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Statistical mechanics of magnetohydrodynamics
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3 Department of Quantum Engineering and System Science, Faculty of Engineering,
The University of Tokyo, Tokyo 113, Japan
(Received 18 April 1995; revised manuscript received 11 September 1995}

A statistical mechanical formulation for the steady state of self-organized magnetohydrodynamic
plasma is studied based on the empirical variational principle, §(E — AH) = 0, for the steady state,
where E and H denote the energy and the helicity of a magnetic field. The eigenfunctions of the
curl operator are shown to span the phase space of a magnetic field in a bounded system, and the
invariant measure is found. The classical ensemble theory is formulated assuming the Shannon or
Rényi entropy. To avoid the divergence of the expectation values at nonzero temperature, Bose-
Einstein statistics is also phenomenologically treated. It is implied that the spectra of the energy,
helicity, and the helicity fluctuation obey the power law for a muitiply connected domain with a
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nonzero cohomological field. For the toroidal system, these powers are implied to be 4hwee, thiea, 4o ) Tufo’
and hws{tively. The invariant measure for the incompressible flow in a bounded domain is

also given. e

PACS number{s): 95.30.Qd, 02.30.Sa, 02.50.Cw, 05.20.—y

L. INTRODUCTION

The magnetohydrodynamical systems generate macro-
scopically ordered states from random disordered states.
These phenomena are primarily due to the dynamical
laws of such systems, that is, the magnetohydrodynam-
ics equations (MHD equations). These equations are,
however, not simple and they determine the behavior of
the system more precisely than we expect. What we
want to know is not a microscopic structure which fluc-
tuates much under the change of minute conditions but
the macroscopic coarse-grained structure which is stable
under the microscopic changes.

Such separation of the scale is usually impossible.
Strong experimental or mathematical conditions are in-
dispensable. In some MHD systems, its self-organization
phenomena seem to allow us to postulate the possibility
of self-contained and self-consistent descriptions in the
macroscopic level without referring to the microscopic
details. More explicitly, we have a quantitative phe-
nomenological variational principle which determines the
macroscopic structure of a magnetic field 1,2}

§(E — AH) =0, (1.1)

where E and H denote the energy and the helicity of
a magnetic field, respectively. This variational princi-
ple first appeared when Chandrasekhar and Woltjer (1
discussed the minimum emergy state of magnetic flux
tubes tangled in a stellar plasma with introducing the
magnetic helicity to characterize the twist of magnetic
fields. With a fixed gauge, we write the magnetic field
B = V x A. The helicity density is h = A - B, and
the helicity in a fixed domain @ is H = [;hdz. He
assumed that the plasma relaxes into the minimum en-
ergy state with a given (prescribed) helicity. In a low-
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pressure charge-neutral plasma, the energy is dominated
by E = (2po)~! [, Bldz (o, vacuum permeability).
By formal calculations of the variation with appropri-
ate boundary conditions, the minimum energy state is
shown to satisfy the Beltrami condition

V x B = AB, (1.2)

where A is a real constant (corresponding to the Lagrange
multiplier). Since the current density j = (0) 2V X
B in steady state, (1.2) implies the force-free condition
( x B = 0), which had been considered to be obeyed
by the relaxed magnetic field in a plasma [3]. If A is an
eigenvalue of the curl operator, Eq. (1.2) implies that B
is the corresponding eigenfunction. And it was shown
that the state becomes unstable when 1A > Amia [4],
where Apgig is the nonzero and minimum absolute value
of the curl eigenvalues, without charging some conditions
which fix the modes with absolutely smaller eigenvalues
than A. This Ami is proved to be positive {nonzero) [5].
So theoretically and experimentally interesting problems
are the state for 0 < |A} < Amin-

Exactly the same equation as (1.2) was found to de-
scribe the relaxed state of turbulent plasmas in labora-
tory experiments. Taylor [2] conjectured that a selective
dissipation of the magnetic energy with respect to the
helicity yields such a relaxed state. By Maxwell’s equa-
tions, we obtain “Poynting’s law” for the helicity,

oh=-V.(¢B+ E x A)+2E- B, (1.3)
where E (= —8; A — V¢) is the electric field and ¢ is the

scalar potential. Assuming a perfectly conductive wall at
the boundary 852, we obtain, using (1.3),

d
Ll . Bdz. 1.4
+H ]nzﬂ T (1.4)
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In a highly conductive hydrodynamic plasma, Ey =
E-B/!B| =~ 0, and hence H is conserved. Further-
more, under the perfectly conductive boundary condi-
tion, n x E = 0, the helicity can be formulated to be a
gauge invariant quantity. The conservation of the helicity
imposes an essential restrictiop on the dynamics of the
plasma. If H remains constant while the magnetic energy
E achieves its minimum, the relaxed state is character-
ized by the minimizer of ¥ = F — X' H, and the formal
Euler-Lagrange equation becomes (1.2}.

Theé dynamical process of the relaxation was studied by
computer simulations based on three-dimensional magne-
tohydrodynamic mode} equations [6}.

Let us now revisit the thermodynamics and its statisti-
cal mechanics. Many experiments and speculations sup-
ported that the thermal equilibrium state is determined
by the variational principle

{F)y=0, {1.5)

where F' denotes the free energy. The thermodynam-
ics itself is a self-consistent and self-contained theory
within the macroscopic quantities like volume, pressure,
and entropy. The statistical mechanics gives the rela-
tions between the microscopic dynamics and the macro-
scopic thermodynamics by assuming appropriate ensem-
bles. The Boltzmann distribution is a kind of working hy-
pothesis. It reproduces the correct results and its math-
ematical structure is now accepted to be natural. The
additivity of the energy and the importance of the en-
ergy as the principal integral of the equation of motion
imply the Boltzmann distribution with appropriate in-
variant measure. So most physicists already accepted
that the ensemble and the Boltzmann distribution have
sufficient reason to be regarded as the reality.

The purpose of this paper is to elucidate the ensemble
description for a MHD system starting from the formal
similarity between Eq. (1.1} and Eq. {1.5). It is to pro-
pose a statistical mechanics for a MHD system. There
are pioneering works [7-9] towards such statistical me-
chanics already, which will be discussed at the end of
this paper.

In this paper, we will make a statistical treatment only
for the magnetic field. The velocity field is not treated
explicitly in our formalism, because it does not appear in
Eq. {1.1) explicitly. The variational principle (1.1) is in-
terpreted as the zero-(helicity }-temperature form of the
thermodynamic variational principle of the helicity en-
semble. Appropriate space for this purpose is analyzed
in the next section and a good phase space with invari-
ant measure is given. A related topic of this phase space
is given in the Appendix. In this space, the solution of
Eq. (1.1} is studied in the third section. This solution
is considered as the zero-temperature ground state. The
fourth section proposes a simple quantal statistics after
we see that the simplest classical statistics shows diffi-
culty. Some connections to the experimental verification
of this statistical mechanics are given in the fifth section.

II. PHASE SPACE

When an equilibrium or steady state exists, there are
two key steps towards the statistical mechanical tran-
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scription of a variational principle. Oue is to find the rel-
evant additively conserving quantity to characterize the
state. In our case, the energy and the helicity of magnetic
field play this role. The other is to find the invariant mea-
sure of the temporal evolution equation. It corresponds
to Liouville's theorem in the classical Hamilton mechan-
ics. In this section, it is proved that the expansion coeffi-
cient of the magnetic field, B, with the complete orthog-
onal functions described below is a natural phase space
and its volume element is temporally invariant.

Let @ (C R*) be a bounded domain with a smooth
boundary 3{2. We denote by n the outward unit normal
vector onto 2. We consider a function space of real
solenoidal vector fields in Q,

L2)={ue L} (N);V-u=0in Q,n-u =0 on 0},
(2.1)

which is a Hilbert space endowed with the standard L2
innerproduct { ). If £ is multiply connected, we obtain
the subspace of harmonic vector fields,

L) ={uv e L} (Q);V . 4 =0,V xu=0

in 2,n u=20o0n 60}, (2.2

which represents the cohomology class, and the dimen-
sion of this L% (1) is equal to the first Betti number v
of Q. We write L2(Q) = L% () @ LL(N), where LL(Q)
is defined as the orthogonal complement of L% (2). For
these function spaces, the following lemma is proved [5].
Lemma 1. (1) When we consider eigenvalue problem

V xu=iu, ueli(Q), {2.3)
we obtain a compiete orthogonal set of eigenfunctions
to span L%(2). All eigenvalues are real, nonzero, and
discrete.

(2) For every u € L2(f2), we have an orthogonal ex-

pansion

w= (u,@,)¢; + ) _(u he)hy,

3 =1

(2.4)

where p; € LL(2) is the eigenfunction of the curl oper-
ator and hy is the orthogonal basis of L(52).

In the following, the subscript j for the nonzero eigen-
value and its eigenfunction of curl operator is assumed
to run over all integers except zero, and this numbering
is assumed to follow the order of the eigenvalue. Nega-
tive and positive subscripts are assumed to correspond
to negative and positive eigenvalues, respectively. That
is, the eigenvalue numbering looks like

€A S A S A <0< A S A
(2.5)

These are unbounded and go to oo when 7 = oo,
Now we can find the phase space of the magnetic field.
Lemma 2. Let v(z,t) be a smooth vector field in §2.

Suppose that a solenoidal vector field f(z,t) obeys
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Qf =V x(vxf) inf, (2.6)
nx(vx f)=0 ondf. (2.7

Using the eigenfunctions of the curl operator, we expand

Fzt) = 3 (e, (x) + 3 a(thez)  (28)

3 =1

(see Lemma 1). Then, dC = dé, ---dé, H,‘ dc; is an in-
variant measure.
In fact, by the boundary condition {2.7). we observe

%e, =0 (Vo). (2.9)

Using (2.6) and (2.7), we obtain

2= (T x (o x o) = (o x 1.9 x0)
= ’\J(v X fa ‘PJ)
=2 | Y culv x @urp5) + 3 ée(v x heye;)
k =1
(2.10)
Since (v x @;) - ¢; = 0, we find
8(dc;/dt)/dc; =0  (V3). (2.11)

Hence the measure dC is invariant. This implies that
these & and ¢ are a good set of coordinates in the phase
space in the statistical mechanical sense.

