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1

To the best of my knowledge there is no rigorous and standard definition of
the shear flow concept in a relevant literature. In the framework of the present
lecture I shall call shear flows all those flows of continuous media (neutral
fluids and/or plasmas) that have spatially inhomogeneous mean velocity fields.

2

The answer is YES: almost all known examples of laboratory, terrestrial (atmo-

Abstract

In this lecture I would like to speak about some recent advancements in the physics of
shear flows, In particular my aim is to present to the audience some surprisingly simple new
effects in the linear theory of perturbation evolution in parallel shear flows. These effects
were disclosed in last few years owing to the usage of so called “nonmodal approach” having
its roots in very old, well forgotten paper by Lord Kelvin (1887) [1]. The effects, which will be
discussed are: (a) Appearance of an unusual class of algebraically growing vortical solutions
(otherwise known as “transient solutions”, or *Kelvin modes”); (b) effect of the mean flow
energy extraction by compressible disturbances in shear flows; (c¢) effect of shear-induced
wave coupling, mutual transformation of waves and energy exchange between the modes.

An emphasize will be made on those difficulties in mathematical description of parallel
shear flows, which make necessary the change of paradigm from conventional normal mode
approach to Kelvin approach. I'll describe basic details of the latter method and will derive
all above cited effects by means of this method.

What 1s shear flow?

V=V(z,y, z;t).

Are shear flows of a wide occurence?

spheric and/or ocean) and astrophysical flows are shear flows.

Examples of astrophysical shear flows include:

]

Planet atmospheres and interiors,
Stars (Solar differential rotation),
Stellar (Solar, pulsar, etc. ) winds,
Pulsar magnetosphere,

Accretion columns in X-ray pulsars,
Accretion disks,

Jets (bipolar and unipolar outflows) in quasars and AGN’s.



3 What are elementary examples [2] of parallel shear flows?

3.1 Plane Couette flow:

A flow enclosed between two parallel planes with a constant relative velocity Uy.

Y = (Ay, 0, 0), (2a)
A=Uy/L., (2b)

3.2 Plane Poiseuille flow:

A flow between two fixed parallel planes in the presence of a pressure gradient.

V = (afh® — (2y — h)*], 0, 0), (3a)
o= — (1/8n)d, P, (3b)

3.3 Pipe Poiseuille flow:

A flow in a circular cross-section pipe of a length ! with AP pressure difference
between the ends of the pipe.

V= (av(R2 — rz), 0, O), (4a)
a=AP/4nl, (4D)

Parallel shear flows are important, because on length-scales much smaller
in comparison with flow spatial dimensions arbitrary piecewise linear smooth
velocity profiles may be treated as Couette-like shear flows.



4 How to deal with shear flows?

Linear stability of shear flows: the standard approach is the method of normal
modes or eigenvalue analysis, which proceeds in two stages:

e Linearize about the laminar solution,
e Look for unstable eigenvalues of the linearized problem

An “unstable eigenvalue” is an eigenvalue in the complex upper half-plane,
corresponding to an eigenmode of the linearized problem that grow exponentially
as a function of time. It is natural to expect that a shear flow will behave
unstably if and only if there exists such a growing eigenmode.

5 Are there any problems with shear flows?

(Un)fortunately, the answer is YES.

5.1 Experimental difficulties:

For some flows (e.g. Rayleigh-Bénard convection flow, or rotating Couette
(Taylor-Couette) flow) conclusions of traditional approach well match with lab-
oratory studies.

BUT for the other kinds of hydrodynamic flows, especially those driven pre-
dominantly by shear forces, the predictions of the normal modes approach fail
to match most experiments. In particular {3]:

e For Poiseuille flow, eigenvalue analysis predicts a critical Reynolds number
R = 5772 at which instability should first occur. While in the laboratory,
transition to turbulence is observed at Reynolds numbers as low as R~1000.

o For Couette flow, eigenvalue analysis predicts stability for all R, while in
reality transition is observed for Reynolds numbers as low as R~350.

Traditionally, this anomaly (“subcritical transition to turbulence”) was recog-
nised as a failure of linearization and was attributed to nonlinear effects.
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5.2 Theoretical difficulties:

Linear algebra says that even if all of the eigenvalues of a linear system are dis-
tinct and lie inside the lower half-plane, inputs to that system may be amplified
by arbitrarily large factors if the eigenfunctions are not orthogonal to one an-
other [4]. An opertor whose eigenfunctions are mutually orthogonal is said to be
“normal,” and the linear operators that arise in the Bénard and Taylor-Couette
problems fall in this category.

