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ABSTRACT

These lectures are devoted to the basic plasma theory which is presented in his
historical way of development. They consist of 3 parts. The first part ( lectures 1 - 7 ) concerns
the thermodynamically equilibrium and spatially unbounded plasmas. The second part (
lectures 8 - 13 ) represents the theoretical description of stability problems for nonequilibrium
plasmas - magnetically confined and spatially bounded plasma, stimulated radiation of fast
charged particles and plasma-beam interaction, quasilinear theory of plasma oscillations and
non-linear phenomena of wave-wave interactions in plasmas. The third part (last 2 lectures) is
devoted to the concrete problems and their solutions are given. Finally, in the appendix the
short history of fundamental papers on the kinetic plasma theory beginning from L.
LANDAU’s and of course A. VLASOV's papers are presented in the context of the present
day concepts formulated pnimarily by N. BOGOLYUBOV m 1946.







PREFACE

These lectures were given by Professor A. RUKHADZE for the researchers of
"ECOLE -POLYTECHNIQULE" in 1990.

They were written and corrected by F. AMAUDRIC du CHAFFAUT | who solved all
the exercises as well.

The lectures present the basic plasma physics i its historical way of development and
consist of all necessary knowledge about plasma electrodynamics. The appendix to these
Jectures is devoted to the history of fundamental papers on the kinetic plasma theory beginning
from L. LANDAU's and of course A. VLASOV's papers and finishing by the well-known N.
BOGOLYUBOV's book in which the general method of derivation of the VLASOV's kinetic
equation as well as BOLTZMANN's equation was developed.

We hope that these lectures will be useful for young researchers of
"ECOLE - POLYTECHNIQUE ".

We are grateful to Dr B. SHOZR! for checking the manuscript in print and also Ph.
AUVRAY and M. BIRAU for helping us in preparation of these lectures.

F. du CHAFFAUT A. RUKHADZE
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PART 1

Basic Equations and Electromagnetic Properties of
Thermodynamically Eguilibrium
and Unbounded Plasmas
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LECTURE 1

Plasma and its Parameters. Gas Approximation

* 1 What is the "PLASMA"

The first mcomplete defimiton of 7 PLASMA " was given by 1. Langmuir in 1923.
According to this defimuion " Plasma is a shine gas consisting of electrons, several types of ions
and neutral atoms and molecules . But people saw the plasma and moreover used it, more
than thousand and thousand years before I Langmuir. It is obvious that the first who saw the
plasma was the God. Creating the Earth and Water and Sky. he noticed that everything was at
dark and sad " let to be light." Then he noticed the Sun in the sky. Of course it was the solar
plasma. But this phenomenon occurs outside of people’s understanding for many thousand
centuries. Moreover they did not suspect that they dealt with real plasma when they observed
the lightning and even used it.

The first mention about ionized gas of particules was done by Q. Heaviside when he
predicted more than 100 years ago that around the Earth at the altitudes of 300-400 km there
exists a layer of sufficiently high density ionized gas, which reflects the radiowaves. This layer
1s known as ionosphere. O. Heaviside not only predicted the existence of ionospheric F-layer
but also gave explanation : "the origin of this layer is the atmospheric gas ionization by the
ultraviolet Solar radiation”. According to the modern representation the concentration of
charged particles exceeds (ng~n;) ~ (1 to 3)-10 6 ¢m=3 | their temperature § ~(1-2)-10 3K
and T;/To ~ 0,3. At the same time the concentration of neutrals 119 is ~109 em=3 and their
temperature Tg ~ 200K or the ionization degree ~ ng/(ng+ng) <10~ (weak ionized gas). The
Earth magnetic field at this altitude is Bg ~ 0.5 Gauss and therefore the pressure ratio will be 3
=8 n (ngtny) Te/ B()“ ~ 10 -4 << |. Thus for the F- Layer the electron Langmuir frequency

®,, =y4mr e’ n, /m~ 8-107s"1_whereas the electron collision frequency Ve ~ 3-103 571 which

provides the stable radiocommunication on the Earth in the range of radiowave lengths 20m <
A < 2000m.

Insptte of very important role of the ionospheric F-Layer for mankind the regular
investigations of the parameters and properties of this plasma were begun only in the 60-s when
the rockets and atmospheric probes appeared. Much before, the properties of ionized gas or
plasma were investigated in the laboratory experiments when the physicists tried to create
artificial plasma.

The most significant achievement in this way was received by 1. Langmuir at the
beginning of 20-s. He introduced the conception of plasma as a gas of charged particles and
neutral atoms and molecules. their concentrations ng, nj and ng and temperatures T,, T; and
To. Besides he discovered in the gas discharge plasmas the high frequency oscillations with
phase velocity much larger than electron thermal velocity, not depending on the masses of ions

. “ .
and neutrals . Moreover he measured their frequency w = w,, = /47 ¢ n_/m, that is known

as Langmuir electron frequency.

I. Langmuir described also the low frequency oscillations in the gas discharge plasmas
with hinear dispersion dependence » = k-vg ( like sound waves ). The phase velocity of such
waves vg 1s much less than electron thermal velocity and is of the order of ion thermal velocity.

13
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I. Langmuir was sure that these waves represent the usual sound waves and used
hydrodynamical expression for their description:
n

V= P p =y (AT M

Here y = ¢ ¢y. as it was supposed by 1. Langmuir. Unfortunately this assumption Is incorrect

and only in 1954 the correct expression for v, was obtained by G. Gordeev, who revealed the
Only i s W )

physical sense of low frequency oscillations in this type of plasmas.

Many types of gas discharge plasmas are known today. They are created by different
types of ionizing radiation: microwave and optical discharge plasmas, radiofrequency and
direct current gas discharges. electron and ion beam discharges and etc. They have very large
applications in physics and technology: light sources and current commutators, plasma-
chemical and nuclear fusion reactors, plasma accelerators and "fhrusters” are based on gas
discharges. Therefore. the great interest of scientists and engineers in the plasma physics and
technology 1s natural.

The parameters of gas discharge plasmas are numerous i a wide ranges. Thus in the
neon lamps ng—n;~10 11 10 13 em-3, np~3-10 13 t0 10 16 cm -3 ( or Po~10 -3 to 1 torr),
T, ~10 4 to 10 3K ( or T ~1 to 10ev) and T,~1000K ( or T; ~0.1 ev). In other words plasma
in the neon lamps usually is a low density weakly ionized and highly nonisothermal with T, >>
T, On the other hand, in the MHD energy convertors the plasma has high density and is
practically completely ionized ( ne-nj~10 18 om -3, ng~ 10 19 ¢m-3), and very low
temperature To~Tj~T~0.2 to 0.3 ev. At the opposite of the ionospheric plasma, which is
practically unbounded, the laboratory gas discharge plasmas are essentially bounded, their sizes
don’t exceed several centimeters or decimeters ( plasma in MHD convertors)

The thermonuclear plasma deserves a specific attention, the plasma is very hot in the
thermonuclear devices. The idea of magnetic plasma confinement and initiation fusion reactions
in a hot plasma was proposed at the beginning of 50-s by A. Sakharov and 1. Tamm in USSR
and L. Spitzer in USA. There exist different types of thermonuclear plasma reactors. The most
popular are tokamaks, toroidal magnetic confinement (mirfor) systems. Plasma in the
thermonuclear devices must be very hot, To-T;~10 8 K~10 kev, and at plasma density n~1014
cm-3 the confinement time, according to the Lawson's criterium, is

(2)
nt > 10 14

which leads to 7 >1s. The strength of magnetic field By ~ 40 to 50 KGauss which provides the
fulfillment of the inequality B = (8anT)/Bg2 < 10 -2 <<1.

The very interesting alternative method of initiation fusion reactions is the so-called
inertial confinement and heating of solid target ( d-T tablets). The confinement time of such
dense and hot plasma ( n ~ 10 23 cm=3 T ~ 10 kev) is less than inertial time, or T < alvg,
where vg~10 8 cm/s is the sound velocity and a is the target radius.Taking into account
Lawson's criterium one can estimate T ~10 9 s = 1 ns and a < vgr ~ 0.1cm. The energy mput
necessary for heating of such a target plasma is about Q = 4/3(na3nT)~ 1 MJ and heating
source power Py, ~1015 W,

14



In 1964 Soviet physicists N. Basov and O. Krokhin proposed to use the very powerfull laser
radiation as a source for target heating and initiating the thermonuclear reactions. The another
method of heating was proposed in 1970 by H. Winterberg (USA}) and E. Zavoskiy ( USSR),
they proposed to use for this aim a short pulse (T 10-7s) of very powerfull relativistic electron

beam with Py, =101+ W and Q - 10MJ

In connection with the thermonuclear plasmas it must be mentioned that the sun and
stars are natural thermonuclear reactors. In the inner part of stars. plasma is very hot T~ 10to
1000-10® K and very densen - 10 2410 10 26 c;m -3 whereas on their surfaces T ~ 104 K and
density ] to 10 em=. Investigations of the stars plasimas and inter planetary plasmas is the main
goal of Astrophysics.

In conclusion let us discuss the parameters of solid state plasmas i metals and
semiconductors. In solid state the real particles are placed in a periodical field of lattice
(crystalline) and therefore one can say about fermion type excitation with positive (holes) or
negative (electrons) carriers. There arises complicated energetical structure in which  the
effective masses of carriers are determined as my = ( E)zai P)/@Pz) '], where e(P)
are the energy spectrum of carriers in the conductive zones. Usually in a semiconductor my ~
m ( is of the order of the real electron mass) whereasm_~0.1t0 0.0l m. At the same time, in
metals exist only negative carriers with m_ ~ m, and the wide band of conducting zone is
practically infinite. For description of conducting media usually, the conception of carriers is
used: "electron-hole” plasma in semiconductors and purely electron plasma in metals. However
it must be done very accurate
Thus from above discussion it is seen that plasma is very wide spread in nature, more than 99%
substances of the Universe exists in a plasma state. Therefore, it is natural that a plasma is very
often considered as the 4-th aggregate state of matter.

* 2 Plasma as a gas of charged particles

Below we will consider plasma as a gas of charged particles. What does that mean? For
clarifying this problem the interactions between the plasma particles must be considered. Let us
begin from neutral particles - the problem already has been investigated by great L. Boltzmann.
He understood that the interaction between them is very strong. but they interact only on very
short distances. Therefore he imagined them as a hard spherical balls with radius a ~ 1077 to
10-8 cm. The potential of neutral particles interaction then can be written as

(3)
wifr = a
U(r) =
Cifrza

Inspite of very strong interaction, if the density of neutrals is sufficiently small , the following
inequality takes place
(4)

ng = a'tgy = ang 13«

1%



then the motion of neutral particles is practically free, they interact to each other very seldom
and n the first approximation we can neglect this interaction completely.

In the second approximation we can take into account the interaction between the particles as
a small correction 10 the free motion. Thus the inequality (4) represents a condition of validity
of gas approximation for the neutral component of plasma.lt is obvious that the condition (4) is
valid also for the mteraction of charged particies with neutrals.
Quite another physical meaning has the condition for validity of gas approximation for the
interaction between the charged particles of a plasma. The Coulomb interaction is a long range
one and therefore the gas approximation is valid if the potential energy of charged particles
interaction is small in comparison with their kinetic energy { freedom energy). In other words,
gas approximation is valid if

(5)
Ny = Uglrgy)/<eg -~ - (e? 11al,’3)/<ga?> << ]
Hereng ~nej. Ty = Tej.mg = mgand
i A (6)
Ty if Tgrepy =(( 37t3)2/~’r]211u3--’):Zma
<80[> =

EFy If €Fg > Ty

Here n ~n.; , T=T.,, m=m,,.

The condition ( 5 ) was firstly formulated in 1937 by L. Landau
It must be noted that for a nondegenerate, T, > efy isothermal, T ~T, ~T;, and neutral
plasma, n ~ ng ~ ny, the conditions (4) and ( 5) are similar in the sense that with i increasing of
particles density ( ng or ng ;) plasma becomes more and more nonideal. At the same time, for a
degenerate case, €Fe,i ~ Te i» the physical sense of (5) is opposite to (4) and corresponds to the
fact that when n increases then the plasma becomes more and more ideal. This follows from
dependence ef ~ n2/3 which leads to ny -~ n~1/3. Thus the more dense degenerate plasma in
metals occurs to be more ideal.
Another difference between the conditions (4) and (35) follows from comparing the ratio of
interaction ranges for charged and neutral particles to the average distances between them, In
agreement to (4) , this ratio is small. In this case, relation (5) has quite opposite meaning. For
convincing this let us consider the potential of a point charged particle q located at =0 in the
nondegenerate plasma :

(7)

Ad = 4ng &(r) + 4ne{neee¢/Te—uie'e¢fTi}

For simplicity electron and ion charges in a plasma are supposed to be equal and opposite, g =
-¢, and consequently their densities ne=n;=n. Then from (7) under the conditions
e | <<Te, T}, follows:
(8)
¢ = (qe™Dlir, D= {Zeii ey ny/ Ty )12 Debye length

and rpg = (T /(4meg?ny))!/2 are the Debye lengths of electrons and ions, o = e,i.

16



It is easy to understand that D characterizes the C oulomb interaction range of charged particles
in a plasma. Therefore for the ratio of this range to the average distance between the particles
onte obtams (V).

(9)

Do’ \;.T REETLELE RN

This inequality is opposite to (4) and it means that the average distance between charged
particles in gaseous plasma 1s much less than the mteraction range. or a large number of
charged particles must exist m a Debve sphere. 1t is easy 1o show that this statement takes place
in the case of degenerate plasma too.

[t must be noticed that a plasma can be considered not only as a simple totality of charged
particles but as a medium if its size 15 much larger than Debve length. Moreover only under this
condition the Debye length has a physical meanmg.

In conclusion let us make some estimations of conditions (4} and (5) for different
plasmas. First of all we must notice that fora - 10-7 to 10-8 cm. from (4) follows the validity
of gaseous approxunation for neutrals ng <1021 1o 1022 ¢m~3. This means that gaseous
approximation for neutrals is valid up to hundreds atmosphenc pressure. It is obvious that for
the usual gases this condition is satistied with great supply.

