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" Gravity waves in the parallel shear flow of a continuously stratified compressible fluid are considered. It is
demonstrated that the shear induces a coupling between the sound waves and the internal gravity waves. The
conditions for the effectiveness of the coupling are defined. It is also shown that, under suitable conditions,

beat waves can be generated. [S1063-651X(96)12012-2]

PACS number(s): 47.35.+i, 03.40.Kf, 43.20.+g, 92.60.Dj

It is well known that in a medium with a gravity-induced
stratification the buoyancy forces tend to excite internal
gravity waves originating from a balance between the fluid
inertia and the gravitational restoring force [1,2]. The inter-
nal gravity waves (hereafter referred to as IGW's), propagat-
ing in a differentially moving fluid—that is, in a shear flow
with continuous, gravity-induced stratification, display a rich
and complex structure.

In order to study this problem it is very convenient to
employ the scheme where a moving coordinate system is
used and the temporal problem is examined directly. The
method can, in principle, be used for any velocity profiles
but it is mostly useful for ones that are piecewise linear
[3-5]). Going to the moving frame mitigates the need for a
Laplace transform [5-7] and greatly simplifies the solution
of the initial value problem.

The problem of the evolution of IGW in an incompress-
ible parallel shear flow with linear velocity profile was re-
cently considered by Chagelishvili {8]. In that study, non-
modal algebraically growing solutions, indicating the
possibility of anomalous amplification of IGW in shear
flows, were readily found. This paper deals with the same
problem for a compressible, unbounded, parallel flow with a
uniform (linear) shear.

In {9], where the evolution of two-dimensional (2D) per-
turbations in a compressible, plane Couette flow was consid-
ered the mechanism of the energy exchange between the
mean flow and scund-type perturbations was discovered. A
linear mechanism of mutdal transformation of waves, and a
corresponding energy transfer induced by the existence of
the velocity shear was found in [10] for the 2D waves in an
unbounded, parallel hydromagnetic flow (see also [11]). It
seems likely that analogous mechanisms will be operative in
other kinds of paratlel shear flows, where conditions for the
excitation of several {more than one) wave modes exist.

Since we are dealing with the shear flow in which sound
waves (SW) and IGW may be simultaneously excited, it is
reasonable to expect that these modes may become effec-
tively coupled implying a linear mutual transformation with
corresponding energy transfer between the modes.

Let us consider the evolution of two-dimensional pertur-
bations in a compressible, unbounded shear flow with a
steady unidirectional mean velocity (parallel flow) that varies
linearly with height. Let us choose the coordinate axes such
that the regular velocity vector Uy={Ay,0), is along x, and
the acceleration due to gravity g=(0,— g,) is along negative
y. The basic system of linearized equations, describing the
evolution of the small-scale, 2D perturbations in this flow,
takes the form

Drp'+po(az“x+ayuy)+(aypﬂ)uy=0' (1)
D' +(8,50)u,=0, )
1 I
D,u,+Auy=—p—Da"xP , (3)
1 , P
DJuy:—.;;ayP + ;gaypo, (4)
6p0 P’
r ] 259 S+ ,
i (630);!0 ;3. (5)

where c,=[(dPy/3ps)]'% and D,=4,+Ayd, . Making use
of the equilibrium condition &,Py= — pogy. it is straightfor-
ward to eliminate p' from (1} and (4) to yieid

D,P'+pocf(31ux+dyuy)—pogou).=0, (6)

1 80(5!30) &o
Du=——¢3§P' — —|— S""—“Q-P'. 7
Y ope? Po 1350 P,  PoCs @

To *set up’ the analysis, we affect the transfor-
mation, X =x—Ayt; 1=V 1=t (D,—»&,l;
d,—d, —At;d, ), which effectively takes us from the labo-
ratory to the local rest frame of the basic flow [5,9-12).
In new coordinates, where the initial inhomogeneity in space
(y) has been exchanged for a new inhomoge-
neity in time, we may e¢xpand the perturbations as
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F=J'dkxldkylF(kxl,kyl,tl)exp[i(kxlxl+k),ly1)], and con-
vert Egs. (6), (2), (3), and A('l) to a set of first order, ordinary
differential equations for F(&, .k, .1;), which will be here-
after referred to as spatial Fourier harmonics (SFH) [9-12].
It is convenient to write these equations in dimen-
stonless  notation: REAIc,kXI, T= c,k,lr], BDEk_\'II
k’n‘ B(N)=By—RT, v, ,=u;,lc;, e= -k,lS'l(a).So),
fEf"/PO, aEPolpocf, and §Eg°!kxlcf. We also note
that the dimensionless measure of the characteristic
frequency of pure internal gravitational  waves,
wi=—(g0/po)(8py!3Sg) p (3,So), can be readily defined as
W2=(wo/ck, ). '
In this notation, the set of equations reduces to

adrf=—ilv,+ B(T)v,]+ v, (8)
dre=v,, ©
dpv,=—Ru,—iaf, (10)
drv,=—iaf(T)f—W?e+ (1 - a)éf. (11)

When gravity is absent (W?= E=0) these equations {without
Eq. (9)] reduce to the system describing plain sound waves
in free shear flows [2]. Note that the IGW can be retained in
the system by assuming a nonzero W2, Furthermore, the cou-
pling between IGW and SW will be nonzero even if the
gravity-induced coupling (£) is small and negligible. Thus,
without any fear of losing basic physics, we go ahead and
neglect £ everywhere, and find the simplified system of
equations [F=iaf],

orF=v .+ B(Thv,, (12)

dre=v,, (13)

(a): v JW=0.5betal=10,R=0.1]

0.04

drv,=—Rv,—F, (1h

dyv,==B(TIF-Whe. . (13)

The spectral energy density of the SFH may be defined a.
E‘=‘(vf+ vf.)lZ+ F22+ W?e?p2, where the three terms cor-
respond, respectively, to the fluid kinetic energy. the acoustic
potential energy, and the internal-wave potential energy. The
spectral energy density E(T) satisfies the differential equa-
tion grE=—Ruv,v,. When R=0 (the fiuid at rest), E(T) i
conserved as expected.

In terms” of a new variable (T)y=F— B(T)e[au:
=p,+Re), it is easy to transform Egs. (12)-(15} into 1he
following pair of second order differential equations:

drrp+ g+ B(T)e=0, (16}
drre+[W2+ BHT)]e+ B(TY¢=0, (17

representing two oscillators coupled through B(T) f13], with
w; =1 and w,(T)}= \/W2+ﬁ2(T) as their respective eigen-
frequencies. The presence of shear in the flow (R#0) en-
sures temporal variability of one of the uncoupled eigenfre-
quencies [ w,(T)] and of the coupling coefficient B(T). Note
that the time dependence of these quantities may be consid-
ered adiabatic when R<1 [9,10].

Fundamental vibrational frequencies of the coupled oscil-
lators Eqgs. (16) and (17) are equal to [13]

0i=}lul+eiz(w-0D +4p).  (18)

Note that in the absence of gravity (gg=W=0)
QL (Ty=+1 + B%(T) reduces to the plain sound mode (9]
while _(7)=0, as it, certainly, should be.

Since the oscillation system, described by Eqgs. (16) and
(17), has two degrees of freedom its behavior may be deter-
mined by two functions ¢(T) and e(T). Note that all other
physical quantities may be explicitly expressed in terms of
W, e, and their first derivatives: F=¢+ B(T)e.
v,=driy—Re, and v,=dre.

(c): v, ,[W=0.5beta0=10,R=0.1]

FIG. 1. The temporal evolution of the velocity
v, (T) and energy E(T)/E(D), respectively, for

an initially pure IGW [(a) and (b)] and SW {(c)
and (d)] modes. Dashed lines in (b) and (d) rep-
resent the CQ_(TW/Q_(0) (IGW} and
Q. (D/EL,(0) (SW) curves, respectively, for
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FIG, 2. The temporal evolution of the velocity

v (T) and energy E(T), respectively, for an ini-
tially pure IGW [(a) and (b)] and SW [(c) and
(d)] modes. Dashed lines in (b} and {(d) represent
the Q_(THV/Q_(0) (IGW) and Q, (T)/£1,.(0)

{SW) curves, respectively, for initially excited
modes. By=10, R=0.1, and W=1,
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The necessary conditions [14,10] for an effective energy
exchange between two weakly coupled oscillators are the
existence of a so-calied ‘‘degeneracy region,”” (DR) where
|wi— w3|<|B(T)|, and that the DR should be ‘“‘passed’’
slowly — the traversal time should be much greater than the
period of the beats |§7w,(T)|<€|B(T)|. The degeneracy re-
gion is in the neighborhood of T, =f,/R, and W=1 leads
to the most efficient mode coupling, and hence to the possi-
bility of mutual transformation of the modes. It is straight-
forward to see that for the current problem, the existence of
DR is ensured if |B(T)|<1. As regards the condition for
|érw,(T)|, in our case it reduces to the inequality
R<€\ W-+BZ(T). which is true for all T if R<W. Since
R<€1, it is clear that for W=1, the conditon is always satis-
fied.

Regarding the ‘‘adiabatic behavior’” of the modes, we
should expect that the modes should normally follow the

dispersion curves of their own: spectral energy density of
either IGW [E_.(T)] or SW [E . (T)] should be proportional
to its corresponding frequency: E.~ (. [9]. This mode of
energy evolution, however, will not pertain in DR, where
efficient transformation of one wave into the other occurs for
W=1. For instance, the energy of an initially excited IGW
mode increases approximately by the E (D~Q_(T) law
up to the vicinity of the point T, , where it is partially trans-
formed into SW. Afterwards, its energy evolution would still
proceed adiabatically, but now according to the law
E (T}~ (7).

One more, quite impressive, evolution regime can be re-
alized when R<€B,<l. In this particular case (with
W=1), normal frequencies of ¢ and e ‘‘oscillators’
[Q,(T) and & _(T)] are almost equali to each other and the
coupling is inherently efficient. In this case beat modes wil
result: if initially, only one, say, the ‘‘e oscillator’” {i.e.,

Entropy,[W=1,beta0=0.01 R=0.0001]
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FIG. 3. Beat waves, displayed for e(T) and
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Vs =Vy,=Fo=0, and €,#0) is excited, beat waves with
frequency 2,=0 (T)— ) _(T) will appedr in time. Notice
that the frequency is variable, and gets smaller and smaller
after T exceeds T, .

