be extended to fluxes ¥ and P that also contain lower
powers in 2 and y. The resuiting system is now only scale-invariant order by order. In this
case electron inertia can be included. A lhicrarchal set of equations for the time dependence
of the coeflicients of the polyuomial representation is obtained, where the equations for the
higher powers do not depend on the coefficicats of the lower powers. An analysis shows that
the lower powers do not collupse {aster than the leading order terms. The lower powers cause a
splitting of the cubic X-point into two quadratic X-points at a distance determined by electron
inertia. This analysis is analogous Lo the setl-similar dynamics studied by [Bulanov et al. 1984],
{Bulanov et al. 1985]. [Bulanov ¢t al. 1992] for the 3D MHD- and EMHD-equations by assuming
a linear. time-dependent relutiouship between Fulerian and Lagrangian fluid variables and a
polynomial represeniation lor the dependence of the magnetic field on spatial coordinates.

We have shown, on a specilic plasia wodel that applies to a strongly magnetized plasma
and to scale-lengths smaller thau the jon thermal gyro-radius, that the plasma dynamies in the
neighbourhood of a critical point is integrable. i.e. non chaotic, at least for the case of spatially
self-similar motions and tlin critical points tend to coilapse to one-dimensional configurations
in a finite time.

A connection has been ientified. based ou scale invariance. between the integrability of the
self-similar solutions. that have a finite number of degrees of freedom, and the infinite number of
integral invariants (Casimirsi of the starting equations, that have an infinite number of degrees
of freedom.

The present approach con be extended v principle to reduced MHD (2D incompressible
MHD): in this framework the sofutions given here are to be seen as local solutions valid close to
the critical points to be councciod. through a non-scale-invariant transition region described e.g.
by a Padé-type representation. 1o elobal scale-invariant solutions valid in the limit of small ion
thermal gyro-radii. Parity arguments require 1hat X-points of the type described above appear
in these global solutions it pair-,



An open problem under investigation is whether the integrability of the self-similar solutions
is a special property of our dvnamical plasina model or whether it occurs also in more general
cases, such as 3D-MHD and LMD, being simply a remnant of the infinite number of invariants
(Casimirs) of these systems with infinite degrees of freedom.
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3 Nonlinear Collisionles reconnection

Recently it was shown [1].[Y] theoretically that electron inertia can account for the fast recon-
nection time scales observed in luboratory experiments, e.g. the fast sawtooth crash in Tokamak
plasmas. The first nonlinear simulation [3] of electron inertia reconnection neglected the elec-
tron pressure gradient in the ecneralized Olun law. This term was considered in subsequent
contributions [4],[5]. which reveaied a furthier enhancement of the reconnection rate, although
the physical interpretation of the simulation results remained unclear.

A related problem is the role plaved by the invariants (Casimirs) of the collisionless plasma
evolution. It can be shown thai collisionless models of the type adopted in {2],[5]-[7] admit
an Hamiltonian structure. Clearlv. while the magnetic flux is reconnected in the course of
plasma evolution, the invariart Liclds preserve their initial topology. The nature of collisionless
reconnection under these circmmn=tances is entively different form that of resistive (dissipative)
reconnection.

The aim of this last section i~ twofold. Virst. we present new numerical results in regimes
where both electron inertia aud the clectron pressure tensor are important. We confirm that the
nonlinear growth of magnetic islands is even faster than in the case where the electron pressure
is neglected, and that this fust crowth is accompanied by the formation of microscales below
the electron inertia skin deptli. as in the purely inertial case {2]. A significant finding [8] is the




splitting of the current and vorticity sheets in two branches crossing at the stagnation point of
the plasma flow. A similar beliavior was also ubserved in Ref. [4] in the context of resistive
reconnection with electron pressure eifects. Secondly, we interpret these results on the basis of
the Hamiltonian structure of the udopted plasma model. In particular, we show that the spatial
structures are the consequence of the presence of Casimirs advected by effective velocity fields.
Our investigation considers an extension of reduced MHD on a two dimensional slab, where
electron inertia, proportional to the square of the inertial skin depth, d, = ¢/w,, and the electron
stress tensor are retained in the generalized Ohm law. Diamagnetic effects are neglected here.
Thus, the pressure effect we consider ias to do with electron space charge perturbations along the
field lines, balanced by ions streaning across the field lines in order to preserve quasineutrality.
This process is associated with 1lie characteristic scale length. gy = /Te/m;/w.;. The equations

we solve are
OFJOt+ [ F] = 02U, ¥ (46)

DUJOt+ Te 1] = [, 9] (47)

The quantities appearing in thesc equations are dimensionless. The normalization is based on
the Alfvén time, 74, and the slab width L,. The magnetic field is B = Bge, + VU X e,, with
By a constant component along the ignorable =-direction, ¢ is the e.s. potential, U = V2p is
the vorticity, J = ~V?¥ is the current density and F = ¥ 4 d2J is the generalized canonical
momentum (2] along z. The Poissou brackets ave defined as [A, B] = e, - VA x VB. Note that
the Lh.s. of Egs. (46.47) represcut tlie e derivatives of IV and F, advected by the E x B
velocity field, v, = e, x V. 1This svstem ol equations can be written in a conservative form

for the quantities
Gy =1 xdepsU. (48)

Defining the generalized stream luuction
e =S .L)f[vg F derJ (49)

multiplying Eq. {47) by d.o, and adding and subtracting the resulting equation to Eq. (46) we
obtain
Dig [0+ [pe.Ge] = 0 (50)
Thus, the quantities G1, are conserved along fluid elements in motion with the effective velocity
fields vy = e, x Vi, so the topology of (/4 remains "frozen™ during time evolution.
It can be shown [5]-[7] that Egs. (46.17) can be cast in non canonical Hamiltonian from.
The Hamiltonian is

| , . .
H=- / Fe([VUE - B0+ |V + gP0?) (51)
The associated generalized Poissou bracket= admit two infinite sets of Casimirs
'y = / Fehe (€ 1 &) = /dzwhi(G:i:) (52)
with iy arbitrary functions. In the linit of vanishing g, upon expanding hy to first order, we
find the Casimirs of the purely inertial case. ¢y = [ d*2hy(F) and Cy = [ d?xUhy(F). Thus, for
0s = 0. the generalized momentum /' 1s conserved and its topological structure is preserved in

time. When g, # 0, the fields (/5 are topologically invariant, while ' can undergo reconnection.