Another situation takes place for charged components of plasmas and for condition (3).
For ionospheric plasma in F-Layer where ne’rlO6 to 107¢m~3, and Tg ~104K, Ti~103K we
have 1< 10-4 <<1, or this plasma is highly ideal. Analogical situation takes place i the
laboratory gas discharge plasmas with ng ~ 101! to 1014 cm=3 and Te~ 104 to 105K where
n1<1072 to 10-4<<1. At the same time in the high density plasmas of MHD convertors and
light sources usually n~1013 to0 1019 cm-3 and Te<lto5 104 K. Therefore ny ~ 0.1 to 0.5
which means that, in such plasmas, nonideal effects are essential.

For thermonuclear plasmas in the magnetic confinement devices n ~1014 cm™3 and
T-108K what means that 1| £10-7<=1, whereas for inertial fusion plasma with n-1023¢cm=3
and T~108K we have n[-0.01. In the last case the slightly nomideal effects must be taken into
account.

Finally we will say some words about solid states plasmas. In a good conducting metals
as copper ng- 5 1022 ¢m-3. and therefore electrons are degenerate, epe~lev and ny ~0.2,
and they can be approximately considered as a weakly nonideal gas. But for the most metals
Ne < 1022 ¢cm=3, and w=1. which means that the electrons in such metals represent liquid, so-
called degenerate Fermi-liquid. In semiconductors, carriers parameters are varied 1n a very
wide range and therefore different situations are possible. Below we restrict ourselves in
consideration of only gaseous plasma.

17
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LECTURE 2
The Simplest Plasma Models - The Model of Independent Particles

* 3 The single particle model - Tts achievements and failures

[t is obvious hat the mosl consistent desenption ol plasma properties was reached by
using the Kinetic descipuon But hastoricadis the ey plasma models were much more simple
and despite of this, they wave quite good 1esultss a0 good agreement with experiments.
However sometimes ~uch models were applicd o problems outside of the frameworks of
models. Then some  disappomiments  aised which  stimulated the development and
improvement of other models until the pericet binetie description was proposed by A, Vlasov.

Below we will follow this Bistotcad process of the development of plasma physics and
begin our consideration from the simplest modet - the model of ndependent particles. This
model firsthy proposed by 1 Langmun consits of Newton equations of electron and ton

motions which are completed with Masvoct sqeations This model was very fruitfull for
investigating the propacaton of tadiowas s 1o ough the wnosphenie plasma. as it was shown by

V.Ginzburg, before the sccond world sva The equations of motions in the model of
mmdependent particles look as
(10)

dve:di=emi E 1 ¢[vexB] j-veve

dvifdt - v e MyE - Le|vi<B] -vvj

Here v, and v; are the electron and ion velocities. ve = Vejtvep and vi = vje t vjg their
collision frequencies. for which the follov e cquality takes place mvg; = Mvjq . The electric E
and magnetic B fields must be finite because they determined the Lorentz force acting on a test
charge q :
(11)
FoglF L ov-B]

These quantities satisty the Maxwell equuation-
(12)
divlk =30 _dzen divB -0

rot E=-1c[ B AlrotB Lo b o dzje LeldEdtg+4micLeny

moreover for each components of charged pa: icles the continuity eguation is satisfied (o= e,1)
(13)

Clhgy oL i vy U

Thus in accordance with ( 10 ) the motivn~ o7 chareed partictes are defined by the electric and
magnetic field £ and B and at the same ume these fields themselves are determined by the
charged particles motions Thus we bive cllonsistence connection between the particles
motions and electromagnctic fields Thi- ides o1 ~elfconsistence was proposed by 1. Langmuir
at the beginning of 205 However it has remacied il misunderstandable for many scientists up
to day.

19




From the equations of particles motions { 10 ) only one vector quantity must be defined - the
current density j which appears i the ficld equations ( 12) as an external source. As about
charge density p. this gquanuty can be casily defined by using the continuity equation (13).
Taking m consideration that the magnetic ficld B also can be expressed in terms of electnic field
E we conclude that the problem of any plisima model 1s the caleulation of induced current
density

(14)

T I v lJ(I-'.) t;

This relation m general represents nondincar Ohm's iy and a1j (E) 1s nonlinear operator of
plasma conductivity
Instead of j and p onc can mroduce the inducton vector P by the following relation
(15)
D R )

Using this relation the tield cquations €12 2ake the form
(16)
dv D dipg. dn B 20O

rot E = -lie(dB.c). rot B = L.o(CDVct) + 4mjgle

These equations differ from (12), they takce into consideration not only the induced current and
charges densities j and p but also the external sources ji and pg. These equations in addition to
the equations of motions (10) represent the complete system of the simplest plasma model - the
model of mdependent particles. The validity limits of this model can be estimated by
considering some basic linear problems. In lmear approximation and in the absence of external
magnetic field Bg and the sources jg and pg the solutions of the equation (10) can be presented
as e-(10tHKT) Then one can easily obtain

(17)
ve GeE)[m{orivag] . vy = (igEY[M(ot+ivy)]
whicli leads to the following expression for mduced current density
(18)
1= 1, eegvg = 2ot 1:ttzlluE)e’]'ma(mﬂva)] =cE
Thus for plasma conductivity we have
(19)

Gjj 7 oot (ie2n m[o+iv])

(we omit the summation mdex ). Usine the definition (15) one can introduce the dielectric
permittivity

(20)
D= Si_it_i ST oy 4m i O
For the 1sotropic plasma we will get the folloving resull
(21

€ = E(n)ﬁij glw) - 1 dmo(o)a - 1- EmLz/cu(mﬂv)

20



where o, =y4me 1, m, dsthe Langnius hequeney of charged particles of type o.

Now we can verify the vahdity of the modet of mdependent particles usimg the relations (16) to
(20). First ot all let u~ check the staue
(22)

G0y Te-nmy o cenoang o 1 dmoi0re

Here 6(0} is the statie conductiaty of isotiopr. plasiig Inweakly 1onized plasma ve = veq and
the expression becomcs correct not only quaiiinely but also quantitavely. At the same time,
in completeh 1onized plisnia, or more evaaly when

v, <<v,=4 53927 mfee o Loe electen-ion effecuve collision frequency),
the expression (21) oecwr~ appronimaichy O tines less than the correct expression known as L.
Spitzer's formula for ~tatic conductinity of plasn

(23)

.
Gap 17 ST vy

The very important conclusion whech toilos - om 211 1~ that the mdependent particles model
explains quantitavels the propagation of ik quenay ransverse electromagnetic waves n an
isotropic plasma. From the Maxuwell equanon mthe abscence of external sources jo and pg

follows the dispersion equation for such waves
(24)

hl 0 2
h=v- o e(o)

Using the relations (20)-(21) and supposmg o > ve. it's easy to find the solution of this
equation in the high frequency limit [ o — o 10 |

(25)
@02 = 0 o= - hovt 8= \'e(oLez.’wz
With regard to the low frequency hmit o ve)  from (24) it follows the well-known
expression for the penetration depth of the aoimalous skin-effect.
(26)
P VO I TR N 2a0o)

This expression is correct tor completels winsed plisma as well as for weakly ionized. Of

course this statement must take 1o aecoun: e above remark about the static conductivity of
plasma (see (22) and (23))
More essential seems to he that the ot 126} is correct only if v = vTe/Agk. In the

opposite limit as it was shown by Ao Pippars o 19438, the anomalous skin-effect takes place
which can not be described in the model o ndependent particles. This phenomena will be
studied below m the next fectures,

Finally the most penalizng tailure of tic 1ol of independent particles was exposed mn the
description of longnudmal oscillations ol puma From the field equations (16) taking in
consideration (21) we wet the followmg disye. won equation for such oscillations

(27)
L0

The solution of this cquation in high frequon. ange ( o ve ) looks as (@ >0 i1d)
(28)
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Plasma longitudinal oscillavons firstly wi- mvestigated by [ Langmuir in 1926. Moreover he
firstly obtained these tormulas and gave then physical interpretation.
However I Langmuir wa~ also the first oo noticed that the discussed model is limited. This
model can not explun the existence of o frequenay oscillations with spectrum © = kvg
discussed above. which were called by |1 omuir as ion sound waves. And finally this model
leads to the obviously absurd result for the wroblem of statte potential for a rest point charged
particle in a plasma. In orderto show this s consider a point particle with varying charge pg
= e 1O(r). From fi2ld ecuations 1oy ind the following expressions for static field and its
potential

(29)

Eoo-v d by gen et

where € (©) is given by the expresston (2 Ifnow we take the static limit @ — 0 we obtain
obviously absurd result : - (1) =0 becau-. () = when o) — 0. Thus in the low frequency
limit the model of mdependent parncles - absolutels meonect for description of isotropic
plasma.

* 4 The propertics of magnetoactive plasmas in the model of independent
particles

Despite above mentioned failures of the ndependent particles model for description of isotropic
plasma, let us now apply this model to the magnetoactive plasmas. Remind that this model
occurs to be very successful for the problems of radiowaves propagation in the earth
ionosphere. But the ionospheric plasma i~ magnetoactive and therefore below we will consider
the properties of such plasnas.

We suppose that external magnetic ficld By is parallel to OZ axis. Then i the linear
approximation for perturbations from the cquations (10) one can easily find small v and use the
relation j= Tenv to calcutate the induced curremt density which leads to the following
expression for dielectric permittivity:

(30)
g 0
SR TON -1g w0
0 {} J
SJ_=I+E[(L)L2((~J+iv) AHO- (o)) w L 3 200 (O 4o-v)2y . E/FI-ZOJLZI’((D((DHV))

where Q=eBg/mc is the 1 armor frequenc: tor charged particles rotation around the magnetic
field By. By using this tensor of dielectiic permittivity the above mentioned success in the
analysis of radiowave propagation throwun the ionospheric plasma was achieved by V.
Ginzburg. Below we will not discuss thes. triumphal results, On the contrary we will consider
the problems for which this tensor and 1 ore generaily the independent particles model is'nt
correct.
Let us begin from dispersion equation wi.i . can be casily got from the field equations :

(31)

ikzo‘i_i-l”‘. -((‘):‘c:)z:n((-))l

KXk 2e + k 2e ) mo2ic (e 2mgm e k2 2k 6] +(0)4/C4)S//(8J_2-g2) =0
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Here ki = ksin and L =keost) respecinehy represent the transversal and longitudinal
components of the wave vevtor kand O 1 the angle between k and By
In general the equaton (31 1s very compiicated and the solutions ofk) are imposstble to find
analvtically. At the some tmie, 1t can be sal o very casilv as an equation relative to

[N SN AR
We find the tollowm: ~olution

n, lods o oA BT - IAC A,

(32)
A :aLsin:'i pocos=0. C o _ a2y - oo 'cosze)-(aLz-gz)Sinze

The quantities n} » are called as die compues rellection coellicients nj{w) for ordinary waves
and n~(o) for extraos dman waves
Just using the relatons (311 and (321 e tahing mto account the expressions (30) the

radiowave propagation (thew reflection an sosorption) w the F-aver of ionospheric plasma as
a function of the angle § were explamed Ca the figure | there are presented the
dependences n | » 200) Tor 02012 amd o - Q.7 Cas it takes place in F-layer where
wLeslogs‘l and Q,=1075-1). Moreover (1) and (32) give the good quantitative explanation

for not only high frequency (> 42). but also low frequency ones n the range
Q;<<< Q. These formulas predict the existence of the transverse waves, in the low-
frequency range with spectrum

(33)

-

”,_(]\.3_._ 0 cosU)wLe2

¢

Such waves were really observed in the ionospheric plasma and they were called as whistlers.
The model of independent particles appears to be significantly less successful in explaining the
low frequency waves in the range o - ¢3 From dispersion equation (31) in this frequency
range one can obtain the spectra of two hranches of low frequency waves
(34)
()12 S \"_‘-\2 (1 \j S, (‘):2 }\3\A3,( I*VAZ-"CZ)

where v, =B~ J4maM s called Alfver cloeny, The first branch corresponds to the purely

transverse waves and is woll hnown as 4 on waves  They are predicted theoretically by H.

Alfven in the framew ok of MHD equation - ind were really observed in ionospheric plasma.

As for the second hianch then the theor - cal spectrum (34) differs from the experimental
observed. In expermients there exist b ranches ol Tow frequency waves with significant
longitudinal field components mstead oi one branch Besides the phase velocities of both
depend on the plasma temperature. whicn - completely ionored in the model of independent

particles. This fact wmdicated o the scroes difficilies ot the model. However the main
difficulty of the independent parueles model was clunticd when static potential of a pomt
charged particle in the magnetoactive plasia was considered. The result of this consideration,
using the field equations (1o leads to the - towang teanla tor the field potential
(35)
P(r) -—-q:"Z:rcz ] dl\'(ell\i (ko zfl_tL(l SRS R TR
lima—0

23




where £ | (0) and £ (o)) are @nven by (30) 1 hus in magnctoactive plasma the static potential of
pownt charged particle tends to sero. This result coineides with the result of the isotropic plasma

and also seems perfectly absurd

Thus from the aboy: consuderanon we
quite satisfactory for desciptior of fast a
( phase) velocity mch hiciver toan thenn

true for transverse aaves Lo longitude .
phase velocity 1s ot the araer o1 the pain..
can’t be desenbed v thie model Spects

potential static electiie ficki~ o plasnia
effects of charged  paricles audh

thermoconductiviy and dittusion ol pan
distributions of particles ot be taken m

conclude that the model of independent particles is
igh-trequeney processes in a plasma, with typical

cclocuy or Charaed particles. Specially this occurs
waves and fow-frequency processes the typical

s theron veloeny and therefore their properties
Ao this occurs catastrophic for describing purely

+ umprovine the model. firstly, all thermal motion
hydrodynamical  etfects  pressure.  viscostty,

coxas wedl as kmetie veloenty effects and energy

SCaount

Figure 1 : Depene nees ny 32 (w) for 0= 0,7/2 in the model of

independent particles
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LECTURE 3
Magnetohyvdrodynamical (MHD) Plasma Models

* § Two fluids hvdrodvnamics

In the previous section it was shown that the model of mdependent particles occurs mcorrect 1n
the low frequency range. For this reason the physicists decided at the end of 30-s that i this
frequency range the hydrodynamical descriptions of plasma must be more suitable. At that time
two different types of hydrodynamical models were deseloped. The first one was proposed by
[. Langmuir and the second by H. Alfven. Below we will consider only the simplest versions of
these models, which is quite sufficient for clarifymg the reasons of their success and their
failure.
In this section we begin with the . Langmuir model. known as two fluids hydrodynamics . This
model generalizes the independent particles modet by taking into consideration the kinetic
pressures of electrons and ions. Therefore the equations of motions look as {(compare with
equations (10)):

(36)

dve/dt = Ove/dt +(ve Vive = -VigTe/mug+ e/m{E+1/c[vexB]}- veve

dvi/dt = avi/ot + (viV)vj = -VniTj/Mn; +ei/M{E+1/c[ vixB]} -vivi

As above these equations must be completed by the Maxwell equations (12) and continuity
equations (13). Taking into account the temperatures T and Tj, below we will assume that
they are constant. Such assumption simplifies the problem in a significant way and at the same
time it doesn’t influence the validity of the model. To determinate the validity limits of models
is our main goal.

