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LECTURE 1

Plasma and its Parameters. Gas Approximation. The Simplest Plasma
Models. - The Model of Independent Particles

* 1 What is the "PLASMA"

The first incomplete definition of " PLASMA " was given by I. Langmuir in 1923.
According to this definition " Plasma is a shine gas consisting of electrons, several types of ions
and neutral atoms and molecules ". But people saw the plasma and moreover used it, more
than thousand and thousand years before 1. Langmuir. It is obvious that the first who saw the
plasma was the God. Creating the Earth and Water and Sky, he noticed that everything was at
dark and sad " let to be light." Then he noticed the Sun in the sky. Of course it was the solar
plasma. But this phenomenon occurs outside of people’s understanding for many thousand
centuries. Moreover they did not suspect that they dealt with real plasma when they observed
the lightning and even used it. ;

The first mention about ionized gas of particules was done by O. Heaviside when he
predicted more than 100 years ago that around the Earth at the altitudes of 300-400 km there
exists a layer of sufficiently high density ionized gas, which reflects the radiowaves. This layer
is known as ionosphere. O. Heaviside not only predicted the existence of ionospheric F-layer
but also gave explanation : "the origin of this layer is the atmospheric gas ionization by the
ultraviolet Solar radiation". According to the modern representation the concentration of

charged particles exceeds (ng~n;) ~ (1 to 3)-10 6 ¢m-3 | their temperature Tg ~ (1-2)-10 3K
and T;/Te ~ 0,3. At the same time the concentration of neutrals ng is ~10% ¢cm=3 and their

temperature T ~ 200K or the 1onization degree ~ ne/(ne+n0) <10-3 (weak ionized gas). The
Earth magnetic field at this altitude is Bg ~ 0.5 Gauss and therefore the pressure ratio will be f3
= 8 nt (ng+n;) Te/ B02 ~ 10 -4 << 1. Thus for the F-Layer the electron Langmuir frequency

w,, = y4m e’ n_/m~ 810751 whereas the electron collision frequency Ve ~ 3-103 571 which

provides the stable radiocommunication on the Earth in the range of radiowave lengths 20m <
A < 2000m.

Inspite of very important role of the ionospheric F-Layer for mankind the regular
investigations of the parameters and properties of this plasma were begun only in the 60-s
when the rockets and atmospheric probes appeared. Much before, the properties of ionized gas
or plasma were investigated in the laboratory experiments when the physicists tried to create
artificial plasma.

The most significant achievement in this way was received by 1. Langmuir at the beginning of
20-s. He introduced the conception of plasma as a gas of charged particles and neutral atoms
and molecules, their concentrations ng, n; and ng and temperatures T, T; and Tq. Besides he

discovered in the gas discharge plasmas the high frequency oscillations with phase velocity
much larger than electron thermal velocity, not depending on the masses of ions and neutrals .

Moreover he measured their frequency @ =w,, = {47 e’ n, /m | that is known as Langmuir

electron frequency. I Langmuir described also the low frequency oscillations in the gas
discharge plasmas with linear dispersion dependence © = k-vg ( like sound waves ). The phase

velocity of such waves vg 1s much less than electron thermal velocity and is of the order of 1on



thermal velocity. [. Langmuir was sure that these waves represent the usual sound waves and
used hydrodynamical expression for their description:

ey

v,=J1Pip = ¥ (T, +T.)/M

Herey = cp/cv, as it was supposed by I. Langmuir. Unfortunately this assumption is incorrect
and only in 1954 the correct expression for vg was obtained by G. Gordeev, who revealed the

physical sense of low frequency oscillations in this type of plasmas.

Many types of gas discharge plasmas are known today. They are created by different
types of ionizing radiation: microwave and optical discharge plasmas, radiofrequency and
direct current gas discharges, electron and ion beam discharges and etc. They have very large
applications in physics and technology: light sources and current commutators, plasma-
chemical and nuclear fusion reactors, plasma accelerators and "thrusters” are based on gas
discharges. Therefore, the great interest of scientists and engineers in the plasma physics and
technology is natural.

The parameters of gas discharge plasmas are numerous in a wide ranges. Thus in the

neon lamps ng~n;~10 11010 13 cm-3, ng~3-10 13 to 10 16 ¢m -3 ( or P10 -3 to 1 torr),
T. ~104 to 10 7K (or T, ~1 to 10ev) and Ti~1000K (or T; ~0.1 ev). In other words plasma In

the neon lamps usually is a low density weakly ionized and highly nonisothermal with T. >> T,
On the other hand, in the MHD energy convertors the plasma has high density and 1s

practically completely ionized ( ng~n;~10 18 em -3, ng~ 10 19 ¢m-3), and very low
temperature Te~T;~T~0.2 to 0.3 ev. At the opposite of the ionospheric plasma, which is

practically unbounded, the laboratory gas discharge plasmas are essentially bounded, their sizes
don’t exceed several centimeters or decimeters ( plasma in MHD convertors)

The thermonuclear plasma deserves a specific attention, the plasma is very hot in the
thermonuclear devices. The idea of magnetic plasma confinement and initiation fusion
reactions in a hot plasma was proposed at the beginning of 50-s by A. Sakharov and [. Tamm
in USSR and L. Spitzer in USA. There exist different types of thermonuclear plasma reactors.
The most popular are tokamaks, toroidal magnetic confinement (mirror) systems. Plasma in

the thermonuclear devices must be very hot, Te~T;~10 8 K~10 kev, and at plasma density

n~1014 cm-3 the confinement time, according to the Lawson's criterium, is
(2)
nt > 10 14

which leads to T >1s. The strength of magnetic field Bg ~ 40 to 50 KGauss which provides the

fulfillment of the inequality = (SJtnT)/BO2 <10-2 <<1.

The very interesting alternative method of initiation fusion reactions is the so-called
inertial confinement and heating of solid target { d-T tablets). The confinement time of such

dense and hot plasma ( n ~ 10 23 ¢m3 T ~ 10 kev) is less than inertial time, or T < a/vg,
where vg~10 8 cm/s is the sound velocity and a is the target radius Taking into account
Lawson's criterium one can estimate T ~10 -2 s = 1 ns and a < vgT ~ 0.lcm. The energy input

necessary for heating of such a target plasma is about Q = 4/3(ma3nT)~ 1 MJ and heating
source power Py, ~1015 W,



In 1964 Soviet physicists N. Basov and O. Krokhin proposed to use the very powerfull
laser radiation as a source for target heating and initiating the thermonuclear reactions. The
another method of heating was proposed in 1970 by H. Winterberg (USA) and E. Zavoskiy (
USSR), they proposed to use for this aim a short pulse (t<10-7s) of very powerfull relativistic
electron beam with P, =1014 W and Q > 10MJ.

In connection with the thermonuclear plasmas it must be mentioned that the sun and
stars are natural thermonuclear reactors. In the inner part of stars, plasma s very hot T ~ 10 to

1000-108 K and very dense n ~ 10 24161026 cm ‘3, whereas on their surfaces T ~ 104 K and

density 1 to 10 cm=3. Investigations of the stars plasmas and inter planetary plasmas is the main
goal of Astrophysics.

In conclusion let us discuss the parameters of solid state plasmas in metals and
semiconductors. In solid state the real particles are placed in a periodical field of lattice
(crystalline) and therefore one can say about fermion type excitation with positive (holes) or
negative (electrons) carriers. There arises complicated energetical structure in which the
effective masses of carriers are determined as my+ = ( 82€i('P)/8P2) -1 where e+(P) are
the energy spectrum of carriers in the conductive zones. Usually in a semiconductor my ~ m (
15 of the order of the real electron mass) whereas m_ ~ 0.1 to 0.01 m. At the same time, in
metals exist only negative carriers with m_ ~ m, and the wide band of conducting zone 1s

practicaily infinite. For description of conducting media usually, the conception of carriers is
used: "electron-hole" plasma in semiconductors and purely electron plasma in metals. However
it must be done very accurate.

Thus from above discussion it is seen that plasma is very wide spread in nature, more than 99%
substances of the Universe exists in a plasma state. Therefore, it is natural that a plasma is very
often considered as the 4-th aggregate state of matter.

* 2 Plasma as a gas of charged particles

Below we will consider plasma as a gas of charged particles. What does that mean? For
clarifying this problem the interactions between the plasma particles must be censidered. Let us
begin from neutral particles - the problem already has been investigated by great L. Boltzmann.
He understood that the interaction between them is very strong, but they interact only on very

short distances. Therefore he imagined them as a hard spherical balls with radius a ~ 10-7 to
10-8 cm. The potential of neutral particles interaction then can be written as
(3)
wifr <a
Ulr) =
Difr=za

Inspite of very strong interaction, if the density of neutrals is sufficiently small , the following
inequality takes place

(4)
ng = alrgy = ang 113 <<

then the motion of neutral particles is practically free, they interact to each other very seldom
and in the first approximation we can neglect this interaction completely.




In the second approximation we can take into account the interaction between the particles as

a small correction to the free motion. Thus the inequality (4) represents a condition of validit‘y
of gas approximation for the neutral component of plasma.It is obvious that the condition (4) 15
valid also for the interaction of charged particles with neutrals.
Quite another physical meaning has the condition for validity of gas approximation for the
interaction between the charged particles of a plasma. The Coulomb interaction is a long range
one and therefore the gas approximation is valid if the potential energy of charged particles
interaction is small in comparison with their kinetic energy ( freedom energy). In other words,
gas approximation is valid if :

(5)
N1 = Uglray)/<eg> ~ (6% ng M 3y<eq> <<
Here ny ~ Nej, Ty = Te,i , My = Mg and
(6)
Ty if ToPeFo =((372)23n2052/3)2mg,
<8(1,> =

eFa f eFq > Ty
Here n ~ n.; , T=T¢;, m=m.;.

The condition ( 5 ) was firstly formulated in 1937 by L. Landau
It must be noted that for a nondegenerate, Ty > €F isothermal, T ~Te ~T;, and neutral

plasma, n ~ ng ~ n;, the conditions (4) and ( 5) are similar in the sense that with increasing of
particles density ( ng or ne ;) plasma becomes more and more nonideal. At the same time, for a
degenerate case, eFe ; > Te j, the physical sense of (5) is opposite to (4) and corresponds to the
fact that when n increases then the plasma becomes more and more ideal. This follows from
dependence ef ~ n2/3 which leads to n] ~ n-1/3_ Thus the more dense degenerate plasma in

metals occurs to be more 1deal.

Another difference between the conditions (4) and (5) follows from comparing the ratio of
interaction ranges for charged and neutral particles to the average distances between them. In
agreement to (4) , this ratio is small. In this case, relation (5) has quite opposite meaning. For
convincing this let us consider the potential of a point charged particle q located at =0 in the
nondegenerate plasma :

(7)
A =4nq d(r) + 4ne{neee¢”e-n,‘e'e¢/Ti}

For simplicity electron and ion charges in a plasma are supposed to be equal and opposite, e; =
e, and consequently their densities ne=nj=n. Then from (7) under the conditions
led | <<Tg,T;, follows:
(8)
$ = (qe/Dr, D= (T Amegng/To}"1/2 Debye length

and rpg = (Ta/(4nea2na))” 2 are the Debye lengths of electrons and ions, & = e,l.



It is easy to understand that D characterizes the Coulomb interaction range of charged particles
in a plasma. Therefore for the ratio of this range to the average distance between the particles
one obtains (9):

(%)

Dn'?~JT/e’n' ~1/0,'" >>1

This inequality is opposite to (4) and 1t means that the average distance between charged
particles in gaseous plasma is much less than the interaction range, or a large number of
charged particles must exist in a Debye sphere. It is easy to show that this statement takes place
in the case of degenerate plasma too.
It must be noticed that a plasma can be considered not only as a simple totality of charged
particles but as a medium if its size is much larger than Debye length. Moreover only under this
condition the Debye length has a physical meaning.