The linearized system of equations (16.17] was soived analvtically in Ref. [9]. Let us assume
double periodic boundary conditions at the frontier of a rectangular slab with aspect ratio
€= Ly/L, and equilib1'111111 wavnetic fhox W, = cos e, @y, = U = 0. Considering perturbations
of the type ¥(z,y) = W(a) " cos by, one linds for the "outer solution™ (i.e. neglecting g, and
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de), A" = limg—g|din \i’/d$|L = 20 tan({o ;) where ¢ = v1 — k2. In the relevant limit g, > de,
considering the large A’ regime defined by A'd, > (do/05)'/?, the linear growth rate, normalized
to the Alfvén time, is v7 ~ (2d, o2/711/%. Tl mode structure exhibits macroscopic convection
cells, with Loy ~ Lg, the vorticity profile has a width ~ 25, while the current density has a
width of order d., with a tail extending over a distance ~ g,. Note that, already in linear theory,
one finds an enhancement of 1lie reconnection rate, by a factor (ps/de)*/® compared with the
growth rate obtained for g; < ..

In this paper, we present tiic wimerical solution of the nonlinear model (46,47) obtained on
the basis of a finite difference scheme with variable grid. In Figs. 1-7 we present the solution
for a case with € = 1/2, d. = 0.08 and o, = 3d, . In particular, Figs. 1-4 show the contour plots
at t = 5074 of the fields o, ¥. J and {7, Figs. 5-7 show the contour plots of G4, ¢4+ and F.

Two features of this solution are common to the behavior obtained for g, = 0 [2]. Firstly,
the mode grows very rapidly in the early non linear stage. In fact. the reconnection rate is even
faster when g, is larger at fixed o, . This faster growth. already noted in the linear solution,
can be attributed to a broadening of the flow layer, from a width of order d. when g, =0 to a
width of order g,. Secondly, the wode structure develops a microscale rapidly shrinking in time.
Similarly to the case with g, = 0. we attribute this behavior to the presence of the conserved
quantities, G'y.

When g, # 0, the generalized momentum # is no longer conserved, indeed F changes topology
, with an O-point forming at » = y = 0 aud four Y-points forming symmetrically around the
origin, as shown in Fig. 7. Ou the other hand. the initial topology of the G4 fields is preserved,
as expected.

The most striking differciice hetween o, = 0 and g5 # 0 is the formation, in the latter
case, of cross-shaped current density and vorticity layers. This structure is already visible when
0 < o, < d.. The two branches of the current and vorticity layers lie on the separatrix of F' and
not on that of ¥. Also, the separation hetween the two branches scales with g,.

We can establish a link between thie Casimirs and the spatial structures that form nonlinearly.
This link can clarify an imporiant difference between Hamiltonian and dissipative reconnection.
Both these processes require the localized violation of the topological constraints that involve
the magnetic flux ¥. However. clectron inertia (and the electron stress tensor) make field line
reconnection possible, but do not eliminate these topological constraints. Simply they now
involve different fields (F, or (;+ when o, # 0. instead of ¥).

The difference between fli conserved ficlds and ¥ consists of a current density and of a
plasma vorticity term. Thus. reconnection of W can only proceed unimpeded by the conservation
of F (or of G4} if current and vorticiiy lavers are formed. In the presence of dissipation there
are no fields conserved locally aid thus these lavers have a minimum diffusive width. On the
contrary, in Hamiltonian recouncection the presence of the locally conserved fields makes these
layers increasingly sharper ainl leads 1o i vascade towards smaller and smaller microscales.
Eventually. this cascade must he linited hy kinetic and dissipative effects. In this sense, the
collisionless model is incomplete Irown a phvsics point of view. One can draw an analogy with
Landau damping and phase wixine. where sinaller and smaller scale lengths are produced that
are eventually wiped out by coilisions.

The cross-shaped structure of 1he current and vorticity layers can be interpreted on the basis
of the advection of the invariuui~ (/. \i cquilibrium, G+ = G(z). As the instability evolves,
G, and G_ rotate in opposite directions. advected by the effective velocities vy and v_. Note
that these velocities introduce « rotation. as the corresponding stream functions, ¢4, add terms
with mixed parity with respect 1o and 5 (by contrast, the potential @(z,y)is odd in z and even
in y: indeed, the convection ccell» in Fig. | do not exhibits any rotation). Since the instability
evolution is slow, the potential- - remain largely aligned with Gx. The structure of J, U and
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F follows that of G4 and @4. a~ 2ol = 1o - o 20,d 0 =G4 —G_and 2F = G4 + G _.

In conclusion, magnetic reconicction in 21) collisionless regimes remains a fast process in
the early nonlinear stage, in murked contrast with the standard Sweet-Parker model developed
within the context of resistive MID. We hive established a link between the topological con-
straints of the collisionless model and the spatial structure that are formed non linearly. This
link can clarify important ditferences between Hamiltonian and dissipative reconnection.
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