The basic equations of two fluids hydrodynamics (36) differ from the equations of motions
(10) in the independent particles model by taking in consideration the thermal pressure. For this
reason we may hope that low frequency processes for which the independent particles model
occurs incorrect will be described guite sufficiently well. To prove this statement let us consider
linear electromagnetic properties of spatially homogeneous isotropic plasmas in the model of
two fluids hydrodynamics. We will investigate the small perturbations of an equilibrium state in
which

Eg=Bg=0. vpe;~0. nge;j = const

Then from the linearized equations (335) and (13) one can easily obtain the following expression
for the dielectric permittivity of plasma
(37)
£ j0.K) = (&) -kikjmZ)atr(m,kwkikijal(m,k)
where
(38)

eMok)=1- Zu((DLaz)/'((o(m+iva))

efok)=1- Za(a)Laz)/(m(mHva)- K2vT o)
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represent the transversal and longitudinal permittivities respectively. Thus we see that they are
different. Besides. the transverse dielectric permittivity (38) coincides with (21). Consequently
all the difficulties which take place m the independent particles model remain in the considered
model of two fluids hydrodynamics. Particularly this model occurs to be incorrect for
describing the transverse field penetration into the plasma (skin effect) in low frequency range
when va 0 Ve Agl . where 2 18 given by the relation (26).
At the same time. for the tongitudinal dielectric permittivity from (38) it follows

(39)

limm_,ozl((:)_k) =i~ Sa((ﬁ’Laz" k2v Tuz) =1~ !/kzrD?-

This expression Jeads to the correct expression for the field potentiel of the static charged
particles q located in a plasma atr = 0
(40)

d(r) = (qrr)e Ty

Thus the Debye screening of the potential takes place as it must be in accordance to (8).
Moreover longitudinal dielectric permittivity (38) describes quite correctly the low frequency
osciflations, when ©<<v,. namely the diffusion processes in a plasma, the monopolar
diffusions of electrons and ions independently as well as the ambipolar one ( In the considered
approximation with T = const.). Really in this frequency range from (38) it follows
(41)
elok) =1- Za (wLazf(imva-kszaz))

For the short wave length perturbations, when k2r0a2>>l, the solutions of &'(w,k) = 0
coincides with the poles of (41)
{42)

iV - kZvyg2 =0

It is easy to understand that this relation corresponds to the diffusion equation for the particles
of type a.
(43)

Thus the coefficient of monopolar particle diffusion in the two fluids hydrodynamics occurs to

be equal
(44)
D = VT Ve

In the opposite limit of long wave length perturbations when kzrDO(2 <<l, the solution of
el(w,k)=0 can be presented as

(45)
iov; - k2(vg2+vTi2) = 0,
where v = /T, /M . As above, this relation corresponds to the equation
(46}
cn/dt - DaAn =0
which represents the diffusion equation with ambipolar diffusion coefficient
(47)
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The both results concerning monopolar diffusion as well as ambipolar one were confirmed
experimentally by I Langmuir. These facts demonstrate the obvious success of two fluids
hydrodynanncs. This success firstly was noted by I Langmuir
However very quickly appear new difficulties of the model besides remarked above with
regard to the low frequency transverse field ( skin effect). Namely from the expression {38) for
ek it follows that in a low density collisionless plasma (o - v ) when the wavelength of
perturbations is sufliciently short. krpy, - 1. there exist the longitudinal oscillations with spectra
{for electrons and 10n5)

(48)

212 )
o~ = KV~

which correspond to the poles of eler.k). Nobody observed such oscillations and moreover it
will be shown below that even in a collisionless plasma they occur very strongly damped. This
result was the serious failure of two fluids model
Finally let us indicate to the very widespread mistake repeated up to day and which follows
from two fluids model. We mean the long wave length (k?-r])Ot2 <<}) and low-frequency
(02<< o] o) longitudinal oscillations with phase velocity less than electron thermal velocity
(ove<< k2vTa2). Under these conditions from equations el{o,k)=0 taking into account the
expression {38) we obtain the following dispersion equation

(49)

w2 - k2 (v52+vTi2) +10v; =0

In the limiting case @ << vj, this equation leads to (45) which describes the ambipolar diffusion,

confirmed by numerous experiments. However in the opposite limit, when o >>v; from {49)
we obtain the spectrum of weakly damping oscillations (©—»w+18)

o=kJT +T)/M, =-v,/2

I. Langmuir supposed that these oscillations represent the usual accoustic sound oscillations

(50)

with spectrum © = k/yP/ l_’: . v =1 and he called them " ion-accoustic waves". Moreover he

really observed such a type of oscillations in a nonisothermal ( Te>>T;) gas discharge plasma.
Ounly one question remained unclear : what is ¥ = cp/cy and why y = 1 for plasma. From
experimental datas for nonisothermal plasma followed that v = 1. But why? This question had
remained unclear up to 1954 when G. Gardeev clarified it (see below).

Above we restrict ourselves by considering only low frequency processes of isotropic plasma
intentionally. Firstly it must be noticed that for high frequency processes with characteristic
velocity much higher than the thermal velocities of charged particles the two fluids model
corresponds to the independent particles approximation which is quite satisfactory for such
processes as it was shown in previous section.

Secondly, just namely this model was proposed for description of low frequency processes by
1. Langmuir and namely for them we were convinced that it arised very serious difficulties. For
the magnetoactive plasma, when the two fluids model was proposed by 1. Langmuir, just at the
same time the one fluid magnetohydrodynamic (MHD) was developped by H. Alfven. The
MHD represents the generalization of usual hydrodynamics for the conducting liquids and it
seems that MHD must be valid only for very high density plasma.
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However H.Alfven applied this model for description of ionospheric plasma and it occured
very successfully. In the next section we will discuss the one fluid MHD.

* 6 One fluid MHD equations

As it was noticed above. the MHD equations differ from usual hydrodynamics by Lhe
additional volumetric force. which affects the conducting media with current j by the magnetic
fieid B

51

f=1¢{jxB] = l'4n[rotB=B]
Taking into consideration this force one can easily make the generalization of usual

hydrodynamics on the case of conducting liquid. Supposing the ideal conductivity and
neglecting all dissipative processes the MHD equations can be presented as

(52)
divB = 0. ¢B/ot = rot {vxB]
dvict + (vV v = -VP/p -(1/dnp)|BxrotB}

Here v is the velocity of liquid with density p and P is the pressure, which is connected with p
and temperature T by the state equation
(53)

P =P(p,T)

The first achievement of MHD was connected to the analysis of small perturbations of
stationary homogeneous equilibrium with

vg =0, pg = const, Pg = const, Bg = const.

For the perturbations vi,p|, and b from (52) we obtamn

(54)
divb = 0, rot[v|xBg] = ob/ot
v/t = -(vs2ipg)Vpy - (1/41pg)[Bgxroth]
Op /ot + divpgvy =0
Here vy 1s the sound velocity for isoentropic processes, which follows from {53)
(53)

P| =-vi2p| = (6P/dp)gp|

For the solutions of type ¢'™™’ from the linear system (54), one can obtain the dispersion
relations

(56)
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where v 4 is the Alfven velocity introduced above and 0 is the angle between k and By.

Thus in the framework of MHID exist 3 branches of small oscillations. The first describes
purely transverse waves. b and vy are perpendicular to By and k. is known as Alfven waves.
The second and third are called as the fast and slow sound waves in a conducting hquid. It must
be noticed that namely 3 tvpes of oscillations were really observed m the ionospheric plasma.
Moreover. in the sonospheric plasma the ratio 3 = (87p0) Bo- = \,-53;\.-A2 <1 and therefore
the last two branches become separated

(57)

7 b ] Y
0= = k=VA~. 037 7 h,pmvgs

The oscillations with spectrum o»(h) are transverse as well as o (k) whereas the oscillations
with spectrum ©3(k) are purely longitudinal and correspond to the isoentropic oscillations of
density and pressure m which v is paraliel to k.

Despite of the observations of mentioned oscillations in ionospheric plasma, some problems
have still remained. The first one is quantitative and about some parameters: what are
v, = J@r f@B}: :Jﬁi‘/M and y = cpiCy 9. For ionospheric plasma in accordance to its
consistent in the F-layer this quantity must be of the order of y=5/3, whereas from the
experiments it follows that y = 1 and besides of this the oscillations occur to be very damping.
What is the reason of their absorption ? The second problem is more principal: what is the
reason of success for MHD in applications to the ionospheric plasma? MHD as usual

hydrodynamics must be valid only for dense gaseous, where collisional effects are dominant,
whereas ionospheric F-layer plasma seems to be collisionless. Neverthless the predictions of
MHD occur in a good agreement with experimental observations.

The first attempt of derivation MHD equations was made starting from the equations of two
fluids hydrodynamics (36) at the beginning of 50-s. Really let us suppose the inequalities

0<<Kkvye Qi  Ve<<Q, Vi<Qi<<oyj

Under these conditions the displacement current may be neglected and the Maxwell equation

for magnetic field takes the form
(58)

rotB = (4n/c) j

Using this equation and taking into consideration that under the above restrictions, plasma can
be considered as quasineutral (ne=ni=m), from the equations (30) by summing them, one can

obtam:
(39)

Mn(av/ot + (vV)v) = -Vin(Te+Ty] -1/4n[Bxrot B] -Mnvv

where v=v;. Besides of this from the first equation of (36) follows

(60)
E( =-l/c[vxB]

As a result the Maxwell equation for electric field takes the form
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(61)

cB/dt = -¢ rotE = rot[vxB}

Finally completing the above equations by the continuity equation for ions we obtain the
following svstem of one fluid MHD

(62)
divB = 0. rot[v<B] = -B Ot

VA - (Vv NP p - | daplrotB B - vy
cp.ct + divpy = 0

where p = Mn. P = n(Tg = T;). or T = Tg* T; = constant. The last relation for P represents the
state equation for plasma. which corresponds to (53).

The system (02) comcides practically with the one fluid MHD equations (52). The only
difference consists of the existence of the last term in the equation of motion (62). This term
takes into account a friction of ions ot neutral particles and it is obvious that in the purely one
fluid hydrodynamics it does not exist. In this case the system (62) seems more general, it is
valid for weakly ionized plasma as well.

Thus the derivation of MHD equations from the two fluids hydrodynamics was a significant
success of plasma theory. Nevertheless all the above noted difficulties which are inherent in two
fluids hydrodynamics, force the scientist to attempt avoiding them by using the kinetic
consideration. More correctly at the end of 30-s the scientists attempted to generalize the
Boltzmann's kinetic equation for the case of the systems of charged particles, or in other words,
for plasma. We'll speak about this in the next sections.
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LECTURE 4

Plasma Kinetic Descriptions

* 7 Boltzmann - L.andau kinetic equation

The first attempts of generalization of Boltzmann kinetic equation for a gas of ionized particles
were made before the second world war independently by S.Chapman and T.Couling and
L.Landau. The basis of kimetic description of systems consisted of a large number of particles is
the probability description. Therfore the distribution function of n particles can be introduced as
(63)

fn(ry. p1.r2.p2......rp.pp-t)

This function represents the probability that at the moment t the particles with momentums
P1.p2...pp are located at ryri..ry correspondingly. It 1s obvious that the distribution
function (03) 1s very general and gives the complete descripuon of the system. However it is
very complicated because 1t depends on too much arguments. As a result it occurs to be
practically useless.
Let us remind that the plasma is a gas and in * 1, the corresponding conditions for validity gas
approximations were given. Namely these conditions were used by S.Chapman and T.Cooling
for a weakly ionized plasma when they attempted to generalize Boltzmann kinetic theory. In
* 1, it was shown that the neutral particles can be considered as the hard balls with radius a.
Then, a weakly ionized plasma is a gas if ( see(4))

(64)

ng = an01/3 << 1

where ng 1s the density of neutrals. In the zero approximation in the condition (64), or i other
words, when the particles interaction 1s completely neglected, then the function fin (63) can be
presented as
(63)
fa(ry....rp:pr. .pp-t) = =1 1M firjpi.t)

Here f{r,p.t) is a probability that a charged particle with momentum p at the moment t is
located at r. It is obvious. that in this approximation this probability is constant and therefore it
satisfied the Liouville's equation
(66)
dfir.p.ty/dt = ofict — rofior + Fotiop = 0

Here v 1s the particles velocity and F the force which determines particles motion. For charged
particles
(67)
v =dr/dt. dP/dt = F + e{ E + l/¢c[vxB]}

where E and B are the external electric and magnetic fields, and e the particles charge. Of
course the Liouwille's equation (660) must be written for each particles of type a.
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Moreover, let underline that the Liouville's equation (66) doesn’t take into account the particles
interaction. In Boltzmann consideration the particles interaction leads to the appearance of the
nonzero right side of equation (66). In the lowest approximation it takes into account the pair

interactions of particles type ¢ with all particles of type 5 and therefore
(68)

dfu dt = (Cfu ct)g - if‘;(&fﬂ.@l)stuﬁ = IpJgplie.fp)

We will restric ourselves by taking into account only elastic interaction (scattermng), as it shown
on Figure 2.