Reddy et al. discovered [5] (surprisingly it happened only a few years ago)
that the operators that arise in Poiseuille and Couette flows are non-normal.
At the same time it was shown that small perturbations to these flows may be

amplified by factors of many thousands even when all the eigenvalues are in the
lower half-plane [6-8].

6 Is eigenvalue analysis the only tool to deal with shear
flows?

Fortunately the answer is NO.

7 What is an alternative paradigm for shear flows?

The answer is: Kelvin’s approach.

Lord Kelvin (W. Thomson) in his 1887 paper [1], entitled “Stability of fluid
motion: rectilinear motion of viscous fluid between two parallel plates” [Philos.
Mag. 24, 188 (1887).] has given an explicit analytical solution for linearized
disturbances in unbounded parallel viscous flow with uniform shear. Later lit-
tle attention was paid to this solution. Strikingly enough in most accounts of
hydrodynamic stability theory (for example Lin [9}; Betchov & Criminale [10];
Drazin & Reid [11]) it is not even mentioned! In astrophysics Kelvin-like method
and corresponding solutions were introduced by Goldreich & Lynden-Bell [12]
and later the method (so called “shearing sheet approximation”) was succes-

fully used by various authors [13-18] in a number of astrophysical sitnations,
especially in accretion disk physics.



8 What is Kelvin’s method and solution?

Consider two-dimensional unbounded plane Couette flow of an incompressible
viscous fhud:

V-V =0, (5)
1
AV +(VV)V = —_VP+vAV, (6)

with background velocity field, given by (2). We let V,=0,¥, V,= ~ 8,¥, so
that Q=(VxV), = —AU. Now setting ¥ = ¥y + ¥ and 2 = Qy + 4, we get:

(8t -+ Ayax)Ql = I/AQI, (7)

8.1 Normal mode approach

It separates variables by ¥; = ¢(y)exp(ik, — iwt), which implies

(2, y,t) = =[¢"(y) — K*¢(y)lexp(ike — iwt), (8)
and transforms (7) to Orr-Sommerfeld equation:
(Aky —w)(¢" — k*¢) = —iv(6" — 2k*¢" + k). (8)

Due to Marcus and Press [19]: There s not much doubt that viscous plane
Couette flow is always stable to small disturbances, ones which satisfy the linear
Orr-Sommerfeld equation. Nevertheless, no direct proof of stability is known.
Analytic treatments revealed variety of different asymptotic regimes in the
wavenumber/Reynolds number plane. While numerical studies face embarrasing
sensitivity of the equation to different truncation errors.

So Marcus and Press conclude: Since the Orr-Sommerfeld equation is so
uncooperative, it would seem reasonable to investigate how far one can proceed
without it.

8.2 “Kelvin’s cold trail” [19]:

Kelvin noticed that (7) possess a symmetry associated with y direction: a combi-
nation of y translation and an velocity boost to a moving frame, or (equivalently)
a pure translation in the Lagrangian coordinates

y1=y, r1=1 — Ayt. (10)
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So that an alternative ansatz to (8) is the following separation of variables:

(. y.t) = g(t)expl(iky, v + ik, yr) = g(t)explik, x1 + i(ky, — Ak, )yl (11)

This trick gives ODE for g(t). In contrast with Orr-Sommerfeld equation this
one is soluble by inspection and the solution is [19]:

g(t) = Gexp(— vt[kz + k2 A+ (1/3)( Akt — (3/2)k ]) (12)
Omne can see already that asymptotic stability is likely, since at late times
Qyeexp” AL (13)

However, the main advantage of Kelvin's approach is that it allows to trace not
only asymptotic behaviour of the solutions but gives a chance to look at the
temporal evolution of perturbations at early times. In order to expose this
more clearly let us consider inviscid v = 0 case and replay Kelvin’s analysis for
the linearized equations, derived directly from continuity and Euler equations:

Oty + Oyuy = 0, (14)
(8 + Ayd,)u, + Au, = —c28,d, (15)
(O, + Ayd,)u, = —cd,d, (16)
Applying again Kelvin’s substitution of variables we convert the set to
O, Uy + (0y, — At10; )uy = 0, (17)
O iy + Auy = —c28,,d, (18)
Oy, u, = —c2(d,, — At10,,)d. (19)

The coeflicients of the initial system were spatially inhomogeneous—they depend
on the spatial coordinate y. In new variables this inhomogeneity is exchanged
onto the temporal inhomogeneity so that Kelvin’s separation of variables (11)
reduces the equations to the following simple set:

vy + B(T)v, =0, (20)
v = —Ru, - D, (21)
V= _p(r)D, (22)



where hereafter F™ will denote the n-th order time derivative of F and: Dzicf,
R=A/(ciky). 1=ck,t. 3(T)=k,(0)/k; — RT=/3 — R7, v,=1,/cs, vy =y Cs.