In conclusion let us make some estimations of conditions (4) and (5) for different

plasmas. First of all we must notice that for a ~ 10-7 to 10-8 cm, from (4) follows the validity
of gaseous approximation for neutrals ng <1021 to 1022 cm3. This means that gaseous

approximation for neutrals is valid up to hundreds atmospheric pressure. It is obvious that for
the usual gases this condition is satisfied with great supply.
Another situation takes place for charged components of plasmas and for condition (5).

For ionospheric plasma in F-Layer where ne’i~106 to 107em=3, and T ~104K, T;~103K we
have mp< 10-4 <<1, or this plasma is highly ideal. Analogical situation takes place in the
laboratory gas discharge plasmas with ng ~ 1011 1o 1014 cm~3 and T~ 104 1o 105K where
rnSlO'2 to 10-4<<1. At the same time tn the high density plasmas of MHD convertors and

light sources usually n~1013 to 1019 ¢m=3 and Te <1 to 5 104 K. Therefore n ~ 0.1 to 0.5
which means that, in such plasmas, nonideal effects are essential.

For thermonuclear plasmas in the magnetic confinement devices n ~1014 ¢m~3 and
T~108K what means that 1] <10-3<<1, whereas for inertial fusion plasma with n~1023cm-3

and T~108K we have m~0,01. In the last case the slightly nonideal effects must be taken into

account,
Finatly we will say some words about solid states plasmas. In a good conducting metals

as copper ng~ 5+ 1022 cm-3, and therefore electrons are degenerate, epe~lev and 1y ~0.2,
and they can be approximately considered as a weakly nonideal gas. But for the most metals
Ne < 1022 cm-3,  and n=1, which means that the electrons in such metals represent liquid,

so-called degenerate Fermi-liquid. In semiconductors, carriers parameters are varied in a very
wide range and therefore different situations are possible. Below we restrict ourselves n
consideration of only gaseous plasma.

* 3 The single particle model - Its achievements and failures

It is obvious that the most consistent description of plasma properties was reached by
using the kinetic description. But historically the carly plasma models were much more simple
and despite of this, they gave quite good results, in a good agreement with experiments.
However sometimes such models were applied to problems outside of the frameworks of



models. Then some disappointments arised , which stimulated the development and
improvement of other models until the perfect kinetic description was proposed by A. Vlasov.
Below we will follow this historical process of the development of plasma physics and
begin our consideration from the simplest model - the model of independent particles. This
model firstly proposed by I. Langmuir consists of Newton equations of electron and ion
motions which are completed with Maxwell equations. This model was very fruitfull for
investigating the propagation of radiowaves through the ionospheric plasma, as it was shown
by V.Ginzburg, before the second world war. The equations of motions in the model of
independent particles look as
(10)
dva/dt = e/m{ E +1/c[vexB] }-veve

dvi/dt =+ e/ M{ E + l/c[vixB] -vjvj

Here v and vj are the electron and ion velocities, Ve = VeitVeQ and v; = vje * vjo their
collision frequencies, for which the following equality takes place mve; = Mvie . The electric E

and magnetic B fields must be finite because they determined the Lorentz force acting on a test
charge q :
(11)
F=q[E+ l/cfvxB]]}

These quantities satisfy the Maxwell equations :
(12)
divE=4np=Z4xen,divB=0

rot E = -1/c[6B/ &t], rot B = 1/c[0E/t]+ 4 nt jic = 1/c [ E /0 1] + 4 m/c L env

moreover for each components of charged particles the continuity equation is satisfied (o= e.i)
(13)
Ong /ot +divng vy =0
Thus in accordance with ( 10 ) the motions of charged particles are defined by the electric and
magnetic field E and B and at the same time these fields themselves are determined by the
charged particles motions. Thus we have selfconsistence connection between the particles
motions and electromagnetic fields. This idea of selfconsistence was proposed by I. Langmuir
at the beginning of 20-s. However it has remained still misunderstandable for many scientists
up to day.
From the equations of particles motions ( 10 ) only one vector quantity must be defined - the
current density j which appears in the field equations ( 12) as an external source. As about
charge density p, this quantity can be easily defined by using the continuity equation (13).
Taking in consideration that the magnetic field B also can be expressed in terms of electric field
E we conclude that the problem of any plasma model is the calculation of induced current
density
(14)
ji=Zenvi=0 (E)E;

This relation in general represents nonlinear Ohm's law and oij (E) is nonlinear operator of
plasma conductivity.
Instead of j and p one can introduce the induction vector D by the following relation



(13)
D/ &t = GE/ot + 4nj

Using this relation the field equations (12) take the form
(16}
divD=4npg, divB=0

rot E = -1/c{(dB/ot), rot B = 1/c(OD/ot) + 4rjg/c

These equations differ from (12), they take into consideration not only the induced current and
charges densities j and p but also the external sources jg and pg. These equations in addition to
the equations of motions (10) represent the complete system of the simplest plasma model - the
model of independent particles. The validity limits of this model can be estimated by
considering some basic linear problems. In linear approximation and in the absence of external
magnetic field By and the sources jg and pg the solutions of the equation (10) can be

presented as e-(I01H1K-F) Then one can easily obtain

(17)
ve=(ieE)/[m(w+ive)] , vj = (gE)/[M(ativ)]
which leads to the following expression for induced current density
(18)
i = Zq eolava = Salicg2ngE)[mglo+ivg)] = o E
Thus for plasma conductivity we have
(19)

Gjj =08} .0=% (ie>n/m[w+iv])

(we omit the summation index o). Using the definition (15) one can introduce the dielectric
permittivity
(20)
D, = gijEj . BT ‘3ij + 4m O‘ij/m

For the isotropic plasma we will get the following result
(Z1)

8j — (03} &(0) = 1 +4rio(@)/o = 1- Sop 2/o(otiv)

where ©,, =+4me, n /m, isthe Langmuir frequency of charged particles of type o

Now we can verify the validity of the model of independent particles using the relations (16) to
(20). First of all let us check the static limit
(22

o(0) = T en/mv ~ e2ng/mve, &= 1+ 4mic(0)/o

Here o(0} is the static conductivity of isotropic plasma. In weakly ionized plasma ve = vg() and

the expression becomes correct not only qualitatively but also quantitavely. At the same time,
in completely 1onized plasma, or more exactly, when :

v, <<v, =4/3+2n/m*e’e’n, /T.”" ( the electron-ion effective collision frequency),



the expression (21) occurs approximately 2 times less than the correct expression known as L.
Spitzer's formula for static conductivity of plasma :
(23)

ogp = 1,96 e2ng/mve;

The very important conclusion which follows from (21) 1s that the independent particles mpdel
explains quantitavely the propagation of high frequency transverse electromagnetic waves in an
isotropic plasma. From the Maxwell equations in the abscence of external sources jg and pp
follows the dispersion equation for such waves .

(24)

k2¢2=p2¢(0)

Using the relations (20)-(21) and supposing © >> Ve, it's easy to find the solution of this
equation in the high frequency limit [ @ — @ +18 ]
(25)

w2 =g+ k2c2, 8=- Ve(’JLezfﬂ)z

With regard to the low frequency limit (» << ve) from (24) it follows the well-known
expression for the penetration depth of the normalous skin-effect,
(26)
Agk = 1/3mk = c/N(2now)

This expression is correct for completely ionized plasma as well as for weakly ionized. Of
course this statement must take into account the above remark about the static conductivity of
plasma (see (22} and (23)).

More essential seems to be that the formula (26) is correct only if ve > vTefAsk. In the
opposite limit as it was shown by A. Pippard in 1948, the anomalous skin-effect takes place
which can not be described in the model of independent particles. This phenomena will be
studied below in the next lectures.

Finaily the most penalizing failure of the model of independent particles was exposed in the
description of longitudinal oscillations of plasma. From the field equations (16) taking in
consideration (21) we get the following dispersion equation for such oscillations

(27)
g(w)=0
The solution of this equation in high frequency range ( ® >> v, ) looks as (@ —0+18)
(28)

2_ .2 —
0" = 0L~ , 0=-Vg/2

Plasma longitudinal oscillations firstly was investigated by 1. Langmuir in 1926, Moreover he
firstly obtained these formulas and gave their physical interpretation.

However 1. Langmuir was also the first who noticed that the discussed model is limited. This
model can not explain the existence of low frequency oscillations with spectrum o = kvg
discussed above, which were called by I. Langmuir as ion sound waves. And finally this model
leads to the obviously absurd result for the problem of static potential for a rest point charged
particle in a plasma. In order to show this let us consider a point particle with varying charge



po = qet3(r). From field equations (16) we find the following expressions for static field and
its potential
(29)
E=-V &, & (r)=qelOtrg(w)

where & (w) is given by the expression (21). If now we take the static hmit ® — 0 we obtain
obviously absurd result : @ (r) =0 because €(w) >« when @ — 0. Thus in the low frequency
limit the model of independent particles is absolutely incorrect for description of isotropic
plasma.

* 4 The properties of magnetoactive plasmas in the model of independent
particles

Despite above mentioned failures of the independent particles model for description of
isotropic plasma, let us now apply this model to the magnetoactive plasmas. Remind that this
model occurs to be very successful for the problems of radiowaves propagation in the earth
ionosphere. But the ionospheric plasma is magnetoactive and therefore below we will consider
the properties of such plasmas.

We suppose that external magnetic field Bg is parallel to OZ axis. Then in the linear
approximation for perturbations from the equations (10) one can easily find small v and use the

relation j= Zenv to calculate the induced current density which leads to the following
expression for dielectric permuttivity:

(30)
g 1g O
su(a)): -ig £ O
0 0 ¢,

e | =1+Zfo) 2(0+iv)/o(Q3-(0+iv)?), g=Zo 2Qe(Q2-(wtiv)?) |, &/~1-Top 2o(@tiv))
where Q=eBg/mc is the Larmor frequency for charged particles rotation around the magnetic
field Bgy. By using this tensor of dielectric permittivity the above mentioned success in the

analysis of radiowave propagation through the ionospheric plasma was achieved by V.
Ginzburg. Below we will not discuss these triumphal results. On the contrary we will consider
the problems for which this tensor and more generally the independent particles model 1s'nt
correct.
Let us begin from dispersion equation which can be easily got from the field equations :
(31)
|k26ij-kikj -(mzfcz)sij(m)l =

kz(l(i?-g_i_vL k//zﬁ//) '(02/02[(SLZ—gZ-SLS//)kJ_2+2kEELE//] +((D4;"C4)8//(8_L2-g2) =0

Here k| = ksin® and kj~kcos® respectively represent the transversal and longitudinal
components of the wave vector k and 0 1s the angle between k and By

In general the equation (31) is very complicated and the solutions w(k) are impossible to find
analytically. At the same time, it can be solved very easily as an equation relative to

k(w) = (0/c)n{w)
We find the following solution



n(l.:)2 (@)= (‘ B+ M)/ 2A,

(32)
A=¢g Lsin26+e ,r/cosze, C=g//(e J_z-gz) B=-¢ J_a//(1+c0329)-(e lz-gz)sin?-e

The quantities n| 2 are called as the complex reflection coefficients nj(w) for ordinary waves
and np(w) for extraordinary waves.