Figure 2

This leads to the following form of collision integral Saf (fo,fB3)
(69)
Saﬁ(fa,fﬁ) =
| dppdpg'deg vapdoaplfa(Pa MB(PR (P R(PRII(PaPR-Pa PR )3(Ea T ERE0 EB")

This expression takes into account the particies momentum p and energy & conservations in the
scattering processes. Moreover the probabilities of forward and backward scatterings are
supposed to be equal. These probabilities are the product of the particles relative velocity
Vop = | Vo o VB | and scattering crosssection dogg. The last quantity depends on

(70)

Py, B~ t RaBVap + (ma~»B/(mCt+mB))(pa*PB)
PU., B' =+ “{1BVGBH'*’(lna"Bf(lna-erB))(pua+pB,)

n is the vector in the direction of particle o velocity in the frame of centrum of inertia ( in
which Po PR = 0) and Hgf3-= Mg - MR {mg+mg)
For the scattering of charged particles on the neutrals (hard balls ) we have
(71)
dog a2dQ = a2 sinddBde
where dQ is the solid angle of scattering. The expression (69), when taking in consideration
(71), describes the elastic scattering of charged particles on neutrals in a plasma. In this sense

32



Chapman and Couling supposed that the kinetic equation (68) can be applied to the weakly
1onized plasma. It must be noticed however that in their interpretation the electric and magnetic
fields i the left side of (08) (see (66) and (67)) are external and only external fields. They did
not understand the idea of seifconsistent fields. which was clear much earhier for I. Langmuir in
his model of independent particles.
The next mmportant progress in developing of plasma kmetic theory was made 1937 by L.
Landau. Starting trom the Boltzmann collision mtegral (69). he denved the kinetic equation for
completely 1omzed plasma. For thts aim L. Landau used the Rutherford formula for Coulomb
scattering

(72)

do 3 ded - 4nc,13c[32.«(ua[33 \(-1[34 sm¥(8:2))

However it 1s wellknown that this expression leads to the divergence of the total crosssection of
scattering. How it can be avoided? At this question the answer was found by L.Landau and this
answer was full of genius. He noticed that in a plasma takes place Debye screening of Coulomb
potential which is a consequence of the validity of gas approximation

(73)

iy

Bl 2l B
ny - e-nl B g Zpl 3T

-

Under this conditton the potential energy of charged particles interaction in a plasma looks as
(74)
U(r)= (ezfr)e‘r/ )

It must be noticed that the condition (73) is equivalent to the requirement U(ry, )<< T, where

Tav =n-1/3 At the same time, the expression (74) means that the characteristical radius of
charged particles interaction in a plasma is rp) and this radius in accordance to (73) is much

larger than the average distances between particles — n~1/3

Y 3 12
n'r,ozr, /a7 =NT/en Y 21y, ]

(73)

In this sense the above condition is opposite 1o (64) if instead of a we substitute ry . Despite
this. L.Landau used the Boltzmann collision integral (69) substituting the expression (72) m it.
This unsubstantiality was strongly justified by N. Bogolyubov in 1946 when he developed
mathematically correct method of derivation of the kinetic equations.
Besides of the mequality (75) L.Landau supposed that for Coulomb scattering an other
inequality takes place as well. Namely in this process

(76)

Pap’ - PaBl == Po- Pp-

which means that the change of particles momentum is small, or the scattering angle 0 << 1.
This assumption together with Born approximation which is valid when
(77)
e2/rin << T
min ~°

allow him to get the convergence collision integral. This integral is known as Landau collision
integral and it looks as

(78)
Sap(fefp)=(0/0Py)IAPR(2re e Liud Ju sii-ujuiK(8fy/OPyj)f-(fg/oPpe)
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Here u=v(, - vp is the relative velocity of scattered particles and the quantity L
(79)

L= D , dor = Inrpitgip = In(TAe2nl/3)) ~10 >>1

is called as Coulomb loganthm.

The kinetic equation (68) with collision integral (78) 1s known as the equation Boltzmann-
Landau. Below we will use it for describing electromagnetic properties of completely ionized
plasma. It must be noticed here that L. Landau as S.Chapman and T.Couling was sure that in
the left side of his equation electromagnetic fields E and B are only external. The interaction of
particles is completely taken mto account in the collision integral (77). But this belief, of
course, was an annoying mistake of great scientist.

* 8 Relaxations of momentum and energy

Let us now follow S.Chapman and T.Couling and L.Landau to consider the relaxations of
particles momentum and energy in a plasma shghtly deviated from thermodynamical
equilibrium. In this connection. it must be noticed that the above obtained collision integrals
occur to be identicaily zero for the equilibrium Maxwell distribution

(80)

foo =( ng/(2mme T )32 )exp(-mgv2/2T )

Of course, this statement is correct only for stationary and spatially homogeneous distribution
(80) and when
Te=Ti=To=T, Zgegig =0

and only in the case of a plasma without any fields. Let us now consider the small deviations
from equilibrium and calculate the time relaxations of nonequilibrium momentum and energy
of particles. Suppose that at t = O the particles (electrons) distribution function differs from
Maxwellian by the existence of a small velocity ug << vTe, or
(81)
£, = (ng/(2nmT )3/ 2)e(-m(v-u(t))2/2Te)

and u(t=0) = ug. The problem is to find the dynamic equation describing time relaxation of
u(t). Substituting (81) in the kinetic equation (68) after integration over momentum of
electrons one can obtain the following equation
(82)
ou/ot = -ve u

vep = maZvTeng for weakly ionized plasma
Ve =
Vi =4/ 3(\.#27; /me’e’n. /TL_'”"')L for completely ionized plasma.

It must be noticed that for weakly ionized plasma the equation (82) is exact, whereas for
completely ionized plasma the accuracy of this equation is of the order of a factor ~ 1
From (82) the following relation can be obtained
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u(t) = ugexpl-ve t)

Thus the momentwn relaxation time for electrons in a plasma is equal T - live
Let us now consider the relaxation of energy. Suppose that at t = 0 the electron temperature
Toq differs from the iemperature of neutrals Ta ¢ for weakly ionized plasma) or ions T, ( for
completely ionized plasma). The problem is to denve the dvnamic equation describing
relaxation time of clectrons temperature Te(t). when
(84)
o dng Cam 1) e(-men= 21

Substituting these expressions mto the equatton (08) and mtegrating over momentum of
particles, as above. after simple calculations we obtamn
(85)
q ) o ’ -
HTe-Tr)ot = (va 2m/My X To-Ty;)

T o-Ti) 0t = (vep2m/M)(E+fere

NTe-T)

for weakly and completely ionized plasma correspondingly. Here for weakly ionized plasma it
was supposed that T, = const. which follows from obvious nequality ng ~>ne . At the same
time, for completely ionized plasma in derivation (85) we take into account, that

HTtTy)ot=0

Thus from (85) follows that the energy relaxation time is much larger than that of momentum,
or

(86)

In conclusion let us consider the behaviour of the completely ionized plasma in external
constant electric field Eg. The solution of this problem shows the above mentioned
incorrectness of the calculations of the momentum relaxation time of plasma offered (82). The
Boltzmann-I.andau equation for this problem looks as
(87)
(eEg/m)cfe/dv = EBJde(lne(lzeBzL!@)(uzﬁij-uiuj)[fﬁafer@pj—feafﬁfépj]

where u=vg - v and the summation carried out over f§ = e.i
If the field Eq is sufficiently weak we can represent fo = fge * ofe, where fj)e is the Maxwellien
distribution (84)(not(81)) and f, a smail correction. In this case the influence Eg field on 10ns
is negligible and ion distribution function is identicaily Maxwellian. For calculating 6f let us
expand it in the seres
(88)
8f, = (vE(/EQ)lag*a((52-v2/2vTe?)foe

For the determination of the constant coefficients ag and a| from (87) the following system can
be obtained
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(89)
eEg/Te = “veplap*3/2ay)

(32)ag ~ (13-4N2)a; 4 =0

Here for simplicity we suppose ¢; = -¢.
After sotving the system (89} we can calculate the current in a plasma
(90)
J ~elviadp = I.9()(ezne;mvcﬂ*)E(}E cEg
Or for the plasma conductivity we have
(91)

a=1.96( ezne.“mveﬁ)

The factor 1,96 instead of 1 about which the above remark was done. With increasing the ratio
Z = |ejie] this factor tends to 1. When Z » 10 we can neglect the electron - electron collisions
and this factor in (91) becomes equal to 1.
For a weakly 1onized plasma quite similar calculation leads to the expression
(92)
j = elvfdp = (e?ng/mve)Eqg = oEq

Thus the plasma conductivity is
(93)
G = ezne/mveo

where veg = maZvy, 1, is the electron neutral collision frequency. For weakly ionized plasma
this expression is exact and therefore the Lorentz approximation taking into account only
electron-neutral collisions is correct.
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LECTURES

Selfconsistent Field Approximation

* 9 Viasov-Maxwell equations

Above we emphasized many tmes on the fact that m the Boltzmann equation for a weakly
jonized plasma and in the Boltzmann-Landau equation for a completely ionized one the electric
E and magnetic B fields are proposed to be external and onlv external. As a result of this
assumpuion. all relaxation processes. considered in these equations. are aperodically damping in
time and are determined by parucles collisions ( electrons collisions in considered cases).
The first who draw world scientists attention 1o the inconsistence of such a treatment of electric
and magnetic fields i kinetic theory was A. Vlasov. in his famous work publicated in 1938, A
Vlasov showed that in the lowest approximauon of the gaseous parameter 1y, the interaction
between the charged particles can be taken into account if m the Liouville's equation
electromagnetic fields are considered not only as external. but as full fields satisfying Maxwell
equation with induced charges and current densities

(94)

p = Sgealfudp. i = Tgeqivigdp

Thus the interaction of plasma particles with each fields are to be taken into account because
the distribution function fy itself satisfies the kinetic equation of the lowest approximation
(95)
Of /ot +vofglor +eq { E+ (1/c)[v<B]}ofy/Op =0

Now we can write the field equations in the form
(96)
divE = 4nE eq) fpedp + 4mpg,  rotE = 1/c)oB/dt

divB = 0 . rot B = (1/¢)E/Gt + (dmlel Eeeqlvigdp) + (4n/c)io

The system (95) - (96) represents the complete system of selfconsistent equations for E, B and
£, which describe the plasmas in the lowest approximation of the gaseous parameter.

Ouly in the following. more higher approximation arises the right side of the kinetic equation
(95), taking into account the particles scattering (collistons).

In scientific literature the equation (95) is known as Vlasov equation whereas the complete
system (94) - (95) is called Vlasov-Maxwell system of equations. Sometimes they are also
called equations for collisionless plasmas taking into account particle interactions only via
selfconsistent fields.

Here it must be noticed that the basis of Vlasov equation was not sufficiently strict. First of all
it was not understood how in the Liouville's equation the particles correlations can be taken into
account. although this equation describes a completely poncorrelated particles system.
Moreover in this sense the Vlasov equation for many scientists remainded very doubtful.
Among them were the great L. Landau, M. Leontovich. V. Fock and others. In 40-s between
the scientists arised the wellknown disputes. the results of which led to new dicoveries and new
excellent investigations. Let us briefly discuss these disputes.

Following A. Vlasov. let us consider a small perturbation of the equilibrium Maxwell
distribution fge
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(97)
fo = fpe ~ Sfe

The distribution fp, satisfies the equation (95) in the absence of Egp and Bg. Besides we

for of,
¢ (98)

cofe 1 - voofyor ~ eEd e Op = 0

where the field perturbation E must he determined from the svstem of Maxwell equations (96).
Below for simplicity we will restrict ourselves by considering the potential field E = -V
only and therefore
(99)
Ad = —ne [ 3f.dp

The system (98) and (99) represents the complete system of linear equations which allows to
mvestigate the time development of initial perturbations 3f,(0.r.p}. Suppose that
(100)
3fe(0.r.p) = Sfp(p)eikr

It should be noted that an arbitrary perturbation can be represented as a sum of Fourier
harmonics such as (100). ) )
Now we can find the solutions of system (98) and (99) as (5f,,E) ~ e(-10t + -t} gpd from the
existence condition of nontrivial solutions determine (k). Namely this quantity gives the time
development of initial perturbations of type (100). Really from (98) it follows that
(101)
dfa(p) = (-ieEdfpa/Opi© - k-v)) = (-ekdfy/Op/o- k-v))b

After substituting this expression into the equation (99) the following dispersion equation can
be obtained
(102)
I - (4ne’/ k2 ) [ (k ofge/dpi(w -k .v))dp = 0

which represents the condition of existence the nontrivial solutions of the system (98) - (99).
The main disagreement between A. Vlasov and L. Landau is related to the analysis of the
equation (102). A Vlasov supposed that the pole » = k.v in integrand of the equation {(102)
must be understood in the sense of principal value. Then for the long range perturbations,
kzrDe2 << 1, he obtained nondamping frequency spectrum *

(103)
2 VTe

2

w2 = e +3k =OLe (1+ SkzrDez)

From (103) follows that the group velocity of such perturbations are small in comparison with
the thermal velocity of electrons

(104)
Vg = 00/0Kk =3 k rpe vTe << VTe
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* 1t must be noticed that this spectrum differs from that founded by 1. Langmuir in the two
fluids model by the factor 3 instead of | in (48). This indicates the nonaccuracy of
hydrodvnanical deseription of plasma oscillations.
However it must be noted that A. Vlasov understood that the oscillations damping really exists
and morcover he supposed that it arises in the second approximation of particles interaction, or
as a resull of clectron - 1on collisions. In this sense he thought, that his equation (98) describes
“collisionless plasmas”
Quite another sense of this pole gave L. Landau m his famous paper from 1946, m which he
criticized A Vlasov. In agreement with the causality principle he proposed that

(105)

o -kv) - (2 (0 -kv)) - 1molo - kv)

The first term corresponds to the A, Vlasov treatment. whereas the second leads to the
oscillations dampimg (0 — o ~ 10)

6= 8o, '\"‘nf)cxp(‘ (l ‘(zk:]_m:)*“))

This damping was called as the Landau damping of plasma oscillations with frequency
spectrum (103), which was obtamed in the Vlasov approximation. Here it must be noted that L.
Landau did not notice at that time that this damping contradicts the momentum relaxation time,
obtained by him in 1936 and equal ~ 1/ vei Only in 1946 everything was clarified by N.
Bogolyubov in his famous book "Dynamical problems in statistical Physics". In this book the
strong derivation Vlasov equation and Landau collision integral were given as an expansion on
powers of gas parameter (73).