Eqs.(20-22) imply that v, — 3(7)v,=C = const and the problem has exact
analvtic solution which is:

‘ _ Ca(T)
vo(7) = T3 50 (23)
C
vy(r) = ma (24)
2RC
P = TGP =
ve 4 v? 2
E(ryzle % ¢ (26)

2 21+ 87))

These solutions exhibit notable transient growth at early times, when k; k,, >
0. Energy of perturbation increases up to the moment of time 7,=83;/R and
afterwards begins to decrease tending to zero at asymptotics. Notice that
E(1,)/E(0)~1+ 33, i.e., we have substantial transient increase when ky, /kz,>>1.
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9 What is surprising with shear flows?

9.1 Role of compressibility [20]: shear-induced energy extraction

In the same setup but taking into account compressibility:

(O + Ay, )d + Opuy + dyuy, = 0, (27)
(O + Aydy)uy, + Auy, = —c29,d, (28)
(O + Ayd,)u, = ~c20,d, (29)

and repeating Kelvin’s standard procedure we get:
DW = v, 4 B(7)y, (30)
vV = —Ruv, — D, (31)
vy = —B(r)D, (32)

The total energy density of the perturbations
B=(lu.|? + [uf%)/2 + |D/2, (33)
obeys the following ODE

EY = —Ru,v,, (34)

which clearly implies that temporal evolution of perturbations, whatever it will
be, is evoked by the presence of nonzero shear R#0.

Evaluating the expression for the R parameter we find that R = (V;/¢,)(I,/L).
Since we are considering only small-scale perturbations (I,=1/k, <L), it is clear
that if we consider the subsonic flow (V) < ¢;), then R«1.

There is an important algebraic relation between the perturbation functions:

vy — B(7)v, — RD =C, (35)
which helps to derive from (30-32) the following second-order explicit ODE:
vl + 1+ 8%, = —CA(7), (36)

General solution of (36) is the sum of the special solution of this equation
and the general solution of the corresponding homogeneous equation.

v 4 [1 4+ 84D, = 0. (37)
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The latter solution is readily obtained owing to the smallness of R parameter,
when w(7) depends on 7 adiabatically. Mathematically, this condition may be
written simply as |w(7)"'|<w?(7) or, taking into account the definition of w(7),
as:

RIB(r)|<w’(r) = [14 5°()] 7", (38)

For subsonic Couette flows R<1 and the condition (38) holds for all possible
values of |3(7)|. In other words, since the temporal variability of |3(7)| is de-
termined by the “linear drift” of SFH, (38) is valid at all stages of the evolution
of the SFH and the approximate solution of the homogeneous equation may be
written as c

V()
1

o(r) = [wtryir = | 3retr) +als +ul| @0

As regards special solution of the inhomogeneous equation (36) it may be

derived owing to the smallness of the R parameter too. In particular, the solution
may be expressed by the following series:

sin[p(T) + v, (39a)

O,(7) =C ZR2”yn(T), (40a)
n=0
yo(7) = =B(7)Jw?(7), (400)
1 agyn—l

yn(T) = _wg(T) 6)82 . (406)

Since R« 1, the terms with higher powers of R are negligible and the general
solution of the inhomogeneous equation (36) may be written approximately as:
c CB()

v (T ) w(T)S’m(@(T) + o) — o) (41)

The total energy density of the perturbations:

E(r)~s [Cw(*r) + (W(CT))T. (42)

e Clearly, when C/C<«1 the SFH may be treated as mainly incompress-
ible and vortical perturbation and the solution reduces to above described
Kelvin's incompressible transients.
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e When C/C>»1 perturbation becomes mainly of the sound-type. E~w(T) =
V14 (3y = Rr)?. Initially, for k,(0)k, > 0 (3y > 0), at 0 < 7 < 7,, the
energy decreases and reaches its minimum at 7 = 7,. Afterwards. it begins
to increase at 7, < 7 < x, when the SFH "emerges” into the area of k-plane
in which A,(7)k, < 0 ("growth area” for the sound-type perturbations). If
the SFH is in the “growth area™ from the beginning (3; < 0), its energy
increases monotonously.

e In the general case (see Fig.2) the "transient growth” and the "sound-type”
evolution are superimposed on each other.