Just using the relations (31) and (32) and taking into account the expressions (30) the
radiowave propagation (their reflection and absorption) in the F-layer of ionospheric plasma as
a function of the angle 8 were explained. On the figure 1 there are presented the

dependences n | 3 2 (@) for 820,%/2 and mLez > Qe2 ( as it takes place in F-layer where
Q)LeE]OsS'] and Qe§107s-l). Moreover (31) and (32) give the good quantitative explanation
for not only high frequency (©>>€,), but also low frequency ones in the range

Q<<w<< Qg These formulas predict the existence of the transverse waves, in the low-

frequency range with spectrum
(33)
o= (k22 | Q| cosd)/mp o2

Such waves were really observed in the ionospheric plasma and they were called as whistlers.
The model of independent particles appears to be significantly less successful in explaining the
low frequency waves in the range ©<<Q;. From dispersion equation (31) in this frequency

range one can obtain the spectra of two branches of low frequency waves
(34)
012 = k/2 vaAZ/(1+vp2/c?), 092 = k2vA2/(1+vA2/C2)
where v, = B, /+4nnM is called Alfven velocity. The first branch corresponds to the purely

transverse waves and is well known as Alfven waves. They are predicted theoretically by H.
Alfven in the framework of MHD equations and were really observed in ionospheric plasma.
As for the second branch then the theoretical spectrum (34) differs from the experimental
observed. In experiments there exist two branches of low frequency waves with significant
longitudinal field components instead of one branch. Besides the phase velocities of both
depend on the plasma temperature, which is completely ignored in the model of independent
particles. This fact indicated to the serious difficulties of the model. However the main
difficulty of the independent particles model was clarified when static potential of a point
charged particle in the magnetoactive plasma was considered. The result of this consideration,
using the field equations (16), leads to the following formula for the field potential

(35)
(1) =q/272 | dk(elkN)/(k | 2¢ | (0)+k/2e /(@) — 0

hmo—0

where € ; (o) and g//() are given by (30). Thus in magnetoactive plasma the static potential of

point charged particle tends to zero. This result coincides with the result of the isotropic plasma
and also seems perfectly absurd.

Thus from the above consideration we can conclude that the model of independent particles is
quite satisfactory for description of fast and high-frequency processes in a plasma, with typical



( phase) velocity much higher than thermal velocity of charged particles. Specially this occurs
true for transverse waves. For longitudinal waves and low-frequency processes the typical
phase velocity is of the order of the particles thermal velocity and therefore their properties
can’t be described by this model. Specially, this occurs catastrophic for describing purely
potential static electric fields in a plasma. For improving the model, firstly, all thermal motion
effects of charged particles, such as hydrodynamical effects pressure, vISCOsity,
thermoconductivity and diffusion of particles as well as kinetic velocity effects and energy
distributions of particles must be taken into account.

n'(w)
| [no) /ni(e)
/'; | /f
— n; ) ]
/: © /
\ / o)
- L // | ’/}/’ (,-//, /’r’{lz[ (D]
Qo) ea e, g ®
/ /

Figure 1 : Dependences 111,22 (o) for 6= 0,7/2 in the model of

independent particles




* § Two fluids hydrodynamics

In the previous section it was shown that the model of independent particles occurs incorrect in
the low frequency range. For this reason the physicists decided at the end of 30-s that in lthis
frequency range the hydrodynamical descriptions of plasma must be more suitable. At that time
two different types of hydrodynamical models were developed. The first one was proposed by
I. Langmuir and the second by H. Alfven. Below we will consider only the simplest versions of
these models, which is quite sufficient for clarifying the reasons of their success and their
failure. ,
In this section we begin with the I Langmuir model, known as two fluids hydrodynamics .
This model generalizes the independent particies model by taking into consideration the kinetic
pressures of electrons and ions. Therefore the equations of motions look as (compare with
equations (10)):

(36)

dve/dt = Ove/Ot +(ve V)ve = -VngTe/mngt e/m{ E+1/c[vexB]}- veve

dvi/dt = avi/dt + (viV)vi = -Vn;Ti/Mn; +ei/M{E+1/c[ vixB]} -vjvj

As above these equations must be completed by the Maxwell equations (12) _amd continuity
equations (13). Taking into account the temperatures Te and Tj, below we will assume that

they are constant. Such assumption simplifies the problem in a significant way and at the same
time it doesn’t influence the validity of the model. To determinate the validity limits of models
is our main goal.

The basic equations of two fluids hydrodynamics (36) differ from the equations of motions
(10) in the independent particles model by taking in consideration the thermal pressure. For
this reason we may hope that low frequency processes for which the independent particles
model occurs incorrect will be described quite sufficiently well. To prove this statement let us
consider linear electromagnetic properties of spatially homogeneous isotropic plasmas in the
model of two fluids hydrodynamics. We will investigate the small perturbations of an
equilibrium state in which

Eg=Bg=0, Ve, = 0, ngej = const

Then from the linearized equations (35) and (13) one can easily obtain the following
expression for the dielectric permittuivity of plasma
(37)

g j(0.K) = (§jj -kikj/kz)etr(m,k)+kikj/k28l(m,k)
where
(38)

el(0.k) = | - Zy(oLg2M(o(o+ivy))

el(©.k) = | - Z(oLg ) (0(@+ivg)- kIvTe )



represent the transversal and longitudinal permittivities respectively. Thus we see that they are
different. Besides, the transverse dielectric permittivity (38) coincides with (21). Consequently
all the difficulties which take place in the independent particles model remain in the considered
model of two fluids hydrodynamics. Particularly this model occurs to be incorrect for
describing the transverse field penetration into the plasma (skin effect) in low frequency range
when ve<<w<<vTe/Agk , Where Agy Is given by the relation (26).

At the same time, for the longitudinal dielectric permittivity from (38) it follows
(39)
limg_s0el(@,K) = 1+ Zg(0La? k2v Tg?) = 1 + 1k?rp?

This expression leads to the correct expression for the field potentiel of the static charged
particles q located in a plasma atr = 0
(40)

@(r) = (g/neTp

Thus the Debye screening of the potential takes place as it must be in accordance to (8).
Moreover longitudinal dielectric permittivity (38) describes quite correctly the low frequency
oscillations, when ©<<v,, namely the diffusion processes in a plasma, the monopolar

diffusions of electrons and ions independently as well as the ambipolar one ( In the considered
approximation with Ty, = const.). Really in this frequency range from (38) it follows

(41)
el k) =1- . ((L)Laz/(imva-kzv*raz))

For the short wave length perturbations, when k2rp2>>1, the solutions of g'(w,k) = 0

coincides with the poles of (41)
(42)

0V - K2vT 2 =0

It is easy to understand that this relation corresponds to the diffusion equation for the particles
of type a.
(43)
Ong /Ot - (VTQZ)/va)Ana =0

Thus the coefficient of monopolar particle diffusion in the two fluids hydrodynamics occurs to
be equal
(44)

Dy = VTazfva

In the opposite limit of long wave length perturbations when kzrDm2 <<1, the solution of

el{w,k)=0 can be presented as
(45)

v - kz(v52+vTi2) =0,

where v_ = /T./M . As above, this relation corresponds to the equation
(46)



on/ot - DaAn =0

which represents the diffusion equation with ambipolar diffusion coefficient
(47)

D, = (ve2+vTi2)vi = (TetT)/My;

The both results concerning monopolar diffusion as well as ambipolar one were confirmed
experimentally by I. Langmuir. These facts demonstrate the obvious success of two fluids
hydrodynamics. This success firstly was noted by I. Langmuir.

However very quickly appear new difficulties of the model besides remarked above with regard

to the low frequency transverse field ( skin effect). Namely from the expression (38) for al((o,k)
it follows that in a low density collisionless plasma (0>>vy) when the wavelength of
perturbations is sufficiently short, krpg>>1, there exist the longitudinal oscillations with
spectra (for electrons and ions)
(48)
02 = szTotz

which correspond to the poles of el(w,k). Nobody observed such oscillations and moreover it
will be shown below that even in a collisionless plasma they occur very strongly damped. This
result was the serious failure of two fluids model.

Finally let us indicate to the very widespread mistake repeated up to day and which follows

from two fluids model. We mean the long wave length (kzrD,m2 <<1) and low-frequency
(02<< coLez) longitudinal oscillations with phase velocity less than electron thermal velocity

(0ve<< k2vTe2). Under these conditions from equations &!(0,k)=0 taking into account the
expression (38) we obtain the following dispersion equation
(49)
02 - k2 (vg2+vTi2) + iov; = 0

In the limiting case o << vj, this equation leads to (45) which describes the ambipolar
diffusion, confirmed by numerous experiments. However in the opposite limit, when @ >>v;

from (49) we obtain the spectrum of weakly damping oscillations (w—®+18)
(50)
o=kJT.+TYM, 8=-v /2

I. Langmuir supposed that these oscillations represent the usual accoustic sound oscillations
with spectrum o = k\/yP/P, , v =1 and he called them " ion-accoustic waves". Moreover he
really observed such a type of oscillations in a nonisothermal ( Tg>>T;) gas discharge plasma.
Only one question remained unclear : what is y = cp/cy, and why y = | for plasma. From

experimental datas for nonisothermal plasma followed that y = 1. But why? This question had
remained unclear up to 1954 when G. Gardeev clarified it (see below).

Above we restrict ourselves by considering only low frequency processes of isotropic plasma
intentionally. Firstly it must be noticed that for high frequency processes with characteristic
velocity much higher than the thermal velocities of charged particles the two fluids model



corresponds to the independent particles approximation which is quite satisfactory for such
processes as it was shown in previous section.

Secondly, just namely this model was proposed for description of low frequency processes by
I. Langmuir and namely for them we were convinced that it arised very serious difficulties. For
the magnetoactive plasma, when the two fluids model was proposed by I. Langmuir, just at the
same time the one flmd magnetohydrodynamic (MHD) was developped by H. Alfven. The
MHD represents the generalization of usual hydrodynamics for the conducting liquids and it
seems that MHD must be valid only for very high density plasma.

However H.Alfven applied this model for description of ionospheric plasma and it occured
very successfully. In the next section we will discuss the one fluid MHD.

* 6 One fluid MHD equations

As it was noticed above, the MHD equations differ from usual hydrodynamics by the additional
volumetric force, which affects the conducting media with current j by the magnetic field B
(51)
f=1/c[jxB] = l/4n[rotBxB]

Taking into consideration this force one can easily make the generalization of usual
hydrodynamics on the case of conducting liquid. Supposing the ideal conductivity and
neglecting all dissipative processes the MHD equations can be presented as
(52)
divB =0, &B/ct = rot [vxB]

ovidt + (VW)v = -VP/p -(1/4np)[BxrotB]
Here v 1s the velocity of liquid with density p and P is the pressure, which is connected with p
and temperature T by the state equation
(53)
P=P(p,T)

The first achievement of MHD was connected to the analysis of small perturbations of
stationary homogeneous equilibrium with

v = 0, pg = const, Pg = const, Bg = const.

For the perturbations v|,p|, and b from (52) we obtain

(54)
divb = 0, rot[v|xBg] = db/ét
ovy/ot = -(VSZ/pO)Vp] - (l/4np0)[B0xr0tb]
op1/ot +divpgvy = 0
Here vq 15 the sound velocity for isoentropic processes, which follows from (53)
(55)

Py =-vs2p| = (BP/3p)spy



For the solutions of type ¢'"*** from the linear system (54), one can obtain the dispersion
relations

(36)
w2 = k,2va2,

©,, =k’ /2{(VAZ +v52)i \[(VAZ + VSz)z —4v, vy’ cos’ 9}

where v is the Alfven velocity introduced above and 0 is the angle between k and Bg.