In a MHD system, v and f are the velocity field of
the fluid motion and the magnetic field, B, respectively.
The velocity field is now treated to be a separated free-
dom from the magnetic field. This treatment will be good
when the magnetic field has the most energy in the sys-
tem, and then the velocity field acts as a perturbation or
as a fluctuation generator to the magnetic field. When
we expand a magnetic field as

B(z) =Y cjp;(z) + Y éche(z), (2.12)

i £=1

the second summation term over the harmonic field in
the RHS is the same for all possible B because of the
boundary condition n x E = 0. It is called the cohomol-
ogy field. So we do not treat ¢¢ as a dynamical variable,
instead, as a constant. Only c;’s are treated as dynam-
ical variables, and the first summation in the RHS of
Eq. (2.12) is denoted by Byx. The energy of this B is
expressed as

E:f_}:ﬁiaﬁ. (2.13)
H =1

The second summation, the energy of the cohomology
field gives only a constant contribution. Taking g to be
h, = V x gy, the vector potential of B is

Alz) =3 f\—i«,oj(z) + ;élgz(m)- (2.14)

We can add any function in L%(£2) to vector potentials
of the cohmology field, 3, é&igi(z). This corresponds to
the gauge degree of freedom.

The relative helicity is defined by

o2
f A Brdz=Y" (TJ +L,-c,-) , (2.15)
£l : b
2

where

X

L;=Y &0, (2.16)

and
Ajr = (@5:91)- (2.17)

The A, ¢ may be called the cohomelogy-helicity coupling
constant, The L; is named the cohomology coefficient.
The difference between the relative helicity and the helic-
ity is a constant determined only by the cohomology field
and its vector potential, so we can neglect it. It should
be remarked that the relative helicity (2.15) is gauge
invariant because of the perfectly conductive boundary
condition. In the following, we will only use this gauge-
invariant quantity for the helicity and call it simply the
helicity.

III. SOLUTION OF THE VARIATIONAL
PROBLEM

Now we can solve the variational problem (1.1). By
using the expansion Eq. (2.12), this problem becomes

0= 6{‘:’} z [(1 - A—AJ‘) C? - )\ch_.,}
;]
\ wL: \
= - . j 3
6‘“’};[(1 %) ( 20 - A))

AL 51)
4(A - A | '
For 0 < A < min; |A;|, the solution is
AA;L;
0= 3 (V). 3.2
G = 30 =N (V3) (3.2)

The L; will decay algebraically in terms of j for large
I7]- The eigenvalue A; will be distributed uniformly
for large |j|. And we can expect that the summation
2, cYp; converges uniformly and absolutely. But we
cannot always expect such convergence for the termwisely
differentiated series 3_; c]A;@;. The energy and the he-
licity are expressed as

AZAZL?
_ 2777
E= Ej: e (3.3)

and
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L; is expected to show algebraic decay in terms of 1/17).
For example, the decay speed is expected to be the order
of 1/|]*/2 when (2 is inside of a torus (T?). For large {3/,
j can be regarded as the wave number k in the Fourier
analysis case except a constant with the dimensionality
of (length) ™', because the local feature of the sufficiently
high mode will not be sensitive to the boundary condi-
tion.

IV. ENSEMBLE

MHD fluid relaxes to a kind of steady state after it
starts to develop from a given initial condition. Dur-
ing this relaxation, the change of the magnetic helicity is
slow, and it can be neglected. The energy of the magnetic
field, however, dissipates largely in the early state and fi-
nally its change is also negligible in the steady state (2.
The variational principle (1.1) determines the structure
of such a steady state [we should say that the validity of
the expression “steady state” comes out of the success of
Eq. (1.1)] and our purpose is to propose a microscopic
model, which we call a “statistical mechanics of MHD,”
to reproduce this principle. In our terminology, the ther-
modynamics of MHD, Eq. (1.1}, suggests that the energy
E and helicity H are the relevant state variables. H is
easily controlled by external condition, but E is not as
we described above. So the parameter 1/A works like a
chemical potential of the grand canonical ensembie. The
limitation of this chemical potential interpretation is that
these E and H are defined in the same phase space.

These E and H are additive quantities in the re-
laxed state. So the possible distribution consistent with
Eq. (1.1) is determined by specifying the information
measure. When we use the Shannon entropy, S(p)} =
- Y plap, the Boltzmann distribution form in terms of
these quantities appears:

P(E,H) x exp{—aH — SE), {4.1)
where o and 3 are constants, and these E and H are
microscopically defined dynamical guantities, not macro-
scopic. This expression is equivalent to
P(E,H) x exp{-B(E — AH)]. (4.2)
This A is adjusted to the notation in Eq. (1.1}. The 3
is interpreted as an inverse temperature of the magnetic
field, and Eq. (1.1) corresponds to the case of large 3.
A more general information measure is the Rényi en-

tropy [10},
Lon (T
1—¢q - iy

where g is a positive parameter. The Shannon entropy is
included in the Rényi entropy in the limit of ¢ — 1. The
canonical distribution based on this entropy, that is, the

So({p:}) = (4.3)
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Tsallis distribution {12}, also produces a similar result to
the Boitzmann distribution as is shown below.

Although the helicity H is introduced in the Boltz-
mann distribution function, this naive classical statistical
mechanics causes the same kind of catastrophe as what
we meet in the classical treatment for the blackbody ra-
diation.

A. Classical statistics

In the preceding section, it is proved that the vol-
ume element {];dec; is temporally conserved when the
flow velocity field is prescribed. The proof of this, more-
over, shows that each dc; is conserved. So we concentrate
on a single mode, denoted by j, first. The helicity and
the energy of this mode are c3/); + Ljc; and c?, respec-
tively. The Boltzmann distribution for this amplitude ¢,
is

Pj(c) x exp [—ﬁ (c§ - % 2 ,\L,-c,-)] . (4.4)

In the variational principle, Eq. (1.1), we can assume the
condition 0 < A < miny |A;|. Assuming that 3 is positive,
the distribution function is

iy
Pilede =\ 250, =%
X exp [—-ﬁ (1 - '%) {e; — c?)2:| de, (4.5)

where c? is defined in Eq. (3.2) as the solution of
Eq. {1.1). In the following, the ensemble averaged value
is denoted by {). The expectation value of the energy for
this mode is

2y _ Aj 042 _ Aj + A%\?L?
()= 380 -0 97280, -0 T a0 N
(46)

The helicity is

c? 1 (c?)?
<A—‘; +LJ‘CJ'> :2,8()1--»/\)+ ;j +LjC?
IR W 1% YR
BET TS VR S PV

(4.7)

The distribution over our phase space, {c;}, is simply
the product for each P;. So the average of E and H
should be also simply obtained by summing up over all
modes:

23272
AATL;

Aj
E) =2 [w()\j BT ,\,2] )

and

1 A/\JiLz' 2/\_.,;—)
(H):g[w(/\j_/\ﬁ 4’“]__)\)2]. (4.9)
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In these summations, the summations of the “cohomo-
logical terms,”

AAZL2 AXLE 2, - A
37 77 2
Ej 4W(Aj*)‘)2 and Ej 1 -2 (4.10)

(3 22
are expected to converge, because |L,| decays faster than
1/|7l- The summation of the first terms in the helicity
may be interpreted to converge by taking the limit in the
form of

J
. 1
fim, 2 50— (4.11)

The first term in the energy, however, diverges. This
term expresses the equipartition of the energy for every
mode,

The Tsallis distribution for ¢; is

1

Pj{c) [1 —Blg-1) (1 3 %) e~ c§)=] 1/a-1)

(4.12)

and the range of c is limited to ¢§ —cP** < ¢; < c2+c;““,

where 1/c*** = /B(1 — A/};). Including the normaliza-

tion factor, it becomes

1 A
FileMe = B /2,47 - 1) [1 -pa-1(1-3)

1/(g-1)
x{c — c;‘)’] de, (4.13)

where B() denotes the beta function. So the energy for
each mode is calculated to be

/\.
3y = 2
{e5 (3¢ — 1)B(A; — A)
and the helicity to be

e? 1 (c9)?
2 4y Loc: Y= ) c9
(f\:' * ’c’> Ba-nao, - N T T

(4.15)

+ (c)? (4.14)

So the difference between the Boltzmann and Tsallis dis-
tributions reduces to a factor in front of 3. Therefore the
choice of the entropy is irrelevant.

B. Bose-Einstein statistics

The statistical mechanics of the blackbody radiation
suggests that the quantization of the field is necessary
to avoid the divergence of energy we met above. But it
has not succeeded yet in our MHD equation case. This
difficulty can be observed in Eq. (2.6). This evolution
equation is linear in field f but the velocity field of the
plasma flow, v, will also evolve with the same time scale.
And its evolution obeys a complicated nonlinear equa-

tion, for example, the Euler equation (Al) even within
the incompressible approximation.

In spite of such difficulty for the legitimate approach
to the second quantization, the magnetic field of a steady
state in self-organized plasma is determined by the vari-
ational principle, (1.1), in which the flow does not ap-
pear. And the purpose of the present study is to make
up a statistical mecharical formulation which reproduces
this variational principle in a limit. Following is one of
the simplest formulations to avoid the Rayleigh-Jeans-
like catastrophe

The exponentiated factor, (1 —- A/A;)el — ALjc;, is re-
garded as a transformed expression of a kind of effective
Hamiltonian by replacing the canonical momentum with
the canonical coordinate, c;, using an unknown effective
temporal evolution equation. We do not know which part
of the ¢} comes from the momentum, or additional mo-
mentum contribution may be hidden. We introduce an
angular frequency w; of this jth mode. New variables,
d;, are introduced to shift the average to zero and to be
normalized, that is,

i 1 A,\,-L,-] _

1
—ﬁ[cj—iAi—A

The factor 1/,/@; is a naive normalization factor which
provides the unit of the field quantum. Then we assume
that this d; is the bosonic annihilator by charging the
commutation relation, {d,-,dt] = §;; or [c.-,c}] = w;di;.

The Bose-Einstein statistics gives the averaged number
of these quanta in the jth mode as

1
) = (dld;) = .
(ng) = (d;d;) exp[B(1 — A/Aj)w;] -1
The chemical potential is taken to be zero because we
quantized the magnetic field.
The expectation values of the energy and the helicity
are

(4.16)

(4.17)

(ele;) = witng) + () (ny = dld;) (4.18)
and
t 042
% 1y oo _ Wi () 0
<§: + '2'Lj(cj +Cj)> = Xi—(nj) + X +LJCJ-.
(4.19)

The total energy and helicity are

AL ]

W
B =2 [expw(l SAel -1 A - AP

(4.20)

and

wifAj
() =2 [exp[ﬁ(l S VRIS

L2 -
ANLE 2 A]_ (4.21)

4 (X -7
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The w; will diverge when |A;| diverges, and |L,} will decay
faster than 1/{3]. So these expressions now converge.

V. SOME IMPLICATIONS

The Bose-Einstein-type statistical mechanical formal-
ism proposed in the preceding section is a theoretically
naive and simple extension of the variational principle
(1.1) so that fluctuations around the variationally de-
termined state can be described. Experimental verifica-
tion is expected and some characteristic predictions of
the present formalism are shown in this section for that
purpose.