In order to demonstrate the mutual transformation of IGW
and SW with corresponding energy transfer between the
modes, it is essential to choose initial conditions in such a
way that at 7=0, only one of the two modes is nonzero.
OCriginally, we must calculate for T=0 the auxiliary quanti-
ties [13]: 0. = (Q% - w?)/B,.

For exciting pure IGW ({)_ mode), we should choose
eg=0a_.y, and dreg=o_dryy.  Recalling  that
Yo=Fo— Boeo. drip=v, +Rep, and dreq=v,,, we can
take Fg=eq=0 and an arbitrary Vg, and
Uyg= O _Uy. In exactly the same fashion we can excite pure
SW with Fy=e¢p=0, and vg= 0 v,q.

The results of numerical calculations are partly presented
in Figs. 1-3. They are in almost complete agreement with
qualitative expectations. ‘

In Figs. 1(a) [1(c)] and 11(b) [1(d}], we display the tem-
poral evolution of the velocity v, (7T) and energy
E(T)/E(0), respectively, for a pure IGW [SW] initial con-
dition, and with the initial data By=10, R=0.1, and
W=0.5. it is clearly seen that IGW [SW] evolves in the
usual manner [following adiabatically the corresponding
Q(T)/(0) curve, presented by the dashed line] until it

simply

reaches DR (T, =100 here), where a small portion of ih,
other wave appears.

Figure 2 is a repetition of Fig. 1 with the notable dif)er.
ence that the resonant value of W=1 is taken. The muyy
transformation of modes is now especially effective. The
graphs show that there occurs almost complete transform;-
tion of IGW into SW and vice versa.

Finally, we display in Fig. 3 the results of numerical .
culations for (T} and v (T) for Be=10"%, R=10"" 4
W=1 chosen to favor beat wave generation. The graphs un-
ambiguously show pronounced beat waves with a continuou-
back and forth energy transfer between the physical vur
ables. :

By studying a highly simple 2D model of a stratified tluul
we have explored the consequences of the shear-induce
coupling between the internal gravity and the sound wine
that Jeads to the mutual modal transformation, and to o vor-
responding energy transfer. Apart from the concrete noveliy
of the results obtained in this paper, the mair message of 1hi~
work is that the velocity shear may act like an effecure
“mixer’’ of the different waves sustainable in shear flow~
arbitrary origin and constitution.
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Velocity shear-induced effects on electrostatic ion perturbations
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Linear evolution of electrostatic perturbations in an unmagnetized electron—ion plasma shear flow
is studied. New physical effects, arising due to the non-normality of linear dynamics are disclosed.
A new class of nonperiodic collective mode with vortical motion of ions, characterized by intense
energy exchange with the mean flow, is found. It is also shown that the velocity shear induces
extraction of the mean flow energy by ion-sound waves and that during the shear-induced evolution
the ion-sound waves turn eventually into ion plasma oscillations. © 1997 American Institute of

Physics. [S$1070-664X(97)00112-2]

I. INTRODUCTION

The classical stability theory of continuous media mo-
tion (normal mode approach) has been successful in explain-
ing how different kinds of shear flows become unstable.
However, in some quite simple and important kinds of shear
flows, {e.g., plane Couette and Poiseuille, or pipe Poiseuille
flows) the approach has serious problems, evoked by the
non-self-adjoint character of the governing equations. ' That
is why the predictions of the traditional stability approach
fail to match the results of most experiments with these kinds
of flows.'

An alternative approach to the problem is that of
Kelvin,® which implies the change of independent variables
from a laboratory to a moving frame and the study of the
nonexponential temporal evolution of the spatial Fourier
harmonics (SFH) of perturbations. The method is operative
for any smooth mean velocity profile, but it is most manage-
able in the ones that are linear, or piecewise linear.** The
effectiveness of the method has been repeatedly proved, for
example, in helping to obtain unlocked-for results on the
dynamics of the perturbations in hydrodynamic®'® and
hydromagnetic'!~'* shear flows.

In Ref. 9, the evolution of two-dimensional (2-D) SFH
in a compressible, plane hydrodynamic Couette flow was
considered. The analysis, which involved the nonmodal ap-
proach, revealed the existence of a new mechanism of energy
exchange between the mean flow and sound-type perturba-
tions. In particular, it was shown that the energy of the SFH
may grow linearly in time-—perturbations extract the energy
from the mean shear flow. This process appears to be quite
universal and one should expect that it may also be influen-
tial in a wide variety of continuous media with analogous
kinematics.

In this paper we shall examine the case of electron—ion
plasma shear flow and show that the process of velocity
shear-induced energy transfer from the mean flow to the col-
lective modes exists, and can be quite efficient in this case,

Phys. Plasmas 4 {12), Becember 1997
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too. Moreover, as we shall see, the peculiarity of the plasma
state of the medium plays a distinctive role and leads to a
whole group of interesting new effects,

The most interesting new effect of velocity shear, which
deserves special attention, is that it induces excitation of a
completely new class of nonperiodic, electrostatic perturba-
tions with vortical motion of the plasma ion component.
These perturbations are able to effectively exchange their
energy with the mean flow and under certain conditions may
play a dominant role in the behavior of the plasma flow.

The presence of the velocity shear crucially affects, also,
the behavior of familiar ion electrostatic wave modes. As is
well known, in the collisionless unmagnetized plasma with
T;<T, (where T, and T; are electron and ion temperatures,
respectively) there exists a weakly damped low-frequency,
electrostatic, ion mode. When its wavelength greatly exceeds
the electron Debye length Ap,=(T./47e’ng)', then this
low-frequency mode represents the ion-sound wave with
constant phase velocity C,=(T,/M)"* (M is the ion mass,
while by m we shall denote the electron mass). However, the
velocity shear induces a “‘linear drift”” of SFH (a process
well acknowledged in the literature exploring the nonmodal
approach) that, mathematically, is exposed in the temporal
variation of the wave number vector K(¢). It means that the
influence of the dispersion of the ion mode, arising as the
result of the violation of the quasineutrality for the perturba-
tions, which, in other words, is related to the finiteness of
khp., should be taken into due account. The reason’ is
simple: if initially |kAp,|<€1, the linear drift process will,
eventually, transfer the SFH to the region of k space, where
the latter condition does not hold. In physical terms it means
that under certain circumstances the ion-sound waves, draw-
ing energy from the mean shear flow, subsequently turn into
ion plasma oscillations. The latter collective mode is weakly
damped if A Ap;=(T/4meing) 2.

The paper is organized in the following way. In the next
section the main consideration is presented and the math-
ematical background of the problem is duly outlined. In the

© 1997 American Institute of Physics 1
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Other physical variables of the problem may be ex-
pressed by ¥ and ¥ in the following way:

N=2Y, (16)
N,=8¥/(1+ 52, (a7

v}.=§{ﬁ%ﬂ‘¥(”+k(l+ Y)W +constX ], (18)

1 ,
R [(1+P)Z2¥D-RB(1+ v+ FH)¥

~constX B.#]. (19)

Note that (16)-(19) are exact expressions, valid for ar-
bitrary values of the shear parameter R. They may be used
for reproduction of the variables through ¥ and ¥, ob-
tained by the direct numerical solution of Eq. (14).

lil. DISCUSSION AND CONCLUSIONS

The general solution of (14) is the sum of its special
solution and the general solution of the corresponding homo-
geneous (const=0) equation: ¥ =¥, +¥ . When Q(7) de-
pends on 7 adiabatically, implying“'g'19

1(nM<Q¥(n), (20)

then the homogencous equation can be solved approxi-
mately.

For the flows with R<€1 the condition (20) holds for a
wide range of possible values of |3(7)|. In other words, since
the temporal variability of |(7)| is determined by the *‘linear
drift’" of the SFH, (20) is valid at all stages of the evolution
of the SFH. When the condition {20} holds, the approximate
expression for ¥, may be written in the following way:

C
Yy(7)=~ NoTE] expli(@(7)+ @p)]. 21)

where o{7)=[7Q(r")d 7.

The special solution of the inhomogeneous equation (14)
deserves particular attention, because, as we shall see later, it
describes a new class of nonperiodic, electrostatic ion pertur-
bations. The solution is derived owing to the smallness of the
R parameter. It may be cxpressed by the following
series: 22919

x

¥ (7)=constX Zo Rz"y,,('r), (22a)

yol ) =F(1)IQ3(7), (22b)
_ 1 62)’"—1 2

yn(‘r)—"m-ﬁr. (22¢)

Since R<1, the terms with higher powers of R are neg-
ligible and the special approximate solution of the inhomo-
geneous equation (14) may be written explicitly as

¥ (1)~ %’Ei‘)ﬂ (23)

Phys. Plasmas, Vol. 4, No. 12, December 1997

Below we shall focus our attention on the behavior of
2-D perturbations in the XOY plane (y=0). This case ad-
mits simple analytical examination and exposes soundly the
qualitative novelty of the problem. Using Egs. (11) and
{16)—(19) ,we get the following simple expression for the
spectral energy density:

const e
) . (24

(1)

1
8‘(7):5[(_;20(7)+(

When C/const<€1 the SFH may be treated as mainly
incompressible and vortical perturbation, while when
C/const®1 it is mainly of the sound type.