Thus in the framework of MHD exist 3 branches of small oscillations. The first describes purely
transverse waves, b and v) are perpendicular to By and k, is known as Alfven waves. The

second and third are called as the fast and slow sound waves in a conducting liquid. It must be
noticed that namely 3 types of oscillations were really observed in the ionospheric plasma.

Moreover, in the ionospheric plasma the ratio § = (8mpo)/Bg2 = vg2/va2 <<1 and therefore

the last two branches become separated
(57)

(022 = kszz, w32 = k22V52

The oscillations with spectrum wy(k) are transverse as well as w (k) whereas the oscillations
with spectrum w1y(k) are purely longitudinal and correspond to the isoentropic oscillations of
density and pressure in which v is parallel to k.

Despite of the observations of mentioned oscillations in ionospheric plasma, some problems
have still remained. The first one is quantitative and about some parameters: what are

v, =J(0P/p), = y¥T/M and y = cp/cy 7. For ionospheric plasma in accordance to its
s p'Cv P P

consistent in the F-layer this quantity must be of the order of y=5/3, whereas from the
experiments it follows that y > 1 and besides of this the oscillations occur to be very damping.
What is the reason of their absorption ? The second problem is more principal: what is the
reason of success for MHD in applications to the ionospheric plasma? MHD as usual
hydrodynamics must be valid only for dense gaseous, where collisional effects are dominant,
whereas ionospheric F-layer plasma seems to be collisionless. Neverthless the predictions of
MHD occur in a good agreement with experimental observations.

The first attempt of derivation MHD equations was made starting from the equations of two
fluids hydrodynamics (36) at the beginning of 50-s. Really let us suppose the inequalities

0<<kvTes ve<<Qe, Vi<<Qj<<olj
Under these conditions the displacement current may be neglected and the Maxwell equation
for magnetic field takes the form

(58)
rotB = (4m/c) j



Using this equation and taking into consideration that under the above restrictions, plasma can
be considered as quasineutral (ne=ni=n), from the equations (36) by summing them, one can
obtain:

Mn(ewv/dt + (vV)v) = -V] n(Te+Ti)] -1/4n[Bxrot B] -Mnwvv 9
where v=v;. Besides of this from the first equation of (36} follows
(60)
E| =-l/c [vxB]
As a result the Maxwell equation for electric field takes the form
(61)

oB/ot = -c rotE = rot[vxB]

Finally completing the above equations by the continuity equation for ions we obtain the
following system of one fluud MHD

(62)
divB = 0, rot[vxB] = -dB/ct

NGt + (vVv = -VP/p - 1/4np[rotBxB] - vv
Op/ot + divpy = 0

where p = Mn, P =n(T, + T;), or T = Ta+ T; = constant. The last relation for P represents the

state equation for plasma, which corresponds to (53).

The system (62) coincides practically with the one fluud MHD equations (52). The only
difference consists of the existence of the last term in the equatton of motion (62). This term
takes into account a friction of ions on neutral particles and it is obvious that in the purely one
fluild  hydrodynamics it does not exist. In this case the system (62) seems more general, it is
valid for weakly ionized plasma as well.

Thus the derivation of MHD equations from the two fluids hydrodynamics was a significant
success of plasma theory. Nevertheless all the above noted difficulties which are inherent in
two fluids hydrodynamics, force the scientist to attempt avoiding them by using the kinetic
consideration. More correctly at the end of 30-s the scientists attempted to generalize the
Boltzmann's kinetic equation for the case of the systems of charged particles, or in other
words, for plasma. We'll speak about this in the next sections.






LECTURE 2

Plasma Kinetic Descriptions

* 7 Boltzmann - Landau kinetic equation

The first attempts of generalization of Boltzmann kinetic equation for a gas of ionized particles
were made before the second world war independently by S.Chapman and T.Couling and
L Landau. The basis of kinetic description of systems consisted of a large number of particles 1s
the probability description. Therfore the distribution function of n particles can be introduced
as
(63)
fa(ry, p1 r2,p2-.Fn.Pp.t)

This function represents the probability that at the moment t the particles with momentums
P1.P2....pp are located at rq,ry,..r, correspondingly. It is obvious that the distribution

function (63) is very general and gives the complete description of the system. However it is
very complicated because it depends on too much arguments. As a result it occurs to be
practically useless.
Let us remind that the plasma is a gas and in * 1, the corresponding conditions for validity gas
approximations were given. Namely these conditions were used by S.Chapman and T.Cooling
for a weakly ionized plasma when they attempted to generalize Boltzmann kinetic theory. In
* 1, 1t was shown that the neutral particles can be considered as the hard balls with radius a.
Then, a weakly ionized plasma is a gas if ( see(4))

(64)

no = am()”3 <<]

where ng is the density of neutrals. In the zero approximation in the condition (64), or in other

words, when the particles interaction is completely neglected, then the function fn (63) can be
presented as
(65)

fn(ry,..rpip1..Ppt) = =117 f{r;,p;.t)

Here f(r,p,t) is a probability that a charged particle with momentum p at the moment t is
located at r. It is obvious, that in this approximation this probability is constant and therefore it
satisfied the Liouville's equation
(66)
df(r,p.t)/dt = 2f/t + rof/or + Fofidp = 0

Here v is the particles velocity and F the force which determines particles motion. For charged
particles
(67)
v = dr/dt, dP/dt = F + e{ E + 1/c[vxB]}

where E and B are the external electric and magnetic fields. and e the particles charge. Of
course the Liouville's equation (66) must be written for each particles of type .



Moreover, let underline that the Liouville's equation (66) doesn’t take into account the
particles interaction. In Boltzmann consideration the particles interaction leads to .the
appearance of the nonzero right side of equation (66). In the lowest approximation it takes Into
account the pair interactions of particles type o with all particles of type B and therefore
(68)
dfo/dt = (Bfer/dt)gy = ZB(afafat)staﬂ = 23 3apfofp)
We will restric ourselves by taking into account only elastic interaction (scattering), as it shown
on Figure 2.

interaction

Figure 2

This leads to the following form of collision integral Sap (fo,fB)
(69)

SaB(faafB) =
f dpdeﬁ'dSB'VaBdOaB[fa(pa')fa(pB')-fa(pa)fg(pﬁ)lﬁ(pawa—pa'—pﬁ')ﬁ(.8a+8|3-8a'-€B')

and energy € conservations in the
d and backward scatterings are
of the particles relative velocity

This expression takes into account the particles momentum p
scattering processes. Moreover the probabilities of forwar
supposed to be equal. These probabilities are the product

Vap = | Voo VB | and scattering crosssection dogg. The last quantity depends on
(70)

Py, B =% HoBVap * (mg, pHmgrmp))(PotPR)
Po,p' =% uaBVagn+(ma,,B/(ma+ms))(p‘a+p;3')

n is the vector in the direction of particle o velocity in the frame of centrum of inertia { In
which pgtpg =0) and p .= Mg - MB /(mg+mp)
For the scattering of charged particles on the neutrals (hard balls ) we have

(71)
dog a2dQ = a2 sinBdBde



where d(} is the solid angle of scattering. The expression (69), when taking in consideration
(71), describes the elastic scattering of charged particles on neutrals in a plasma. In this sense

Chapman and Couling supposed that the kinetic equation (68) can be applied to the weakly
ionized plasma. It must be noticed however that in their interpretation the electric and
magnetic fields in the left side of (68) (see (66) and (67)) are external and only external fields.
They did not understand the idea of selfconsistent fields, which was clear much earlier for I.

Langmuir in his model of independent particles.
The next important progress in developing of plasma kinetic theory was made in 1937 by L.
Landau_ Starting from the Boltzmann collision integral (69), he derived the kinetic equation for
completely ionized plasma. For this aim L. Landau used the Rutherford formula for Coulomb
scattering
(72)
dog p/dQd = 4nea2eﬁ2/(ua52 vaB“ sin#(6/2))

However it is wellknown that this expression leads to the divergence of the total crosssection
of scattering. How it can be avoided? At this question the answer was found by L. Landau and

this answer was full of genius. He noticed that in a plasma takes place Debye screening of
Coulomb potential which is a consequence of the validity of gas approximation

(73)
ny = e2nl/3/<e> ~ e2nl3/T << 1

Under this condition the potential energy of charged particles interaction in a plasma looks as
(74)

U(r) = (e2/neTp

It must be noticed that the condition (73) i1s equivalent to the requirement U(ray )<< T, where

Tav =n-1/3_ At the same time, the expression (74) means that the characteristical radius of
charged particles interaction in a plasma is ry and this radius in accordance to (73) 1s much

larger than the average distances between particles ~ n~ 173
n''r, =, /nT? =NT/eln'? 21707 >> 1

In this sense the above condition is opposite to (64} if instead of a we substitute rpy . Despite

(75)

this, L.Landau used the Boltzmann collision integral (69) substituting the expression (72) in 1t.
This unsubstantiality was strongly justified by N. Bogolyubov in 1946 when he developed
mathematically correct method of derivation of the kinetic equations.
Besides of the inequality (75) L Landau supposed that for Coulomb scattering an other
inequality takes place as well. Namely in this process

(76)

[PaB' - Pafl << Po. PP

which means that the change of particles momentum is small, or the scattering angle 8 << |.

This assumption together with Born approximation which is valid when
(77)

2 .
e~/Tmin << T



allow him to get the convergence collision integral. This integral is known as Landau collision
integral and 1t looks as
(78)

3o p o fB)=( 0Py )dPp(2mey 2ep? L/u3)(uzﬁij-uiuj')((afa/al’aj)fB-(afB/aPBj)fa)

Here u=v, - VR is the relative velocity of scattered particles and the quantity L
(79)
L= tDf . de/r = Inrp/rmin = In(T/(e2n1/3)) ~10 >>1

1s called as Coulomb logarithm.

The kinetic equation (68) with collision integral (78} is known as the equation Boltzmann-
Landau. Below we will use it for describing electromagnetic properties of completely ionized
plasma. It must be noticed here that L. Landau as S.Chapman and T.Couling was sure that in
the left side of his equation electromagnetic fields E and B are only external. The interaction of
particles is completely taken into account in the collision integral (77). But this belief, of
course, was an annoying nustake of great scientist.

* 8 Relaxations of momentum and energy

Let us now follow S.Chapman and T.Couling and L.Landau to consider the relaxations of
particles momentum and energy in a plasma shightly deviated from thermodynamical
equilibrium. In this connection, 1t must be noticed that the above obtained collision integrals
occur to be identically zero for the equilibrium Maxwell distribution
(80)
foe, =( N/ 2mg T )3 2)exp(-mgv2/2T)

Of course, this statement is correct only for stationary and spatially homogeneous distribution
(80) and when

and only in the case of a plasma without any fields. Let us now consider the small deviations
from equilibrium and calculate the time relaxations of nonequilibrium momentum and energy
of particles. Suppose that at t = 0 the particles (electrons) distribution function differs from
Maxwellian by the existence of a small velocity ug << v, or
(81)
fo = (ne/(2nmTe)3/2)e(-m(v-u(1))2/2T)

and u(t=0) = ug. The problem is to find the dynamic equation describing time relaxation of

u(t). Substituting (81) in the kinetic equation (68) after integration over momentum of

electrons one can obtain the following equation
(82)
ou/ct = -va u

Ve = maZvTeng for weakly ionized plasma
Ve =



Vg =4/ 3(\/2n/ me'e’n / TCM)L for completely ionized plasma.