The fluctuations of energy and helicity are

(AE)) = 3 wi(adldy)?)

sz explB(L = A/, )
= 2. ToxplB(L ~ My hy] - 17

(5.1)

(aHY) =)~ [A—;«Ad}d,-)’)

Lz-wj A 2 t
+ ’4 (A,-i,\) (2(dld;) + 1)

_ w?  exp[B(1 = A/);)wy]
B Z[ 2 {exp[B(1 ~ A/Aj)w;] ~ 1}2

LB )zexp{ﬁ(l—f\//\j)w,-l+1}

e
w
——

4 A; — A exp[B(1 — A/Aw;] —1
(5.2)

respectively. The summation of this second term will
converge. For a torus, for example, if w; does not grow
faster than 52, it converges. The energy fluctuation de-
cays exponentially for higher modes. But the power-law
spectrum is predicted for the helicity fluctuation from its
second term in Eq. (5.2). The power exponent is deter-
mined from j dependence of Lf-wj for large |j|.

Spatial correlation of the magnetic field can be derived.
For example, two point correlation is expressed as

(B(z)B(y)) = ) _lws{d}d;) + ()’ (e (2), w(¥). (5.3)

It is straightforward (but tedious) to get more explicit
expression of this kind of spatial correlations.

The power-law behavior of the helicity luctuation with
its exponent is simple and characteristic in the present
quantal statistical mechanics.

VI. SUMMARY AND DISCUSSION

A statistical mechanical formulation for the self-
organized MHD fluid is proposed. It is a naive extension
of the variational principle (1.1) which suggests that the
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structure of the magnetic field is relevant to the steady
state structure of such MHD fluid. So the velocity feld
is neglected in the present formalism.

It is shown that the eigenfunctions of curl span a con-
venient phase space when the system is bounded. For
a given velocity field, the volume of the expansion coef-
ficients is temporally invariant and this corresponds to
Liouville's theorem in the classical Hamilton mechanics.
For a cylindrical system, this has been already shown by
Turner [9] and our present proof applies in a very gen-
eral situation. OQur domain covers not only a simply con-
nected domain, but also a multiply connected domain.
Furthermore, the same functional analytic space turns
out to be a good phase space with invariant measure even
for the incompressible low (see the Appendix) and this
fact may grow to one step of the statistical mechanical
theory for the turbulent flow. Previous attempts mostly
used plane wave to make phase spaces [7], and met some
difficulties to reproduce the power-law spectrum.

In this phase space, the energy and helicity are used
as additive conserving quantities to translate the varia-
tional principle (1.1) to the ensemble and introduce fluc-
tuations. But the simplest classical statistics leads to the
divergence of the expectation values. So some more as-
sumptions are necessary to make a finite theory. One is
to restrict the relevant modes to finite as was proposed
in previous formalism [9], but the solution of the orig-
inal variational principle {1.1) itself requires an infinite
number of modes to reproduce its solution with the eigen-
functions of curl operator, as we have seen in the third
section.

Qur present formalism uses the quantal statistics by
charging second quantization. The relevant functional
E — MAH including a chemical-potential-like parameter A
is interpreted as a transcription of an effective Hamilto-
nian of the system. The frequency of each mode is in-
troduced artificially. The fluctuation currently relevant
is, however, not large, that is, the temperature 1/3 is
small. So a linear dispersion approximation, w; = vA;,
will be good. The implication of the present formulation
for general geometry is stressed here: the ground-state
structure has power-law spectrum in energy and helicity
and it is also the case for the helicity “thermal” fluctua-
tion in our statistical mechanical sense. This power-law
behavior stems in the tangling of the dynamical magnetic
field with the cohomological magnetic field. Now for the
torus or cylinder, the power exponents are predicted to
be three for the ground-state energy and helicity, and
using the above linear approximation, the exponent for
the thermal fluctuation of the helicity is two. The exper-
imental observation of these power exponents will be a
good test of the present formulation.

At nonzero temperature in the present sense, the vari-
ational principle will be modified to that for the thermo-
dynamic free ene:zgy as

5(E — AH — TS) =0, (6.1)

where T is 1/3 in the present formalism. S denotes the
entropy which may not have been observed because the
temperature T has been small. But the measurement for
the helicity fluctuation will reveal its statistical nature.
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Purely theoretically, even if we accept the existence of
the statistical mechanics for our problem, a very differ-
ent first step is possible. For example, in the present
paper, we assume only the Shannon entropy to select the
distribution. But the steady state of the MHD system
may reject to measure our knowledge to its subsystem.
In such a case, we have to use Rényi entropy and a differ-
ent distribution function [12] from the current Boltzmann
type. Before going into the complicated forests, we now
propose a familiar extension in this paper. The experi-
mental verification is now expected,
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APPENDIX: INVARIANT MEASURE OF
INCOMPRESSIBLE FLOW

Using the eigenfunction expansion associated with the
curl operator, we also obtain an invariant measure of in-
compressible ideal flow. Let u be a three-dimensional
flow in a bounded domain {2, which satisfies

Ou+ (u-V)u=F - Vp, (A1)
V- u=0,
where p is the pressure, and F is a force (for example

F = jx B). We assume that F is not an explicit function
of u. The mass density is normalized to 1. The boundary

condition is n - u = 0 on 8. Using (- V)u = (V x
u) x u + V(u?/2), we may write (A1) as

du=—-(Vxu)xu+F-Vp (A2)

where p = p + (1?/2). Let us expand
u= Zv,—qp,- + Z:ﬁght, (A3}
J =1

cf. Lemma 1. We easily verify (Vp,¢;) = 0 (¥j) and
(VB he) = 0 (VL). We denote F; = (F, ;). By (A2)
and V x p; = A;p;, we observe

d
avj = _( (Z /\mvmwm) x (Z Uu‘Pn) v¢j) + F;
m n

— ZZ,\mumvn(tpm x ‘Prnwj) + Fj

= D) AnUmn (P X Prripy) + Fi (A4)
m#Ejn#j

We thus have d(dv;/dt)/8v; = 0 (Vj). Similarly d¥, is
invariant.

The complete set of ideal incompressible MHD equa-
tions consists of (Al) and (2.6) with f = B, v = u,
and F = pg'(V x B) x B. One thus obtains a higher
dimensional invariant measure such as [[, de; []; dv;. In
the present theory, however, we do not invoke the sta-
tistical distribution with respect to []; dv;. This is due
to the semiempirical assertion that a finite (but small)
resistivity and viscosity violate the invariance of [] 545
largely, while ]| de; remains almost invariant. This fact
is relevant to the hypothesis of the selective conservation
of the helicity in the MHD turbulence 11},
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Abstract

We study the statistical mechanics of three-dimensional magnetohydrodynamics in a
multiply connected domain by constructing a Gibbs ensemble that accounts for the three
rugged invariants of the ideal dynamics. The phase space we work with is defined by the
eigenfunctions of the curl operator on the space of real three-dimensional solenocidal vector
fields. The dynamics in this phase space satisfies the essential Liouville property. The the-
ory predicts the appearance of a steady mean magnetic field-velocity field pair coupled with
random fluctuations. It is shown that this mean field-flow satisfies the variational principle
8(E —CH —ER) = 0. where E is the energy, H is the magnetic helicity, and K is the cross—
helicity. We obtain a meaningful continuum limit in which the magnetic field and velocity
field exhibit finite amplitude local fluctuations, while the fluctuations of the vector potential
and the velocity stream function vanish. In this limit, the energy and cross-helicity are
divided among the mean field-flow and the fluctuations, whereas the fluctuation component
of the helicity vanishes, so that the helicity is determined entirely by the mean field. It is
shown that, in the continuum limit, the Gibbs ensemble is equivalent to the microcancnical
ensemble associated with the conservation of the rugged invariants.

pacs numbers 053.20.-y, 47.27.Eq, 47.65.4a, 52.30.-q.

keywords magnetohydrodynamics, turbulence, coherent structures, statistical equilib-
ria.

1 Introduction

An important characteristic of a magnetofluid, which distinguishes it from a nonmagnetic fluid,
is the induction effect. This effect brings about the coupling of the electromagnetic field and
the velocity field. As a result of the inclusion of the magnetic field, the equations of magnetohy-
drodynamics (MHD) are considerably more complicated than those of ordinary hydrodynamics.
Surprisingly, however, an incompressible three-dimensional (3d) magnetofluid exhibits, in a
certain sense, a greater degree of regularity than does an ordinary incompressible 3d fluid. Ob-
servations of space and laboratory plasmas alike reveal that the magnetic field of the plasma
tends to self-organize through a turbulent phase of relaxation into a simple spiral configuration
[1]. The recent numerical simulations of Politano et al. [2] demonstrate that the velocity field
plays an important role in the self-organization process of the magnetofluid. While coherent
structures are also observed in 2d MHD {3, 4] and in 2d hydrodynamics [5], there is not such
an obvious propensity toward self-organization in 3d hydrodynamics. Traditionally, there have
been two popular analytical approaches to characterizing the macroscopic organized states in
fluid and plasma turbulence, which we shall now briefly review.

One such method, which we shall call the selective decay theory, models the organized state
as a minimizer of some integral invariant of the ideal {nondissipative} dynamics subject to
the constraint that certain other ideal invariants remain fixed. The conserved quantity that
is minimized is usually the one that decays most rapidly in the presence of dissipation. This
procedure yields a deterministic field equation, whose solutions correspond to steady solutions of
the relevant dynamical equations. In 2d hydrodynamics, for example, the organized structure,



according to the selective decay formalism. should correspond to a minimizer of the quadratic
enstrophy subject to rhe condition of constant energy [1. 6. In 3d (respectively, 2d) MHD,
under the assumption that the magnetic field gives the dominant contribution to the energy, an
organized magnetic structure is thought to be described as a minimizer of the magnetic energy
subject to the constraint that the magnetic helicity (respectively, the integral of the square of
the vector potential) remain fixed 7, 8, 9]. In general. the velocity field can not be ignored in
MHD, and the kinetic energy should be accounted for in this formulation, as should the cross-
helicity, which is also conserved by the ideal dynamics. A detailed discussion of the selective
decay theory may be found in [1].