The spatial characteristics of the SFH [k,l,k,(r)] and
the value of the shear parameter R manage the evolution of
the frequency of oscillations and the actual intensity of the
energy exchange between the SFH and the background flow.
In particular, the temporal variability of these processes is
essentially induced by the *‘linear drift’” of the SFH in the k
space.”"®

For the sound-type {C#0, const=0) perturbations, as it
is evident from (15a), the frequency of oscillations varies
with the variation of .%(7). Originally, at moderate values of

F(7), due to the smallness of £, the oscillation mode may be 1

treated as an ion-sound wave [{(7)~ 7) | Alterward,
when %17} reaches large enough values, the dispersing in-
fluence of the denominator in the first term of (15a) becomes
more and more imperative and, when E£.#%(1)> 1, the fre-
quency {}(7) already exhibits jon plasma oscillations. Fol-
lowing, according to (24), the evolution of energy of this
mode [ &(7)~(1(7)], we find that initially, for 8;>0, at 0
<7<r1,=By/R, the energy decreases and reaches its mini-
mum at 7=7, . A while later, it begins to increase at 7,
< 7<%, when the SFH ‘‘emerges”’ into the area of k space
in which k,(7)k, <O (the ‘‘growth area’ for the sound-type
perturbations). If the SFH is in the **growth area’ from the
beginning (B,<0), its energy increases monotonously.
When £%(7)=1 the rate of energy increase becomes less
and less and the energy asymptotically tends to a constant
value. cons

When C=0 and 0, the SFH may be treated as mainly
incompressible and vortical perturbations. In this case ¥
=constX i/, while v,=const.#*(7) and v,
= —constXB.%%(7). The energy of the SFH varies as
(=" 2(#) and reduces to the well-known expression,
describing the “‘transient’’ growth of the energy of SFH.>12
A transient increase of the energy takes place if initially
k>-1/kx1>0(ﬁo>0) and occurs near the 7,,=8,/R moment
of time, when B(7) tends to zero and F1(7) attains its mini-
mum value. That is the behavior of 2-D vortical perturba-
tions. One should expect that the evolution of three-
dimensional (3-D) vortical perturbations should be similar to
the behavior of the analogous structures in incompressible,
inviscid fluids, extensively studied in Ref. 19. It was shown
that the energy of 3-D vortical perturbations also grows non-
exponentially, but unlike transiently growing 2-D perturba-
tions, the energy of 3-D perturbations saturates, attaining in
asymptotics some constant value.
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Some similarity of the vortexes in plasmas and neutral
fluids were noticed and productively exploited from the be-
ginning of the 1980s (cf. Refs. 23 and 24). Up to now vor-
texes were associated with quite complicated plasma sys-
tems. In our study we have found the new class of vortexes
in one of the most simple kinds of plasma problem. The
likeness of these vortical patterns with the analogous struc-
tures in usual fluids™® holds only in the low-R (R<1)
range. For larger values of the R parameter (R=1) one
should expect notable differences between the behavior of
vortical perturbations in neutral fluids and electron—ion
plasma.

Certainly, in the general case (C=const), the “*vortical”’
and the *‘sound-type’’ evolution of perturbations are super-
imposed on one another.

Finally, we would like to recall, again, those remarkable
‘‘shear effects”™ upon electrostatic ion perturbations, which
may be recognized as the main outcome of this study.

(1) A new class of nonperiodic collective modes with
vortical motion of ions is discovered. These ‘‘shear vor-
texes’” are characterized by an intense energy exchange with
the mean flow,

(2} It is found that ion-sound waves, through the agency
of the velocity shear, become able to extract the mean flow
energy. This process has much in common with the analo-
gous process in the hydrodynamics of classical (neutral)
fluids.>1?

(3) It is shown that the ion-sound waves, in the course of
the velocity shear-induced evolution, may turn eventually
into ion plasma oscillations. This effect arises due to the
violation of quasineutrality for perturbations and due to the
shear-induced “‘linear drift” of SFH.

It seemns tempting and reasonable to speculate that a part
of the mean flow energy, acquired by perturbations through
the above found channels of energy transfer, may be consid-
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ered as credible sources for the eventual onset of plasma
turbulence in such flows.
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1 Linear magnetohydrodynamic (MHD) modes in a cold, nonrelativistic electron—positron plasma
shear flow are considered. The general set of differential equations, describing the evolution of
i perturbations in the framework of the normodal approach is derived. It is found, that under certain
circumstances, the compressional and shear Alfvén perturbations may exhibit large transient growth
fueled by the mean kinetic energy of the shear flow. The velocity shear also induces mode coupling,
allowing the exchange of energy as well as the possibility of a strong mutual transformation of these
l modes into each other. The compressional Alfvén mode may extract the energy of the mean flow
and transfer it to the shear Alfvén mode via this coupling. The relevance of these new physical
effects to provide a better understanding of the laboratory e*e™ plasmas is emphasized. It is
speculated that the shear-induced effects in the electron—positron plasmas could also help solve
some astrophysical puzzles (e.g., the generation of pulsar radio emission). Since most astrophysical
| plasmas are relativistic, it is shown that the major results of the study remain valid for weakly

[

sheared relativistic plasmas. © 1996 American Institute of Physics. [S1070-664X(96)04210-3]

[. INTRODUCTION

It is commonly recognized that electron-position
thenceforth referred to as e“e™) plasmas are created in a
variety of astrophysical situations. A well-known example is
the pulsar magnetosphere, where in the superstrong magnetic
fields B~10® T (10'? G), gamma rays, with energy greater
than twice the rest energy of the electron, decay into (e Te™)
pairs: y+B—e” +e”+B. The components of these (pri-
mary) pairs are accelerated to very high energies by parallel
eleciric fields, and emit gamma rays, triggering, in turn, a
pair cascade.! As a result of this process a secondary pair
plasma with the mean Loremtz factor [~10%-10° and the
maltiplicity factor (the ratio of the number of secondaries to
the number of primaries) . #~10°~10° is formed.?

The e*e™ plasmas are also likely to be found in the
bipolar outflows (jets) in Active Galactic Nuclei (AGN),’
and at the center of our own Galaxy.* In AGNs, the obser-
vations of superluminal motion are commonly attributed to
the expansion of e*e™ relativistic beams pervading a sub-
relativistic medium. This model implies a copious produc-
tion of e*e™ pairs via y-y interactions creating an e*e”
atmosphere around the source. The actual production of
¢ e~ pairs due to photon—photon interactions occurs in the
voronas of AGN accretion disks, which upscatter the soft
photons emitted by the accretion disks by inverse Compton
scatiering.

The presence of e e~ plasma is also argued in the MeV
epoch of the early Universe.’ In the standard cosmological
model, temperatures in the MeV range (T~10'® K—1 MeV)
prevail up to times r=1 s after the Big Bang. In this epoch,
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the main constituent of the Universe is an e* e~ plasma in
equilibrium with photons, neutrinos, antineutrinos, and a mi-
nority population of heavier ions.

Contemporary progress in the production of pure posi-
tron plasmas® has also made it possible to create nonrelativ-
istic e* e~ plasmas in the laboratory by a number of different
experimental approaches (see Refs. 7 and 8 and references
therein). The condition for the plasma collective effects to be
important is that the annihilation (e.g., via positronium atom
formation, or two-body collisions) time scale r, should be
much longer than the time scale for plasma effects
{t;~ /w,). When this criterion (¢,>1,) holds, experimental
observation of the collective phenomena becomes possible.®

From the theoretical point of view the e*¢™ plasma,
being a subclass of equal-mass plasmas, may display physi-
cal processes and properties quite different from those of a
conventional ion—electron plasma, In the latter case, the
smallness of the m,/m; ratio is exploited to an extensive
degree and is responsible for certain weli-known properties
of such media. While in the former case, with equal absolute
charge to mass ratio for both of the constituents, important
symmetries should appear; these can lead to considerable
simplification in the mathematical description of the collec-
tive phenomena in a e*e™ plasma.® Several novel features
can also emerge.

During the last few years a considerable amount of work
has been done in the analysis of linear and nonlinear Alfvén
wave propagation in e*e” plasmas. It is contended that
these weakly damped waves (in contrast to, e.g., Langmuir

. or magnetoacoustic waves) may be the source of the ob-

served electromagnetic emission from the pulsars and the
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e*e” jets. According to Mikhailovsky et al.,’ among all the
possible low-frequency modes in the e* e~ plasma, the Al-
fvén waves are the most likely candidate to escape the pulsar
magnetosphere,

Several linear and nonlinear processes have been pro-
posed for the generation of Alfvén waves in an e'e”
plasma. For instance, a linear effegt. which can lead to the
excitation of Alfvén waves, is the Cerenkov interaction with
plasma particles. However, this process requires an inversion
in the distribution function, and, could not quite explain high
levels of the observed radiation.'® A further search for uni-
versal amplification effects, which can transfer the energy
stored in an e* e~ plasma into Alfvén wave energy, there-
fore, is of principal importance in this context.

The aim of this paper is precisely to look for such a
mechanism. We consider the problem of linear excitation,
and the subsequent evolution of the Alfvén waves in an
e*e” plasma flow with velocity shear. Note that the shear
flow possesses a considerable amount of kinetic energy, and
that the associated velocity vector field is spatially inhomo-
geneous. The resulting velocity gradients may play quite an
unexpected and sometimes even crucial role in the overall
dynamics of wave processes occurring in such flows. This
conjecture was soundly confirmed recently; the use of an
effective nonmodal approach to the study of physical pro-
cesses in shear flows'! reveals a whole branch of new physi-
cal phenomena provoked by the velocity shear in various
kinds of hydrodynamic and hydromagnetic flows.!' % A par-
ticularly interesting example is the discovery of a new en-
ergy exchange mechanism between the mean flow and
sound-type perturbations in a two-dimensicnal (2-D) com-
pressible, plane Couette flow.'? It was shown that the pertur-
bations, extracting energy from the mean shear flow, may
grow linearly in time.

Another new effect—the linear coupling and mutual
transformation of waves with a corresponding energy trans-
fer induced by the velocity shear—was found in Ref, 13.
Originally, the effect was demonstrated for the simplest ex-
ample, i.e., of the 2-D waves in an unbounded, parallel hy-
dromagnetic flow with uniform velocity shear. It was subse-
quently shown that an analogous mechanism is operative in
other kinds of parallel shear flows as long as the system can
naturally sustain several (more than one) modes.'*!

In this paper we explore the possibility of these effects in
the shear flow of a magnetized, cold nonrelativistic e*e”
plasma. It is natural to expect that the shear-induced effects
will lead to interesting consequences for these flows. Quali-
tatively similar behavior should pertain for warm/hot and
relativistic flows. ) :

Before giving the plan of the paper, we would like to
place this work in perspective. Since the typical transient
phenomena induced by the velocity shear in different sys-
tems are rather similar in character, there is no new ‘‘funda-
mental"’ physics unearthed in this paper. The novelty, how-
ever, lies in (1) the choice of a system that is of great
astrophysical and cosmological significance, and (2) study-
ing the interaction of the shear and compression Alfvén
waves in a three-dimensional flow, an investigation that
could possibly help us in understanding the nature of the
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pulsar radiation. Toward this end, a more realistic relativistic
theory is being developed. The two-fluid model used in this
paper further allows us to investigate mode coupling medi-
ated by the finite skin-depth effects, a process not available
in magnetohydrodynamics (MHD).