It must be noticed that for weakly ionized plasma the equation (82) is exact, whereas for
completely 1onized plasma the accuracy of this equation is of the order of a factor ~ 1
From (82) the following relation can be obtained

(83)
u(t) = ugexp(-ve t)

Thus the momentum relaxation time for electrons in a plasma is equal T ~ 1/vg

Let us now consider the relaxation of energy. Suppose that at t = 0 the electron temperature
Tep differs from the temperature of neutrals Tn ( for weakly ionized plasma) or ions Ty ( for

completely i1onized plasma). The problem is to derive the dynamic equation describing
relaxation time of eiectrons temperature Te(t), when
(84)

o = (ng/(2mmg T (1)3/2)e(-mg v2/2T o (1))

Substituting these expressions into the equation (68) and integrating over momentum of
particles, as above, after simple calculations we obtain
(85)
HTe-Th)ot = -(ven2m/M N Te-Ty)

ATe-T)/ot = -(ve2m/M)(1+ei/el)(Te-T;)

for weakly and completely 1onized plasma correspondingly. Here for weakly ionized plasma it
was supposed that T, = const, which follows from obvious inequality ny >>n, . At the same

time, for completely ionized plasma in derivation (85) we take into account, that
HTetTy)ict=0

Thus from (85) follows that the energy relaxation time is much larger than that of momentum,
or

(86)
Te ~ (M/2m) 1y >> 1 ~ 1/ve

In conclusion let us consider the behaviour of the completely ionized plasma in external
constant electric field Eg. The solution of this problem shows the above mentioned

incorrectness of the calculations of the momentum relaxation time of plasma offered (82). The
Boltzmann-Landau equation for this problem looks as
(87)

(eEg/m)dfe/Ov = Lpldpp(2meq ~epLin )u2dij-uup)[(3dfe/dpj-fedfp/op;]
where u=vy, - vg and the summation carried out over B = e,i



If the field Eg is sufficiently weak we can represent f, = fye + 5f, where fy is the Maxwellien
distribution (84)(not(81)) and 8f, a small correction. In this case the influence Eg field on 1ons
is negligible and ion distribution function is identically Maxwellian. For calculating dfe let us

expand it in the sertes
(88)

8f = (VEQ/Eq)[ag*a | (5/2-v2/2vTe?)Ifoe

For the determination of the constant coefficients ag and aj from (87) the following system
can be obtained

(89)
eEq/Te = -veff(ag+3/2ay)
(3/2)ag + (13+4V2)ay/4 = 0
Here for simplicity we suppose ¢; = -e.
After solving the system (89) we can calculate the current in a plasma
' (90)
j=elvfedp = l,96(e2ne/mveff)E05 oKy

Or for the plasma conductivity we have

on

o=1,96(e2ne/mvegp)

The factor 1,96 instead of 1 about which the above remark was done. With increasing the ratio
zZ=| ei/e | this factor tends to 1. When Z > 10 we can neglect the electron - electron collisions

and this factor in {91) becomes equal to 1.

For a weakly ionized plasma quite similar calculation leads to the expression
(92)

j=elvfdp = (ezne/mveo)Eo =cEg
Thus the plasma conductivity is

(93)

o = e2ng/mvgg
where vg( = ma2vye ng, is the electron neutral collision frequency. For weakly ionized plasma
this expression is exact and therefore the Lorentz approximation taking into account only

electron-neutral cotlisions is correct.

Selfconsistent Field Approximation

* 9 Vlasov-Maxwell equations

Above we emphasized many times on the fact that in the Boltzmann equation for a weakly
ionized plasma and in the Boltzmann-Landau equation for a completely ionized one the
electric E and magnetic B fields are proposed to be external and only external. As a result of



this assumption, all refaxation processes, considered in these equations, are aperodically
damping in time and are determined by particles collisions ( electrons collisions in considered
cases).

The first who draw world scientists attention to the inconsistence of such a treatment of electric
and magnetic fields in kinetic theory was A Vlasov. In his famous work publicated in 1938, A.
Vlasov showed that in the lowest approximation of the gaseous parameter 11, the interaction

between the charged particles can be taken into account if in the Liouville's equation
electromagnetic fields are considered not only as external, but as full fields satisfying Maxwell
equation with induced charges and current densities

(94)
p = Iuexlfydp, j= L oealvViodp

Thus the interaction of plasma particles with each fields are to be taken into account because
the distnibution function f, itself satisfies the kinetic equation of the lowest approximation
(95)
Of /0t +vofy/or + ey { E + (1/c)vxB]}fy/0p =0

Now we can write the field equations in the form
. (96)
divE = 4nEey) fyedp + 4npg,  rotE = -(1/c)dB/ét

divB=0, rot B=(1/c)cE/t + (4n/c)(£aeafvfadp) + (4m/c))o

The system (95) - (96) represents the complete system of selfconsistent equations for E, B and
f« which describe the plasmas in the lowest approximation of the gaseous parameter.

Only in the following, more higher approximation arises the right side of the kinetic equation
(95), taking nto account the particles scattering (collisions).

In scientific literature the equation (95) is known as Vlasov equation whereas the complete
system (94} - (95) is called Vlasov-Maxwell system of equations. Sometimes they are also
called equations for collisionless plasmas taking into account particle interactions only via
selfconsistent fields.

Here it must be noticed that the basis of Vlasov equation was not sufficiently strict. First of all
it was not understood how in the Liouville's equation the particles correlations can be taken
into account, although this equation describes a completely noncorrelated particles system.
Moreover in this sense the Vlasov equation for many scientists remainded very doubtful.
Among them were the great L. Landau, M. Leontovich, V. Fock and others. In 40-s between
the scientists arised the wellknown disputes, the results of which led to new dicoveries and new
excellent investigations. Let us briefly discuss these disputes.

Following A. Vlasov, let us consider a small perturbation of the equilibrium Maxwell
distribution fge

(97)
fe = foe + 0fe

The distnbution fy, satisfies the equation (95) in the absence of Eg and By Besides we

suppose that pg = jg = 0, 1.e. £y egnpg = 0. Then from (95) can be obtained linear equation
for 6f,




(98)
B/t + vidEy/or + eEdfoe/Op = 0

where the field perturbation E must be determined from the system of Maxwell equations (96).
Below for simplicity we will restrict ourselves by considering the potential field E = -V®
only and therefore
(99)
Ad = -4me | dfedp

The system (98) and (99) represents the complete system of linear equations which allows to
investigate the time development of initial perturbations 8fe(0,r,p). Suppose that
(100)

5£.(0,r,p) = Sfg(p)e!Kr

It should be noted that an arbitrary perturbation can be represented as a sum of Fourier
harmomics such as (100).

Now we can find the solutions of system (98) and (99) as (8fe,E) ~ e(-iot +ik-r) and from the

existence condition of nontrivial solutions determine a(k). Namely this quantity gives the time
development of initial perturbations of type (100). Really from (98) it follows that
(101)
8fe(p) = (-1eEdfye/opi(w - k-v)) = (-ekofy/op/(o- kv))d

After substituting this expression into the equation (99) the following dispersion equation can
be obtained
(102)

1 - (4ne?/ k2 ) | (k Ofge/op/(® -k .v))dp =0

which represents the condition of existence the nontrivial solutions of the system (98) - (99).
The main disagreement between A. Vlasov and L. Landau is related to the analysis of the
equation (102). A Viasov supposed that the pole @ = k.v in integrand of the equation (102)
must be understood in the sense of principal value. Then for the long range perturbations,
kzrDe2 << 1, he obtained nondamping frequency spectrum *

(103)

02 = oLe? +3 k2 VTe? = © Le? (1+ 3k2rpe?)

From (103) follows that the group velocity of such perturbations are small in comparison with
the thermal velocity of electrons

(104)
vg = 00/0k =3 k rpe VTe << VTe

* Tt must be noticed that this spectrum differs from that founded by I. Langmuir in the two
fluids model by the factor 3 instead of 1 in (48). This indicates the nonaccuracy of
hydrodynamical description of plasma oscillations.

However it must be noted that A. Vlasov understood that the oscillations damping really exists
and moreover he supposed that it arises in the second approximation of particles interaction, or



as a result of electron - ion collisions. In this sense he thought, that his equation {98} describes
"collisionless plasmas”
Quite another sense of this pole gave L.Landau in his famous paper from 1946, in which he
criticized A. Vlasov. In agreement with the causality principle he proposed that
(105)
o - kv)=(@/Ho- kv))-indlo - kv)

The first term corresponds to the A Vlasov treatment, whereas the second leads to the
oscillations damping (0 — © +19)

5 = 778 or. 1 expl- (o))

(106)

This damping was called as the Landau damping of plasma oscillations with frequency
spectrum (103), which was obtained in the Vlasov approximation. Here it must be noted that
L. Landau did not notice at that time that this damping contradicts the momentum relaxation
time, obtained by him in 1936 and equal ~ 1/ vei. Only in 1946 everything was clarified by N.
Bogolyubov in his famous book "Dynamical problems in statistical Physics". In this book the
strong derivation Vlasov equation and Landau collision integral were given as an expansion on
powers of gas parameter (73).
Thus now we can write the exact kinetic equation for completely ionized plasma (a=e,1)

(107)

O/t + vy + e {E + (1/c)[vxB]} Of/Op = Ep (O /ot)%B

which can be called as Vlasov-Landau equation. If we add to the right side of this equation the
integral of charged particles collision with neutrals this equation can be applied to the weakly
ionized plasma also.

Physical meaning of Landau damping was clanfied by R. Sagdeev in 1956 when he noticed
that it is a result of Cherenkov emission and absorption of the plasma oscillations (103) by the
plasma electrons at © = k-v. As for Maxwell distribution 6fp/dv <0 then the absorption exceeds

on emission and we obtain oscitlations damping (see Fig.3)

In conclusion let us repeat once more that for the system of charged particles under the
condition of gas approximation the principal interaction between the particles 1s taken into
account by the Vlasov kinetic equation, or in other words the principal mteraction is the
interaction via selfconsistent fields. Only in the second approximation at least for completely
ionized plasma the particles collisions must be taken into account. In this sense the Landau -
Boltzmann kinetic equation takes into account the effects of higher order than Vlasov's
equation. The Vlasov-Landau equation (107) is that which takes into account not only particles
interaction via selfconsistent field but also interaction via their direct collisions. The
fundamental property of the system of charged particles consists in that the self consistent
interaction surpasses the direct collisions of particles. Namely this property represents the
beauty of plasma and makes it as a very interesting and important scientific object.

* 10 Bathnagar-Gross-Krook collision integral

The kinetic equation (107) is very complicated because of its right side which represents
nonlinear integral operator. It is difficult to make use of this equation. Therefore in scientific
literature very often the various phenomenological and approximate collision integrals are




used. Despite phenomenological character of such collision integrals, sometimes it occurs to
be not only qualitatively but quantitatively also correct.

Every model of collision integral must take into account the principal conservation laws such
as conservation of particles number, their momentum, and anergy. Of course, we mean only
elastic collision integrals. Thus the following relations must be satisfied

(108)

J dpey (Ofy/0t) B =0,

J Po (Bfe/a)s®P dp, + [ pp (BFp/20tP* dpp =0,
Jeg (8 /)P dpg, + [ £p (8 fp/dt)g P dpp = 0,

Here € 1s energy.
In addition, for the thermodynamically equilibnum (Maxwell) distributions of particles, the
collision integrals must be zero. This follows from Boltzmann H-theorem.
Below we will use the most perfect, from our point of view, model of collision integral
proposed in 1954 by P. Bathnagar, E. Gross and M. Krook. It looks as

(109)

(0 £/ 205OP = v (o, - Noborp):
where
(110)

b = (121 To)2) expl- (mey (v-ve)2)2T o]

vy = UN[dpvfy ,Ng=/dpfy



T(},B = (mq,TB +mg Te)/(mgy +mB)~ Tg= (mu’QN(l) f dp (V'Vll)z fo
For satisfying the relations (108) it 1s necessary that
(111}
Mg Ng Vg = mpNpvag

The physical meaning of quantities Vaf is clear from the analysis of relaxation processes
which were considered above using Boltzmann and Landau collision integrals. Namely Vaf-1

represents the momentum relaxation time of o particles stipulated by their collisions with 3
particles. So
(112)

veo = ma?vTe No, vio = ma2vTiNg

v, =/3vrim)e'NL/T?), v, =4/3)@r/m)e’e N,L/T "

v, =4/3me ‘N LAMT?), v, = (m/M)e, /e

vﬂl

Below these expressions will be used in all estimations.