Another approach to studying the phenomenon of self-organization in fluid and plasma
turbulence is, as we shall refer to it, the statistical equilibrium method. This theory, which
originated with the work of Lee [10], was subsequently developed by, among others, Kraichnan
[11, 12], Frisch et al. [13], and Fyfe and Montgomery [14]), and Montgomery et al. [15]. An
exhaustive review is given in [16]. This method is based upon a Gibbs ensemble for a truncated
spectral representation of the ideal dynamics. The Gibbs distribution assumes the form

P=Z" exp(—a1 F\ —agky — 1),

where Iy, Fy, - - are the rugged (i.e., quadratic) global invariants for the nondissipative dynamics
(eg; energy, enstrophy, cross-helicity, etc.), expressed in spectral form, and the ¢; play the role
of inverse temperatures. The partition function Z ensures that P has a total mass of 1. Alterna-
tively, the Gibbs distribution may be obtained as a maximizer of the Gibbs-Boltzmann entropy
functional, subject to constraints on the ensemble averaged values of these conserved quantities
[17, 15]. In that case, the o; act as Lagrange multipliers to enforce the given constraints. This
Gibbs ensemble is supposed to represent a state toward which the ideal system tries to relax.
The statistical equilibrium theory has met with much success in describing certain long—time
properties of inviscid fluid and plasma systems, and it provides a basis for many qualitative pre-
dictions and assertions concerning spectral cascades of the rugged invariants in large Reynolds
number turbulence. Of particular importance in this regard is the prediction of inverse cascades
and normal cascades of the various global invariants when finite dissipation js introduced into the
system. A quantity whose spectrum is peaked at large wavenumbers will decay more rapidly in
the presence of dissipation than one which is peaked at smaller wavenumbers, because dissipation
becomes more effective with increasing wavenumber [15]. Thus, an ideal global invariant whose
spectrum is peaked at high modes will exhibit a “normal” cascade to larger wavenumbers, while
one whose spectrum is more peaked at the lower modes will follow an “inverse” cascade to the
smaller wavenumbers. An inverse cascade indicates condensation of the quantity in question at
the longest wavelengths, and a normal cascade of an ideal invariant to short wavelengths points
to the selective dissipation of that invariant. The process of self-organization may. therefore,
be conceptualized as resulting from a normal cascade of some global invariant(s) and an inverse
cascade of the other(s). The preceding discussion strongly suggests that the existence of rugged,
or quadratic, ideal invariants, such that one exhibits a normal cascade and the others an inverse
cascade, appears to be essential for the self-organization phenomenon to occur.

In the present paper, we shall follow a statistical equilibrium approach to study the seif-
organization of a 3d magnetofluid. As we have noted above, there have been many previous



statistical equilibrium analvses of 3d MHD [13. 16. 15, 18]. Therefore, we would like to make
prominent here the novel aspects of the present investigation. The previous studies focused on
mathematically convenient, but physically restrictive, geometries such as a periodic box or a
cvlindrical domain, whereas our theory will apply to a wide class of bounded three-dimensional
domains, including multiply connected domains, such as a torus, for example. When the domain
is multiply connected and we assume that the boundary is perfectly conducting, the magnetic
field may be expressed as the orthogonal sum of a nonvanishing harmonic field, and a field
which is a linear combination of eigenfunctions of the curl operator. The same is true for
the velocity field (see [19, 20] and Lemma 1 below}. The expansion coefficients of the field
and the flow with respect to this orthogonal decomposition satisfy a Liouville property, and
therefore define a convenient phase space for a Gibbs-Boitzmann statistical analysis of the
MHD system. Montgomery ¢t al. [13] and Turner {21] have used the phase space associated
with the eigenvalues of curl to construct a Gibbs statistical theory for MHD for the particular
case of a cylindrical domain. Qur analysis will demonstrate that the presence of the nonvanishing
harmonic component of the magnetic field when the domain is multiply connected has important
ramjfications for the theory. This invariant harmonic field plays the role of an externally applied
symmetry breaking, and it leads to a Gibbs ensemble which contains a nontrivial mean magnetic
field-velocity field pair. This mean represents a coherent magnetic-kinetic structure to which
the MHD system is expected to relax, and fluctuations about this structure are described by the
Gibbs ensemble. In [15] it was claimed that the Gibbs ensemble based on the usual quadratic
invariants for ideal 3d MHD yields a zero mean state when the spatial domain is a periodic
cylinder. The reason for this erroneous assertion is that the authors failed to properly take into
account the presence of the nonvanishing harmonic field.

The mean field-flow predicted by our model corresponds to a steady solution of the ideal
MHD equations, and it satisfies the variational principle §( £ — (H —£K) = 0, with £ the total
energy (magnetic plus kinetic), H the helicity, and K the cross—helicity. The parameters ¢ and
£ are related to the inverse temperatures in the Gibbs distribution. This variational principle
is an extension of the classical Woltjer-Taylor variational formula, §( £, — (H) = 0, for the
relaxed state of a plasma [7, 8, 9, 22], in that it includes the effects of the velocity field in
addition to those of the magnetic field. The inclusion of the velocity field leads to a competition
between the tendency of the mean magnetic field to approach a minimum energy state and the
tendency of alignment (or anti-alignment ) of the field and the flow. Superimposed on the steady
mean field—flow are finite amplitude local fluctuations, which are reminiscent of the so—called
Alfven wave fluctuations [23]. Our model also predicts that, in statistical equilibrium, the ratio
of kinetic energy to magnetic energy is less than one, regardless of the initial value of this ratio,
and that the mean flow is dominated by the mean field. These predictions are particularly
interesting in view of the recent result of Moffatt and Vladimirov that a necessary condition for
the stability of an MHD equilibrium state is that the magnetic energy be larger than the kinetic
energy [24, 25, 26)].

Another new feature of our approach is that, when the spatial domain is multiply connected,
we are able to obtain a meaningful continuum limit in which the energy, cross-helicity and
helicity remain finite, and in which our Gibbs ensemble is equivalent to the microcanonical en-
semble defined by constraints on the rugged invariants. In the above-mentioned theories, the



ensemble -averaged quantities diverge as the number of spectral modes is taken to infinitv, and
the equivalence of ensembles breaks down [27]. We rake a simple approach to avoiding the ul-
traviolet catastrophe: we multiply the standard Gibbs Boltzmann entropy by the factor 1/¥,
where ¥ is the number of dynamical modes. This procedure. which amounts to scaling linearly
with .V the inverse temperatures in the standard Gibbs ensemble (i.e.. the Gibbs ensemble cor-
responding to the standard Gibbs- Boltzmann entropy). is ultimately justified by the asymptotic
equivalence of ensembles, which is established in section 6 below.

Interestingly. the process of rescaling the inverse temperatures with the number of modes does
not yield a meaningful continuum limit if the spatial domain is simply connected. The presence
of the symmetry breaking harmonic field associated with the multiple-connectedness of the
domain is directly responsible for the existence of a well-defined continuum limit. When this
symmetry breaking is not present (i.e., when the domain is simply connected), the ultraviolet
catastrophe and the related breakdown of the equivalence of ensembles can not be overcome
simply by rescaling the inverse temperatures in the Gibbs ensemble. This point will be made
clear in section 5,

The paper is organized as follows. In section 2, we present the equations of 3d MHD, and
list the rugged invariants of the dynamics. In section 3, the phase space is introduced, an the
essential Liouville property is stated. The Gibbs ensemble is constructed and analyzed in section
4; the continuum limit is considered in section 5, and the asymptotic equivalence of the Gibbs
ensemble with the microcanonical ensemble in established in section 6. We offer some concluding
remarks in section 7. In Appendix 1, we provide a brief review of the mathematical analysis of
the curl operator and its spectral resolution, and in Appendix 2, we analyze the eigenvalues and
eigenfunctions of the curl for the special case of a periodic cylindrical domain.

2 Ideal magnetohydrodynamics

We consider an incompressible magnetofluid of constant density occupying a smoothly bounded
and connected domain  C R>. Special emphasis will be placed on the case in which the domain
is multiply connected. For example, 2 could be the inside of a torus, which is a geometry of
particular interest in the field of fusion research (eg., the reverse-field pinch) [23]. We will
assume that the magnetofluid is ideal, in the sense that the fluid viscosity and the electrical
resistivity are negligible. The governing dynamical equations, expressed in Alfven speed units,
are [23]

0B

T)?__Vx(lfxB). {1}

v :
57 = (V- VIV +(Vx B)x B-Vp, (2)
V-B=0, V.V=0. (3)

Here, B is the magnetic field, V is the fluid velocity, and p is the pressure. The pressure p is
determined by B and V in response to the incompressibility coustraint V-V = 0. The induced
electric field is given by £ = -V x B. This relation, together with Faraday’s law, yields (1),



We assume that the boundary 9% is perfectlv conducting, so that the appropriate boundary
conditions are

nx{(VxBy=0, n-B=0. »n-V =0 on d0. {4)

where n is the normal to the boundary.
The equations (1)-(4) possess three global quadratic {rugged) invariants {13, 28]. They are
the energy

E= .l/(B'Z +V3Hde, (5)
2 Jao
the cross-helicity
K= [ BV, (6)
Q
and the helicity
H :/ B Adz, (7)
Q

where A is the vector potential associated with the field B: B = V x A. The cross-helicity may
be thought of as a measure of the correlation of the magnetic field and the velocity field [13],
while the helicity is an indicator of the degree of twisting or tangling of the magnetic field lines

[8, 28]. The conserved quantities (5)—(7) will play a fundamental role in the statistical theory
that we develop below.

3 Phase space

We shall now introduce the phase space and the corresponding invariant measure, which are
essential for our statistical treatment. The phase space that we consider here was studied by Ito
and Yoshida in [20] for a general bounded three-dimensional domain, and earlier by Montgomery
et al. [15] and Turner [21] in the case of a cylindrical domain. Let us consider the function space
LZ(R) of real three-dimensional solenoidal vector fields in the multiply connected domain €

Lg(Q)z{u€L2(Q):V-u:OinQ,u-n:OonBQ}, (8)

where L?() is the Hilbert space of real square-integrable three-dimensional vector fields defined
on {1, with the inner product

(u,w):/;}u-wda:. (M

The subspace L2(€1) is also a Hilbert space when endowed with this inner product. The space
L%(Q) of harmonic vector fields, which represents the cohomology class, is defined by

L@ ={ue L2(Q) : Vxu=0in } . (10)

It is a finite dimensional subspace of LZ{}), whose dimension m is equal to the first Betti number
of 2 [29]. We denote by LE(€) the orthogonal complement of L%(€2) in L2(0); we then have
the orthogonal decomposition

L) = LE() & LE(Q). (11)



The space L3, is empty if and only if © is simply connected, in which case the spaces LY and
1% are identical. We are primarily concerned in the present paper with the case in which L%,
has nonzero dimension. Under that circumstance. £ is strictly smaller than L2.

We now consider the eigenvalue problem

Vxu=2xu. ueli). (12)

The following result is established in [19] (see also Appendices | and 2 of the present paper for
a further discussion of the properties of the curl operator and its spectrum).

LEMMa 1 The cigenvalues. Ay, j = £1.£2.---, corresponding to (12) are real, nonzero,
discrete and unbounded. The associated eigenfunctions. &;,j = +1,42,---, form a complete
orthogonal basis for the space LE(Q).