The paper is organized in the following way: In Sec. II,
we present the general formalism: a universal set of linear-
ized equations, describing the evolution of perturbations in a
cold nonrelativistic sheared e ¢~ plasma flow, are derived.
(The detailed dgrivation of the induction equation is pre-
sented separately in Appendix A.) In Sec. III, a2 model flow,
with uniform shear, is investigated in considerable detail.
Extremely interesting phenomena like the large transient am-
plifications of the Alfvén waves, and energy exchange be-
tween the “‘shear”” and the compressional Alfvén waves are
appropriately demonstrated. The final section is devoied to a
discussion of the possible applications of this new physics to
the theory of pulsar radio emission, to the e *e ™ jet outflows
in AGNs, and related subjects.

Since most astrophysical flows tend to be relativistic, it
is shown in Appendix B that the mathematical structure, and
hence the basic physica! results of the nonrelativistic ap-
proach, remain essentially unchanged for a weakly sheared
relativistic flow.

Il. GENERAL FORMALISM

The basic set of two-fluid MHD equations for the ¢ *e ™~
plasma consists of the mass and momentum conservation
equations, supplemented by Maxwell’s equations:

an=+V-(n*V=)=0, (N

1 -
mn=[d,+(V=,V)]V== ien:(E-i- - \'A XB) -VP=,

(2
V-E=4me(n*~n"). 3)

) Q—
VXE=— z 4,B, {4)
V-B=0. (5)

- 47 i
VxB=— J+ —3E, (6)

c ¢

where J is the current density vector,

J=e(ntV't—n"V7) €))]

and n*, V*, and P* are, respectively, the number density,
velocity, and pressure of the appropriate species.

Let us consider an e "¢~ plasma embedded in an exter-
nal uniform magnetic field By=(B(,0,0) along the x axis.
The plasma is characterized by a sheared bulk flow velocity
U,. The instantaneous values of velocity components for
each species in the plasma may be decomposed into their
mean and perturbed components:

*=U +ut=Up+u®. (8)
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Sunilarly. writing B=Bp+B, we can derive the linearized
versions of (1)-{6). Equations (3}-(5) remain the same,
while the rest take the form

Do’ FngVeout=0, (9}

5 -+

,
R
Da® + T V= P AL

u:
+—C—XBO), (IO)

dme 1
VxB: —{__ [(n+—n_)U0+n0(u+—u_)]+'g 5;E,
an

where D,=4,+(U;,V) is the convective derivative over the
velocity vector field Uy, and CF=[aP*/3(mn*)]'? is the
sound speed for each species. We also assumed that in equi-
librium na’ =nq =nyp, and the two sound speeds are equal for
the mean flow,

Let us now define the following set of one-fluid vari-
ables:

po=2mnyg, (12a)
p=min,+n_), (12b)
p.=eln,—n_), (12c)
j=englu,—u.), (12d)
v={u, +u.)2. (12¢)

in these variables [note that pgv=mng(u, +u_)], the lin-
carized two-fluid equations become the following set of one-
fluid equations:

D.p+poV-v=0, (13)

Dip,+V-j=0, (14}
2 -

pol Dv+(v-V)Uyl=—C: Vp+ EjXBO- (15)

2
€ 1
DJ+(j-V)Up=~C? VPH'(;) PO(E+ = (UpxB

+vxBg) |, (16)
V-E=4mp,, (17)
cVXE=~gB, (18)
V-B=0, , ' (19)
¢V xB=4mp Uy+47j+d,E. (20)

. Hereafter the plasma will be assumed to be (a) cold
t 2=0und (b) nonrefativistic. The latter assumption (d,E=0)
simplifies Eq, (20) to

J=teldAmV xB—p,U,, 21
implying (UyxBy=0)
% By=—(c/4m)[V(B,By) - (By,V)B], (22)
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which, in wrn, immediately converts the equation of motion
(15) into its standard form relating the variables v and B,

Dyv+(v,VYUy=(vi/Bo)(3,B—VB,), (23)

where uzAEB%/47rp0=B%I81rmn0.

Derivation of the induction equation for the magnetic
field—another vector equation that links the magnetic field
and velocity perturbations—is straightforward but tedious. A
very general form [Eq. (A8)] is derived in Appendix A. For
the Alfvén wave physics, it is quite adequate to assume that
the plasmd is quasineutral, i.e., p,=0. Further simplification
results if Uy is a linear function of coordinates; the last term
in (A8) then, is zero, and the induction equation reduces to

D,(B—X? AB)=(B—A% AB,V)U,+ (B,,V)v
~Bo(V-¥)+ A}V xU,, VXV xB).
(24)

Note that when the collisionless skin depth X is small
enough, Eq. (24) further reduces to the more familiar form
used in standard MHD,

DB=(B,V)Up+(By,V)v—By(V-v). (25)

In the next section, we shall use the closed set of Eqs.
(13), (23), and (24) along with the no monopole condition

Eq. (19).

It}. VELOCITY SHEAR AND ALFVEN WAVES

In this section, we solve a model problem to illustrate a
variety of shear-induced physical effects. We consider a
simple unidirectional mean flow Uy=({Ay,0,0), with a linear
shear profile along the Y axis. For this case, D,=4,+Ayd,,
and VXxUy=—A€,. The system of relevant equations can
now be written in the explicit form

(8,+Ayd)p+poldv,+d0,+3p,)=0, (26)
3.B,+a,B,+3d,B,=0, (27)
(8, +Ayd,)v, +Av,=0, (28)
(3,+Ayd,)v,=(va/Bo)[9,B,— 4,B.]. (29)
(8,+Ayd,)v,=(v3/Bo)[d.B,~9,B,], (30)
(8, +Aya)[(1-\?A)B,]

=B, d,v,—AN9.(3,B,~ 3,B,), (31)
(8, +Ayd)[(1~A%A)B,]

=By d,0,~AN*3,(8,B,~3,B,). (32)

Equations (26)-(32) define a model linear problem.
Conventional *‘stability’’ analysis of this system will revolve
around an eigenmode analysis—the eigenmodes being the
time asymptotic modes of oscillation that this system can
sustain. In this generally valid and powerful approach the
transient behavior of the perturbations never figures, because
as time goes to infinity, only normal modes propagate. It
turns out, however, that for a class of linear operators,'! the
conventional normal mode analysis may not reveal the entire
richness of the dynamics; in fact, extremely crucial aspects
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of the time evolution of the perturbations may be altogether
missed. For instance, a very large transient amplification
could drive a system to a nonlinear turbulent state while the
normal mode analysis for the same system would predict
complete stability and hence no possible transition to turbu-
lence.

Recent investigations show that shear flows (the system
under discussion) display interesting dynamical behavior,
which will be completely missed in a normal mode analysis
(Refs. 11—15). These aspects, generally pertaining to the de-
tails of transient dynamics, are much better elucidated by
solving an initial value problem. This approach, called the
nonmodal analysis, will be followed in this paper.

To *‘set up” the nonmodal analysis, we make the fol-
lowing transformation of variables:

X =x—Ayt, y,=y: ;=2 =t (33)

It is well known'' that this transformation, a change

from the Eulerian to the Lagrangian frame, leads to immense
simplification in the solution of the initial-value problem.

In these new coordinates, the relevant equations take the
form

6,Ip+po[d‘,lv,+(é‘,]—Atlaxl)vy+6:lvz]=0, (34)

9, B,+(d, —A1,6, )B,+3, B.=0, (35)
G, v+ AV, =0, (36)
d,,vy= (04 Bo) 3, By— (3, —A110; }B, ], (37)
d,,v.=(va/Bo)[ 3, B.— 3. B,), (38)
3, [(1—-x*A)B,]=B, dy vy —ANY, (8, B,— 9, B.],
(39)
9, [(1~\?A)B,]= By 8, v,~AN'9, [3.B,—(3),
-And, )B,], (40)
where A=37 +(d, —And,)+4;,.
We may further expand the perturbations as
F=f dk, dk, dk, F(kg.ky k.01
Xexpli(k, x1+ky y1+ky z1)], (41)

and introduce the following dimensionless quantities: R
= Alvpk,, T = vkt Bo = khl,k-‘u‘ B(D=By—Rr, v
= kz, ’k‘l’ vx.y.zsﬁx.y.zlvh’ bx.y.inBx.y.leO' 62 = )‘zkil’
and M3(1)=1+ 8D+

In the new notation, (35) gives an algebraic relation be-
tween the dimensionless components of the magnetic field
perturbation,

b,=~Bb,~vb,. (42)

This relation, in turn, allows us to convert (37)—(40) into
a closed set of first-order ordinary differential equations
(ODEs) for the “‘transverse’” (with respect to By) variables
Uy, V., by, and b,

dv,={1+8%1b,+yBb,, (43)
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arv:=[1+72]bz+ ')’JBb_w (44)
al(1+eMNb = —v,~ReY[(1+¥)b.+vBb,].

(45)
81+ eMN)b )= —v.+Re¥y[(1+ )b, + vBb.].
(46}
These equations may be rearranged in the following
way: ’
ol(1+EMYb,+ R ]=—v,, (47)
6,[(1+62M2)51_REZ’)’UJ]=-U:. {48)

Notice that the remaining variables v, and D==ip/p,,
can be determined through [see Eqgs. {34} and (36}]

dD=v,+Bv,+yu., ‘ {49}
dv,=—Ru,, (50)

once the “‘transverse’’ variables are known. In addition, Eqgs.
(47) and (50) connect v, with b, and v, by the following
algebraic relation:

R(1+ eM*)b,—v,+ R e yu_ = const. (51}

We now introduce an appropriate ‘‘measure’” of the
spectral energy density of spatial Fourier harmonics,

BN 7l el U ) L2 Rl e LA
A= T e 2 ’

(52)

which includes the kinetic energy of the plasma, the energy
of the magnetic field, and also the energy of the electric field.
The latter evokes the factor (1+ €M?) in the denominator of
the first term. Clearly, when €<1, the energy of the electric
field is (ulc)2 times less than the fluctuating magnetic field
energy (as in usual MHD) and (52) reduces to 2 sum of only
the kinetic and magnetic energies. The spectral energy den-
sity (7) is defined in such a way that for the *‘no shear™
(R=0) limit, it is a conserved quantity:

In terms of the auxiliary quantities,

Ay=(1+eMY)b,, (53a)
A=(1+EMYb,, (53b)
Eqgs. (43)-{46) may be written as an equivalent system,
1
= 2
oy =1z (1894, + vBA], . (54)
1
a, =1z [(1+ YDA+ vBA L, (55)
Rezy 56
Ay =—vy— To [ YDA+ 7BA) (56)
Re*y 5
3Az=‘vz+m'f[(l+ﬁ YA, + vBA_] (57)

Before proceeding to the next section where we solve
various special cases of this general problem [Eqgs. (43)-{(46)
or (54)-(57)), it is interesting to realize that one can readily
eliminate v, and v, in Eqs. (43)~(46) to obtain the following
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55)

56}
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olve
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coupled pair of second-order ODEs for the transverse com-
ponents of magnetic field perturbations (b, and b,):

. ERB(Y —4) Sh (1+ B+ R 2-7) b
v by P YD) ¥
p .2 2
¥B ) _(Rery(1+7y)
z_ll+ezM3‘ : T+ T2 d.b., (58)
. ERBYH4) (1+7°)+ ERY 2+ 7)),
.:;ln.—IW)arb; 1+ e M2 H
2 Ez
~{ yB(1+2R )m‘f)bf
(sz‘)’(l-i-ﬁz) 5 s
N 1+ eM? by (59) .

