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1 Introduction

e The 2D Euler equation for an ordinary fluid has solutions in
the form of point vortices. This means that a continuous fuid s
approximated by a discrete system. The important point is that
the point-vortex system has the same constants of the motion as
the original one.

Do plasma equations have solutions that are similar to point
vortices in Euler’s equation?

e A two-fluid plasma model is used to analyse the existence of
current-vorticity filaments (’point-vortices’) in magnetized plas-

mas.

The model can be viewed as R{educed) MHD extended with a
generalized Ohm’s law.

The set of equations involves spatial scale lengths which extend
from the global MHD scale-lengths down to the electron inertia
skin depth.



e The dynamical equations can be written in Lagrangian form for
three fields that are advected with different velocities.

This system is a generalization and extension of Euler’'s equation
for an ordinary fluid.

oG,
oT

+ Vg - VGQ =0, Vo = €; X vq)aa Ga = GO{((I)O)

e The equations are Hamiltonian with non-canonical Poisson brack-
ets, the energy functional is the Hamiltonian.

The system possesses three infinite sets of invariants (Casimirs)
that arise from the structure of the equations.

Topological invariants, related to the plasma motion and magnetic
field, constrain the plasma dynamics and provide an analytical tool
that may prove itself powerful in decrypting the complexity of the
plasma nonlinear behaviour.

e The equations describe

- current-vorticity filaments.

- stationary propagating, distributed drift-Alfvén vortices and
magnetic islands,

- collisionless magnetic reconnection where
magnetic flux is converted into clectron momentum and ion
vorticity.
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Derivation of the two-fluid model

Electron Equations

The electron momentum balance and continuity equation:

ot . - 1, = -
men(—gt——l—v-V'u) =—en(E+vaB)—VnT—V-H
and
%-%—I—V-nﬁ:O.

Neglecting perpendicular inertia (and resistivity). one obtains from
the momentum balance the velocity in the (z, y)-plane,

c C vnTlT v,
vV, = -B—Oez X Vfb—gB"—Oez X - + BOVAX e..

The leading term is the E x B-drift.

Substitute v. The contribution from the stress tensor IT to the
parallel momentum balance

(V- ﬁ)z = _egnT % e.  Vu.
€B(]

cancels the pressure gradient contribution to v -Vu: in the inertia
term.

A%



Density: n(Z,t) = no(xz)[l + n(Z, t)].
no(x) is the density of the background plasma. 7 represents the

density fluctuations. For the plasma motions under consideration
n remains small but

Vn ~ Vng(x).

Ion Response

Nonlinear ion response to motions with characteristic velocities
along the magnetic field that are larger than the ion thermal ve-
locity. The derivation is analogous, but

- neglect ion pressure
- neglect parallel ion motion
- take into account perpendicular ion inertia.

The ion response in this cold ion approximation (7} < T)):

d. n 2 cle n 272 f
é“t(lnn—o — ps“ViD) + ¢Bq [q)a hln—O — Ps VL(D] = 0,

with & = e¢p/T, and ps? = T, /mw?.

T\
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2 Generalized two-fluid model

Low-3 plasma with electric and magnetic fields

10
E=—v¢—;a—?ez, B = Boe. + VA x e,

with ¢ = do(x) + ¢(x,t) and A = Ag(x) + A(x,1).

Electron fluid: parallel component of the momentum balance and
continuity equation
dv dn

men—i = —enE” — V“pe, d

5 + Vnv, = 0.

Time derivative:

d 0 1
a—a+1—3-6ez-v¢x‘7,

derivative along the magnetic field:

Vnza/az—ez-v.AX\_/.

The parallel electron momentum is transported with the E x
B velocity which is due to cancellation of the gyro-viscosity
stress tensor with the contribution of the pressure gradient
drift to the inertia v - V term.

k3



The parallel ion velocity is much smaller than the electron velocity

J. C :
U:.: ~ — - V_ZLAj
eng 4dmeny

Electron equations:

0

272 s e
57 (A-XVIA) + [@—hn - A- VA
e e I B A S )
[III noa /\evLA] — 82((1) 111 TL(])’
0 2 0 o
E1n—+[<1> lnn—o]—[A, Vidl=-5-Vid
with J
)\e:_ea
Ps

- d. = ¢/wy, electron inertial skin depth.