We may assume that the eigenvalues are numbered in increasing order:
KA LA <0 <AL

Note that A, — +oc when j — #o. Owing to Lemma I and the orthogonal decomposition
(11), we see that any u € L2(Q2) may be expressed uniquely (up to an L? equivalence class) as

L
w= ud;+ Yy wh, (13)
7 =1

where Ayl = 1,---,m is the orthogonal basis for L(), and u; and #%; are the expansion
coefficients for u: u; = (u,¢;) and & = (u, k), where (-,-) is the L? inner product defined by
{9). The hy may be regarded as eigenfunctions of curl corresponding to the zero eigenvalue.

Now, let B(z,t) and V(z,?) be the magnetic field and the velocity field of the ideal mag-
netofluid. Because of equations (3)-(4), and because the energy (5) is finite for all time, these
fields belong to L2({2). Thus, they each have expansions of the form (13). That is,

B(z.t) = b;(t)b;(z) + Y bitih(z), (14)

J =1

and o
Viz.t) =Y u(t)di(x) + D wlt)hulz). (15)

2 =1

The proof of the following Lemma. which is tantamount to the essential Liouville property, is
provided in [20].

LEMMA 2 The measure

dM = dby - dbdiy - div, [ dbsdo;
J
is tnvariant under the equations of ideal MHD.

6



In fact. the proof that is given in [20] demonstrates that each individual db,, dv;, db;, and di
is invariant. As a result of Lemma 2, we see that the (bg,bJ iy, v,) constitute an appropriate set
of phase space coordinates, in the statistical mechanical sense.

In terms of these coordinates, the energy and cross-helicity may be expressed as

N m
E= 22}:6 + v} g (16)

!\.alv—-

K=Y biv,+> biy. (17)
J =1

Upon defining the function g; by iy = V x g, the vector potential A can be expanded as
b, T
Alz) = Zf¢;(¢)+ ) bigi(z). (18)
7 J =1
We then define the gauge-invariant relative helicity

b2
Hg:/ﬂBg-Ad:t:Z(f—l—Oﬁﬁ, (19)
J‘ 3

where By is the projection of B onto L4(Q), and

ZB (gh¢3

The ©, are referred to as the cohomology coefficients. Note that all the ©; vanish when the
domain € is simply connected.

It can be shown that the sum (1/2) T, 87 in (16) is actually constant, since the cohomology
field =, byhy is the same for any magnetic field B that satisfies the ideal MHD equations, as
required by the perfectly conducting boundary conditions (see {19] for a demonstration of this
fact). In effect, only the b;, v; and #; are dynamic variables. As we have indicated above, the
reduced measure d¥, - - - d¥y, [[; db;dv; is also invariant. From now on, therefore, we will omit
the sum (1/2) "7, b7 from the expression (16) for the energy. Furthermore, the relative helicity
Hy given by (19) differs from the actual helicity H defined by (7) by a constant which depends
only on the cohomology magnetic field and its associated vector potential [20]. Consequently,
we will consider in the sequel only the relative helicity, which, for simplicity, we will denote by
H and refer to as the helicity.

4 The Gibbs Ensemble

In building a statistical theory of 3d MHD, we are immediately confronted with the fundamental
difficulty that the ideal MHD system is an infinite—dimensional dynamical system. In order to
construct a meaningful statistical mechanics, therefore, we begin by considering, together with




the %, only a finite number of the modes b,.v,.j = £1.---. £ N/2 for N an even positive integer.
We could write down an associated truncated dynamics, but that will not be necessary for our
program. The truncated energy, cross-helicity and helicity are given by expressions {16), {17)
and (19), respectively, but with the summations over j now running from —N/2to N/2. ( Recall
that we have dropped the term resulting from the constant cohomology magnetic field in (16),
and that we are now referring to the relative helicity as the helicity.) The truncated invariant
measure is &M = [, d#; ], db;dv,, where the index ! ranges from 1 to m and the index j ranges
from ~N/2 to N/2.

In accordance with standard statistical mechanical principles [17, 30], we define the Gibbs
ensemble as that probability density ps on reduced phase space which maximizes the Gibbs—
Boltzmann entropy functional

1
Sip) = —V/plogpd.ﬂ\/!, (20)
subject to the constraints
(Ey=FE°, (K)=K°, (H)=H", (21)

where { ) denotes expectation with respect to the ensemble p, and where E°, K°, and H® are
given values of energy, cross-helicity and helicity, respectively. Notice that we have included the
factor 1/N in our definition of the Gibbs-Boltzmann entropy functional. We have done so in
order to overcome the well-known Jeans ultraviolet catastrophe when we pass to the continuum
limit N — oc. Let us emphasize that previous statistical theories of 3d MHD all suffer from this
nonphysical divergence effect {13, 16, 18]. Our simple procedure of including the factor 1/N in
the definition of the entropy, which actually amounts to rescaling linearly with N the inverse
temperatures in the usual Gibbs ensemble, leads to the convergence of the ensemble—averaged
energy, cross—helicity and helicity to their prescribed finite values, provided that the domain §
is multiply connected. By the “usual” Gibbs ensemble we mean the density that maximizes N 5,
with 5 defined by (20}, subject to the constraints (21). It has been recognized already, in the
case of 2d MHD, that the inverse temperatures in the Gibbs ensemble must be appropriately
scaled with the number of statistical modes in order to avert the ultraviolet catastrophe upon
passing to the continuum limit [27, 31]. Our analysis below shows that this is the case as well
for 3d MHD in a multiply connected domain.

When the spatial domain is multiply connected, the Gibbs ensemble pc, wWhich results from
maximizing the functional (20) subject to the constraints (21), becomes equivalent in the limit
N — o0 to the microcanonical ensemble, which is the measure concentrated on the manifold
defined by these constraints. This result is established in section 6. The asymptotic equivalence
with the microcanonical ensemble is at the heart of the acceptance of the Gibbs density as a
meaningful description of the statistical equilibrium state. Thus the equivalence of ensembles
result provides a strong theoretical justification for our theory. In previous statistical models
for MHD [13, 14, 16, 18], this asymptotic equivalence, although implicitly assumed, actuallv
failed to be met. This would seem to render these theories logically inconsistent. In the case
of 2d MHD, this defect has been removed in the recent statistical treatments of Isichenko and
Gruzinov {31] and Jordan and Turkington [27). A detailed discussion of these issues can be
found in [27].
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Notice that we have been careful to emphasize that the meaningful continuum limit and
the equivalence of ensembles property are obtained if the domain € is multiply connected. In
fact, when ( is simply connected, the procedure of multiplving entropy by the factor 1/¥ is not
sufficient to produce a well-defined continuum limit. The reason for this will become evident in
section 3 below.

We now solve the variational principle 5(p) — max subject to the constraints (21) to obtain
the Gibbs density pe;. By the Lagrange multiplier rule for constrained optimization, we know
that pg satisfies

65 = 36(E) + ad{H) + ub{k'}, (22)

where 8 denotes variation with respect to the density p, and J3,«, and u are the Lagrange
multipliers corresponding to the constraints on energy, helicity, and cross—helicity, respectively.
These multipliers are analogous to the usual inverse temperature parameters. A straightforward,
but tedious, calculation yields the following expression for pg:

pc =[5 11 (23)
) J

with
N N -
po) =4/ 2—fexp {— Qﬁ(fﬁr + %b:)z} ) (24)
and \ )
N - M+ 2 N
p;(bj,v;) = Cjexp {—- (4 2*;))\]] + 2af) (b5 — (b;))* - -Eg(vj + %%‘)2} . (25)
Here,

_ ﬁ\/'(ﬁz — 1A + 208 (26)

77 27 )\j '
is a normalization factor which enforces the condition [ p;(b;,v;)db;du; = 1. The term {b;} in
(25) is given by

a0
by = — i . 27
i) =~ G, 1 208 =
Let us remark that in order for the formulas (23)-(27) to make sense, it must be that
B>0 a > 0 for all j 28
© (BT, 4 208 orall j. (28)

Note that because |A;| — oo as |7| — oc, {28) implies that if N is sufficiently large, then 8> pu?,
and (28b) will hold as long as
203
37— p?
We will see shortly that condition (29) is related to a stability criterion for the mean field-flow.
While the formulas (23)-(27) for the Gibbs density seem quite complicated at first glance,
the situation is not so bad. In fact, we recognize right away that (%) is a Gaussian density

Aoy < - <A (29)

- w———r @ . W



on the real line, so that it is determined entirely by its mean and variance. Also. we see that
2, is a joint Gaussian density in (b,.#,), and is therefore characterized completely by its mean
vector and its covariance matrix. Let us denote by var X' = ((X - (X)})?) the variance of a
random variable X. and by cov (X. V) = (X — (X))} ~ {V})) the covariance of the random
pair {X.Y ). Then by inspection of {24), we find that

(i) = ~Eb. var g = (30)

1
3 N3

We have already given the expression (27) for {b;} = [b,p; db;dv,. Direct, but cumbersome,
calculations reveal that

i A
ar b = - J 31
var ; j\" (62 - 'U,z)AJ + 20:5 L] ( )
T 1 p .
(v;) = —E(bj) . ovarwy; = N3 + ﬁ—g"al” b, (32)
1 A
cov (b;,v,) = Ll (33)

N BTN 208

Notice that all the modes # are statistically independent of the (b;,v;), and that the variance
of the #; is the same for each index {.

What is especially noteworthy here is the appearance of the nontrivial mean field-flow
({b;),{v;}), (). Indeed, the classical statistical mechanics for 3d MHD in a periodic domain,
which is based upon the Gibbs-Boltzmann statistics for a truncated Fourier series approximation
of the ideal MHD system, yields an ensemble with vanishing mean field-flow [13, 18]. Further-
more, for a simply connected domain, the harmonic contribution to the magnetic field vanishes,
and consequently, so does the cohomology coefficient @; in equation (19) for the relative helicity.
As it is precisely this term that gives rise to the nontrivial mean in pg, we see that our theory,
if applied to 3d MHD in a simply connected domain, would lead to an ensemble for which the
mean field-flow vanishes. Thus, the occurrence of the nonzero mean in the present situation is
a direct consequence of symmetry breaking ©; associated with the multiple connectedness of
the domain §2. This nontrivial mean field (b;) stems from the tangling of the dynamical mag-
netic field with the cohomological magnetic field, and the nonzero mean flow (v;), (#;) results
from the interaction of the magnetic field and the velocity field. It is necessary to include the
cross—helicity in the statistical mechanics to arrive at the prediction of a nonvanishing mean
velocity field. Another very interesting conclusion, which is summarized in the following lemma.
is that the ({b;),(v;)), (%) satisfy a certain variational principle, which happens to characterize
a particular steady solution of the ideal MHD equations.