A. “'Zero shear” (R=0) case

In spite of the relative simplicity of the system (two-
coupled second-order ODEs), analytical progress requires
further simplifying assumptions. We begin by studying the
well-known shearless flow, R=0.

In this case the system of equations simplify enor-
mously. From (58) and (59) one geis

ih,+ wib,+ ab =0, (60)
r'f?_[)z+w§b:+ ab, =0, (61)

where wi=(1+Bg0(1+ EzMé), wi=(1+ )1+ ezM%), and
a=yfy(1 +€2M§)

The normal frequencies of these oscillations, calculated
by the standard formula

1

Q 3:=5[(w]+w2) (w]—w3)*+4da?], (62)
are equal to
, L+ 94+ 85
O:=0)= 63
ST e ©3)
Q=02 = (64)
N P

and may easily be identified respectively with compressional
and shear Alfvén wave frequencies.'®!” In dimensional nota-
tion. the frequencies take the familiar form

!lfzkrflv;\.(l;:m, o (65)
., Uaky

( ;Ek;lu;\ﬂ;=—2—-fl+h E (66)
It 15 easy to show that b, and yr= vb,— Bob, obey
Wb+ (2 =0, (67)
s (=0, (68)

which are linearly independent. As expected,’the shearless
s¥stem s characterized by two fundamental normal modes
with well-known eigenfrequencies Q, and (), .
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B. Two-dimensional waves (y=0)

The shearless case is standard and relatively uninterest-
ing. Let us now tumn the shear on (R#0), but consider an-
other simple case for which the perturbations are two dimen-

sipnal  (2-D), ie, &k, -0 {y=0). In this case
MA(D=1+£7), and (54)- (57) can be manipulated to give
2 B
et “
and l
P4+ ——z——w——rl A,=0 7
A 1+ (1+89))7 ™ (70)

These equations describe *‘oscillations’ with variable
frequencies S (N=(1+11+ (1 + 9] and
WX (D=1[1+€(1+)]. These can be (for 2-D perturba-
tions) again viewed as the compressional and shear Alfvén
frequencies, respectively. For sufficiently small values of R,
these frequencies vary slowly (adiabatically) and the ap-
proximate analytic solutions of (69) and (70) may be written

asl2

C

INGE ﬁ exp{il ¢o(D) + deol) (712)
C

Aln)= \,ﬁr—) exp{i[ 6,(7)+ bs01} (71b)

where the amplitudes of these modes are determmed through
the correspondmg adiabatic invariants: C,=a?(7) e (1) and
Cr=a(nw,r); C, and C,, though products of two time-
varying quantities, are constants with their values determined
by the initial conditions. The phases are given by

B ‘T)Ef w. ()T (72)

It is easy to find that the amplitudes of all physical vari-
ables may be expressed through the amplitudes of A, and

. In pamcular [U [""RIA I 'l’J ] lAy[ IU i sIAz]v
beE—EBI . Ibl= Ay, and [b]=w2lA,]. Using
these expressnons togcther w1th (52), (71a), and (71b), we
can derive the following important analytic expression for
the spectral energy density:

A=} (N[Clolr)+ o). (73)

This is an approximate equation, but it is found to work
excellently when R<€1. In Figs. 1 and 2 we present results of
a direct numerical integration of the general, unsimplified
defining equations for the following set of parameters:
By=10, R=0.1, and €=0.5. The initial perturbation, corre-
sponding to Fig. 1, consists of a pure compressional Alfvén
mode. The frequency of the perturbation is given by w (7},
while the corresponding amplitude (envelope function) is
a (1)=C/Jw (7). Figure 1(a) shows that in time periods of
interest, the amplitude of &,(7) increases by well over an
order of magnitude. The corresponding graph for &{7) is
presented in Fig. 1(b). The solid line displays the results of
the numerically calculated &(7), while the circles represent
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FIG. 1. Here b,(1)/b(0) (a} and X(7}/#(0} (b) vs 7 for 2-D (y=0j spatial
Fourier harmonics (SFH), for an initial pure compressional Alfvén pertur-
bation. Other parameters of the system are =10, R=0.1, and =0.5. The
solid line in (b) displays numerically calculated (), while the circles rep-
resent (7} calculated by the approximate equation (73).

&(7) calculated by the approximate equation (73). The excel-
lent agreement between the exact and approximate solutions
is evident, and it pertains even when the initial conditions are
changed from a pure compressional to a pure shear Alfvén
mode [see Figs. 2(a) and 2(b}] or to some admixture of these
two modes.

The dip at =100 in Fig. 1(b) is just a consequence of
the detailed time dependence of wf(r)wc( 7) [which deter-
mines &(7) for C,=0], and has no other physical signifi-
cance. Another manifestation of the time dependence of
wi(ry=[1+€1+(By—RM¥)”", which, for By.Rp>0,
has a maximum at 7=7,=/0/R, is displayed in Fig. 2(a); the

10 . . —
13
2
g0
K18
o 50 100 150 00 250 300 350 400
Time
100 . b}
50t
g7
40
20-
) 50 100 150 200 250 300 50 400
Time

FIG. 2. Here b (7)/b(0) (a) and Z(D/Z(0) (b) vs 7for 2-D {y=0) SFH for
an initial pure shear Alfvén perturbation. Other parameters of the system are
By=10, R=0.1, and ¢=0.5. The solid line in {b) displays numerically cal-
culated #(7), while the circles represent #(7) calculated by the approximate
equation (73).
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oscillations are most rapid at =7, (~100 for the example
shown) and slow down on either side of .

Results of the numerical calculations, as well as those of
direct evaluations by the approximate formula (73}, show
that 2-D perturbations for sufficiently large values of €
{€=0.1), exhibit quite strong (up to several orders of magni-
tude) transient amplifications. In fact, the ratio of the spectral
energy at 7=r, [7, comresponds to the moment, when the
time dependent component of the wave number vector
ky(7) = k, —°Ark, changes its sign: because of the asym-
metry introduced by shear, the direction of k becomes sig-
nificant] to the initial energy (at 7=0), may be readily found
from (73} to be

(74}

E(r) (14 e2(1+ﬁg))3’2 Ci+C3
#(0)

1+€ 1+ a+cy

This expression clearly shows that the substantial tran-
sient growth of the perturbation energy is a strong function
of the initial orientation of the k vector (value of 8y), and of
the value of the dimensionless skin depth parameter & For
large enough values of €8,, Eq. (74) predicts large amplifi-
cation factors. For C=0, €=0.25, B,=10, for example,
#(T )1 #(0) ~ 26426 ~ 100. On the other hand, the amplifi-
cation factor does not depend directly on the strength of the
ambient magnetic field Bg.

Note that for large enough values of 7(7%7,) the shear
Alfvén wave frequency w, tends to zero, while w, asymp-
totically approaches the cyclotron frequency for the ete”
plasma. In other words, the shear-induced *‘linear drift’’ of
the perturbations”“’ leads to the asymptotic transition of
the compressional Alfvén waves into the cyclotron waves.
Going back to the specified evolution equations for the
physical variables, we can easily show that in this asymptotic
regime, amplitudes of all components of the magnetic field
perturbations and v, tend to zero, while the amplitudes of v,
and v, attain constant values.

For the shear Alfvén mode the phase integral (72) can be
evaluated in terms of elementary functions leading to the
explicit solution

1+ 1+ "
A (1)=A,0) TFel(17 8)

1
( i (eﬂo+\/1+52(1+55’))) ‘
X cos . (75

—In
eB+V1+e(1+5%)

€R

The analytical results are, of course, meaningful only
when the frequencies vary slowly (adiabatically) with time.
Applicability of the adiabatic approximation is governed by
the conditions

10,0, ()| €Wl (1), (76a)

which hold for small enough values of the R parameter. For
the case of the shear Alfvén mode, condition (76a) implies

eR|Bl<[1+€(1+ 817, (76b)
while for the compressional Alfvén mode it reads as
R|Bl<(1+ 831+ (1 +pH)]"2 (76¢)
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\~ an aside. it is worth mentioning that in terms of the
new independent variable,

I e Bim RN+ E), (amn

wo can reduce 170V 10 the Gauss Hypergeometric equation:lB

Ao - iAL +2(1 —2)d7A,— CA =0, (78)
where OOF ”€:R:'

C. Three-dimensional waves with A<1

For high-density plasmas, there exists a broad range of
wave numbers for which |)\2A|<l, and can be neglected. In
this case. (38)-(59) reduces to the following pair of equa-

tons:
Wb =1+ )b+ yBb,=0, (79)
b= (1+ )b+ yBb,=0, (80)

which are similar to (60)~(61). The essential difference here
i~ that now we have B(7)'s instead of B;’s and, hence, the
coupling coefficient and one of the eigenfrequencies are time
dependent: @i(D=1+ 4, wi=1+9, a(n)= 3. The “‘normal
trequencies” of these oscillations, calculated again by (62),

(A
Oin=0i=1++*+42, (81)

(=07 =1, (82)

v

.

and may easily be termed as compressional, and shear Al-
fven wave frequencies, respectively. However, this time, the
frequeney of the compressional Alfvén wave is time depen-
Jdent and only when R <1, it would vary adiabatically.