- ps = yT./muw? ion gyroradius at the electron temperature.
brackets: If, gl =e.-VfxVg.

Normalized variables

ep
T,

xr Yy o
A, 7= wt, —z — Z.
cTe) T =W (ps ps) (2, ), P

€CA
b =

A=

X (o
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Quasi-neutrality condition Inn/ng = Inn, /nyp.
The ion response in the cold ion approximation (T; < T¢):

BGI

Gr=V:®—-Inn/ng, &;=9o.

e Equations describe phenomena with frequencies below the ion
cyclotron frequency and the magnetosonic frequency, and take into
account finite electron pressure, finite parallel electron inertia and
drift effects related with the density gradient.

The spatial scales may range from MHD lengths to the electron
inertia skin depth.

e The reduced MHD model is recovered in the limits

Ae — 0, V2<<1, Gy =0.

X i



Consider solutions that propagate witli a constant velocity u.; all
functions depend on

T — Az, T, ¥, A= .

The electron and ion equations can be written in Lagrangian con-
servation form

oG,
or

+ [P4, Go| =0, =4, —, I

Three fields

+90.Gr = —A + A0 + (£A — A)(In g’- + A V2 A),
0

Gr= V50— Inn/ng,

three ‘velocity potentials

AP F A
o, = ——F ¢
* Aeq:Aﬂ I

Il
<

it



e All equations are in Lagrangian form and can be viewed as a
generalized 2D Euler system for three fields G, that are advected
with ‘velocity’ fields described by potentials @,,.

e The scalars G, are pointwise conserved and frozen into the
velocity fields e, X V®,.

This structure implies that any function of G, is conserved. i.c. the
system has three distinct sets of conserved quantities (Casimirs)

f d°x F,(G,) = const

where the integration is over any domain that moves with the
appropriate velocity field.
This elegant structure of the equations is lost in the limit of reduced
MHD.
e FEither cold electrons A /A = u,/vipe > 1
or isothermal electrons A /A < 1
A= A, —— electron Landau damping.
e The strictly 2D case: A— 0. le. u, — 0.
e [n the limit A — oo one obtains the Boltzmann distribution

Inn/nyg = ®. Upon substituting this distribution into the ion
equation, one obtains the Hasegawa-Mima equation.

113



3 Hamiltonian formulation

Energy integral
1 5 N
W= fyd {|VLA|2 AT AR 1 V0

—oA(n 2 - @)viA} |

ng

- magnetic energy,

- kinetic energy of the parallel motion of the electrons,

- internal energy of the electrons,

- kinetic energy of the 2 x B motion of the ions,

- time integrated divergence of the z-components of the Poynting
vector and of the electron thermal energy flux.

In terms of the fields G, and the potentials ®,:

2.
Ae — A

2
Ao + A

Wz%/Dde = Z0.Go + G+ G|,

Integrals of the quadratic terms G7 are Casimirs and can be sub-
tracted.

LU |
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The conserved quantity

1 2
H=--% [,d'z Goda.

¥

is the Hamiltonian functional.
Functional (Fréchet) derivatives: 0H/6G, = —P,.

If one defines the Poisson bracket as

5f 6
{fg}=%/d% Ga[é(i’ 5&]

then the dynamical equations take the form

0G4
ot

={G,., H}.

KIS



4 Current-Vortex filaments

2D Euler

Ow 5
E+[w’ wl =0, w=V-.

Point-vortex solutions (r = (x,y)):

W = vzw - Z K,z'(S(r - r'i)a

the filament positions evolve according to

dI'Z'
—d? = e, X V1b|rl..

Homogeneous plasma: the equilibrium values of ¢, A and lnn/nqg
are constant.

oG,
or

+ [@,, G,] =0, a=+, —, I

Solutions in the form of singular current-vortex filaments:

G, = Z"ia.ié(r - ra.é)-

16
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Combine with the definitions of the G,’s:

VQ((I) — )\A) = Z KJQ_E'(S(I‘ — I‘QJ‘),

V(—A+ A0) — Y (—A+ AD) = = ¥ Coka6(r — Tay),

where

_ 1+ A
AN B A=Y

Cy

e Localized solutions require

~2 >0, ie. Ato A2 > max(1, ?) or A* < min(1, AZ).