LeMMA 3 When the domain @ is multiply connected, we obtain a nonzero mean field-flow
((0),{v}) = ({((b; 1, {v;N}; LB ) which is a eritical point of the function

F=FE~(H-€K

for some multipliers ( and . where E, K, and H are given by equations (16), (17) and (19),
respectively (with the sums over j truncated at i%).
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Indeed. we caiculate the first variation of F with respect to the b;,v; and iy and set it equal
to zero. This procedure yields the necessary equations for a critical point, which are

_ - L 2h
t’jszJ? vf:Ebla bJ:Q(,\_J“l"GJ)"'EvJ (34)
J
Upon choosing { = —u/3 and { = —a/3 in equations {34}, we arrive at equations (27), (30a)
and (32a). Note that (b)) = b because the b; are treated as nonrandom. This establishes Lemma
3.
We now recognize that the ({b;},(v;)), (%) satisfv the variational principle

a{%/ﬂw%v?)dx-c/QA-de-gfnv-de}=0, (35)

over 68 € Wy = span {¢; : —N/2 < j < N/2},6V € Wy & L}, This variational principle has
solutions of the form

(VxB—20B-€6VxV,p)=0, (V-£B,2)=0 Y€ Wy. (36)

Let us note that B and V satisfying (36) constitute a stationary solution of the ideal MHD
equations (1)-(4), in the limit N — oo . In fact, it follows from (36) that (in the limit)

(1-¢6)VxB=28, (37)
which implies that
(VxB)x B=0.

Here, ¢ and £ are the limiting values of the corresponding multipliers in (36). Now, any vector
field V' satisfies the identity

(V- VIV - V(%W) ={(VxV)xV.
But, for V satisfying (36), there holds
(1-€)VxV =V,

which implies that
(VxVixV=0.

Thus, upon choosing p such that p + (1/2)V'? is a constant, the right hand side of equation (2)
vanishes. It is also obvious that for B and V satisfying (36), we have V x B = 0, so that the
right hand side of equation (1) is equal to zero, as well. We have shown that equation (36)
does indeed give a steady solution of the ideal MHD equations in the limit N — oo, and, hence,

that the mean ({b},(v)) of p corresponds to the truncation of a steady solution of the MHD
equations.
Now, according to (36)-(37), we have

2¢
1 ¢2

VxB= B, V=¢B.
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Thus the magnetic field satisfies the Beltrami equation (i.e., an equation of the form ¥V x # =
AB), and the velocity field is parallel to the magnetic field. As discussed in [32], the solution B
of this Beltrami equation is stable as fong as A < 2¢/{1 — £%) < Ay, Recalling the definitions
of ¢ and £, this criterion is seen to be the limit version of the condition (29). which guarantees
the existence of the Gibbs ensemble pg;.

A straightforward application of the Gibbs-Boltzmann statistical theory has led to the con-
clusion that the statistical equilibrium state of the ideal MHD svstem in a multiply connected
domain should consist of a steady mean field-flow coupled with turbulent fluctuations about this
steady state, as described by the Gibbs distribution p;. These predictions are very reminiscent
of those of the recent statistical mechanical theories of 2d MHD as set forth by Isichenko and
Gruzinov [31, 33] and Jordan and Turkington {27, 34]. Both of these theories vield a statisti-
cal equilibrium state consisting of a mean magnetic field-velocity field pair, which is a steady
solution of the ideal 2d MHD equations, together with turbulent fluctuations of the field and
the flow. However, these models require special constructions, which go beyond the realm of
the standard Gibbs-Boltzmann methodology, to arrive at an equilibrium state with nontrivial
mean field—flow. In the former case, the authors assume the presence of a steady mean, and
then build fluctuations about this state using a formal asymptotic analysis, while in the latter
theory, the steady mean field—flow results from the special way in which the conserved flux and
cross—helicity integrals are expressed in terms of the mean vector potential. This formulation of
the constraints relies on a separation of scales hypothesis, which causes the mean to concentrate
in the low wavenumbers, and the fluctuations to spread out to the high wavenumbers. We find
it interesting, therefore, that no special hypotheses, and no extensions to the standard Gibbs-
Boltzmannp framework, are necessary here for us to obtain a nontrivial mean field-flow, provided
that the spatial domain is multiply connected.

The expressions for the energy, helicity, and cross-helicity, according to the Gibbs density

PG are
2yvy 2\1202
go_ | (1+ (1+ €M ) s —Z (0 +¢)rje;

NG (1—£2A, -2 1—52 A =20
+ 2v3 + = Zg b, (38)
o - | CAOF (1= €%)A5) - () ,
- , 39
ﬁ? 1_52),\ —2<+2J: (1= €2 - 2¢0)° o
£CEAi0?

b? . 40
\,BZ 1_52),\ —zc+zj:((1—§2)/\_?-2g)2+;‘f‘ o)
As before, { = —a/3 and £ = —p/3, with 3,a, and p the Lagrange multipliers corresponding
to the constraints on energy, helicity and cross-helicity, respectively. We see that the energy,
helicity and cross—helicity are divided into mean and fluctuation parts. The second and fourth
terms on the right hand side of {38) represent the contribution of the mean field flow to the
total energy. Similarly, the second sum in (39), and the second and third sums in (40) give the
contributions of the mean field-flow to the helicity and cross-helicity. The difference between
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the given values E0, H9, and A"° of these quantities and the contribution to them by the mean is
taken up by the Gaussian fluctuations of the b,. v; and i;. To arrive at the expressions {38)-(40),
we have made use of the particular Gaussian structure of the Gibbs density.

The special case of vanishing cross-helicty (i.e.. A% = 0) is also interesting to investigate,
and is easier to analyze. This amounts to setting u = 0, or equivalently, £ = 0 in the preceding
analysis. The Gibbs density reduces in this case to

pc =[[a []e,- (41)
i 7

where
N3 N3

Ailin) = [ 5= exp{=-F} (42)

and
N8B TR [ NS (A =2 e VB 3
PJ(bJﬂ”J)-ﬂ" A, exp{ 2 ( A )(bJ (6;)) 2 (43)

Here, 6

$A0; ,
b)) = =L (44)
<J) ’\J“QC .

and { = —a/B, where « is the helicity multiplier and 3 is the energy multiplier. We find that
the mean velocity vanishes: {v;} = 0, (%) = 0, and that

Aj
NB(A; = 20)

Thus, b; and v; are statistically independent when K9 = 0. Note that we must have 3 > 0, and
Ai/(A; —2¢) > 0 for all j in order for p; to be well-defined. This condition will be met as long
as Aoy < 20 < Ay

The expressions for the energy and the helicity now become

var b; = , var u; = var iy = , cov (b;,v;)=0. (45)

1
NG

1 C29§/\? m .

2Nﬁ NG & ( —zc) MR Mrwer sy ) (16)
o_ 1 1 (203N - ()

7D vy D D G TS E )

As in the case of nonzero cross—helicity, the conserved quantities are divided among the mean
and the fluctuations, with the second sums in each of (46) and (47) representing the contribution
from the mean, and the remaining terms in these expressions representing the contribution from
the fluctuations. Furthermore, the mean magnetic field {(b;)}, is easily seen to be a critical point
of the functional £,y — (H, with Enqp = (1/2) 3, b2 the {deterministic) magnetic energy, and
H=3%, ((bz//\ )+ b,0;) the (deterministic) rela,tlve hehutv Therefore, the (b;} correspond to
the truncation of a solution to the Beltrami equation V x B = 2( B. It has been argued by several
authors that the Beltrami equation, which implies the force-free condition {V x By x B = 0,
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should be satisfied by the relaxed magnetic field in a plasma [1, 7. 8, 9, 22]. It has been
conjectured by Taylor [8, 9]. Hasegawa [1]. and others that such a force—free final state results
from a process of selected dissipation of the magnetic energy with respect to the helicitv. In
our statistical model, it is the mean magnetic fleld that satisfies the force-free condition. While
the total energy must remain constant under the ideal dynamics, the statistical theory points
to a kind of effective dissipation. The energy of the mean can, in fact, decay to some lower
level. The “lost™ energy is transfered to the local fluctuations. This sort of effective dissipation
has also been predicted in statistical models of 2d MHI} [27, 31, 33, 34] and 2d hydrodynamics
(35, 36, 37. 38].

5 The continuum limit

We now wish to examine the limit NV — o¢, paying special attention to what becomes of the
contributions of the fluctuations and the mean field-flow to the conserved quantities. For the
remainder of the text, we will assume, unless otherwise stated, that the domain € is multiply
connected (so that, in particular, the cohomology coefficients ©@; are not identically zero). We
begin with the case KV = 0 of vanishing cross-helicity. The expressions (46) and (47) for the
energy and the helicity depend on the parameters 8 and {, which must be determined such that
the entropy S(p¢) is maximum among all densities p that satisfy the constraints (21). To solve
for # and { would seem to require a numerical method, which we will not pursue here. It is clear
that @ and ¢ depend on N. { will approach a finite limit as ¥ — oo, as required by equations
(46)-(47) and the condition A_; < 2{ < A;. The requirement that the energy and the helicity
remain equal to E® and H°, respectively, guarantees that 8 stays bounded away from 0 and
that 2{ stays bounded away from Xy and A_; as N — oo. We will assume, for now, that 3
approaches a finite limit 3* as ¥ — oco. [t will become clear from the ensuing analysis that this
is indeed the case, except in the event that the total energy KV is exactly equal to the limiting
value E of the mean-field energy. Thus, in retrospect, we could just prescribe E” to be larger
than E to guarantee that 3 remains finite.

To proceed, we need some results concerning the asymptotic behavior of the eigenvalues
A; and the cohomology coefficients ©; as |j| — oco. In Appendix 2, we study the asymptotic
distribution of the eigenvalues and the decay properties of the cohomology coefficients for the
special case in which the domain 0 is a periodic cylinder (so that € is topologically equivalent
to a torus). There, we find that for large |j], A; ~ ¢15 + ¢; for some constants ¢; and ¢z, and
that @, ~ |j]~1. Intuitively, we expect that the asymptotic properties of @, and A; should not
be highly sensitive to the particular geometry of the domain €, but we have not been able to
produce such estimates for an arbitrary domain. However, we show in Appendix 1 that

the infinite series Z @'j- converges. (48)

7

This result and the fact {stated in section 3 and proved in Appendix 1) that
lim |A;] = o0, (49)
7o

are sufficient to guarantee the validity of our arguments in this section and the next section.
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For the convenience of the reader, we state two elementary results from the theory of infinite
series to which we will refer repeatedly throughout the subsequent analysis. The proofs of these
results can be found. for example, in (39].

LEMMA 4 Let ag. bk = 1,2,--+, bc a sequence of real numbers such that limg_ 0o ar = a for
some real number a; then limy_.,. N=! Z;;V:l ay = a.