Thus we see that velocity shear ensures existence of a surprising new effect in
this simple system: compressible, 2D perturbations are able to extract
effectively the energy of the mean shear flow.
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9.2 Multiwave case (n > 1 modes): shear-induced wave transforma-
tions [21].

Let us complicate further our setup and consider 2D, compressible, magnetized,
unbounded parallel low with uniform velocity shear (plane, magnetized Couette
flow). External regular magnetic field is supposed to be uniform and Byl||Uy.

The basic system of linearized equations governing the evolution of the small-
scale, 2D perturbations in this flow is:

(O + Ayd,)d + Fzuy + Fyuy = 0, (43)
(O, + Ayd,)u, + Au, = —c20,d, (44)
(8 + Ayd.)uy = —c29,d + [0:b, — 9,b.], (45)
(O + Ay0,)by = Oyuy, (46)
9:b; + 9,b, = 0, (47)
repeating once again standard Kelvin procedure we get:
DW = v, + B(7)vy, (48)
o) = —Rv, — D, (49)
o) = =B(r)D + o*(1 + S(1)*), (50)
bV = —u,, (51)

where all notataions are the same as above and in addition b=B'/|By|, ¢, is an
Alfvén velocity, b=ib,, and o?=(ca/c;)?.

The dimensionless total energy density of the perturbations in the k-space
we define as:

B=(ju.l? + [0, ))/2 + |DI/2 + 02 (16, + [b,1%)/2 (52)

If we introduce a new variable: ¢=D + 3(7)b we can reduce the system
(48-51) to the pair of the ordinary differential equations of the second order:

P+ wi*y - B(7)b =0, (53)
b 4 wy?b — B(r)y = 0. (54)

The equations of this type are well-known in the general theory of oscil-
lations. They describe coupled oscillations with two degrees of freedom. In
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particular, uncoupled eigenfrequencies appearing in (56-57) are: w;=1 and

wo(T)= \/02 + (14 02)3(r)?, while the coupling coefficient is k(7)=— 3(r). The
presence of shear in the flow (R#0) ensures temporal variability of one of the
uncoupled eigenfrequencies (w9(7)) and the coupling coefficient k(7). Note that
a dependence of these quantities on time may be considered as adiabatic when
R«1.

The most suitable condition for the transformation of the MHD waves and
corresponding energy transfer is when o?~1 (i. e. c4~¢; — equipartition be-
tween magnetic and thermal energies) and the transformation occurs nearby
7 = 7.. Numerical simulations show that for certain values of R there happens
almost complete transformation of SMW into FMW (if, initially, was excited
SMW) and vice versa. Fig.3 illustrates SMW-FMW transformation process. It
is clearly seen that at 0 < 7 < 7, the SMW energy remains almost constant,
as it should be, since the energy varies in the interval adiabatically E(7)~();
and € is almost constant there. For 7 > 7,, where the wave has been already
transformed into the FMW, E(7)~{); and increases quasi-linearly with the in-
crease of 7. Thus, if initially we had a wave (SMW) which did not exchange
an energy with the mean flow, after the transformation appears a wave (FMW)
which effectively extracts the shear energy from the regular flow. It is clear that
this kind of transformation process may change radically the behavior of the
flow.

Fig.}(a)
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Thus we see that velocity shear induces yet another surprising effect: lin-
ear mechanism of mutual wave transformations with corresponding
energy transfer between them. The nature of the wave transformation ef-
fect. discussed in this paper. qualitatively differs from the already known linear
transformation mechanisms. Density inhomogeneity induced mode transforma-
tion occurs permanently in the limited spatial area (across the density inhomo-
geneity), while in our case transformation of linear waves occurs in the whole
volume, filled by the flow, in the imited time interval.

10 What is the main message of this lecture?

Velocity shear is an important physical aspect, which may considerably influence
physical processes in moving continuous media. This aspect up to recent times
was either ignored and/or inadequately understood. My main message is to
point at the importance and universality of shear effects, to emphasize and
advertise their attractive simplicity and, thus, to encourage my colleagues to
look for shear effects in their specific fields of interest.