The limit A — =1 corresponds to propagation at the Alfvén

velocity, u, = *c4. In this limit v — 1

e The potentials ® — A/\ and A—®/\ are the electric and vector

potential in the moving frame. respectively.



Solutions:

S-AA =S e r |, —A+ND =Y Cf‘“

Q.2 2m .l

K(] ’er r,. 1|)

velocity potentials:

1
Gy(r) = =) = S K|l |1 — 1o o] + CoCaKo(yIr — ra.l)]-

e This generalizes the well-known hydrodynamical point-vortex
model to magnetized plasmas.

In contrast to hydrodynamics we have three types of filamendts,
each mowves in a distinct velocity field:

- k-filaments have singularities in the vorticity and the density.
- ky-filaments have singularities in the current and the density.
e All filaments contribute to the potentials which consist of a

logarithmic part similar to hydrodynamic point-vortices. and a part
that decreases exponentially with the distance from the filament.

1&
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The system of vortex filaments is a solution if and only if the fila-
ment positions evolve according to

Like hydrodynamical vortices, the equations of motion of current-
vortex filaments define a Hamiltonian dynamical system:

dra’i

dr — {ra,ia H}

with the usual definition of the Poisson bracket

1 of Og of Og
9 55 ks \Oxs;0yg; Oyg;0Tg;

The Hamiltonian is

A 1
H = —=3> Haa.iq)a(ra.i)
2 1 '
1 1
= —1;1 — AZ g:i % RaiK3. [hl ‘I‘g.’j - I'a_,;| + CQC,{S’KO(’Y‘I'&) - rm.rl)]

with (o, 1) # (3, 7) in order to exclude self-interaciions.

b



H depends only on the distance between filaments: the system has
3 additional constants of the motion:

1
P =3 KaiToiy Q=X KoiYai, =52 ’fa,v:(xi.i + Y i)
.l .1

x.i

These invariants are not in involution:
{PrQ}:Z"Ea,,i: {P,I}:Q, {Q,I}Z—“P.
[0 %

These equations imply:  {P?+ Q% I} =0,
so that the system has three invariants in involution:

H, I, P>+ Q*

e the motion of three vortices is integrable for any combination
of vortex strengths and positions.

° Saikei =0, P=0, Q =0,
the independent integrals P, () and I are in involution:

the four-filament problem s integrable.

6 2o
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5 Examples of Filament Systems

Filament pair

The interaction between two filaments:

d
—(r] — r9) = (K1 + K2)L10€; X (1] — I),

dr

Ly depends on | r; — 1o |

roo_ 1 1-CGpyln — ralKa(yry — rof)
T 2m (1 32) r1— raf? |

Hence, the distance between the filaments remains constant.
Constant of the motion: K1r1 + KoTg = constant.
The filaments rotate around this center with frequency

W = (FLl + KZQ) Ll;g.
"Neutral” pair: Kl=—Ko=K —— d(r; —ro)/dr =0.

"neutral” pair moves in the direction perpendicular to the line that
connects the filament positions, with velocity

v = kLiqe, X (ry — ra).

&l



“Neutral™ pair of filaments of the same type a:

Ty = T, Y1 = Yo+ uT, o = Top, Y2 = Yo + UT,

. K 2 — :
u= gy L Car L Ky [ L], 1= 2w —

e Far field of this filament pair (|| /R < 1):

- \A = —57-;—1%0089, —A+ AP = %CQICOSQ’)’Kl(’)/R),
//’
7
Ko 7
/K T}
// e L

V20 i >
- K, X

1s equal to that of a distributed Alfvén vortex outside its circular
separatrix [®, — ux{p=, = 0, that propagates with the velocity
u along the y-axis.

e Weak collisions between Alfvén vortices can be simulated by the
interaction of filament pairs.