LEMMA 5 Assume that the series 3°0°, ay is absolutely convergent. If the sequence by, k =
1,2,. -+, converges to a finite limit, then the series .72, brax is also absolutely convergent.

We shall now establish that, in the limit N — oc, the mean field and the fluctuations both

make nonzero contributions to the total energy of the system. We rewrite the first expression
on the right hand side of (46) as

1 A 1 1 by
m¥(1+AJ—2C)_@+2NﬁZj:AJ—24 (50)

The first term on the right hand side of (50), which represents the contribution to the energy
from the fluctuations of the v;, converges to 1/(23") when N — oo, where 8~ is the limiting
value of 3. (Recall that in this analysis we are assuming that #* is finite. Later in this section,
we will discuss the special case 8 = 00.) The second expression on the right hand side of
(50) is the energy arising from the fluctuations of the b;. Now, by (49) and the fact that ¢
stays bounded away from A4y as N — oo, we can find sequences a; and b; (independent of V)
such that @; < A;/(X; — 2¢) < b; for all , N, and such that limjj Lo @; = limjj_oe b; = 1.
Appealing to Lemma 4, we deduce that each of the expressions (2N 3)! 21<)5l<N/2 @5 and
(2N3)! Z1<|jl<Ny2 bi converges to 1/(28%) when N — . As A;/(A; = 2(¢) is sandwiched
between a; and b;, we deduce that the term representing the contribution to the energy from
the the fluctuations of the b, converges to 1/(203"), as well. Notice, however, that the energy from
the fluctuations of cohomological velocity, which is given by Yy var iy = m/(2N3), disappears
when N — oo. Hence, the energy arising from the fluctuations is divided evenly into kinetic and
magnetic components in the continuum limit, with each component contributing the amount
1/(26"). The remaining term on the right hand side of (46), i.e.,

1 ¢reix?
2 zJ: (A = 20)*"

represents the contribution of the mean field to the energy. Now, because ©; satisfies (48), and
because (X,/(A; - 2¢))? can be bounded independently of ¥ by a sequence that converges to
finite values as |j| — o0, we conclude from Lemma 5 that this sum will converge to a nonzero,

positive value as ¥ — oc. In other words, the mean field contributes a positive amount to the
total energy of the system in the continuum limit.

The situation for the helicity is different. The contribution of the fluctuations to the helicity,
which is given by the first term on the right hand side of equation {47}, vanishes in the continuum
limit. This is established readily from (49), the fact that { remains bounded away from As1, and
Lemma 4. Next, by an argument analogous to the one that was used to demonstrate that the
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mean field component of the energy converges to a finite value, we may show that the second
term on the right hand side of (17), which is the helicity due to the mean field, approaches a
finite limit as ¥ — oc. Evidently, it must converge to #°, The important conclusion is that the

helicity is determined entirely by the mean magnetic field in the continuum limit. The preceding
analysis points to a cascade of energy to small spatial scales, where the fluctuations reside, and
a cascade of helicity to large spatial scales, where the mean field resides.

We remark that the limiting expression for the mean field helicity is

H(( )= 3

21>t

CH)‘Jef( AJ B Q.-)
(3, = 2¢7)?

where A_; < (™ < A; and ¢~ is the limiting value of ¢, when N — oco. It can be shown that for
any HO, there is a unique ¢* € (A_y, A;) such that H(¢{*) = H° [32]. The mean field energy in
the limit is given by
B¢ = 1 (YO
2 Oy — 20
Hence, the limiting mean field energy £ is unlquely determined by the given value of H®. In
addition, since E® = 1/3*+ E in the continuum limit, we see that the total energy E° is required
to be at least as large as E for there to be a well-defined continuum limit. It follows that g =
if and only if E® = E, and in that case the energy is given entirely by the mean field in the
limit. Otherwise, as demonstrated above, both the fluctuations and the mean field contribute
to the energy in the limit.
We may also show that the fluctuations of the vector potential A vanish as N — co. Indeed,
since the expansion coefficients of the vector potential are related to those of the magnetic field
via the equation a; = b,/A;, we have

va.rb
Ywe - £
I

1
W?A;—(M—zo
— 0 as N — 0.

To obtain the second line of the calculation, we have used equation (45a), which gives the
expression for the variance of 4,. The third line of this display follows from an argument similar
to the one that was used to show that the contribution of the fluctuations to the helicity vanishes
in the limit. That the fluctuations of the vector potential should disappear, while those of the
magnetic field survive makes sense intuitively; A4 is obtained by “integrating” the magnetic field
B, and integration tends to smooth out the fluctuations.

The model predicts, in addition, that in statistical equilibrium, the total magnetic energy
is larger than the total kinetic energy, regardless of the initial ratio of these quantities. The
fluctuation magnetic and kinetic energy are equal, but the mean magnetic field contributes a
positive amount to the energy, while the energy of the mean velocity field is identically zero. This
result is suggestive of the so-called dynamo effect [40], whereby kinetic energy is transferred to
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magnetic energy as the result of the generation of a large-scale magnetic field. The relaxation of
the ratio of kinetic to magnetic energyv to a value less than 1 is also a feature of 2d MHD, where
it is observed in direct numerical simulations of 2d magnetofluid turbulence [3], and predicted
by statistical equilibrium models [27, 34].

The analysis and conclusions for the case A” # 0 are not much different than for the case
of zero cross—helicity, so we will not present them in detail. We shall merely list the most
important conclusions. As in the case of zero cross—helicity the contribution of the fluctuations
to the helicity vanishes in the continuum limit, while there is a nonzero contribution of the
fluctuations to the energy in the limit. In addition, both the contribution of the mean field—flow
and the contribution of the fluctuations to the cross-helicity survive in the continuum limit.
Recall, that there is a nonzero mean velocity field present when the cross-helicity is different
from zero. It is still possible to show that the fluctuations of the vector potential will die out
when N — oc, and that in this limit, there is an equipartition of the fluctuation magnetic and
kinetic energy, and the ratio of kinetic to magnetic energy is always less than 1. The latter result
is true because (v;) = £(b;), (i) = &b;, and |£| < 1. That the kinetic energy is less than the
magnetic energy in statistical equilibrium may be tied to a recent MHD equilibrium stability
criterion of Moffatt and Vladimirov {24, 25].

We close this section with a cursory account of the difficulties that arise when the spatial
domain () is simply connected. We concentrate on the case K° = { for simplicity. The coho-
mology coefficients ©; are all equal to 0 when the domain is simply connected, and, as a result,
the mean field vanishes. The expressions (46)-(47) for the energy and helicity reduce to

s 11 Y . 1 1
= — 4+ . H' = — —_—
2 2Nﬂ;,\j—2c Nﬁ%:Aj-zg

Assuming that E° is larger than the minimum value of energy allowed by the helicity constraint,
the only way that both of the sums will simultaneously converge as N — oo to their prescribed
(nonzero) finite values is if 3 remains finite and 2¢ approaches either Ay or A_i, depending on
the sign of HY, in such such a way that N(Ag; — 2¢) = O(1). Thus, according to our canonical
ensemble, the energy splits into a finite part that resides in fluctuations at one of the lowest
modes, and a part that is divided among the other modes. But the fact that the fluctuations at a
lowest mode persist when N increases implies that the canonical ensemble can not be equivalent
with the microcanonical ensemble in the limit. In addition, the prediction of a zero mean state in
the canonical ensemble is inconsistent with the microcanonical ensemble. The latter produces,
when E? is close to the minimum energy allowed by the constraint on helicity, a nonzero mean
state with small fluctuations in each mode. The upshot is that, when the spatial domain is
simply connected, we can not obtain, within the present framework, a meaningful continuum
limit in which the crucial equivalence of ensembles property holds.

6 Equivalence with the microcanonical ensemble
In order to justify our statistical model, and in particular to substantiate the factor 1/N in our

expression (20) for the Gibbs-Boltzmann entropy, we establish the asymptotic equivalence of the
Gibbs density p with the microcanonical ensemble, which is the measure concentrated on the
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manifold defined by the dynamical constraints on energy. helicity and cross-helicity. There are
two basic hypotheses underlving this analysis. One hypothesis is that the energy, cross—helicity
and helicity, as defined by (5)-(7). represent a complete set of relevant additive dynamical
invariants. in the sense that they serve to characterize fully the equilibrium state. The other
hvpothesis is that the dynamics is mixing, or ergodic, on the manifold defined by these invariants.
Not only is the assumption of ergodicity reasonable, but it is also necessary in any statistical
mechanical theory of hvdrodvnamic or magnetohydrodynamic flow. The assumption concerning
the relevant set of invariants, however, is more subtle. as it is well known that ideal MHD
actually conserves infinitely many integrals [3, 9]. However, the importance of these additional
invariants is debatable, as we shall discuss in the next section. The previous statistical theories
mentioned above [13, 16, 15, 21, 18] also included only the quadratic invariants. However, until
the issue concerning the relevance of the other invariants is settled, we would like to consider
the restriction to only the rugged invariants (5)-(7) as a convenient first approximation. The
accuracy of this approximation may be tested by comparing the predictions of the model with
numerical and experimental observations.

Let us now demonstrate the asserted asymptotic compatibility with the microcanonical en-
semble. Specifically, we will show that

var Ey — 0, var Ky — 0, var Ay — 0, as N — 0. (51)

The expressions for Ex, Kn and Hy, which, being functions of the b,, v; and %, may be thought
of as random variables, are given by equations (16), (17) and (19), respectively, with the index
j ranging from —N/2 to N/2. Since (Ex) = E® (Kn) = K® and (Hy} = H", the equations
(51) clearly imply the desired asymptotic equivalence of pc with the microcanonical ensemble.

To keep the analysis simple, we will demonstrate the equivalence only for the special case
K9 = 0, but the result may be established for general A'® with a little extra effort. In this
argument, we will use at several the mutual independence of the 4;,v; and #;. Notice that b;
and v; are statistically independent only when K® = 0. Thus, a slightly refined argument is
needed for the case A'® # 0.

Using (16), we calculate var Exn as follows:

1 1
var Eny = 1 Z(var (bf) + var (vjz-)) + EZV&r (5f)
3 !

Now, we use (44), (43) and the fact the mean flow vanishes to obtain, after some algebraic

manipulations, the identity

Cz Z 92)‘5 N +m
(A;—2¢)P  2N?32°

var Ky = (52)

I\‘Zﬁz Z (A; — 2(
Next, we calculate var A'n using (17). This gives

var Ay = Zvar {bjv;) + Z E)?var )
3 !

J
ST + > bivar o
7 !