* 11 About hydrodynamical description of collisionless plasmas

Above it was shown that the Vlasov-Maxwell equations take into account the principal
interactions of charged particles and in this sense they can describe all properties of plasmas
quite sufficiently. However this system i1s complicated yet because the distribution function
f(p.r.,t) is a function of 7 vartables. Below we will show that under the definite conditions this
system can be simplified and reduced to the the system of equation for hydrodynamical
quantities

(113)

Ng = Jdpfy(p.r.t)

NgVa = ldpvig(p.r.t)

N T = Jdp(mgv22) g (p.r.t)

Such simplification is possible in high frequency range, when the characteristic velocity is much
larger than the thermal velocities of particles, and in low frequency range, when this velocity
exceeds the ion thermal velocity but is much less than the thermal velocity of electrons. In the
second case plasma must be nonisothermal with T >> Tj.
For derivation of hydrodynamical equation we start from Viasov equation

(114)

Of /0t + vofy/or + eq {E + lc[vxB]}ofy/op = 0

In this equation particles collisions are neglected which means that the characteristical time t
and characteristical scale L, of processes must satisfy the inequalities
(115)



it >>Epvap, Lo <<vTo/ZRvVop
Multiplying equation (114) on | and v and integrating over momentum we obtain

(116)
Ng/ot + div Ngvg, = 0

ONg Vi/ot + al'lmjlarj = e Ng/Mg {E + 1/c[vyxB]}

where
(117)

Mgij =1 dp(vivjf(p.r.1)

The first equation coupled the first moment N, to the second one Nyvey is the continuity

equation and it is closed in hydrodynamical sense. At the same time the second equation which
connects the second moment Nu vy to the third INyjj occurs nonclosed. The problem of
deriving hydrodynamical equations consists closing this equation.
In collisionless plasmas exist two possibilities of closing this equation. First concerns the high
frequency and fast processes whereas the another concerns the low frequency and slow
processes.
In the high frequency range when

(118)

Lo/t~ w/k >> vTq

the thermal motion of particles can be neglected and fy ~ & (v-vy). Then from (117) it follows
(119)

Mg = NoVaivo

Substituting this expression into the equation (116) we obtain the Euler equation
(120)
OVe/Ot + (v . VIvg = (eq/ mg ){E + (1/c)[v o xB]}

The system of equations (116) and (120) together with the definitions of charge and current
densities
(121)
P = Zg egNg, J = ZgeaNavo,

form the complete system of hydrodynamical equations. It is easy to notice that this system
coincides with two-fluid hydrodynamical equations if v — 0, or in other words with the I.
Langmuir hydrodynamics of collisionless plasmas.
The other limit, when the hydrodynamical description of collisionless plasma is valid, 1s the low
frequency imit, when

(122

vTi << o/k <<vTe



The ions in this limit can be considered as a "cold" one, therefore for them the hydrodynamical
description 15 valid (v; = v, N; = N)

(123)
JON/ot + divNv =0
oviot + (vWiv = (e M){E + (1/c)[vxB]}
As about electrons, in the hmit (122), the Vlasov equation
(124)
vofe/or + (e/m){ E + (1/c)[ vxB]ofa/Op = 0
can be solved exactly.
Let us begin from unmagnetized electrons and purely potential field E = -V¢. Then the
solution of (124) can be presented as
(125)
fo = (Neo/(2nmTe)3/2) exp(-mv2/2T, - €i¢/Te)
From this follow
(126)

Ne = Negexp(-ed/Te), VNg/Ne = eE/Te = -eVH/Te

It must be noted that in this presentation we supposed T, = const,which is the consequence of

the right inequality (122).
Now we can write the system (123) in a purely hydrodynamical form ( remind that B = 0)
(127)
AN/t + divNv =0

IRt + (VW) = -lej/e] VNT/NM

If one introduces p = MN and P = NT,, where T, = const  isothermic approximation) then

this system coincides with the one fluid hydrodynamics of usual liquid.
Quite analogically can be derived the one fluid MHD equations for nonisothermal , T >> T;,

and magnetized collisionless plasmas under the conditions

(128)
kvTo =~ VTa/ko << Qg Qj << oy

This system of equations coincides with Alfven hydrodynamics of ideal liquid
(129)
IN/Gt+divNyv =0
v/t + (vV)v = -lej/e] VNTo/MN + (1/4xNM)[ BxrotB]

dB/ct +rot [vxB] =0, divB =0




Here p=NM , P = NTg, Te >> T, and T, = const

This derivation of MHD equations was done only in 1956 by V. Silin and Y. Klimontovich.
Only afier the publication of their paper it becomes clear why the applications of these
equations to the low frequency phenomena in the collisionless ionospheric plasma occured so
successful. Quite analogically the above given derivation of equations for "cold" two fluids
hydrodynamics clarifies the success of their application to the problems of fast radiowaves
propagation in the ionospheric plasma.



LECTURE 3

Linear Electrodynamics of Isotropic Plasma

* 12 Linear electrodynamical properties of isotropic collisionless plasma

Below it will be shown that the Vlasov-Landau or Vlasov - Boltzman kinetic equations give
the completely adequate descriptions of all properties of gaseous plasma. In this section we will
begin from collisionless isotropic plasma and for this reason we will start from Vlasov equation
(130)

Ot /0t + vofg/or +eq/mg {E + l/c[vxB]}ofy/ov = 0

where a = e,1. For thermodynamically equilibrium plasma in the absence of external fields

(131)
foa = (npg/(2rmg T ) 3/2) exp(—mavzr’ 2T
Moreover we suppose that plasma is quasineutral
(132)
L €NOg, = €Nge + €iM0j = 0
Let now consider small deviation from fj), or fo = fp+ 6fce. Then for dfar, we obtain
(133)
Here we suppose that in linear approximation 8fa ~ exp(-iot+ik-r). As a result we have
(134)
ofy =-(1eyE ofpg/Op)(e - kv)
By substituting this expression into the relation
(135)
Ji = o 2eq Jvidfy dp = o‘ij(u),k) Ej
we find the conductivity tensor aj; (®,k) and then the tensor of dielectric permittivity
(136)
gij (0 k) = & + (4ni/o)oy(0,ky =8 + Zg (dmeq2lo) dp( v; 6fygy (o -kv)
it 1s obwvious that
(137)

&ij (0.k) = (8;; - (kikj/k2)el(w,k) + (kikj/k2ek(w, k)




where
(138)

e (@,K) = 1 - L (0] 2/02) I(@/kVTe)
el (0,k) = | + S (0L 2/k2vTo I | - J(0/kvTg)]

When we integrated (136) we took into account the causality principle and the pole @ = kv
was avoided in the sense of Landau (105). Namely as a result of such consideration it appears
in (138) the function J(X), which has not only reat part for real X, but also imaginary part
(139)
1+ 172+ . -iNn/2 e(-X2/2)X when [X]|>>1
I(X) = Xexp(-X2/2) ioo—[x dt exp(t2/2) =

SiN(/2)X + X2 when (X|<< 1

The imaginary parts for Im g >0 corresponds to the wave dissipation of small oscillations in
plasma. This dissipation is stipulated by Cherenkov absorption.
Let us now investigate different limiting cases of ® and k and clarify the principal meaning of
el(o,k) and &!f (@,k). First of all let us consider low frequency (static) limit @ — 0. Then
(140)
el(0.k) = 1+1/k2rp2)

limg_y0 etT(0.k) = | + iV(n/2)op ¢2/okvTe = 1 + i(4ncT(0,k)/w0)

The first expression coincides with that obtained in the static limit from the model of two fluids
hydrodynamics and corresponds to Debye screening of the field for static point charged
particle in a plasma. So we see that the Vlasov equation gives the correct description of
electrostatic properties of a collisionless plasmas, or for the fields E = -V®.

More interesting phenomenon is described by the second expression (140). From this
expression we see that the collisionless plasma in the static limit has the finite conductivity in

connection with the transverse electric field, div E = 0, which is the function of k
(141)

olf(0,k) = (Vu/2)e’npe/mkve

This conductivity is stipulated by the Cherenkov dissipation and leads to the anomalous skin-
effect for quasistatic transverse fields in a plasma, the new phenomenon which arises only in
collisionless plasmas. To show this let us write the material equation (Ohm's law)
corresponding to (141) in the form

(142)

rotj = -(N1/2)eZngeE/mv Te

Using this relation from the Maxwell equations can be obtained the following equation for B

(143)
rotrotrotB = (475/(:2)(\frc/?.)(eznoe/mv]“e)(aB/at)



This equation leads to the wellknown formula for anomalous skin-effect- penetration of low
frequency transverse field in collisionless plasmas (for E~exp(tot+ik-r))

(144)
k3 = i(Vi/2)o] o200/ ¢* vTe = Ax = VImk—(c2vT/ow) o213

Namely this formula was firstly obtained by A Pippard in 1949 who aiso gives the physical
explanation of the phenomenon. But the mathematically correct consideration of the boundary
problem of field penetration into the collisionless plasma was done by E. Reuter and E.
Sondheimer in 1958; they show that the anomalous skin effect takes place if

© <KvTe<0] .

Let us consider now the problem of waves propagation in collisionless isotropic plasma, or in
other words, find the conditions for existence of nontrivial solutions of type exp(-iot+ik-r) in
such a plasma in the absence of external field sources. These conditions follow from the field
equations which in the space (v k) look as

(145)
{k25j; - kikj - (02/c?)ejj(0,k) JE; =0
For the isotropic media with g;; as (137) this system separates into the two independent
1
equations
(146)
El el(w,k) =0
EtrkZc? - ol (0,k)J2=0
The first describes the longitudinal field with E // k and the condition for existence of non
trivial solutions 1s
(147)

sl(u),k) =0

This equation 1s called as dispersion equation for longitudinal waves in an isotropic plasma.
Quite analogically from the second equation we obtain the dispersion equation for transverse
(E 1 k) waves

(148)

k2¢2 - 02etf(w,k) = 0

In the isotropic plasma this type of waves occurs twice degenerated.
Let us now consider very shortly the spectrum of electromagnetic waves in an isotropic plasma
and analyze the solutions of the equations (147) and (148).

1- Longitudinal Waves :
a) Let us begin the analysis of (147} for the high frequency range, ® >> k vTe j, when

(149)
el(w.k) = 1 - (0] o2/02)(1+3(k2vTe2 Vo JHV(/2) o e20/k3vTed Jexp(-02/2k2ve?)