ARz
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Three filaments

The interaction of three filaments is integrable. but extremely com-
plicated.

Example: 3 filaments of the same type a located in the vertices of
an equilateral triangle

b b 3
(0, —'), (0, ‘—‘Q), (b-\g——, 0), K1 = Ko = -g, Ry = +K.

s ) }
.,

L V3 /2

?\—x

dol
2

This behaves as a "neutral” filament pair with £ at a mutual

distance { = bv/3/2.

This system moves in the y-direction with velocity

U = — ;4;\/5
 Ar(1 - A2

[1 - Ci'YbKl(Wb)} :

M3



Filament chains

Consider N filaments that all move in the y-direction with the
same. constant velocity u.

Loi = Ta,ia Yoi = y(,u' + ur.
The conservation of () and I require
Z Kaj = 0, Z KaiYoi = 0.
ot a,t
2N equations of motion:

0= [BZ Eﬁ,jLa,i;ﬁ,j(ga,z’ - yﬁ,j)v U = ﬁz: Rﬁ.jLa.i;ﬂ,j(Ta.i - T;i.j)-
") 2J

N x N matrix {Lyi.3,(Ta; — Ts;)} is skew-symmetric: its deter-
minant vanishes for odd N. Hence, N is even.

The first set of equations can be satisfied by placing the N filaiments
at equal distances along the z-axis. 7, ; = ¥4 ;. This configuration
forms a filament chain consisting of a single row

w

L

—%
w

x
*

* *
-k K -

W Ly
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Solutions in the form of double-row filament chains that are sim-
ilar to the von Kéarman vortex streets.

Infinite number of filaments of a single type a.
Symmetrical double-row chain:
Kop = —Kin =K, n=0,£1,£2,...; m=0,1

in the points (z,y) = (am, bn).

AX

— % X —h — - — = — — — W

-k -K -k “k - -k -
a.

> "
&

*e % X ¥ * x ra >}
ke ke 'S (& W Ko w

The configuration moves in the y-direction with the velocity

Ka o 1
= >

Usym = 901 — A2) niZoc a2 + b202

[1 — C?*yVa? + b2n Ky (vvVa? + anQ)] :

W s



Staggered double chain

(, y) = [am, b(n+m/2)l, Ko, = —K1n=K.
A X
——% K— X A — % — -x
-k -l
Q > W
123 —% ¥ L % s e }‘&_f
K ke

This configuration moves along the y-axis with velocity

o

1

(1 — A2) nz=:O aZ + b2(1/2+n)?

[1 — C2y\Ja? + B2(1/2 + n)2 K (yfa? + b(1/2 + n)‘z)@u

22 26
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6 Vortex collapse

Three or more point vortices in ideal fluids can merge to produce
a single vortex.

This vortex collapse, indicates that under some initial conditions
the uniqueness of Euler’s equation is lost.

A similar phenomena occurs in plasmas.
At scales below the ion-sound gyroradius or for
v — 0, i.e., A\ — *1 propagation with the Alfvén velocity,

KO(’)’ll‘g’j — ra,z-|) — —In lrggj — I'a,i‘.

Hamiltonian:
. 1 1
H = —E%-'].T'A—i azﬂﬁz‘] K’Ci-,if{’ﬁgj(]' — CaCﬁ) lIl |rﬁj — Yolils

The resulting equations of motion are scale-invariant under

T—aT r — ar.

Self-similar solutions



Ta,j(T) = \/1 _ T/T* Ta.j(O): Cba.j(T) = @a.j(o)_ﬂfr* 111(1_7/7—*)'

Here, r,; and ¢, ; are the polar coordinates of the filaments.
t = 0 indicates the initial time, §2 and ¢, are constants.
All filaments merge at r = 0, the collapse time being .

Necessary conditions for a collapse
P=0, @Q=0, I =0,

while the conservation of the Hamiltonian requires

1 - C,Cp B

Z Z RailRg - Oa (Oi, Z) 7& (/83.7)

at 3. 1— )2

[f the sum of intensities for each type of filament k, = &, K,
vanishes then the collapse results in the total annihilation of vor-
tices.