18



JIrom this result and equations (43) and (44), we arrive at

e o Ale? 1 3 A ! S8 (53)
var AN \JZ(,\ —ZQ) N?j? ; )‘J‘_-zc N3 t ! -
Finally, referring to (19), we find that
b2
var Hn = Z mar + Z O var b;.
J J
This result, together with (44) and (45), leads to
H @2)\ (54
varfin = [\”622()\ —zc Z NﬁZA e )

Now, to establish the equivalence of ensembles property (51), we must show that each of the
terms in the equations (52), (53), and (54) vanishes in the limit N — oc. This is readily estab-
lished using (48)-(49), Lemmas 4 and 5, and arguments similar to those that were constructed in
section 5 to analyze continuum limit. Since the analysis is completely straightforward and almost
identical to that of the previous section, we will not present it here. Let us simply point out that
a simple analysis reveals the asymptotic estimates var Exy = O(1/N) and var Ky = O(1/N).
In addition, the third term in the expression for var Hx can be shown to be O(1/N). However,
as we do not have, in general, an estimate of the rate at which the eigenvalues A; diverge as
|7| — oo, we do not know the rate at which the first two terms on the right hand 51de of (54)
decay. If the sum of (A; — 2¢)~? converges, as it does when Q is a periodic cylinder, then we
know that these expressions approach 0 at least as quickly as N~2,

7 Concluding Remarks

We have investigated the Gibbs-Boltzmann statistical mechanics of an ideal three~dimensional
magnetofluid in a multiply connected domain. The particular phase space that we work with is
associated with the eigenfunctions of the curl operator. The use of this phase space is justified
by a Liouville property, which implies that the volume of the expansion coefficients is temporally
invariant. There are two particularly interesting aspects of our theory. One is the prediction of
a nontrivial mean field-flow which is a steady solution of the ideal MHD equations. This steady
state, which represents a macroscopic coherent structure that is expected to emerge during the
evolution of the magnetofluid, has no counterpart in the classical Gibbs- Boltzmann statistical
theory for 3d MHD in a periodic domain [13, 18]. As explained above, it is precisely the multiple
connectedness of the domain that gives rise to the nontrivial steady mean. The other especially
noteworthy result of our model is the prediction that the fluctuations of the field and the flow
survive in the continuum limit, while those of the vector potential disappear in the limit. As
a result, the energy and the cross-helicity are divided into mean and fluctuation parts, while
the helicity is determined entirely by the mean field. Similar conclusions have been reached in
recent statistical theories of ideal MHD turbulence in two dimensions [27, 31, 33, 34]. There, the
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magnetic field and velocity field exhibit finite amplitude turbulent fluctuations in the continuum
limit, while the fluctuations of the magnetic vector potential vanish.

An essential assumption in our theory is that the three so-called rugged invariants serve
to completely characterize the coarse—grained state of the magnetofluid, while, in fact, ideal
3d MHD has infinitely many conserved integrals [8, 9. 22]. In particular, if I is any volume
bounded by magnetic field lines, then the integral

Hy = / B-Adr. (55)
JU

is temporally invariant. The conservation of the integrals (55) for any such volume {’ reflects
the fact that the field lines must maintain their topological properties under the ideal dynamics
(28]. For example, if two closed field lines are linked n times initially, then they must remain so
for all time. It has been argued by Taylor, however, that if there is any departure from infinite
conductivity, as there surely must be for any real plasma, then these topological constraints
are broken: field lines may break and coalesce [8]. In this case, it would be unreasonable to
expect that [ B - A should be conserved for each line of force. On the other hand, changes in
field topology should not result in significant changes in the field itself: so if the conductivity is
sufficiently large, the total helicity [, B - Adz, which is the sum of [ B - A over all field lines,
remains a good invariant. Hence, if we are interested in the long-time behavior of a highly, but
not infinitely, conducting plasma, then there is some justification for incorporating the helicity
(7) into the statistical mechanics, while ignoring all the other integrals of the form (55).
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Appendix 1

In this appendix, we give a brief review of the function spaces of vector fields associated with
the curl operator and its spectral resolution. We also provide proofs of (48) and (49), which are
used repeatedly in sections 5 and 6. For a more detailed analysis of the curl operator, the reader
is referred to [19] and references therein.

Let © C R® be a bounded domain with a smooth boundary 99 = Ui, I (1 is a connected
surface). We consider cuts of the domain Q. Let E,,---,%,, (m > 0) be cuts such that
Y,nE; =0 (i # j), and such that 2\ (U™, 5;) becomes a simply connected domain. The
number m of such cuts is called the first Betti number of 2. When m > 0, the domain Q is
multiply connected, and then for any vector field ¥ we can define the flux through each cut by

QE!(u)zfz nouds  (i=1,2,---,m),
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where n is the unit normal vector onto ¥; with an appropriate orientation. By Gauss’s formula,

$x, (u) is independent of the location of the cut I, provided that V- u=0in Qand n-u =0
on g1,

We denote L4(Q) the Hilbert space of square-integrallie {complex) vector fields in 2, which is
endowed with the standard inner product (a.b) = [ a-b dx. We define the following subspaces
of L*(Q):

Li) = {fwi V-w=0inQ, n-w=00nd? dg(w)=0(= L,---,m)},
() = (M V-A=0.Yxh=0inQ, n-h=0on adQ},

LEQ) = {V¢; A¢=0inQ},

L) = {Vé ¢=ei(€Clon Ty (i=1,-,n)}

The following orthogonal decomposition holds [19, 41]
LAQ) = LE() & L(Q) & LE(Q) & LE(Q).
The space of solenoidal vector fields with vanishing normal component on 89 is defined by
LA(Q) = LA(Q) & L}(9).

The subspace L#(f2) corresponds to the cohomology class, whose member is a harmonic
vector field and dimL%(2) = m (the first Betti number of £2). When Q is simply connected, we

have m = 0 and L%(Q) = {0}. In a multiply connected domain (m > 0), the harmonic field
equations

V.h = 0, Vxh=0 inQ,
n-h = 0 ondfd

have nontrivial solutions which have nonvanishing fluxes. Physically, these harmonic fields
represent the vacuum magnetic field rooted outside 2. Under the perfectly conducting boundary
condition, every flux ®g, is conserved, and hence every h; (€ LL(Q) is conserved.

Another decomposition of L2(Q) can be given:

L) = L2Q) & {Ve; € H'(Q)},

This relation, which is known as the Weyl decomposition, implies that L2() is the orthogonal

complement of the space of potential flows. The gauge-invariance of the relative helicity Hy
defined by (19) follows from this orthogonality.

The following theorem and lemmas concerning spectral resolution of the curl operator lead

to Lemma 1 of Sec. 3 and the results (48)-(49) stated in section 5. The theorem is proved in
[19].

THEOREM Let Q@ C R> be a smoothly bounded domain. Define a curl operator § on the
Hilbert space LL(Q) by

Su=Vxu, D(S)={ue l{(Q); Vxue L&)},
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where D(SY ts the domain of the operator S. Then § 1s a self-adjoint operator. The spectrum
of & consists of only point spectra a,(8), which is a discrete set of nonzero real numbers,

The space Li() of solenocidai vector fields is spanned by the eigenfunctions of S together
with hy € L3 (Q) [19, 12].

Vor an eigenfunction ¢; of &, its vector potential. in the Coulomb gauge, is given by ¢,/A,,
where A, is the corresponding eigenvalue. We arrange the eigenvalues in increasing order:

e <A S A <O A <A<

The vector potential of the harmonic field A¢ € L%(§2) can also be found in the space Li()
(see Proposition 1 of Ref. [19]). For g¢ € LE(Q) such that ¥ x g, = h,, the inner product (g¢, ¢;)
yields the cohomology coefficient @; defined in Sec. 3.

LEMMA Al.l The eigenvalues of the operator S satisfy

lim {A;] = .
[2—=oc

Proor: The self-adjoint operator S has a compact inverse S~1. By the Hilbert-Schmidt
theorem [43], the spectrum of §71,

{...,)\:;,)\:i,,\l—la)‘z—l,... 1

can accumulate only to zero. Hence, lim;) .. [A;] = .

LEMMA Al.2 The cohomology coefficients ©; are square summable. That is, the infinite
series 939-‘ converges.

PROOF: Let A € LZ(Q) be the vector potential of the harmonic component of the magnetic
field By = 3 12, by(t)hy(x), i.e., V X Ay = B), (with notation as introduced in Sec. 3). Since the
domain §? is bounded, we have a Poincaré type estimate

[ Arflr: < CHIV x Agllgz = CliBaligz (56)

where C is a positive constant depending only on the domain . Using the expansion of Ay in
terms of the eigenfunctions ¢; of the self-adjoint curl operator S, we observe that

14nil7: = D 1CAR ) = 307, 57)
J

J

Combining (56) and {57}, we obtain

>0 < (CLBAIIY,
J

which establishes the lemma.
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Appendix 2

For purpose of illustration, we consider now an expticit example of the eigenfunction expansion,
and study the asymptotic behavior of ©;. Let the domain Q be a periodic cylindrical domain of
unit radius. The eigenfunctions of the curl operator are given by the “Chandrasekhar-Kendall
functions”™ [44]: in the (r, ¢, z) cvlindrical coordinates,

u=ANVyx Vz2)+ Vx (VY x Vz), (58)

where . :
\ = i(,u2+k2)1/2, W= Jp(ur)et(m@—kz)’ (59)

and J, is the p'" order Bessel function. Here z is normalized by L/2r (L is the length of the
periodic cylinder). We easily find that « is an eigenfunction of the curl operator corresponding
to the eigenvalue A € R. The eigenvalue is determined by the requirement that the normal
component of u should vanish on the surface of the cylindrical domain. This condition becomes
trivial when k& = p = 0. Such eigenfunctions are written explicitly as

0
& J](,U,T') 3
Jo(pr)

where a is the normalization factor. For these axisymmetric functions, we apply the zero-flux
condition ¢y = 0 (¥ is the cross-section of the cylinder), which reads

QW/JO(;J.T)T dr =2mu~ Jy(p) = 0.

Hence, the eigenvalue A = u corresponding to the axisymmetric eigenfunction is given by the
zero point of Jy(z).

The harmonic field in the cylindrical domain is Vz, and its vector potential is given by
g = (r?/2)V. Since g is an axisymmetric function, only axisymmetric eigenfunctions contribute
to the cohomology coefficients ©@;. We obtain

1
0, = :rrajfo Ji(pyryr? dr = Tl'Oéjj.Lj_IJz(ﬂj),
where o; and p; are, respectively, the normalization factor and the eigenvalue of the j-th ax-

isymmetric eigenfunction. For large p;, which is the j-th zero-point of Ji(z), we use Hankel’s
asymptotic expression,

Jo(z) = \/%cos(a: -7(2v +1)/4) (Jz| > 1),

to obtain the asymptotic estimate u; = 7(j + 5/4). From this we find that a; ~ \/i; for large
7. and hence, ©; ~ {j|~! for large |j|.
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