The system under investigation is mathematically
cquivalent to a pair of linear pendulums, connected by a
~pring with a varying stiffness coefficient [a(7)=y8(7)]. The
length of one of these pendula also varies in time. Strictly
speaking. due to this variation, the canonical theory of
caupled oscillations is no longer vatid. However, when w,(7)
amd «f7) vary slowly (adiabatically), as they do when R<€1,
the stundard theory of coupled oscillations may serve as a
useful guide in understanding and interpreting the inherent
physical processes.

A rather similar mechanical problem was investigated in
Ref. 19. It was pointed out that for an effective energy ex-
vhinge to occur between two weakly coupled pendulums, the
Iollowing conditions must be satisfied.

ta) There should exist a so-called ‘‘degeneracy region”
DRy where

O -0 |<la(n)]. @

{b) The DR should be **passed” slowly—the traversal
tune should be much greater than the period of the beats:

A (7)|<]a(1)]. (84)
s casy to notice that in our case the difference
1409 - € (7 attains its minimum value at =1,{=By/R). It

. theretore, evident that the DR is in the neighborhood of Ty
fat times, when 0<|B(7)|<1]. In the vicinity of =1, , ¥y<1
leads 10 the most efficient mode coupling, and hence to the
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FIG. 3. The temporat evolution of 3-D SFH [b_‘.( 7)/b,(0) (a) and #(7)/¥(0)
{b)] for an initially pure shear Alfvén mode with B,=10, R=0.1,
€=5x1077, and y=0.1.

possibility of mutual transformation of the modes. It can be
readily seen that condition (84) holds in DR when R<€1.

The **adiabatic behavior’* of the modes implies that they
should normally follow the dispersion curves of their own;
spectral energy density (52) of either the shear Alfvén mode
[£_()] or the compressional Alfvén mode [&,(7)] should be
proportional to its corresponding frequency &.~. %1315
This mode of energy evolution, however, will not pertain in
DR, where efficient transformation of one wave into the
other occurs, For instance, as we see from Figs. 3 and 4, the
energy of an initially excited shear Alfvén mode increases
approximately by the £_{7)~{}_(7) law up to the vicinity of
the point 7, , where it is partially transformed into a com-
pressional Alfvén mode. Afierward, its energy evolution
would still proceed adiabatically, but now according to the
law £, (1)~Q.(7).

o 0 40 60 80 100 120 140 160 180 200

Titoe
1.06 . . . o~
104}k
Lo2b i

0 20 0 60 80 100 120 120 160 180 200
Time

FIG. 4. The temporal evolution of 3-D SFH [6,{r)}b,(0) (a) and & (7H£(0)
(b)] for an initially pure shear Alfvén mode with 8,~10, R=0.1,
€=5x10"2 and »=1.0.
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The salient features of the richness of the structures
shown in Figs. 3-4 [B=10, R=0.1, e=5X1077 and
y=0.1{y=1)] can be readily understood by examining

‘the approximate analytical expressions for the frequen-

cies and the amplitudes. In both these cases, an initial
shear wave ({22=1), at times r~7, (=100), begins
transforming into a compressional wave whose frequency
Q. =[1++(B— Ry 1= [1+r*+ R}(7, ~ 7)?}"tends
to increase as 7>>7, , and can become much greater than 12|
for large enough times. The compressional wave, generated
by the shear induced coupling, becomes the dominant mode
after 7=120 for Fig. 3(a).

The only difference between the two cases is the magni-
tude of , which determines the efficiency of coupling. It is
clear that the transformation of the shear into the compres-
sional mode is visibly more pronounced and occurs earlier
for y=0.1, as compared to y=1. That is precisely the reason
why Fig. 3(a) is so asymmetric in time—the initial shear
wave for 7<{7, is almost fully converted into a compres-
sional wave for 7>7, . The plot in Fig. 4(a), on the other
hand, retains the symmetry of Fig. 2(a) because, due to poor
conversion efficiency, the initial shear wave gets contami-
nated by only a small admixture of compressional wave,
even for times in excess of 7,.

1t is again the difference in conversion efficiency that
accounts for the obvious differences in the energy plots
given in Figs. 3(b) and 4(b), respectively. For Fig. 3(b), at
times 7=7,, the conversion to the compressional wave is
almost complete. Afterward the energy increases rapidly be-
cause E(7) for this mode scales with {)_(7), which increases
almost linearly with time for 7> 7, . The behavior of the E(7)
shown in Fig. 4(b) ts a little more complicated. The sudden
increase in energy at ™=, is the usual increase for the en-
ergy of the shear wave as a function of time [see Fig. 2(b),
for comparison]. The gradual overall rise after 7=, , how-
ever, is due to the energy contributed by the newly generated
small-amplitude compressional wave. The involved structure
of E(7) near 7=r7, is due to the fact that in this region (DR,
the region of mode conversion), the energy associated with a
mode is not merely proportional to the mode frequency.

It should be noted that for the case, considered in this
section, b, and gb‘E'yb{ﬁbz obey coupled equations,

3b,+Q2b,=—2Rv,, (85)
Fy+Qip=—2Rv,, (86)

which ‘reduce to (67)-(68) for R=0. Equations (85)-(86)
clearly show that in the nonzero shear case, the compres-
siona] and the shear Alfveén modes are intrinsically coupled;
the strength of coupling is measured by R.

It is, therefore, evident that under certain circumstances
{existence of the ‘*degeneracy region’’ and the satisfaction of
the *‘slow pass’” conditions) the modes may effectively
transform into each other with a corresponding energy trans-
fer. The strong interaction of the modes is ensured by suffi-
ciently large values of B, (of k,) and €. The transient ampli-
cation is further enhanced by a smaller y (smaller k,). For a
given k, , larger k, and smaller k, lead to the most spectacu-
lar results. The compressional mode is able to extract energy
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R

from the mean shear flow continuously (at 7> 7,) and in this
feature it closely resembles the plain sound wave whose evo-
lution has been studied earlier.'?

IV. DISCUSSION AND SPECULATIONS OF
ASTROPHYSICAL INTEREST

The res;lls presented in the previous section show that
even in the simplest ¢*e™ plasma shear flow~—the parallel
flow of a cold and nonrelativistic plasma—the presence of
the shear leads to new physical processes notably changing
the evolution of oscillation modes in the plasma, and causing
their interaction with each other and with the mean (bulk)
flow. Main results of our investigation are the following.

(i) Two-dimensional (2-D) perturbations (y=0)}, local-
ized in the X-Y plane, exhibit adiabatic evolution (for R<1)
when their amplitude and frequency (phase) characteristics
vary slowly (adiabatically) in time. Under certain conditions
(determined, for example, by the initial orientation of the k
vector and by the value of skin depth parameter ¢), large
transient growths, up to several order of magnitude, are pos-
sible.

(ii} Three-dimensional {3-D) perturbations, (with y#0)
are physically coupled with one another via the shear param-
eter R. The coupling remains strong, even for perturbations
with a wavelength much longer than the collisionless skin
depth. This coupling leads to a mutual transformation of the
shear Alfvén and the compressional Alfvén waves in a cold
nonrelativistic plasma. Transient amplification of the modes
is also found. The efficiency of mutual transformation is
greater for small .

(iii) For the general case, when no constraints are put
onto the flow and perturbation parameters, one may expect
the complex interplay of the effects mentioned in the previ-
ous two paragraphs.

These features of the wave dynamics in the e'e”
plasma may prove to be quite significant in advancing our
understanding of the processes taking place in the pulsar
magnetosphere and the pulsar wind.

To appreciate this connection, we make a short digres-
sion. It is generally agreed that the processes of radio emis-
sion from the pulsars are still poorly understood (see, for the
most recent review, Ref. 2 and references therein): there does
not exist a widely accepted theoretical model. Although an
e*e” plasma is thought to be a possible candidate for the
radio emission, not too much is known either about the lo-
cation of the assumed sources of the e "e ™ plasma {*'gaps’’)
or about the details of the plasma production processes. Fur-
thermore, it is impossible to predict the velocity distribution
of particles; a knowledge that is critical for the identification
of a “*workable’’ emission mechanism.

However, there are some general aspects of the phenom-
enon, which can be specified with some certainty. In particu-
lar, it is known that the ¢ * ¢~ plasma is produced in the polar
cap regions at some height above the surface of the neutron
star and, that the secondary plasma involves electrons and
positrons flowing outward along the open field lines. It is
also known that the pulsar radio emission is characterized by
prominently high brightness temperatures (7,~10%-10%

Rogava, Mahajan, and Berezhiant

it

-

PN



18

- 0-

1t
lel
of
ng
ng

al-

1)
iC8s
‘ns

ge
15-

0)

ns
dn
he
Kld
les

Jut
2Ct
vi-

ur
sar

as-
1is-
the
Jes

an
the
lo-

RE
bl

on
ion

cu-
lar
on
and
U is
by
030

iani

k1. thus requiring some sort of a coherent emission mecha-
nisin.

The broad literature on pulsar radio emission problem
Contains severul proposed models based, generally, on three
Linds ol plasma processes:™™ antenna mechanisms, reactive
nstahilities. and maser mechanisms. Currently the most pre-
terred emisston mechanism for pulsars is the maser mecha-
m~m, or the relativistic plasma emission. The mechanism
aperites o two stages: (1} an instability that generates
| angmuirr-like or Alfvén-type waves that cannot escape 1o
mamty and (2) some Kind of nonlinear *‘conversion pro-
oo _zhut transforms a part of the energy of these waves into
the escaping radiation.?'?

There are several empirical observations that any pro-
posed mechanism must respect.”

T The mechanism should not be strongly dependent on
the strength of the pulsar magnetic field B: it should
apply with equal success to both weak-8 (millisec-
ond) and strong-B (young, fast) pulsars,

tii*  Coherent emission should occur in many localized,
rrenisient subsources. 1t implies that the optimum
model shouid describe the origin and characteristics
of these subsources.