Thus now we can write the exact kinetic equation for completely ionized plasma (a=e.1)

{106)

(107)
O/t + vOfy/3r + eq {E + (1/c)[vxB]} df/op = Tg (O /01)*P

which can be called as Vlasov-Landau equation. If we add to the right side of this equation the
integral of charged particles collision with neutrals this equation can be applied to the weakly
1onized plasma also.

Physical meaning of Landau damping was clarified by R. Sagdeev in 1956 when he noticed
that it is a result of Cherenkov emission and absorption of the plasma oscillations (103) by the
plasma electrons at © = k-v. As for Maxwell distribution ofy/dv <0 then the absorption exceeds
on emission and we obtain oscillations damping (see Fig.3)
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Figure 3

In conclusion let us repeat once more that for the system of charged particles under the
condition of gas approximation the principal interaction between the particles is taken into
account by the Vlasov kinetic equation, or in other words the principal interaction is the
interaction via selfconsistent fields. Only in the second approximation at least for completely
ionized plasma the particles collisions must be taken into account. In this sense the Landau -
Boltzmann kinetic equation takes into account the effects of higher order than Vlasov's
equation. The Vlasov-Landau equation (107) is that which takes into account not only particles
interaction via selfconsistent field but also interaction via their direct collisions. The
fundamental property of the system of charged particles consists in that the self consistent
interaction surpasses the direct collisions of particles. Namely this property represents the
beauty of plasma and makes it as a very interesting and important scientific object.

* 10 Bathnagar-Gross-Krook collision integral

The kinetic equation (107) is very complicated because of its right side which represents
nonlinear integral operator. It is difficult to make use of this equation. Therefore in scientific
literature very often the various phenomenological and approximate collision integrals are used.
Despite phenomenological character of such collision integrals, sometimes it occurs to be not
only qualitatively but quantitatively also correct.
Every model of collision integral must take into account the principal conservation laws such as
conservation of particles number, their momentum, and anergy. Of course, we mean only
elastic collision integrals. Thus the following relations must be satisfied

(108)

[ dpg (dfgiotng®P =0,

I oy (36 /a5 P dpgy + | PR (5fB/at)stBa dpg = 0,
J e (8 f /o)y ®P dpg + [ ep (8 fp/80) P dpg = 0,
Here € is energy.

In addition. for the thermodynamically equilibrium (Maxwell) distributions of particles, the
collision integrals must be zero. This follows from Boltzmann H-theorem.
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Below we will use the most perfect. from our point of view, model of collision integral
proposed in 1954 by P Bathnagar. I'. Gross and M. Krook. It looks as

(109)
(1, ;1}5‘(&[3 <=V Uy - Ndap):
where
(110)
Dp o (FCamg Typ)? 2y expl- (m,, (\'-vu}?— 2T ]
v o ENBdpvfy NG I dpf,
']‘u[’) - (mu'l'ﬁ mg T,) (my, “mg). Te  (my 2Ny J dp (v-va)?— fo
For satistymg the relations (108) 1t 1s necessary that
(111)

Mo N Vo = MENEYRg

The physical meaning of quanuties v3 15 clear from the analysis of relaxation processes
which were considered above using Boltzmann and Landau collision integrals. Namely vy -1
represents the momentum relaxation time of o particles stipulated by their collisions with 3
particles. So
(112)
veo = ma?vTe No, vio = m1a2vTiNp

v ={a/3vmim e N L/T?), v, =4/3,/@r/m)e’e NL/T"

v, =4 ,’SJnequiL/(MTlm), v, = (me)‘el re| v,

Below these expressions will be used in all estimations.

* 11 About hvdrodyvnamical description of collisionless plasmas

Above it was shown that the Vlasov-Maxwell equations take into account the principal
interactions of charged particles and in this sense they can describe all properties of plasmas
quite sufficiently. However this system is complicated yet because the distribution function
fip.r.t) is a function of 7 variables. Below we will show that under the definite conditions this
system can be simplified and reduced to the the system of equation for hydrodynamical
quantities

(113)

NUL - J.dpfoi(psrat)
Ngvg = ldpvig(p.r)
N Tg = Jdp(mgv22)fdparst)

Such simplification is possible in high frequency range, when the characteristic velocity 1s muph
larger than the thermal velocities of particles, and in low frequency range, when this velocity
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exceeds the ion thermal velocity but is much less than the thermal velocity of electrons. In the
second case plasma must be nonisothermal with T == Tj.

For derivation of hydrodynamical equation we start from Vlasov equation
(114)

My 1 vy Or e {E - c[v«B]}cty,cp =0

In this equation particles collisions are neglected which means that the characteristical time 1

and characteristical scale L., of processes must satisfy the mequalities

(115)
P Iy b Vg SpVap

Multiplying equation (114) on | and v and integrating over momentum we obtain

(116)
ONg /ot - div Ngve = 0
INg Vi 0t = gy = e Negemg LE = licfvyxB]}

where

(117)

Ny = [ dp(vivjport)

The first equation coupled the first moment N, to the second one Nyvy is the contmuity
equation and it is closed in hydrodynamical sense. At the same time the second equation which
connects the second moment N, vy to the third Ilyj; occurs nonclosed. The problem of
deriving hydrodynamical equations consists closing this equation.
In collisionless plasmas exist two possibilities of closing this equation. First concerns the high
frequency and fast processes whereas the another concemns the low frequency and slow
processes.
In the high frequency range when

(118)

L() f’T i (,'Jﬂ\ e VTa

the thermal motion of particles can be neglected and fy ~ 8 (v-vg). Then from (117) it follows
(119)

Hegdj = NeVaiVag

Substituting this expression into the equation (116) we obtain the Euler equation
(120)
VOt + (v VIvy = (eg/ Mg {E + (1/e)y o xB]}

The system of equations (116} and (129) together with the definitions of charge and current

densities
(121)

p=2q eyNe- 1= LotaNava

form the complete system of hydrodynamical equations. It is easy to notice that this system
coincides with two-fluid hydrodynamical equations if v — O, or in other words with the L
Langmuir hydrodynamics of collisionless plasmas.

42



The other limit, when the hydrodynamical description of collisionless plasma is valid. is the low
frequency limit. when
(122)
VT o ok Ve

The sons m thes limint can be conswdered ax a "cold” once. theretore tor them the hydrodynamical
descripuon s valid {vi v N; N)

(123)
AN:ot ~ div Nv - 0
ovet o (WA v = (e MHYE - () e)fv-B]}
As about electrons. in the imit (122). the Vlasov equation
(124}

vt Or = (em){E + (1'c) v-B]dfa dp =0

can be solved exactly
Let us begin from unmagnetized clectrons and purely potential field E = -V¢. Then the solution
of (124) can be presented as
(125}
— : 2 2 .
fo = (Neg/(2rmTe)32) exp(-mv2/2T, - €j0/Te)

From this follow
(126)
Ne = Negexp(-ed/Tp), VNo/Ne = eE/Tg = -eVd/ T,

It must be noted that in this presentation we supposed To = const,which is the consequence of
the nght inequality (122).
Now we can write the system (123) in a purely hydrodynamical form ( remind that B = 0)
(127)
AN/Ot + divNy = 0

oviot + (vV)v = -|ej/e] VNT/NM

If one miroduces p = MN and P = NT,, where T, = const { isothermic approximation) then
this system coincides with the one fluid hydrodynamics of usuat iquid.

Quite analogically can be derived the one fluid MHD equations for nonisothermal . T == Tj,
and magnetized collisionless plasmas under the conditions

(128)
kvt vTo/le o Qg Q0 oy

This system of equations coincides with Alfven hydrodynamics of ideal liquid
(129)
ON/ot +div Nv =0
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dvidt + (vV)v = -le;/e| VNTo/MN + (1/4rNM){ BxrotB]
oB:ct -~ rot [vxB] =0.divB =0

Here p = NM P = NT. T, - Tjand T, = const

This derivation of MHD equations was done only in 1956 by V. Silin and Y. Kiimontovich.
Only after the publication of thew paper it becomes clear why the applications of these
equations to the low frequency phenomena i the collisionless ionospheric plasma occured so
successful. Quite analogically the above given derivation of equations for "cold" two fluids
hydrodynamics clarifies the success of their application to the problems of fast radiowaves
propagation i the ionosphenc plasma.
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LECTURE 6

Linear Electrodynamics of Isotropic Plasma

* 12 Linear electrodvnamical properties of isotropic collisionless plasma

Below it will be shown that the Viasov-Landau or Vlasoy - Boltzman kinetic equations give the
completelh adequate deseniptions of all properties ot gascous plasma. In this section we will
begin from collisionless 1sotropic plasma and for this reason we will start from Vlasov equation

(130)

Ctyct vt e e mtE - ey B ot ov =0

where « ~ e For thermodynanueally equilibrinm plasma in the absence of external fields

(131)
Fyer = (o, (2mmg, 1) 32y expl -m(_{\'2 2Ty)
Moreover we suppose that plasma is quasineutral
(132)
Lo €00 = ENge T EN0; = 0
Let now consider small deviation from fiy, or foo = fgg+ 8fa. Then for Sfa, we obtain
(133}
-i{w - kv) &f, = -e E oy /op
Here we suppose that in linear approximation 8fo ~ exp(-iot+ik-r). As a result we have
{134)
By substituting this expression into the relation
(13%)
N = uiegy J-viSﬂj_ dp = ojj(0.k) E;
we find the conductivity tensor Gij {c.k) and then the tensor of dielectric permittivity
) (136)
ejj (oK) = 65 ~ (4rro)ojjlok) =6+ Iy (dreq 2o dp( v; fgg; IpjIH© k)
it 1s obvious that
(137)
£y (wXk)= (61')' - (kikj/kz)str((o,k) + (kikjsz )al(m,k)
where
(138)
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(k) = 1 - S0 o 2/0%) F(OkvTy)
eliok) = 1 = oL 2R vT 2 ) | - HokvTe)]

When we integrated {( 136) we took into account the causality principle and the pole © = kv was
avoided m the sense of Landau (103). Namely as a result of such consideration it appears m

(138) the function 3(X ). which has not only real part for real X. but also imagmary part
(139)

P - 1.X2~ v 2 e(-X22)X when X! >>1
J(X) = Xexp(-X=2.2) iu:-"\ dt c\'p(r2 2) -
SN(T2)X - X2 when IX|< 1

The imaginary parts for Im £ ‘0 corresponds to the wave dissipation of small oscillations in
plasma. This dissipation is stipulated by Cherenkov absorption.
Let us now mnvestigate different limiting cases of  and k and clarify the principal meaning of
e]{w,k} and €!7 (.K). First of all let us consider low frequency (static) limit @ —» 0. Then

(140)

el 0.k) = 1+1/k2rp?)
limg, 0 e¥(w.k) = 1 + iN(n/2)op ¢2/0kve = 1 + i(4not(0,k)/w)

The first expression coincides with that obtained in the static limit from the model of two fluids
hydrodynalmcs and corresponds to Debye screenmg of the field for static point charged particle
in a plasma. So we see that the Vlasov equation gives the correct description of electrostatic
properties of a collisionless plasmas or for the fields E = -VO.

More interesting phenomenon is described by the second expression (140). From this
expression we see that the collisionless plasma in the static limit has the finite conductivity in

connection with the transverse electric field, div E = 0, which is the furiction of k
(141)

ol(0,k) = (Va/2)e2nge/mkvTe

This conductivity is stipulated by the Cherenkov dissipation and leads to the anomalous skin-
effect for quasistatic transverse fields in a plasma, the new phenomenon which arises only in
collisionless plasmas. To show this let us write the matenal equation (Ohm's law)

corresponding to (141) m the form
(142)

rot} = - V'nf‘2)ezner/‘mv Te
Using this relation from the Maxwell equations can be obtained the following equation for B

(143)
rotrotrotB = (4m/c2 ¥ Vr/2X eznoe/mvTe)(anét)

This equation leads to the wellknown formula for anomalous skin-effect- penetration of low
frequency transverse field in collisionless plasmas (for E~exp(iottikr))

(144)
K3 = i(Vni2)o 620/ ¢ VTe = ha = 1Mmk~(c2vre/ooL¢2)1 3
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Namely this formula was firstly obtained by A Pippard in 1949 who also gives the physical
explanation of the phenomenon. But the mathematically correct consideration of the boundary
problem of field penetration into the collisionless plasma was done by E. Reuter and E.
Sondheimer in 1938 they show that the anomalous skin etfect takes place if

o kvfe Of e

Let us consider now the problem of waves propagation in colhisionless isotropic plasma, or in
other words. find the condinons for existence of nontrivial solutions of type exp(-iotiikr) in
such a plasma in the absence of external field sources. These conditions follow from the field
equations which in the space (o0.k) look as
(145)
{I\ZGU - I\ikj - ((:)E‘Cz)ﬁij((').k) }I'}'.j =0

For the 1sotropic media with £jj as ( [37) this system separates into the two independent
equations
(146)
k! E]((‘J.k) =0

Etr{k2c2 - w2etT(w,k)]2= 0

The first describes the longitudinal field with E // k and the condition for existence of non
trivial solutions 1s

(147)
elw,k) =0

This equation is called as dispersion equation for longitudinal waves in an isotropic plasma.
Quite analogically from the second equation we obtain the dispersion equation for transverse
{E L k) waves

{148)
k2¢2 - o2eM(wk) =0

In the isotropic plasma this type of waves occurs twice degenerated.
Let us now consider very shortly the spectrum of electromagnetic waves in an isotropic plasma
and analyze the solutions of the equations (147) and (148).