The annihilation condition can not be satisfied by a system of
hlaments cof a single type. For this reason annihilation is impossible
in hydrodynamics. In contrast to fluids, the conservation laws in
plasmas seem to allow the annihilation of vortex filaments.

23
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Propagating, distributed vortices

Inhomogeneous plasma; localized solutions
Inn/ng — Inng(x)/np = —z/X,, A—0, &0,

An = I,/ ps is the normalized density scale length.

Look for localized structures that propagate in the y direction with
constant velocity u,. Such structures are described by the relations

[Gay ®a — /X =0, Ay = Co/Uy, Cs = (Te/m)'/?.

(General solutions

Gy = Fo(®y —x/Xy).

The F,’s are arbitrary functions of their arguments. They need not
to be the same over all space, but may change across separatrices.
which are curves ®, — x/)\, = constant that connect to the
singular points where

V. (D, —2/)\,) = 0.

X 24



Boundary conditions at |x| — oo require that the F,”s are linear
in their arguments. Take these functions to be linear everywhere.
so that

Go=F.(D,—2/),).

The proportionality constants F, cannot be the same over all space
and must be allowed to change at the separatrices.

Equations
- \,A e e O~ NA—(1- M)
v2 - Y
_ F!eq F!c?
A+ X0 ““%‘ig‘ 72—%%5& —A+\D

In the outer region:
F{; = ")\y/)\na ; = (Ay/)‘n)(/\e + /\3)/2)\8-

Thus all elements of the matrix vanish except for the 22-element
which is equal to the eigenvalue in the external region

Ay 1— A2
1 — ¥
ke = )\))\2 A2

Localized solutions can exist if &2 > 0. Note that A, /A, = w./u,
with u, = ¢T,/eByl, being the diamagnetic velocity.

230
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The boundary condition at large |z| implies that the solutions have
the form of dipole vortices

®, = ®,(r)cosb

with 7, € being polar coordinates.

Suppose that there are two X-points and a single separatrix circle
at 7 = 7. At this circle one of the quantities ®, — z /A, vanishes.

The eigen values kjo of the matrix in the inner region are de-
termined by matching ® — A\;A and —A + A, ® and their first
derivatives at the separatrix circle:

(K2 — KK (ke) + (k7 = k3)B(ky) — (7 — K})B(k2) = 0,
where
K (k) = kKq(kro)/ Ki(kro), B(k) = sgn(k?)|k|Ba(kro)/Bi(kro),
K and B are Bessel functions.

Bik) = L(kl) k*>0,  Bik)=J(lk]) k<0

A second relationship between kj o and k. follows from the matrix

AR 3¢



—

K2R L K2k
k_g+k_g—1:(1_6a> kﬁ

[Rw) N

depending upon which of the ®, — /A, vanishes at r = ry.
The eigenvalues of the system are given by the intersection points
of these curves with the dispersion relation.

o« 32



Hasegawa- Mima equation,

drift vortices

~ wrewr W — W WrWNTI W N wk w

-

Y ww w - ¥y wsmsy TyYyEN¥N

t 2 & i

- ww ¥ Y P S YYENEY ¥YTYX
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6 Drift vortices

The set of nonlinear equations do not only have wave-like
solutions that extend over complete space, but also spatially
localized solutions

d—0, -0, |Z| — o0.
A

Electrostatic phenomena ()If'q—> 0} in an inhomogeneous plasma in
a homogeneous magnetic field By€,. Neglect the ion motion along
field lines: disregard coupling to propagating sound waves.

Boltzmann distribution

The electron continuity equation and the quasi-neutrality condition

0 To . 1
alnn"*—“é—‘B_oez X V(DVIIITL-‘%VHJ-f :0

G'ww m;u)

o Ty
+-Le x VD -VIV2d.