¢tiiny - The mechanism should contain a guaranteed *‘feed-
back."” In the case of the relativistic plasma emission,
for instance, a continuous ‘‘pump’’ {overtaking of
slower particles by faster particles) is needed for the
mainienance of those features of the particle distribu-
tion function, which are responsible for the maser pro-
Cess,

It would, thus, appear that in this connection the shear-
mduced processes that ensure natural, safe, and effective
trunsfer of the mean ¢ *e~ plasma flow energy into the en-
crgy of the excited Hnear waves, may be worth exploring.
We have demonstrated that the evolution of these waves is
~strongly influenced by the shear forces: coupling of various
wiuve modes, their resulting mutual transformation, and cor-
responding energy exchange allows the flow energy 1o be
eventually converted into a mode of choice that can escape
as radiation.

A most notable characteristic of these processes, in the
context of their possible relevance to pulsar plasma physics,
i~ that they are quite insensitive to the strength of the ambi-
ent magnetic field By: efficiency of the processes described
m this study mostly depend on the features of the flow, and
of the nature of perturbations.

A caveat is in order here. In the present paper, we have
~idied the highly idealized model of a cold, nonrelativistic
parallel shear flow of an e* e~ plasma. Our main focus was
on ihe delineation of the physics relating to the effects of
telocity shear on the wave dynamics. The results of this
‘tudy. therefore, have only a limited direct applicability; they
could, for example, be applied to the investigation of the
Physies of the nonrelativistic e*e™ laboratory plasma
Mows.™ We have also generalized the basic theory to cold
refativistic flows, It turns out that the basic results derived in
this paper survive wholly intact for cold relativistic flows
that are weakly sheared. Since the relativistic calculation is
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quite straightforward, it is presented in Appendix B.

We are fully aware that a quantitative determination of
the velocity shear-induced effects to the theory of pulsar ra-
dio emission requires the extension of this simple model to
include other important physicat effects, such as real geom-
etry and kinematics of the e* e shear flows, plasma tem-
perature, other plasma inhomogeneities, etc. Postponing the
detailed analysis of these effects to future work, we would
like to stress that the velocity shear-induced phenomena are
imerestipg, and may be quite relevant to the problem of pul-
sar radio emission. It is conceivable that the pulsar radiation,
as well as the radiation of ete” jets in AGNs, is energeti-
cally fueled by the huge amount of rotational energy in the
“‘central engines” liberated partially in the plasma outflows.
We argue that, afterward, this energy is transferred (o the
excited wave-like perturbations via the *‘shear channel.”

APPENDIX A; DERIVATION OF THE INDUCTION
EQUATION

In order to derive the induction equation for the mag-
netic field perturbation B we, first of all, determine the elec-
tric field vector E through the generalized Ohm’s law [Eq.
(16)]:

m? L.
== |[D.J+(i,V)Ug].
Po
(A1)

Next, we calculate VX E, and insert it into Faraday’s law
to get the induction equation. Using Eqs. (21) and {A1), we
find

Dj+ (1. V)Up=(c/4m)[D (V xXB)+(V xB,V)U,]
_UO Dl'pe’ (Az)

It is easy to derive the following vector identities
(V-B=0, By is uniform):

Vx(UyxB)=(B,V)U;—(U,,V)B, (A3)
V x(vXBy)=(By,V)v—By(V v}, (A4)
V x[(Up,V){VXB)+(V xB,V)U]
=V x{UgX[Vx(VxB)]+(VxB)x(VxUy)}, (A5
Vx{Upx[VX(VxB)]}=(AB,V)Uy—(Uy,V)IAB, (A6)
VX[(VXB)X(VxU}]=(VxU;,V)(VXB)—(VxB,V)
X(V xUg). (A7)

All these expressions may be combined, and after obvi-
ous rearranging of terms we finally get the following explicit
form of the induction equation:

D[B—\? AB—(m?*/e’py)V x(p,Up)]
=(B—A? AB,V)Uy—By(V-v)+(B,,V)v
+ A [(VxU,, V)(VXB)—(VXB,V)(VxUy)],
(A8)

where A=(mc?/dme’ng)'? is the collisionless skin depth,
and A=g2+ 6§+ &2 is the usual spatial Laplace operator.

o
E=—-|—|xB-
c

Y| xp
=| xBy+
c (]
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APPENDIX B: WEAKLY SHEARED RELATIVISTIC
FLOW

In this appendix, we show that the problem of a weakly

" sheared cold relativistic flow is mathematically entirely

equivalent to the problem studied in the main text of this
paper. For the sake of simplicity, we shall deal with the case
when the wavelength of the modes is much larger than the
collisionless skin depth, i.e., A|k|<1.

Let us assumne that the ordered ambient flow is relativis-
tic, and is characterized by By=&,B,, and the momentum

Po=¢,Po(y). i (B1)
Naturally, this P, has an associated fiow velocity,
Poly)
*my(y)’

where ¥=(1 +P(2)lm2(:2)m is the standard relativistic factor.
In this section, it is more convenient to write the equations of
motion in terms of the canonical momenta p~. These are

Up=¢Ug(y)=¢ (B2)

UyxB u*xB
oXB 0" %B

c
(B3)

which are readily converted into one-fluid equations in the
variables P=(p*+p~)/2, U=(u" +u")/2, the current J, the
density pg=2mny, etc. The one-fluid equations from (B3)
take the form

Fp==[a,+Uy(y)d,lp"==e| E+

op =250 B4
L v [4,B,~d,B.], (B4)
yp =200 15 p BS
= 2_47’_!30 [ax z asz]’ ( )

which, apart from a slightly complicated form of Z, are
similar to (29)—(30). It is quite straightforward to evaluate
the current in terms of P's, and then we can obtain the other
two relevant equations,

By

gB}.=";% c?xPy , (B6)
B .

B, =—— P, (B7)
mys

exactly similar in form to the A=0 version of (31) and (32);
only % has made its appearance. Equations (B4H-(B7),
along with V-B=0, form a closed linear system,

The prescription of nonmodal analysis is to make the
following transformation of variables:

x=x=Ugy)t, 1=y, 7=z, L=l (B3)
with the derivatives 4, = d;.d, = 9.

L=+ Ug(y)3,= 3, (B9)
and

dy=3dy = 11[3,Uc(¥)1,,. (B10)

Since the flow is supposed to be weakly sheared, we
could assume
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Ug(y)=a+Ay, (B11)

Ad<¢a, where d is the characteristic width of the flow. i.e.,
the flow has a strong steady directed component plus a weak
varying part. Using (B10), one finds

d,=d, —A1d,, (B12)
and one also appyoximates
}5(2) 12 U3 -112 ( ol ) -
Vo= l+——2—fmc = l'——c'__r H,l—? .
(B13)

Thus, we see that the relativistic set of equations will have
exactly the same mathematical form as the A=0 version of
(43)—(46): the only difference is that the Alfvén speed is
modified due to a constant g, v =B¥4mpyyy. The struc-
tural equivalence proves that all the later results are valid for
the relativistic weakly sheared flows.

In this derivation, we have still neglected the displace-
ment current. This assumption is justified as long as v 4/c<1.
For a strongly magnetized, relativistic e-p plasma, however,
the displacement current must be retained for a proper de-
scription. This will, indeed, be done in the forthcoming
work.
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ABSTRACT
It is demonstrated that the velocity shear, intrinsic to the e "¢~ plasma present in the pulsar magnetosphere, can
efficiently convert the nonescaping fongitudinal Langmuir waves (produced by some kind of a beam or stream
instability) into propagating (escaping) electromagnetic waves. It is suggested that this shear-induced transfor-
mation may be the basic mechanism needed for the eventual generation of the observed pulsar radio emission.
Subject headings: plasmas — pulsars: general — waves

It is generally believed that the radio emission from a pulsar
has its origin in the processes occurring in its magnetospheric
plasma, which has two main constituents; an ultrarelativistic
(primary) beam, and a relativistic (secondary) e¢’e  plasma.
created via the pair cascade process (Sturrock 1971). These
processes (dependent. perbaps, on the differential dynamics of
these constituents) generate a variety of waves, some of which
propagate out of the magnetosphere, travel through the
interstellar medium, and are seen as radio emission by a
distant observer (Ginzburg & Zhelezayakov 1970). Over the
years, several different models for the pulsar radio emission
(Ginzburg & Zheleznyakov 1975; for the most recent and
comprehensive review, see, e.g. Melrose 1995) have been
suggested, and certain aspects of the phenomenon, like the
polarization properties of the emission, are rather well under-
stood (Kazbegi et al. 1991; Kazbegi, Machabeli, & Melikidze
1991; Kazbegi et al. 1996). However, there are still many
unanswered questions. One of the most significant and puz-
zling problems is the delineation of a satisfactory mechanism
for the conversion of potential waves (like the Langmuir
waves), readily generated in the magnetosphere, into escaping
radio waves. [n this Letter we propose that the velocity shear
inherent in the magnetospheric e‘e” plasma can provide the
desired conversion mechanism; this may lead to a more
comprehensive theory for the generation of the observed radio
emission.

The first step in this process, perhaps, is the excitation of
Langmuir waves by some kind of a beam or two-stream
instability (Ruderman & Sutherland 1975; Cheng & Ruder-
man 1977; Asseo, Pellat, & Rosado 1980; Asseo, Pellat, & Sol
1983). Initially, the instability was attributed to the primary
ultrarelativistic electron or positron beam. However, the beam
has too low a density and too large a Lorentz factor, so that the
characteristic growth time turns out to be a few times more
than the time needed for the beam particles to escape the
pulsar magnetosphere (Benford & Buschauer 1977; Egoren-
kov, Lominadze, & Mamradze 1983). In order to overcome
this difficulty, Usov (1987) (see also Ursov & Usov 1988)
suggested the interesting idea of a nonstationary plasma flow.
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According to this model, clouds of ¢”e” plasma are injected
into the pulsar magnetosphere from time to time (with small
enough intervals). Fast particles from the following clump
overtake slower ones from the preceding clump, creating
favorable conditions for the development of a two-stream
instability, leading to the generation of Langmuir waves prop-
agating along the magnetic field lines. In this model the
instability is attributed to the dense and low Lorentz factor
"¢ plasma, and its growth rate is found to be large enough.
Thus it appears that either by Usov’s or through an alternative
mechanism, it should be possible to produce Langmuir waves
of sufficient intensity.

The second crucial step in the development of a model is to
pinpoint a mechanism(s) that will convert the energy “accu-
mulated” in the Langmuir waves into the energy of such waves
that can escape out of a pulsar magnetosphere.