1- Longitudinal Waves :
a) Let us begin the analysis of (147} for the high frequency range. © >> k vTe j, when

{(149)
al(w.k) =1- ((‘-)Lezf"(’)z X l+3(k3vTe?-)fm2)+N(Tc/2)(wLezcof‘k-g\fTeS )exp(-o)szkszez)

Then from (147) 1t follows {(© — © +10)
(150)
e = UJLez + :’)kz\/]“e2

8 = (Va/8)(wyo/k3rpe3) exp(-3/2-12k2rpe2)
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These coincide with (103) and (106) as it should be expected. They describe high frequency
plasma oscillations and their absorption due to the Cherenkov mechanism of waves absorption
by plasma electrons. Wave damping increases with the increase of k and in the short wave
range when krpy -1, these waves occur aperiodically damping. This spectrum differs from
that obtained by I. Langmuir by the factor 3 instead of 1 m o(k)

b) In the ntermediate frequency range. when vy < o k- Ve, we have

(151)
el =1 - (:)111'2,(1)2 - (:JLe2 'kszez( -1 2 )o/kvye)
Substituting this expression into the equation { 147) we obtamn (& - + 1)
(152)
k2ve? if K2rpes - -
w2 = (:)Ll‘z-(l +(oLez kz\"]‘ez) =
ST S I
of = i K-rpe= -1
o= —\ﬁ{(m 8)ei em Mo k‘v‘,}
Namely the long wave range of these oscillations
(153)

w=Kkv;, 8=—\/(n/8)|ei/e)m/M ©

was investigated by G.Gardeev in 1954 who showed that the frequency spectrum w(k) differs
from that obtained by I. Langmuir in the model of two fluids hydrodynamics by the
dependence only on the electrons temperature T, and nondependence on T;. Moreover as
o >> kvy; the inequality Te >> T; must take place. But under these conditions, the I
Langmuir result occurs to be correct. Besides G.Gardeev showed that these oscillations are
damping, the reason of which is the Cherenkov absorption of ion-accoustic (just same as that
called by I. Langmuir) oscillations by the plasma electrons. The frequency spectra (150) and
(152} are presented on the Figure 4.
¢) Finally if o << kvT; then the first expression of (140) is valid and the Debye screening takes
place.
2. Transverse Waves :
Let us now consider the transverse waves and analyse the equation (147)
a) In the high frequency range o >> kvTe. when

(154)

e(©) = 1-0] o2/0?

from (148) follows

(155)

02 = o o> + k22

We see that the phase velocity of waves is higher than the light speed. Therefore interaction of
such waves with charged particles (emission or absorption) is itmpossible. As a result m a
considered case of collisionless plasma they don't damp and besides the spectrum (155) exactly
coincides with spectrum of transverse waves obtained in the model of mdependent particles in
collisionless plasma (lim ve — 0). The spectrum is presented on the Figure 4.
b) Concerning low frequency range when © << kvTe = vTe0¢/c the expression &!f coincides
with (140) corresponding to the anomalous skin effect considered above.
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* 13 Collisions influence on the oscillations spectra of isotropic plasma

Below we will restrict ourselves by considering only the qualitative effects caused by the
particles collisions in a plasma and BGK collision integral will be considered. Concerning the
completely ionized plasma, only the corrections will be given. Thus we will start from the
Vlasov-BGK equation
(156)
B /0t + vofy/dr+eq { E+(1/c)[vxB]}0fy/0p = -vgo (fg - Na$o0)

Here
(137)

f0 = (142mg T )3 2)e(-mv2 /2T )

The equilibrium distribution as it is easily seen coincides with Maxwellien foo = Noa®ao-

Therefore for a small perturbation of type 8f, ~exp(-iottik-r) from (156) we obtain
(158)

S0 - kev)dfy + e EAfy/Op = Vo ( Oy - b0 [ dp 8fe)

Here for simplicity the isothermal model of BGK integral was used, that means Ty = const.
The equation (158) is the Voltera type integral equation which can be easely solved. We omite
the solution and give the final results - the expressions for el (0.k) and &'T (©.k)

(159)
el (o.k)y=1~+ aZ(mLeszszaz) X
((1-3((otivgoVkv ) (1-(vgoi(otiveo) S({w+iveo)VkvTe))

eM(w.k) = 1-% 4 o)Le?-f(m(u)+iva0) F(o + ivg ) (kvTg))

As it should be expected for the collisionless plasma when v —> O these expressions coincide
with ( 138).
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Iet us begin the analysis of the expressions { 159) in the static imit when ©o—> 0. It 15 easy to
show that mdependenty of the ratio v, o/kvyy. we have
(160)

E:](O.k) =1+ szr‘[)e2

Thus in the static limit for colhisional plasma as for collisionless one, we have Debye screening
of potential fields.
Quite another situation arises for &' (w.k). The above result (140} corresponding to the
anomalous skin-effect for low frequency transverse field in a plasma is correct for collisional
plasma also 1f

(161)

[0 Va’ NT e e ©

Remind that in the collisionless limit. v “ <, the anomalous skin effect takes place 1o the
frequency range © < vTe O] g/€.
In the opposite to (161) limit when v *vTe0] o ¢ the anomalous skin effect is impossible. Then
in the Jow frequency range. = ve. only wellknown normalous skin effect takes place and the
formula
(162)
el = 1 + (io] g2/0veq) = | + 4mic/o, & = e2nge/mveg

obtained in our second lecture is valid*.
Let us now go over high frequency range and consider the particle collisions influence on high
frequency phenomena. From the expression (159) for sl(co,k) follows that if w~o[¢ >>
kvTe, veo we find the correction to the expression (149)
(163)
Ael =i ®] ¢2Vel®3

Here we take into account also electron-ion collisions and therefore in the formula ve = veg +
veff. The correction (163) leads to the correction of Landau damping (150) of plasma high
frequency oscillations
(164)
A8 = -vel2

Remind that for completely ionized plasma e= 1,96 ¢” n,. / meff

Comparing this correction to (150) we can determine the condition when plasma should be
considered as collisional in the high frequency range

(165)
Vel e > (Vrexp(-1/2k2rpe2))(5,5k3 e )
In the opposite case when the oscillations are sufficiently short wave length, particles collisions
can be neglected. Moreover the quantity (164) allows us to determine when plasma should be
considered as completely ionized for high-frequency plasma oscillations
(166)
Veff'Ve = 2-1073 (nge /mg)AZL/a2 To?) ~Znge 10} IingTe2 >>1 where Z = | ei/e|

In the opposite case plasma is weakly ionized. For example if To > 104K then plasma is
completely ionized if nge > 103 ng. At the same time, if Tg ~ 108K (thermonuclear plasma)
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then even at ng - 107 nge plasma occurs weakly ionized. the electron-neutral collisions
exceeds the collisions between charged parucles.

Quantitavely another situation takes place for low-frequency longitudinal oscillations when,
kv o kvpe cifin addition to these inequalities v - © and kv e © are satisfied then the
followang collisional correction to the (151} arises

,
* Remind that for completely tontzed plasma with e =-e¢. o =1 90 ¢7N0e MVeff

(167)
.y for weakly 1onized plasma
Agl = i((:JLizf(-J-’ )
IO QUSRI TBR: for completely ionized plasma
As a result we obtan the correction to the damping decrement (152)
(168)

vio 2
Ad = -
4\'l'l'l\3\-‘"[‘i2 S0

for weakly and completely ionized plasma correspondingly. Comparison of this expression with
the damping decrement (152) leads to the following condition:
if vy > VZm/M . where
(169)
- Vio
Vi =
- 8/5 vijk?vTi/on?

Then the particles collisions determine the low frequency waves absorption and if opposite
inequalities take place the Cherenkov mechanism of absorption is dominative.
Besides from the ratio of two expressions { 168) we determine the condition when plasma can
be considered as weakly ionized for low frequency oscillations and vice versa. Thus in the case
of long wave oscillations when the relations (153) are valid we conclude : if
(170)
no/Mmpe 101 ]ZZITeTi

then the plasma should be considered as weakly iomized and as completely ionized in opposite
case. For example if T, 103K, Ti - 103K, Z=1 then a plasma only with ng/ nge > 103 can be
considered as weakly 1onized.

In conclusion let us analyse the properties of strongly collisional plasma. But before we'll
consider the expressions (159} in the limit |(o Tivy | > kvT. where the model of two fluids
hydrodynamics seems to be valid. From (159) under this condition follows

(171)
el(o k) = l-Za(oLazf’((o+iva0)[co-i(kszezvao);’(mﬁvao)z]

eMok)=1- La(nLazf(co(coﬁvag))
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Comparing these expressions with (38) we conclude that ell (,k) is identical whereas ei,k)
differs by the factor v, (O+ivgy) of the term taking into account the thermal motion of

particles.
This difference is verv principal. Moreover the correctness of the expressions (171) are defined

by the condition | - 1v, | " kvTe and therefore the expressions (38) are correct in two
cases: when v g -« and the mentioned factor becomes equal to unity. or when © >>vg0,
kv, and the thermal motons of particles 15 a small correction. In the first case

(172)

eok) =1 'iu”ldiz-‘( i(-)v(lwl{szu2 }

This expression coincides with (41) which describes the diffusion processes in a plasma (see
lecture 3). In the opposite limit when © ~* vgq. kv, thermal motions of particles can be
neglected and the model of mdependent particles considered in the lecture 2 is valid.
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LECTURE 7

Lincar Flectrodynamics of Magnetoactive Plasma

* 14 Lincar electromagnetic properties of collisionless magnetoactive
plasma

A magnetoactive plasma represents a svstem with practically mfinite number of degrees of
freedom. In a magncuzed plasma there exist different tvpes and different branches of
oscillations and waves. It i obvious that the mvestigation of all these oscillations in detail is
impossibie in one lecture
Therefore we will restric ourselves by the consideration of only the most specific phenomena
which characterized magnetoactive plasma and which every physicist must know.
First of all it must be noted that the charged particles rotate around the magnetic field lines.
This rotation can be considered as individual oscillations of panticles with frequency equal to
the well known Larmor trequency egBgmge = €. It is casy to understand that if the
electromagnetic field frequency i1s o 1), then the resonance interaction between the field and
charged particle must take place. As a result the dielectric permittivity gjj (@.k), 1ts hermitian as
well as antihermitian parts (which describes energy absorption) have the poles at ® ~ nQ). In
the lecture 2 we showed that such poles arise in the model of independent particles, but only
for n = £ 1. Below we will show that the kinetic consideration leads also to the appearence of
the poles at n #1.
The second obvious phenomenon which arises in a magnetoactive plasma is the magnetic
pressure By2/8x which follows from the elasticity of magnetic field lines. We have already met
this phenomenon in the model of independent particles and namely it is the reason of Alfven
type oscillation, Of course this phenomenon exists in two fluids hydrodynamics as well as one
fluid (Alfven) MHD. and below it plays a very important role also in a kinetic theory of plasma
oscillations.
Finally it is easy to understand that the behaviour of magnetoactive plasma at © = n{),, must be
somewhat like to the behaviour of isotropic plasma at w— 0, because the Larmor rotation
remind the Doppler shift for electromagnetic fields. Below this will be shown by considering
the field penetration (skin-effect) into the magnetoactive plasma.
As 1n the previous section we begin from collisionless plasma described by the Vlasov equation
{130). From this equation we obtain the equation for equilibrium distribution function fy(p)
{external magnetic field By 1s proposed to be parallel to OZ axis}

(173)

e[vxBg] e 0p = -Qy oy dp =0

Here ¢ 1s the angle m the cvlindrical frame : v, . vi=v | cosp. Vy= v sin ¢. The solution of this
equation we have choosed as
(174)

foe = (Nog/(2mmg Ty )3/2 )exp(-mgv2/2T)

Besides, it was supposed that the plasma is quasi neutral, or 3 e Ngg=0

*The detail consideration of linear electromagnetic phenomena in magnetoactive plasma, can
be found in many text book on plasma physics. .

For a small deviation from o, which is taken as &£, ~ e-IOUHKI ywe obtain
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{175}
-i{er -k-v)3fy -0, 88800 = -e Sl /Op

Taking into account the obvious condition of periodicity
(176)

(:’lf—(i(([) " 2:T) = (Sf(f,((l’))

the general solution of (175) can be written as
177)

ofg =ey L2 S0 do’ By Ep) expli Q (pjﬁ‘("d(p"(w-k-v)m"]

Here we suppose that of(oc) =0
Substituting the expression ( 177) into the formula for mduced current ( 135) we find plasma

conductivity and then the dielectric permittivity
(178)

gijlo.k) = o - (4710) oy (0.k)
xsij +2a (4nea3:m§2q) I dp oty O Vi 0 J-wd(p'\j((p') exp(-1/Qqy (pI(P' do"(0-k "'(p"))

It can be easily shown that this tensor has 6 independent components: Exx,eyy.€zz.txy = ~Syx>
€zy = “Byz Exz = ale( remind that in the case of isotropic plasma we have only two
components e and € ). However below in general we will consider only two of them. The first
quantity
(179)
£1(0,K) = £xx Hexy= 1+ Z2neq2/0) (3foa/dea XV 1201024 -kv,2))dp

=115 Z(O] o 2 0N I(0H25) kv Tr)

describes the purely transverse field (E L k) depending only on the parallel coordmates (k.