11 Next lecture?

In the next lecture I will speak about some applications of above discussed
general shear effects in a few specific hydrodynamic and plasma problems. In
particular, the following items will be discussed:

e Coupling of sound and internal gravity waves in shear flows [22];
¢ Velocity shear induced effects on electrostatic ion perturbations [23];
¢ Velocity shear generated Alfvén waves in ete™ plasmas [24];

e Escaping radio emission from pulsars: possible role of velocity shear [25].
Acknowledgements:

I would like to thank George Chagelishvili, George Khujadze and Swadesh
Mahajan for useful discussions and comments concerning the subject of the
present lecture. I would like to thank Nancy Stella Bono for help and encour-
agement.
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12 Appendix A: Adiabatic oscillations

Linear, second order ODE
F 4 Y F =0. (A.1)

describes linear oscillations of mathematical pendulum (or, more generally, some
linear oscillator) with variable (time dependent) parameters (i.e., length).

An arbitrary Function G(7) is said to vary slowly, or adiabatically if its relative
variation during the period of the oscillations is small. Or, in other words, if:

PG n)l<|Gn)] & 2r|GN(r)|<w(r)|G (7)), (4.2)
For the function w(#) by itself the condition (A.2) reduces to
Wi {r)|<w?(r). (4.3)
If we seek for the solution of equation (A.1) in the following form:

F(7) = a(r)e'), (A.4)

o(1)= / Tw(T’)dr’, (A.5)
then for the derivative of F(7) we have(i
FO = a®e 1 (26w + awM)e™ — aw?e,
and equation (A.1) reduces to:
aPe’ + i(2aVw + aw)e = 0. (A.6)

The adiabatic character of the €2(¢) variation ensures that the first term on
the left-hand side in (A.6) is much less than the second and the third ones. It
means

20w~ — aw
and, consequently,
C=a(r)*w(r). (A.7)

A quantity C is called an adiabatic invariant of equation (A.1). The solution of
this equation may be written explicitly as:

F(r) = \/fvje:ﬁp [ (/;w(r’)df’ +<I50>]. (A.8)
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13 Appendix B: Coupled oscillations

The mathematical description of the motion of two coupled linear oscillators
leads to the following pair of second order ODE’s:

F +u.)lF1-|—CFQ—0 (Bl)

F¥ 4 WdFy +CF =0, (B.2)

where the eigenfrequencies of the F| and Fy oscillators are w; and ws, respec-
tively, and C 1s the corresponding coupling coefficient. For constant eigenfre-
quencies and coupling coefficient the general solution of the system can always
be represented as a combination of the normal modes:

Fi = Fycos(4t — ¢, )+ F_cos(Q2_t — ¢_), (B.3)
Fy=0,F cos({t — ¢y) +0o_F_cos(2.t —¢_), (B.4)

where the fundamental or normal frequencies of the coupled oscillations, (2., are
determined by

Q% = % [(w? +wi) & \/(w% —wi? + 4C2] : (B.5)

The auxiliary quantities oy in (B.4) relate oscillation amplitudes of the two
normal modes to each other:

O+ = C - ng — w%, (36)
while the ¢, are the initial phases of the coupled oscillators.

In a coupled system described by (B.1)-(B.2) it is always possible (with prop-
erly chosen initial conditions) to excite a simple harmonic motion in which both
oscillators have the same frequency, viz. one of the fundamental frequencies €2,
or 2_. From (B.3)-(B.4) it is easily seen that this regime is established when
either F, or F_ is equal to zero. It immediately follows that

* F_|_ 75 0 and F.. = 0, when FQO = U+F10, and atFQO = O’+agF10
e F_+# 0 and F; = 0, when Fy = o_Fy, and 9,F% = 0_0,Fy.
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When ecigenfrequencies and/or coupling coefficient of a coupled oscillating
system vary in time and when the variation is slow or adiabatic, then the system
exhibits notable mutual transformations of normal oscillations with correspond-
ing encrgy transfer between them. The mechanical example of the oscillatory
systemi., governed by this kind of equations, is the system of two coupled pendu-
lums with slowly (adiabatically) variable lengths (i.e., eigenfrequencies) and the
interpendulum coupling coefficient. There are two necessary conditions for the
effectiveness of the energy exchange between the weakly coupled pendulums:

® (A) There should exist a so called “degeneration region,” (DR) where |2 —
021<|C(7)|. In other words, in the case of weak coupling this condition
implies that Q2_ =~ Q,, which means that the maximum energy exchange

between the pendulums occurs when they have approximately the same
length.

¢ (B) the DR should be “passed” slowly — in time interval sufficiently exceed-
ing the beating period: |Q$)(T),<<|C(T)|.

17
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