There seem to be a variety of physical processes that could
mediate mode conversion: induced wave scattering (Macha-
beli 1983), wave-wave interaction (Gedalin & Machabeli 1983;
Mamradze, Machabeli, & Melikidze 1980), and rmode cou-
plings due 10 some kind of a plasma inhomogeneity {Melrose
1995). In the latter class, however, an extremely important
inhomogeneity, i.e., the inhomogeneity of the velocity field
{velocity shear), has, until recently, attracted very little atten-
tion (Scharlemann, Arons, & Fawley 1978; Arons & Scharle-
mann 1979; Kaladze & Mamradze 1984) in spite of the fact
that Arons & Smith (1979) had, long ago, outlined a basic
mechanism of an electrostatic instability of a sheared stream of
charged particles flowing along a strong magnetic field. They
conjectured that the energy may be liberated indirectly
“through coupling of electrostatic modes generated by the
instability to propagating electromagnetic modes” (Arons &
Smith 1979, p. 728).

In this Letter we intend to prove that this hypothesis of
Arons and Smith is highly plausible. In particular, we shall
demonstrate that the velocity shear of the relativistic e"e”
plasma flow can mediate an efficient conversion of the longi-
tudinal, nonescaping waves (Langmuir waves} into the desired
electromagnetic waves, which can propagate outward. Notice
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that shear-induced mode comversion and energy exchange is
kaown 1o be an clfivient and widespread phenomenon (see,
¢ Chagelishvili, Rogava, & Tsiklauri 1996; Chagelishvili &
ChKhetiani 1995: Rogava & Mahajan 1996; Rogava, Mahajun,
& Berezhiuni 1996).

We consider a collisionless, viscositv-frec. and cold ¢ ¢
plasma. Following Arons & Smith (19791, we neglect the
phinma pressnre and model the low by the following. relativ-
ntic two-fluid equations:

A = Tl = 1), o
[0~ 11 .TI)P = =elE - V' x By, (2)
VE=dze[n —n . {3
VXE=-48. H
VXxB=drenl~—-—nV]+aE. (3

where Lhe notation is standard with the speed of light taken 10
be unity. The equilibrium velocity of electrons and positrons in
the sheared stream will be modeled by V' =1, = {L), + Av.
0. (0}, where 4 measures the strength of the shear. It will be
assumed that the stream is weakly sheared. in the sense that Ay
is much smaller than the average part L), The resulting mo-
mentum  becomes  P(v) = P, + ayr. where a = Ay
Po=pryl. and yvo=(1 = U3 '° is the average Loreniz
lacter. In the first part of our model. the equilibrium velocities
of electrons  and  positrons  are  equally  sheared
(4 =4 = ). and there is no mutual streaming of the two
species (vo = v ).

In order to delineate the basic features of shear-induced
mude conversion. we make the following simplifving assump-
tions: (1} the plasma is quasi-neutral (1 = n.) with an equi-

librium (one fuid) mass density p, = 2mn,: (2) the magnetic
tield B. = const. = B, tends to infinity. restricting the ¢"e”
plasma motion to the v-axis (a quasi-one-dimensional sys-
tern): thus the perpendicular dvnamics will be altogether
neglected: and (3) the perturbation wavevectors lie in the
X — Y plane {defined by B, [U,] and by the direction of the
velocity shear), We consider, from now, the [t waves, for which
the electric field vector E lies in the X — Y plane, 2~d the
magnetic field perturbation B = {0. 0, B.} is along the z-axis.

With these simplifications, the magnetospheric plasma can
be described by the following set of linearized equations:

Dp, + 8,J, =0, (6)
DJ, = (wydmy) E,, (N
4 E + 8.E = dmp,. (8)
4B, =aE - d.E, (9)

8,E = -3,B, (10)

where D, =4, + (U, + Ay)d,, w, = 8me’ny/m, and we have
used the one-fliid variables: p, = e(n” — n”), the perturbed
charge density, and J = eny{u” — u7), the perturbed current
density.

Note that equations {9) and (10) contain the usual time
derivative. while in equations (6) and (7) we have the convec-
tive derivative D,. Since it is assumed that Ay << Uy, we can
approximate ¢, = D, — U,,8.. The advantage of the resulting
system is that it may be handled by the standard method of
“Kelvin modes™ (see. e.g.. Marcus & Press 1977; Criminale &
Drazin 1990). This method requires the change of variables—
X, =x — (Uy + Av). yy = y. t, = t—that leads to a substan-
tial simplification in the solution of the initial-value probiem.,
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i~ exchanged for 4 new inhomogeneity in time. The Fourier
transtorm in the new spatial variables converts equations
{0} and (71 and equations 91 and (1) toaset of first-order.
ordinary differential equations (QDEs) for the evolution of
the spatial Fourier harmonies (SFH) (see. e.g.. Chagelish-
viti. Rogavae & Segal 1994). The wavevector components
may lso be written in the osiginal (x. y. 1) coordinates:
k =k and k(1) =k - -k . 1t is of principal importance
to note that the velocity shear induces linear drifts of SFH
<o that initiallv tongitudinal modes can become eventually
ubligue.

By introducing the dimensionless yuantities—J = p, en..
J=J en.ec =(k enE b=k en)B.. o= w4k .
s=kt.R=Adk . Bo=k k .B7) = p.~ Rr—we can re-
duce the original svstem 10 the following complete set of
dimensiontess equations:

A= =it (10
ad = =20 yh[dHwe = Bine ). (1)
i, — e = —ibh.. {13)

(= iUb, = —i[l = Brole = 4By, (14

In this Lerter we shall investigate the evolution of those
modes for which the initial perturbations are purely longitu-
dinal ('A: = k. and B, = 0). This is indeed the most imporiam
case. because purely longitudinal Langmuir waves are the
easiest to excite in a pulsar magnetosphere. For further
analvsis. it is convenient and revealing 10 combine equations

s while torahand R = 2 - 0
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Fimy=e¢ " vund Disy = 4w s

D =D = -UW-Rw'E. (13
WE -1 ~ ROFHE = —Rte *7D. (16}
where B7 = 87 v,

Equations ( 13) and (16) clearly reveal that shear (R=W0)is
responsible for the mutual coupling of the purely potential.
wongitudinal  Langmuir oscillations  (with  phase velocity
@k = 1) and the purely transverse clectromagnetic waves
{with phase velocity w k = 1). The entire time dependence
{of the coupling terms as well as of the effective frequency) is
due to the nonzero shear and will be slow or adiabatic for
R << 1. For the problem at hand. the cffective shear param-
cter indeed wurns out to be small: it is typically a few orders of
magnitude smaller than unity. The detailed estimates will be
given in a later. larger paper.

Though the physical meaning of equations (13) and (16) is
transparent enough. it is instructive to look at some represen-
tative solutions. In Figure 1, we plot the functions ¢.( 7). e.{T).
h(7). and e, + Rre, (the latter function measures in dimen-
sionless notations value of ¥ X E) obtained by a numerical
integration of the defining equations. For this case, the values
of parameters are R = 4 x 107, o =1, v = 10. and the
initial perturbation is taken to be a pure longitudinal Lang-
muir wave [¢,(0) # 0. while ¢, = b, = 0]. We see that as time
progresses. the fields e,(7) and b.{7) are excited and the wave
becomes more and more nonpotential (e, + R7e, is increas-
ing): the initial perturbation (longitudinal and purely potential
Langmuir wave) begins to acquire transverse “features” as it
evolves.

It would seem that we have now identified both pieces of the
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puzzle: (1) a reasonable mechanism (some kind of a beam or
stream instability) for generating longitudinal. potential Lang-
muir waves [with k{(0)|B,] in the e’e” plasma in the pulsar
magnetosphere; and (2) an effective shear-induced coupling to
transform these nonescaping waves into the longitudinal-
transversal, nonpotential waves that are perfectly capable of
escaping the stellar environment.

We now propose a comprehensive model. We do this by
incorporating Usov’s (1987) nonstationary injection hypothe-
sis into our model. Let us now consider two streams of e7¢”
plasma with average Lorentz factors v, and . (y. > v). The
resulting equations,

#D, + WD, + D) = —WiRte'"E, an
(8, + iAUND, + WD, + D)) = —WiR7'""E. (18)
#E+ {1+ RTE=—-Rte™" (D, + Dy, (19)

where AU = U, = U,, W} = 8xa/y], and W3 = 8woiy.. explic-
itly encompass both of the essential processes leading to the
pulsar radio emission: the onset and amplification of Langmuir
oscillations due to a built-in two-stream instability. and the
subsequent conversion of these oscillations into escaping
radiation. Corresponding plots are presented on Figure 2 for
two streams with v, = 10 and v = 10° (o = L. as above).
Figures 2a and 2¢ represent the zero shear case (R = 0),
while for Figures 2b auu 2d, R = 2 x 10 *. In the former
case, the two-stream instability is “swiiched on.” and the
amplitude ¢,(7) increases with time. But ¢.(r) = 0 for all
times, and the wave remains potential. In the lauer casc.
however, the presence of nonzero shear changes the situation

drastically: the wave becomes nonpotential. and the electro-
magnetic component e,(r) is strongly excited.

The transformation of purely longitudinal. nonpropagating
modes into electromagnetic waves is just one of the many
mode transformation processes that can actually happen in the
magnetpspheric plasma (see. e.g. Rogava et al. 1996 fo
Alfven -modes). A comprehensive paper dealing with shear.
mediated interactions of various linear waves sustained by an
¢"e” plasma (see. for review. Volokitin. Krasnoselskikh. &
Machabeli 1983; Lominadze et al. 1986: Lyubarsky 1995} is
under preparation.

In summary, we have demonstrated in this Letter that the
mode coupling induced by velocity shear could be a vital link
in the chain of processes that must be invoked in order to solve
the puzzle behind the pulsar radio emission. We must also
remember that one of the most severe criteria imposed on
possible pulsar radio emission models is that the bona fide
mechanism must apply to both the weak-B, (millisecond) and
the strong-8, (voung. fast) pulsars (Melrose 1995). In other
words, this criterion demands that the true mechanism musi
apply in a range of 4-5 orders of magnitude in B. The
velocity-shear—based mechanism of mode conversion scems to
be tailor-made to satisfy this requirement.
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