Then from {147) it follows {0 — w +i6)
(150)

0% = o e + 3k3vTe?
5 = -(Nu/8) (o e/k3rped) exp(-3/2-1/2k2rpe2)

These coincide with (103) and (106) as it should be expected. They describe high frequency
plasma oscillations and their absorption due to the Cherenkov mechanism of waves absorption
by plasma electrons. Wave damping increases with the increase of k and in the short wave
range when krpe >>1, these waves occur aperiodically damping. This spectrum differs from

that obtained by 1. Langmuir by the factor 3 instead of 1 in o(k)
b) In the intermediate frequency range, when v << w/k << vTe, we have

(151)
el = 1 - 012/02 + o e2/k2vTe2(1+HV(R/2)0/kVTe)
Substituting this expression into the equation (147) we obtain (0 —>w + i8)
(152)
k2ve2 if k2rpe? <<1
w?= oLi2H1 +op e/ k2vTe?) =
o2 if k2rpe? >>1
§5=-J(n/8)fei/ef m/M o /KV,]
Namely the long wave range of these oscillations
(153)

o=kv,, §= ~J(1t/8);ei/e| m/M o

was investigated by G.Gardeev in 1954 who showed that the frequency spectrum w(k) differs
from that obtained by I. Langmuir in the model of two fluids hydrodynamics by the
dependence only on the electrons temperature To and nondependence on T;. Moreover as
® >> kvrj the inequahty To >> T; must take place. But under these conditions, the I.
Langmuir result occurs to be correct. Besides G.Gardeev showed that these oscillations are
damping, the reason of which is the Cherenkov absorption of ion-accoustic (just same as that
called by I. Langmuir) oscillations by the plasma electrons. The frequency spectra (150) and
(152) are presented on the Figure 4.
¢) Finally if ® << kv then the first expression of (140) is valid and the Debye screening takes
place.
2. Transverse Waves
Let us now consider the transverse waves and analyse the equation (147)
a) In the high frequency range @ >> kv e, when

(154)

elf(0) = 1-0 g2/

from (148) follows



(155)

02 = o o2 + k22
We see that the phase velocity of waves is higher than the light speed. Therefore interaction of
such waves with charged particles (emission or absorption) is impossible. As a result in a

considered case of collisionless plasma they don't damp and besides the spectrum (155) exactly
coincides with spectrum of transverse waves obtained in the model of independent particles in

collision]ess plasma (lim ve — 0). The spectrum is presented on the Figure 4.
b) Concerning low frequency range when o << kvye = vTe0] ¢/c the expression £ coincides
with (140) corresponding to the anomalous skin effect considered above.
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Figure 4

* 13 Collisions influence on the oscillations spectra of isotropic plasma

Below we will restrict ourselves by considering only the qualitative effects caused by the
particles collisions in a plasma and BGK collision integral will be considered. Concerning the
completely ionized plasma, only the corrections will be given. Thus we will start from the

Vlasov-BGK equation
(156)

/Ot + vl /Or+eg { E+H(1/6)[vxB]} /0P = -V (fy - Negboy)

Here
(157)

f0 = (12mg T De(-myv2/2Te)

The equilibrium distribution as it 1s easily seen coincides with Maxwellien foo, = Nogbq0-
Therefore for a small perturbation of type 8fy ~exp(-iot+ik-r) from (156) we obtain
(158)
-i(0 - kv)Sfy + ey EOfp/dp = -vo ( i - 00 | dp 86y)




Here for simplicity the isothermal model of BGK integral was used, that means Ty = const.
The equation (158) is the Voltera type integral equation which can be easely solved. We omite
the solution and give the final results - the expressions for &l (©,k) and &' (0.k)

(159)
el (ok)y=1+ aZ(mLezlkszaz) x
((1-3((0Hive o) kvT OV (1-(ivgo/(0tivgg) IF((o+iveo)kvTg)))

ell(0,k) = 1 -X o o e 2Ae(@+ivg) Ho + Ve ) (KvTo))

As it should be expected for the collisionless plasma when vy —> 0 these expressions coincide
with (138).

Let us begin the analysis of the expressions (159) in the static limit when o— 0. It is easy to
show that independently of the ratio vy /kvT, we have

(160)
el(0,k) = 1+1/k2rpe2

Thus in the static limit for collisional plasma as for collisionless one, we have Debye screening
of potential fields.

Quite another situation arises for !f (k). The above result (140) corresponding to the

anomalous skin-effect for low frequency transverse field in a plasma is correct for collisional
plasma also if

(161)
O<<Ve<VTe®] e/C

Remind that in the collisionless limit, v¢ <<, the anomalous skin effect takes place in the
frequency range © < v 0 ¢/C.
In the opposite to (161) limit when vg>vTem] o/c the anomalous skin effect is impossible. Then

in the low frequency range, ® < v, only wellknown normalous skin effect takes place and the

formuia
(162)
ell = | + (i) e2/wvep) = | + 4Tic/o, G = e2nge/mveQ

obtained in our second lecture is valid*. .
Let us now go over high frequency range and consider the particle collisions influence on high

frequency phenomena. From the expression (159) for el(w k) follows that if o~o[e >>
KvTe, Vep We find the correction to the expression (149)
(163)

Ael =i mLezve/(n3

Here we take into account also electron-ion collisions and therefore in the formula v = veg +

veff. The correction (163) leads to the correction of Landau damping (150) of plasma high
frequency oscillations



(164)
A6 = ‘Ve/2

Remind that for completely tonized plasma e= 1,96 € n,. / meff

Comparing this correction to (150) we can determine the condition when plasma should be
considered as collisional in the high frequency range

(165)

Vel ¢ > (Vrexp(-1/2k2rpe2))/(5,5k3me)
In the opposite case when the oscillations are sufficiently short wave length, particles collisions
can be neglected. Moreover the quantity (164) allows us to determine when plasma should be

considered as compietely ionized for high-frequency plasma oscillations
(166)

VefffVen = 2-1075 (nge /ng)(ZL1a2 T2} ~Znpel0lngTo2 >>1 where Z = | ej/e |

In the opposite case plasma s weakly 1onized. For example if T > 104K then plasma is
completely ionized 1f nge > 10-3 ng. At the same time, if Te ~ 108K (thermonuclear plasma)

then even at ng > 10-> nge plasma occurs weakly ionized, the electron-neutral collisions

exceeds the collisions between charged particles.
Quantitavely another situation takes place for low-frequency longitudinal oscillations when,
kvTj<<w<<kvTe, If in addition to these inequalities v; <<o and kvTe> w0 are satisfied then the

following collisional correction to the (151) arises

* Remind that for completely ionized plasma with ¢ =-¢, 6 =1.96 32“0e/ MVeff

(167)
vio for weakly 1onized plasma
Ael = i(mLi2/w3)-
8vik2vTiZ/503 for completely ionized plasma
As a result we obtain the correction to the damping decrement (152)
{168)

vio/2
4viik2vTi2/Sw2

for weakly and completely 1onized plasma correspondingly. Comparison of this expression
with the damping decrement (152) leads to the following condition:
if vifo> VZm/M |, where

(169)

- Vi0



- 8/S viikszizfm?-

Then the particles collisions determine the low frequency waves absorption and if opposite
inequalities take place the Cherenkov mechanism of absorption is dominative.
Besides from the ratio of two expressions (168) we determine the condition when plasma can
be considered as weakly ionized for low frequency oscillations and vice versa. Thus in the case
of long wave oscillations when the relations {153) are valid we conclude : if

(170)

no/nge > 1011Z2/T,T;

then the plasma should be considered as weakly ionized and as completely ionized in opposite
case. For example if Te~105K, Ti ~ 103K, Z=1 then a plasma only with ng/ nge > 103 can be

considered as weakly 1onized.
In conclusion let us analyse the properties of strongly collisional plasma. But before we’ll
consider the expressions (159) in the limit lo + Vg | >> kvTq, Where the model of two fluids

hydrodynamics seems to be valid. From (159) under this condition follows

(171)
el(o,k) = 1-Zoop o 2(0+ive)e-i(k2VTe?Vao)(©+iveo)?]

e k)=1- Ea(oLaz/(m(u)ﬁvao))

Comparing these expressions with (38) we conclude that £' (©,k) is identical whereas elw,k)
differs by the factor vyp/(0+ivgy) of the term taking into account the thermal motion of

particles.
This difference is very principal. Moreover the correctness of the expressions (171) are defined
by the condition | + iVa,a' >> kvte and therefore the expressions (38) are correct in two

cases. when v >> © and the mentioned factor becomes equal to unity, or when © >>vq,
kvT and the thermal motions of particles is a small correction. In the first case
(172)
elfo,k) = 1-Z40 ;2Hi0vg-k2vTy2)

This expression coincides with (41) which describes the diffusion processes in a plasma (see
lecture 3). In the opposite limit when © >> vy, kv thermal motions of particles can be
neglected and the model of independent particles considered in the lecture 2 1s valid.

Linear Electrodynamics of Magnetoactive Plasma

* 14 Linear electromagnetic properties of collisionless magnetoactive
plasma

A magnetoactive plasma represents a system with practically infinite number of degrees of
freedom. In a magnetized plasma there exist different types and different branches of



oscillations and waves. It is obvious that the investigation of all these oscillations in detail is
impossible in one lecture.

Therefore we will restric ourselves by the consideration of only the most specific phenomena
which characterized magnetoactive plasma and which every physicist must know.

First of all it must be noted that the charged particles rotate around the magnetic field lines.
This rotation can be considered as individual oscillations of particles with frequency equal to

the well known Larmor frequency eyBg/mgc = Q. It is easy to understand that if the
electromagnetic field frequency is ® ~nQ), then the resonance interaction between the field
and charged particle must take place. As a result the dielectric permittivity Ejj (w,k), 1its
hermitian as well as antihermitian parts (which describes energy absorption) have the poles at
~n€2y. In the lecture 2 we showed that such poles arise in the model of independent particles,
but only for n = £ 1. Below we will show that the kinetic consideration leads also to the
appearence of the poles at n #1.

The second obvious phenomenon which arises in a magnetoactive plasma is the magnetic
pressure B02/8n which follows from the elasticity of magnetic field lines. We have already met
this phenomenon in the model of independent particles and namely it is the reason of Alfven
type oscillation. Of course this phenomenon exists in two fluids hydrodynamics as well as one
fluid (Alfven) MHD, and below it plays a very important role also in a kinetic theory of plasma
oscillations,

Finally it is easy to understand that the behaviour of magnetoactive plasma at © = nQ, must be

somewhat like to the behaviour of isotropic plasma at @— 0, because the Larmor rotation
remind the Doppler shift for electromagnetic fields. Below this will be shown by considering
the field penetration (skin-effect} into the magnetoactive plasma.
As in the previous section we begin from collisionless plasma described by the Vlasov equation
(130). From this equation we obtain the equation for equilibrium distribution function f(p)
(external magnetic field By is proposed to be parallel to OZ axis)

(173)

e[vxBg] ofpe/Op = -Qg /09 =0

Here ¢ is the angle in the cylindrical frame : v, , v,=v | cos0, Vy= v | sin . The solution of this

equation we have choosed as
(174)

foo, = (Nog/(2mmg T )3 2)exp(-my v3/2T )

Besides, it was supposed that the plasma is quasi neutral, or ¥ e Ngy=0.
*The detail consideration of linear electromagnetic phenomena in magnetoactive plasma, can
be found in many text book on plasma physics.
For a small deviation from f{y, which is taken as 8fy, ~ e-@tF1KF we obtain
(175)
-i{w -k-v)dfy -0, 0y /C¢ = -eq Edfpe/Op

Taking into account the obvious condition of periodicity
(176)

Of (@ +2m) = dfy ()




R A b

the general solution of (175) can be written as
(177)

Sfy=eq/Qy o/® 4o’ E(Dfpe/Op) expli/Qy I do"(0-kv)p']

Here we suppose that &fy () = 0

Substituting the expression (177) into the formula for induced current (135) we find plasma

conductivity and then the dielectric permittivity
(178)

eij(m,k) = 5ij + (4n/w) g {0,k)
=Bjj +2, (4neg 20 Q) [ dp Ho/deqvi g fede'vi(e') exp(-i/Qqy ol¥" do"(@-k ")

It can be easily shown that this tensor has 6 independent components: €xx,eyy,€zz,6xy = Cyx
Ezy = -Byz, Exz = £z ( remind that in the case of isotropic plasma we have only two

components g and el). However below in general we will consider only two of them. The first

quantity
(179)

£ 1(0,k) = Exx Hiyy=1+ (21 2/0)] (Foa/Pea)(V 1 2H0+Qq-kzv,))dp
=144 2(OLg 2/0(0Q)) (0t Yk VT o)

describes the purely transverse field (E L k) depending only on the parallel coordinates (k,
=0, ks # 0). Whereas the second one
(180)

8(0,K) =kjkjejj(o,k)/k? =1 - T o (deg 2/k2)dpdfyy/Oeg1-Zn 03n2(be ) (@-nQy-kv]

=14Zg 0L 2K 2vT o2 [1-E (©(0-nQu))Ap(2e) I(0-1Qx)/kzVT )]

describes purely longitudinal field (E =-V¢, E // k) arbitrarily depending on coordinates
(k| #0, ky/ = 0). Here by = k| v /Qq, Zg=k 2 vI2/Q2 and Ap(z) = In(z)exp(-2), In(z) is
the Bessel function.