1
e_'n,v” Jz B pS(O GB()

Eliminate the perturbed density n and the current density .J..

o
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The word ‘drift” refers to the diamagnetic drift velocities of elec-
tron and ion fluids embedded in a strong magnetic field:

1 BxVp T pU
~ = 7 Uth;,

e = Zen  B? ZeBl, 1,

p is the thermal gyro-radius and [, the characteristic scale-length
of the plasma density

I
" ndx
Ml > Mfl;
pe A
XJ-
Vu,

Corresponding current density: J, = B x Vp/ B2

— ™

g



a—gi[&) — PV + plE, x VO V wlit— + & - p2V20| =0,
Ct n

Charney-Hasegawa-Mima equation. Its structure is analogous

to that of the 2D Euler equation for the vorticity of an incompress-
ible fluid.

e Generalized vorticity

ZT

O —
ln

+d - p?V2 D

is pointwise conserved along the flow lines of the E; x B drift.
All functionals

[z G(Q)

are conserved.

e Conserved energy
1 9 39 2 12
E = [,dz (82 + p2|VP).

(Appropriate boundary conditions are assumed.)

37



Look for solutions that propagate with constant velocity u in the
y-direction: solutions depend on (z,n =y - ut)

g, V(d——Z)yx V|-

d — p*V2D| =0
'U»*ln ln+ eVl ]

General solution
U x

+&—pPVio=F(®-—).

U« ln

X

|
i
l
I
I
. L
|
|
|
{

The functional form of F need not to be the same over all space. It
can be different in different areas of the (z,n) plane. These areas
are separated by ® — (u/a)x = constant curves that connect to

the singular points defined by V[® — (u/a)z] = 0.

Localized solutions for which ® — 0 for |Z] — oo require

A A A 4 a8 R -l

]

|

y U (T
< F="0-20)
i U Us In
.|

o

|

I

. in the exterior region, i.e., outside the separatrices.
o

‘

|

|

%

.

- IS:!

) 3

-
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P2V D — k2P =0, kK2=1—u,/u.

. . . 3
Localized solutions require £* > 0.

u < 0, U > Uy,

These intervals are complementary to the range 0 < u < wu,
where electrostatic drift waves exist.

QOuter solution:

- ups Kl( )

b = > 7.
il Kl(n'rg) cosf, r>r

Since K is singular for r — 0, this solution can not be valid
everywhere, but only in the exterior region.

Singular points (,, r,) of & — (w/us)x /1, are points where V[P —

(u/u)x/l,] =0,

1 s
93 = :téﬂ-’ AlKl(HT_S) — —u—p—?“‘, = O

U ln,

39
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The function ® — (u/u.)z/l, vanishes along the separatrices. i.e..
along the circle r = r; and along the positive and negative n-axis
outside this circle.

Inner solution. Assume inside the separatrix circle

F=(+1)@-—7)

Uy by

with real ¥*, so that
- - u T
pIVid+4°0 = [(vF + 1)— = 1)~

ue  ly

-%0"'~Lo
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Calculate the regular solution in r < 7, and match & and 8@ /9r

at r =r,:
- ps U K? u
¢ ="—[1+—(— = 1)]rcosd + CJy{]y|r) cos 8,
Th v u,
with
Ps U K 2
C=—-rs—— v >0

Dispersion relation

Kz(fi’fs) Kk J2(|’Y|7"s) 2
_ _ , —1—u/u
Krre) ~ WAl © T wlv

ic

leg | ——




Given the parameters that define the plasma u. and 05/,
two free parameters vy and u erist.

A - |-

AR =B M SR LA s 4 -« & &8 &8 -

The flow lines ® — (u/u,)(z/l,) = constant of the dipole vortex
in the inner and outer regions.
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7 Conclusions

e The dynamical equations can be written in Lagrangian form for
3 fields that are advected with different velocities.

This system is a generalization and extension of Euler’s equation
for an ordinary fluid.

The system has three infinite sets of invariants {Casimirs) that
arise from the structure of the equations.

e Similar to the Euler case, the plasma equations have solutions
in the form of 3 different types of current-vortex filaments that
move with 3 different velocity fields.

The discrete system has the same integrals of the motion as the
original one

¢ A number of equilibrium point-vortex distributions have been
discussed.

The far field of a neutral pair of current-vortex filaments is identical
to the field of a distributed. propagating dipole vortex outside its
separatrix.

e The current-vortex system has a solution in the form of a collapse
and even of an annihilation of the structures.
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