=0, ky # 0). Whereas the second one
(180)

e(0.k) =kikigji(o.kyk2 =1 - To(4ney2/k?)idpdfoe/dtq ) -In 052 (b ) 0-nQ kv
=1+Zq OLa 2 KEVT 2 [ 1-Zq (0(0-1Q¢ ) An(Zg)I(01Qx Yk zvT ()]

describes purely longitudinal field (E =-V¢. E // k) arbitrarily depending on coordinates
(k =0, ks = 0). Here by = kv Q. Zoﬁkj_2 vTuzanz and Ap(z) = [p(2)exp(-z), Ix(z) 18
the Bessel function.
First of all it must be noted that from the expressions (179) and (180) follows that their poles
really correspond to the one particle cyclotron resonances at

(181)

©=nfdy

These poles describe one particle oscillations and therefore the ranges of these frequencies
the resonance waves absorption must arise. Indeed from the integrand (179) and (180) we see
that under the conditions

(182)
© -0y kv, =0
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the resonance wave absorpuion takes place. It follows from the Landau prescription that
(183)

P oy =honv, - n8d, )= (@ (0 =k, v,-n02 ))-1molo-Kpv,-n2 )

At n=0) the absorption 1 coming trom the Cherenkov mechanism considered in the previous
section. whereas the absorption at n=0 15 known as cvclotron absorption. At the same time, the
last one can be treated also as Cherenkov absorption taking into account the Doppler shift nQ,
stipulated to the one particte oscillations.
More obvious the Doppler shift s scen trom the character of waves propagation described by
the dispersion equation

(184)

| kzdij - k,’kj ‘(‘)zﬁij((&k)i =0

For purely longnudinal propagation when k| =0 this equation takes the form

(185)

900 )
h=c-  o*g |

which corresponds to the purely transverse waves. In the frequency range ©+Qe<<k,VTe

from this equation in taking into account (179) we obtain *
(186)

k2¢2 = (o o2w/kvTe)VR/2

This equation coincides exactly with (144) and describes the anomalous skin-effect. The

penetration depth obviously coincides with (144)
(187)

A = (Imky ! = (Vr/2)op elo/c2vyey /3

At the same time we can rewrite these relations in the language of frequency spectrum, near the

cyclotron frequencies when (ot Qg)<<k,vTe from (185) we obtamn
(188)

o= —i(k3c2vTe/mLe2)\/2fn

We can say that near the cyclotron frequencies, there exist cyclotron waves which intensively
are absorbed by the plasma electrons. When the frequency is shifted, this absorption decreases
and in the frequency range far from the resonance frequency. when © >> | © £ Qq| >> Kyve it
becomes exponentially weak. Then from (179) we have

(189)
K262 = (0] o202 ) 1-Va2((0H Q) kvTe)e-((02e)2 2k 2vTe2)
From this equation we find the spectrum of cyclotron waves (w+ 10}
(190)
o =10, - (uLe?-mszcl O Z-V’m'Z((:)Lezmﬂ(zc?—)( lfvae)exp-((miQe)Z/Zkszez)

*For simplicity we consider the waves only near electron cyclotron frequencies.
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Sometimes these relations are presented in the optical language for the reflection index and

absorption coefficient ( k=onsc. n— n+iy). If | 0H2e| »>navrele, then
(191)

n= = (’)I,,ez ode) 7 =(\7rs'8}((:)Lezc.(r}z\"ren:)cxp-(((:)ﬂ)e)zczf.?nzmzv]"ez)
In the opposite imit. when 0=, 1OV T C. this quanuty occurs to be essentially complex
(192)
n3 = i(vm2 )(e)Lezc.-(:)sze

On the Figure 5 the dependence of complex reflection index n on the frequency shift ©-Qg 15
presented

Figure 5

Let us now pass to the quasi longitudinal oscillations of magnetoactive plasma which exist

under the conditions of | & -nQ | << ke, or they can be considered as slow waves (in taking

into account Doppler shift). In the statical case, @ — 0, from the expression (180) follows
(193)

£(0.k) = 1 + 1/(k2rp?),

which means that the electrostatic field of a point charged particle in magnetoactive plasma as
well as in isotropic one is screened and the field penetration length is equal to the Debye
length.
From the expression (180) it follows that the one particle cyclotron resonances at © = n g
take place for the longitudinal fields also. As a result near the cyclotron frequencies there exist
the longitudinal cyclotron waves. Below we will show this for the purely electron plasma and
transverse propagation of waves (k; = 0). The dispersion equation for such waves looks as
(194)

£ = 1+ (0] o2/ k2VTe D) 1-n S0/ 0nQe))An(k2vTe2/Qe2)] =
122 g 290 e 2020 21K 2V T 2 02-k2Qe2))Ag(k2vTe2/02e%) = 0

The solutions of this equation are known as Bemstein oscillations in honour of L Bemstein who
theoritically predicted them in 1959. They are presented on the Figure 6.

56

Mo re e e g e~ ey — TR T T Y o



In conclusion of this section we will discuss very shortly- the another branches of
electromagnetic waves of magnetoactive plasma which every physicist must know. In the first
tum let consider the oscillations of "cold” plasma. or in other words. the limiting case when

(195)
o=l Oy hov, L l“'_:\‘lcx: Elu: i
Y
e T T T
380, WW
f
.4 0 R V- =
e e e
of — - = F
! K¥re
¢
Figure 6

In accordance of these inequalities the phase velocities of waves in taking into account Doppler
shift are supposed much larger than the thermal velocities of particles. The dielectric tensor
{178) in this limit coincides with the well-known expression considered in the lecture 2 when
the model of independent particles was discussed (of course for vy, — 0)

{196)
£ ig 0
g, =118 & 0
0 0 ¢

£] = 1 -4 S0L 2H02 - Qg 2). 2550 0L Quio(0-Qg?)), g/ = [-Sop o2l

In the lecture 2 the waves described by this tensor were investigated. By this reason here we
will restrict only to the statement that inequalities (195) represent the validity of the results of
these investigations and more generally the validity of the independent particles model for
describing the properties of magnetoactive plasma.

The another simplest model which was considered in the lecture 3 is the Alfven one fluid MHD

model for describing nonisothermal T, >>T; magnetoactive plasma. It can be easely shown
that this model is working under the condition

(197)
o = O <o 12 k12 vre Qe < L vTi <% ofkg <VTe

Then the tensor (178) looks as
(198)
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[t must be noted that here we completely neglect the dissipative processes due to the

Cherenkov mechanism of wave absorption. Only in this case the expressions (198) provide
exact correspondence to the ideal MHD model considered in the Lecture 3.

* 15 Influence of particles collisions on the properties of magnetoactive
plasma

Passing to the collisions of particles we wish to notice that as above we will restrict ourselves
by considering only a weakly ionized plasma and therefore only the Vlasov equation with BGK
collision integral will be solved. This equation for a small perturbation of distribution function
looks as
(199)
+H kv)5fy ey ESfge/Op - iQq00( /00 = -ive(3fg0-funidpdiy)

fy0 = (1/(2nme T )32 )exp (-mgv2/2Tg

This Voltera type integral equation can be casely solved. We will present here the result of the
solution and calculation of the dielectric tensor. Moreover as above we will write only € and
€. The quantity £ is equal
(200)
£l (k) = 1 + (g [0+ivgVoNexx(®) -1 s ()]=

|- GZ((L)LG_Z/(D [(o+ivg )y ) S0 Hve o) Kz VTo)

Here £, “ and axya are the components of dielectric tensor of collisionless plasma with
changing w — o + 1vyp.
This quantity describes the purely transverse fields depending only on z (or kj =0, k#0). For
the quantity £(w.k) which describes purely potential field { E=-V¢) we have (k) #0, k, = 0)
(201)
gok)=1+ afi(mLa?—/ksza2) x
{1} - D(OHV gAOH IV 0B DARK | VT Qe P )T +iv 0D VKV Te) ) %
{1-plivg ol otivep nQ)S(otive enQq VK vTe) 1 -1

As in the previous section let us consider the transverse field behaviour near the electron
cyclotron frequency, o -nQe| << . Substituting the expression (200) into the equation ( 185),

we obtain that, if ve << k,vTe ~ VTe/Aw (collisionless plasma), A4 is given by the relation
(187).

However if the opposite inequality takes place (collisional plasma), from (185) we obtain the
normalous skin-effect for field penetration
(202)

g = 1/Smk ~ (cPvep/oap ¢2)1 12
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Quite analogical to (188) we can write this relation in spectral representation
(203)
= 22 o L2
0= AIRTCVa()i0] e

In conclusion of this section fet us consider the behaviour of potential field in a collisional
magnetoactne plasma. described by the expression (201) In the staric limit, when ©—0 |,
independently from the ratio v g kv we have
(204)
£(0.K) = 1-1k2rp-

This means that Debyve screening of the potenual field of static point charged particles takes
place as it was shown for isotropie plasma above.
Analogical to the isotropic plasma can be considered the problem of particles diffusion also.
For this aim the expression (201) must be written 1 the limit o). kvg << vy, Qg
(205)
elo.k) = 1+i(,(z(')[,(12"‘1"2"’1‘(12“(kLz\'"I’(,xz\’u()) (V07 Qo 2k AT Vg 0)

: b) Yo T b 3 7, -1
(@ ook =V = Q= v 07) K VT~V 0))

The poles of this expression describe the monopolar diffusions of electrons and ions in a rare
plasma (o[ o2 << kszaz)
(206)
ONG/O-D | 4A Ny - Dyy q8>Ny/82z2=0

Here D} o = VTanOtO Qg2 +Va2) , Dy o =vTe? ! vao

represent the transverse and longitudinal monopolar diffusion coefficients correspondingly for
o = e.i. At the same time in the opposite limit of dense plasma when k2vpy2 << of o2 the
equation &(w,k) =0 describes the ambipolar diffusion of particles in the magnetoactive plasma
(208)
ON/Ot - D | 2A | N=Dy1y82N/0z2 =0

Therefore the coefficients of ambipolar diffusion are equal to
(209}

D2 = (vepl "'Tiz*'"’sz)’J((Veﬂ"i()*(QeQi)l D= (VTi2+Vsz)/ Vi0

It can be easily confirmed that there is the well-known Einstein relation between the static
partial conductivities of plasma particles and diffusion coeflicients (o = e.i)
(210)

Dijer = (T oy /e * Ny )ij{ 0)

Thus relation 1s correct only in static limit and only in thermodynamic equilibrium. Then
(211)

G | {0) ;eazNava(}/’ma(Qa3+va02), G/ O((0)zeOLZNOt/mO(\20(0

represents the transverse and longitudinal partial conductivities of charged particles of type
o=e,i.
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PART 2

Electromagnetic Properties and Stability Problems

of Thermodynamically Nonequilibrium and

Spatially Bounded Plasmas
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LECTURE 8

Electromagnetic Properties of Spatially Bounded Plasmas

* 16 Surface waves in a cold collisionless plasma

For plasma bounded mn space two new problems appear. the first one is the problem of new
type of waves. propagating along the plasma surface and damping across the surface, and the
second 1s the well-known Fresnel's problem - the problem of waves reflection and refraction
from the plasma surface.
For solution of the first problem the knowledge of boundary conditions is needed. Here arnise
too much different possibilities : plasma confined by the strong external magnetic field, when
the particles reflection from plasina surface has quite defintte character, plasma confined by the
mfinitely sharp potential wall. from which the mirror reflection of particles takes place, plasma
confined by the glass walls. on which ionization and recombination of particles take place and
so on. Below we will consider the sumplest cases when the problem of boundary conditions has
the obvious solutions.
Let us begm our analyses from the case of cold plasma, described by the model of independent
particles. The dielectric permittivity of such a plasma in the absence of external magnetic field
1S:

(212)

aij(u),r) = e(m,r)Bij, glwr)y=1-24 u)zLa(r)/co(w+iva)

It 1s very important to be noticed that this expression is valid for the arbitrary
inhomogeneous density distribution ny (r). We will assume below a sharp boundary, or
(213)
N0q ifx >0
ne(r)
0 ifx <0

Then we can write the field equations representing the solutions as A{x)exp(-(iot+ik,z)) (0z
axis 15 orientated along the plasma surface) :

(214)
kEy Ho/c)By =0, k By - (0/0)e(x)E, (x) =0
kzEx HOE,/0% - (0ic)By = 0 kzBy +i0B/0x+(w/e)eEy=0
i(')Eyf’ax —(w/c)B;, =0 iaByz’ax -(wic)eE, = 0

The boundary conditions can be obtained by integrating these equations over x near the

plasma surface 0-5 < x < 0+8, where 8 — 0. They look as
(215)

{Ez)x=0 ={Ey=0}X:0 ={Bz}x=0= {By}x=O =0

Here we take mto account that the fields E and B must be finite as physical quantities.
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The equations {214} can be reduced to the two equations for Ez and Bz:

(216-a)
e(0.x) [ O2E,/0x2 - k,2E + (02/c2)eEZ] = 0
(216-b)
32B,iax2 - k2B, + (02/c2)eB, = 0
The other components of E and B can be easily expressed n terms of E; and B,
(217)
Ex = -(ikz/y2)0Ez/0x. By = ~(iw/cy2)e0Ez/Ox,
Ey = (1o/cy2)0Bz/dx. Bx = -(ikz/x2)0Bz/0x,

where 12 = k,2«(0?/c?)e(x). These equations are valid for x 2 0 and x < 0 and match the
solutions at x = 0. First of all it must be noticed that the equation ( 216-a) admits the solution
(218)

g(w,x) =0,

which corresponds to the localized bulk potential oscillations, studied above ( lecture 6). The
other equations are separated for components Ex, Ez, By, and By, By, Ey, correspondmg to
TM and to TE modes respectively. As it was mentioned above there exist two problems for
this system: boundary problem or waves reflection and refraction and initial problem or own
surface oscillations. In this section we will consider only the second one.

It is easy to show that only the equation ( 216-a) allows the existence of surface type solutions:
(219)

C, exp[— J(kzz - (co2 /cz)e) x] when x >0
Ez=
C, exp[ k> -0 /¢ x] when x £ 0

From validity of these solutions follows ®2< k,2c? and gw? < k,2c2, or the waves are slow.
After subtituting the solution (219) into the boundary conditions (215) for E; and By we obtain

the dispersion equation for surface waves (for TM modes)
(220)

\/k?_:cz ~0's +a\szzc2 -0 =0,

where g(w) is given by the expression (212) for x 2 0. The solution of this equation for purely
electron plasma and in the limit ve — 0 is presented in the Fig.7.
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Figure 7

In the long-wave limit. when o= Kk,¢ ©+ of . the phase velocity of waves tends to the light
speed and they present the well-known Tsenike waves on the surface of metals. In the opposite
limit (short-waves), o = o o/¥2 << k, ¢. the waves become practically potential (
longitudinal). Therefore in this limit these waves can be described by the Poisson’s equation:
(221)
divD = (8/0r;(ed¢/0r;) = 0/ox(£80/%) - k2 £ = 0

with boundary conditions

10)y—0 = {£00/0X }x=0 =0

From this system we obtain the following spectrum of oscillations
(223)

£=-1 = 0= 0n]e/N2-ive2

Here we take into account the electron collisions also,which lead to the damping of surface
waves in a cold isotropic plasma.