First of all it must be noted that from the expressions (179) and (180} follows that their poles

really correspond to the one particle cyclotron resonances at
(181)

o =n{2y

These poles describe one particle oscillations and therefore in the ranges of these frequencies
the resonance waves absorption must arise. Indeed from the integrand (179) and (180) we see
that under the conditions

(182)
© - nQy -kzv; =0

the resonance wave absorption takes place. It follows from the Landau prescription that
(183)



1w -k4v4 - 1Qq) = (A0 -kgv-nQy N-ind(o-k;v,-nQy)

At n=0 the absorption is coming from the Cherenkov mechanism considered in the previous
section, whereas the absorption at n#0 is known as cyclotron absorption. At the same time, the
last one can be treated also as Cherenkov absorption taking into account the Doppler shift

n{), stipulated to the one particle oscillations.

More obvious the Doppler shift is seen from the character of waves propagation described by
the dispersion equation
(184)

[ k26ij - kikj -mzaij(m,k)l =0

For purely longitudinal propagation when k | =0 this equation takes the form
(185)
k2¢2 =0l

which corresponds to the purely transverse waves. In the frequency range 0+Qo<<k,VTe

from this equation in taking into account (179) we obtain *
(186)

k2¢? = i(op e2o/kvTe)Vr/2

This equation coincides exactly with (144) and describes the anomalous skin-effect. The
penetration depth obviously coincides with (144)
(187)

bt = (SmkY 1 = (Vr/2)o g2o/c2ve) 13

At the same time we can rewrite these relations in the language of frequency spectrum, near
the cyclotron frequencies when (0t Qg)<<k,vTe from (185) we obtain
(188)
0 = -i(k3c2vTe/op 2)V2/n

We can say that near the cyclotron frequencies, there exist cyclotron waves which intensively
are absorbed by the plasma electrons. When the frequency is shifted, this absorption decreases
and in the frequency range far from the resonance frequency, when @ >> { © + Qg| >> k,vTe it

becomes exponentially weak. Then from (179) we have
(189)
k2¢2 = (0] e20/(0EQe) 1-iVR/2((02Qe) kvTe)e-((0+02e)2/2k2vTe2)

From this equation we find the spectrum of cyclotron waves (w+ i6)

(190)
0 =t - 0 e20/k2c: § =Vn/2(0] o20/k2e2)(1/kvTo)exp-(0+Qe)2/2k2vTe2)

*For simplicity we consider the waves only near electron cyclotron frequencies.



Sometimes these relations are presented in the optical language for the reflection index and
absorption coefficient ( k=on/c, n— ntix). If { 02| >>novye/c, then

(191)
n2 = (oLesz(wiQe), x =(\/n/S)(mLezc/(oszenz)exp-((miQe)2c2/2n2m2vTez)

In the opposite limit, when |01Qa|<<nwVTe/c, this quantity occurs to be essentially complex
(192)
n3 = i(\’n/Z)mLezc/cosze

On the Figure 5 the dependence of complex reflection index n on the frequency shift @-)g 1s
presented

Figure §

Let us now pass to the quasi longitudinal oscillations of magnetoactive plasma which exist
under the conditions of | ® -nQ| << ke, or they can be considered as slow waves (in taking

into account Doppler shift). In the statical case, © -» 0, from the expression (180) follows
(193)

&(0.k) = 1 + 1/(k?rp?),

which means that the electrostatic field of a point charged particle in magnetoactive plasma as
well as in isotropic one is screened and the field penetration length is equal to the Debye
length.

From the expression (180) it follows that the one particie cyclotron resonances at @ = n€)y
take place for the longitudinal fields also. As a result near the cyclotron frequencies there exist
the longitudinal cyclotron waves. Below we will show this for the purely electron plasma and
transverse propagation of waves (k; = 0). The dispersion equation for such waves looks as

(194)
£ = I+ (0] o2Kk2VTe2) [ 1-nE(0/(0-nQe))An(k2vTe2/C2e2)] =

1 -2 0o 2%(0 o202 2/(k 2V 2(02-k2Qe ) A p(K2vTe2/Qe2) = 0



The solutions of this equation are known as Bernstein oscillations in honour of [. Bernstein

who theoritically predicted them in 1959, They are presented on the Figure 6.

In conclusion of this section we will discuss very shortly the another branches of

electromagnetic waves of magnetoactive plasma which every physicist must know. In the first

turn let consider the oscillations of "cold" plasma, or in other words, the limiting case when
(195)

(0-nQ VK VT >> 1, k| 2vT 2102 << 1
ot Kz¥Ta 1"VTa ™ eg
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Figure 6

In accordance of these inequalities the phase velocities of waves in taking into account Doppler
shift are supposed much larger than the thermal velocities of particles. The dielectric tensor
(178) in this imit coincides with the well-known expression considered in the lecture 2 when
the model of independent particles was discussed (of course for v, — 0)

(196)
e g
e, ={-1g ¢ O
0 0 g,

e = 1 -Zopo* (07 - Qy?), 872 0Lq> Qu/((02-Qg2), /= 1-Zop g 2/o?

In the lecture 2 the waves described by this tensor were investigated. By this reason here we
will restrict only to the statement that inequalities (195) represent the validity of the results of
these investigations and more generally the validity of the independent particles model for
describing the properties of magnetoactive plasma.

The another simplest model which was considered in the lecture 3 is the Alfven one fluid MHD
model for describing nonisothermal T, >>T,; magnetoactive plasma. It can be easely shown

that this model 1s working under the condition
(197)
02 << Q2 <<w 12, k12 vpe2/Q2 << |, v i << 0/ky <<vTe

Then the tensor (178) looks as



(198)

E, O 0
i = 0 EYY EYZ
0 g, g,

Eyy = Exx = a)Liz/Qiz, Ezy = €yz =iooLesz/kz 0Qe, €77 = -coLizlmz + (Jt)Lez/kzz"Te2

It must be noted that here we compietely neglect the dissipative processes due to the
Cherenkov mechanism of wave absorption. Only in this case the expressions (198) provide
exact correspondence to the ideal MHD model considered in the Lecture 3.

* 15 Influence of particles collisions on the properties of magnetoactive
plasma

Passing to the collisions of particles we wish to notice that as above we will restrict ourselves
by considering only a weakly ionized plasma and therefore only the Vlasov equation with BGK
collision integral will be solved. This equation for a small perturbation of distribution function
looks as
' (199)
+Hw -k-v)8fy+eq Edfq/Op - 1924,06{y/0¢ = iV (8f0-funddpSEy)

fro = (1/(2nmg To)3/2)exp (-mgv2/2Tg

This Voltera type integral equation can be easely solved. We will present here the result of the
solution and calculation of the dielectric tensor. Moreover as above we will write only £ and

€. The quantity €| 1s equal
(200)
e(0.k) = 1+ (Sg [(0Hivg Vo) exx(®) -1 £ iey, (0)]=

- qZ(OLe /0 [(0+iv0)t Q) (@ Q0 ivy0) Kz VT )

Here g4, ® and axy“ are the components of dielectric tensor of collisionless plasma with
changing © —> o +ivg.
This quantity describes the purely transverse fields depending only on z (or k| =0, k,#0). For
the quantity &(w,k) which describes purely potential field ( E=-V¢) we have (k| #0, k; # 0)
(201)
e(wk)=1+ aZ(mLaz;’kszaz) X
{1 -nZ(0+ivy o/(0+ive Qe NARK | 2T 2/ Qe 2)I((0+ive0-nQg VkzVTe) b X
{ F-pZivgo/(etivgo -nQy)I(0+ivgo-nQe)kyvTe) 3 -1

As in the previous section let us consider the transverse field behaviour near the electron
cyclotron frequency, lo -nQa| << w. Substituting the expression (200} into the equation (185),

we obtain that, if ve << kvTe ~ VTe/Asx (collisionless plasma), Au 18 given by the relation
(187).



However if the opposite inequality takes place (collisional plasma), from (185) we obtain the
normalous skin-effect for field penetration

(202)
Arsk = I/Smk ~ (C?'VeO/(D(DLez)}/z

Quite analogical to (188) we can write this relation in spectral representation
(203)
o = -ik2c2vep/of o>

In conclusion of this section let us consider the behaviour of potential field in a collisional
magnetoactive plasma, described by the expression (201). In the static limit, when w—0 |
independently from the ratio vy n/kvy we have

(204)
e(0,k) = 1+1/k2r[)2

This means that Debye screening of the potential field of static point charged particles takes
place as it was shown for isotropic plasma above.

Analogical to the isotropic plasma can be considered the problem of particles diffusion also.
For this aim the expression (201) must be written in the himit ©, kv << vy, Qg

(205)
8(0,K) = 1+igTop o 2k>VTo 2 (k) VT2V (Va0 + Qa2 kv To P Vo)

(© Fivgg(k | 2T 2 Q02 +ve02) oz 2vTo2 Ve o))

The poles of this expression describe the monopolar diffusions of electrons and ions in a rare
plasma (mLaz << kszaz)
(206)
ANG/ot -D | gA Ny - Dy (02N /022=0

Here D| o = VTOLZVCIO /(Qaz +Va2) , Dy = VT0L2 ! Va0

represent the transverse and longitudinal monopolar diffusion coefficients correspondingly for
o = e,i. At the same time in the opposite limit of dense plasma when k2vT,2 << of o= the

equation g(w, k) =0 describes the ambipolar diffusion of particles in the magnetoactive plasma
(208)
ON/Ot - D | 2A | N- Dy 82N/z2 =0

Therefore the coeflicients of ambipolar diffusion are equal to
(209)
D12 = (veo(vTi~*+vs M(Ve0VioH(€2e€20)). Dyja = (vTi2+vs2)/vig

It can be eastly confirmed that there is the well-known Einstein relation between the static
partial conductivities of plasma particles and diffusion coeflicients (o = e.1)
(210)




Dijcx =T/ eazNa)Gija(O)

This relation is correct only in static limit and only in thermodynamic equilibrium. Then
(211)
0 1 a(0) =e*NoVoro/ Mo ( Q> +Va0); o7/ a(0)=eq*Ney/mo v

represents the transverse and longitudinal partial conductivities of charged particles of type
a=e,l.