Let us now consider the surface waves in a cold magnetoactive plasma under the condition
that the external magnetic field Bg is parallel to the plasma surface. For simplicity we will
restrict ourselves by considering only potential surface waves. The dielectric tensor for a
collisionless magnetoactive plasma looks as { see lecture 7)

(224)
g, ig 0
e, =g & 0
0 0 g,
where
(225)

gl =1- OtE((:)Lmz(x)/(m2 - qu), g= aZ(ﬂ)Laz(X)Qa)f'&)(wz-Qaz)

2 .
£/ = aZU)La-(x)/mz

Representing all perturbations as A(x) exp(-imt+ikyy+ik7_z), from the Poisson's equation we
obtain
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- A R = S-&a

AZX =

;.

(226)
@.‘8riaij(a¢narj) = af'(')x(s_L((B‘(b/‘ax))-k228J_r;dJ—kyQ)&g/ax-kyze_;_d) =0

From this the following boundary conditions follow
(227)

10} =0 =0, {6 O9/Bx - Kypdix=0 =0

After substituting the solutions
(228)

C, exp[— (\ﬁ;\_: + km,zs,, ‘g, )x} if x20

C:exp{\/k\' +k,” x:l if x<0

into the boundary conditions (227) we obtain the dispersion equation for the surface waves

(229)
sl\/k\y2 +k,’e, /g, +kyg+,{k_v2 +k, =0

Two very important consequences follow from this equation. Firstly we see that the surface
waves with © < Q, can exist in a magnetoactive plasma only if the magnetic field is finite

( we consider only purely electron oscillations), and secondly these waves seem to be one
direction because

(230)
alky jEo(-ky)

Specially in the frequency range ® <<Qg (but © >> €2, ©[ ;) we have
(231

o = (ky/ | ky | Nope2(Qe(2+0Le?Qe?)
Such type of waves were firstly observed in the solid state plasmas. They play very important

role for diagnostics of solid state surface. In the next lecture it will be shown that they are very
important for gaseous plasmas also - for the problem of plasma confinement.

* 17 Kinetic theory of plasma surface waves

For developing the kinetic theory of plasma surface waves let us use the system of Vlasov -
Maxwell equations. Supposing that the equilibrium distribution is Maxwellian

(232)
foo = N0a(XM(21mT )32 exp(-mv2/2Tg)
where ngq(x) is given by (213). The equation for the small perturbations of type
8f(x) exp[-(iwt+ik,z)] can be presented as
(233)
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(e = Kpv )0 = viB(8fy )Ox + ey Edfp/dp =0

As a boundary condition for dfu(x) we take the simplest one corresponding to the mirror
reflections of particles from the plasma surface

(234)
St (0 D) = S (0 )
Then representing of, (x. v, ) as
(235)
of dnag) - of, Ty - ol T Ixvy)
where
ol {xavyg )
8o Hx vy ) -
ot (xovy - 0)
for Si‘uq X.vy) we obtam the obvious conditions
(236)

Ofy {0.vy) = Of T(xovy)
O (oo, v ) =0

The last relation follows from the requirement E(o)— 0, taken into account for the surface
waves. Thus the boundary problem is formulated: for 6f"(x,vy) we have the equation (233)
with zero boundary condition at x — « ( the second relation (236) )  whereas 5£7(x,vy)
satisfies the equation (233) with the first relation (236) as the boundary condition. Omitting the
details of calculations we will give the final result for the current density:
(237)
Ji{x)= aZeafdpviSﬁx,vx) = fdx'[kij( | x-x'| )+ kij (Ix+x' | )]Ej(x')

where
(238)
kij( | x| )= -_JO[E:OL2 fdp (vi'vy) (afoufapj) exp[ 1 | x| vy Nw-kzvz)]

It 1s obvtous that j(x) # 0 only in a plasma. Substituting the expression (237) into the field
equations and usual boundary conditions ( continuity of tangential field components) after
some calculations the following dispersion equation for the surface waves of TM type can be
obtained

(239)
\4‘((](2202/’(1)2 )-1) + (2oine )l dkx/'kz)[(kzzczfmzel(m.k)) - (kxzczf(kzcz—mzstr(m.k)))] =0

Here k2 = kxz + k22 and e“'al(w,k) are the transverse and longitudinal dielectric permittivities
(see lecture 6).
It must be noticed that the equation (239) is valid for a collisional plasma too. If the spatial
dispersion is neglected, €T (0.k) = sl(m.k) —»¢ {w), it passes to the equaticn (229) considered
above.
Below we will investigate the equation (239) only for slowing potential surface waves and
therefore will take the limit ¢—o0. Then this equation takes the form

(240)
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a A =

A L4 B-ERA 2 . 2 &8 .

1+ 2/m Jo% (k| dky) i(k%el k) = 0

Let us begin the analysis of this equation assuming that o ~> k,vTe and therefore

(241)
gfok) = l-(:)l_ez.mz +i\'(:r.-2)((szLezrﬁvTe?’) exp [-mzf’lkszez]
Substituting this expression imto the (240). we obtain
(242)
2= (o 20N 1 -INEBN K, | vre) i0) =0
The obvious solution of (242) is (© @ +10)
(243)

o= (s)Le/\fl S =-V(2/m) | kzl VTe

On the contrary to the bulk waves with exponentially weak damping the surface waves occur
much more intensively damping. This fact is a result of integration in (240) over all ky , or in
other words, the transverse coordinate components consists of all dependence and therefore the
slowing waves also, which leads to the increasing of their damping.
For nonisothermal plasmas with T, >> T; the possibility of existence of ion-accoustic surface
waves appears. Really if the expression

(244)

gl = 1-op 2/ + (o 2/&2vTe2) [ 1 +iV(r/2)(w/ kz VTe)]

will be substituted in (240) after some calculations the following spectrum for surface waves D
the phase velocity range vTj << w/’kz << vT, can be obtained

(245-a)
kzzvs2 << (DLi2
mz =
0212 >> kz2vg?
Jrm /8M it kv << oL
dlw =
(245-b)
é\jm ItM o, 1KV if kz2vs? > op i

Here also we see the increasing of surface waves damping in comparison with their bulk
analogous.

* 18 Plasma waveguides
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The semibounded plasmas and the surface waves were considered above. Let us now consider
the completely bounded plasmas and bulk waves in them. We will restrict ourselves by
considermg only fast waves when thermal motion of particles can be neglected. In other words,
we will consider only cold plasma in a ¢vlindrical gecometry. which is interesting from many
applications pomnt of view
Let us begin from isotropie collisionless plasmas. supposing that
(246)
Ny ¢ oconst if r<R
N dr) -
0 it =R

where R is the radius of a metalttic waveguide. The field equations in this case can be reduced
to the following equations

(247-a)
gloafa;k, - l\'zzliZ - ((‘)zs’Cz)E((L).T)EZ] =0
(247-b)
A B, - kZZBZ - (0=e)e(en)B, = 0
where £ = | - Lo o 2/®2. The boundary conditions for this system look as
Le (248)

Ey | =R =0. Ey=0Bgior [;—g=0

First of all from ( 247-a) follows that in the plasma waveguide as in semibounded plasma there
exist the bulk Langmuir oscillations with dispersion equation (218). Besides there exist also two
branches of TM and TE waves for which the solutions of the equations (247) look as
(249)
E, = C13aliyr), B, = C2Taliyxr)

where xz = kzz -(wricd)e. Substituting these solutions nto the boundary conditions (248) one
can easily obtain for TM and TE waves correspondingly:

(250)
w2 = kZZCZ + (DLez + “eSZCZ,IR?_\ w2 = kZZC2 + mLez + u'eSZC2/R2

where Jelhiag) = 0 and J'alit'eg) = 0. In the Fig. 8 the spectra (250) are presented. We see that
these waves can propagate only if © > oy The mmimal values of cntical frequencies are
determined by (LegImin = 2.4 and (' gg)min = 1.7.

Quite another situation takes place in a magnetoactive plasma. When the magnetic field
increases the critical frequency of TE modes decreases and tends to the vacuum critical
frequencies in waveguides. g0 = WegC/R.
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Figure 8

2 . = 2 22R2
0= 4F = OFe” T Heg~¢ ‘R
2= 2 2 2n2
O“3B = WLe~ + Weg=c=/R

As about the TM modes (E,, E;, B¢) they occur to be coupled with longitudinal oscillations

and satisfy the following equation for E
(251)

A Eg - (k2 - 02/c2)eE, = 0

This equation in taking into account boundary conditions (248) leads to the followmng

dispersion equation for TM-mode in a magnetoactive purely electron plasma:
(252)

12esc?/R2 + (k22 - 02)(1 - o ¢2/0?) = 0

The solutions of this equation are presented in the Fig.9, which shows that there exist two
branches of waves: fast one with w/k; > ¢ and slow one with o ’k; <¢

Figure 9

For fast waves the critical frequency wqr > wle and © 2 oy, whereas for slow waves there
exists the maximal frequency equal to o .
* 19 The Fresnel’s problem
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Let us turn to the semibounded plasma and consider the Fresnel's problem, or the problem of
waves reflection and refraction from the plasma surface. We will restrict ourselves by
consideration of S-polarization of the incident waves, because namely in this case there arises
an interesting phenomenon of waves transtormation to the plasma surface. In this case E,. By
and By, are nonzero. For b, component we can write
(253)

E.,0 explikeg¥)—Ezrexp-ikyox ) when x< 0
E, = expl-iot-ik,2) «

Lo explikgx) when x20

where kg = V({(:)zrcz)-kzz) and ky| = V((w2ere? )—kzz). The incident waves amplitude E,q 1s
supposed 10 be given. whereas the amplitude of reflection E;| and refraction E,> waves must
be found. Using the boundary conditions (215) and taking mto account the relations ( 217),
after some calculations we obtam:

(254)

S —

E.E, = [%‘Iﬁi ] '(\/((:)Ig )k +a\/‘”2 et~ k’zj i
r=Ez 1 E707(Ez2/E20)-1

The quantity |r]2 is known as reflection coefficient, whereas the quantity A=1- 1112 is called
as refraction one. It must be noted that the denominator of (254} all times is nonzero. Thus the
excitation of surface waves is impossible. Moreover, when £(w)<0, then the complete reflection

of incident waves takes place. Really, if we introduce the surface impedance Z by the relation
(255)

r=—(1-0Z/4n)/(1 + ©Z/4r), Z ={4n/c)E, (0)/B,(0)= (4mi/welk,’ —0’e/c?

then it is easy to see that £<0 corresponds to the purely imaginary Z. As a result |r]2=1 and
we have complete reflection of incident waves.
The complete reflection of waves, when g(©)<0, takes place only when the plasma boundary is
very sharp. But if we take into account the finite size of boundary inhomogeneities the
reflection occurs to be noncomplete and the surface wave absorption takes place. For
convincing this let us consider a thin inhomogeneous layer near the plasma surface O<x<a and
suppose that © < ©] ¢ (a) = const. Then in this layer there exists the point xg where

(256)

e(xg) =1 -mLez(xo)/mz:O

Below it will be shown that in this point the incident wave will excite the resonance plasma
oscillations and as a result significant incident waves absorption will take place. The field

equation in the case of inhomogeneous plasma looks as (compare with (216a))
(257)

Blax[(e(x )M ((02e(x)c2)-k,2))BE /ox] + e(x)E; = 0

Quiside of layer (x<0, e=1; x2a, e=const.} the solutions of this equation can be written as
(253). At the same time, in the layer taking into account that a/Ag=aw/c <<1 we obtain from
(257):

(258)
E,(x) = C2+C oX(x2(x)dx"/e(x'))
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where xz(x):kzz-mza(x)ﬁcz. After integration taking into account that (xg)=0 we have
(259)

E A0)=E (0) “(ncio)By(0)k,2/ | de(xp)dx | ). By(a)=By(0)

On the other hand . according to (217)
(260)

EA0)By(0) =cZ 4. Z=(dmo)[(ix(a)ela)) k2 | de(xg)dx | ]

The surface impedance Z occurs 1o be complex with nonzero real part. As a result the

reflection coefficient |r|2=1 and the wave absorption is of the order of
(261)

A=1-|r] 3=(4rck23f’xo | de(xg)/dx | y4AncioX 1] de(xg)/dx | y=2a/h<<1




LECTURE9
Stability Problem of Plasma Magnetic Confinement

* 20 Dielectric permittivity of inhomogeneous plasma confined by magnetic
field

Plasma magnetic continement is one of the most important applied probiem in plasma physics
and nuclear fusion. By this reason we will consider this problem in detail. Real plasma
confinement systems have the toroidal forms. However the linear sizes of experimental devices
are much larger than all the characteristic sizes of plasmas. such as Debye and Larmor lengths,
characteristic sizes of plasma inhomogeneities and so on. Therefore with sufficiently accuracy
we can consider the flat geometry instead of cylindrical or torodoidal. Thus, we suppose that
external magnetic field is parallel to the OZ axis. whereas the inhomogeneity of plasma is
directed along the OX axis. Then for equilibrium distribution function fy we can write

(262)
vy Ot/ Ox - Qg g/ 09 = 0
The solution of this equation is an arbitrary function of the characternstic
(263)
dx/Avcosp )= -dp/Qg(x) = vsingp+ xfdx'Qa(x') = ¢onst =C
Thus, the solution of equation (262) is
(264)
fog(e,C) = (l+(v_j_sin(p/Q?) a/ex ) fu% (x)
£1c0(X)= (g X)2m To P32 Hexp(-mg va/2T o (x))

Here we assumed that the particle Larmor radii are small in comparison with plasma
inhomogeneity size L .

(265)
(VTe! Qe)1/Lg << |
Substituting (264) nto the Maxwell equation
(266)
rotBg = (4n/c)jg = (41/¢)g ZecJdpv o foelX)
we easely obtain the plasma equilibrium condition
(267)

818x(Bp2/87 +¢ Inge Ty) = 0

which must be completed by the condition of plasma neutrality yZegngy =0
The physical sense of considered equilibrium is clear from the Fig 10.
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Figure 10
From this figure it follows
(268)
Jy = adiya = aXeaMoalXAX)VTq - 00 (XIVTal = g ZeoAX(ODQo VT o /0%)=
E(eavTaz/Qa)(Bnoafax)EaZeanoa Vira
Here vy is the effective dnft velocity
(269)

Vdra VT Q) /Lo << VT

Thus in the plasma confined by the external magnetic field the transverse current arises.
However this current is not the result of real motions of particles, it is result of non-
compensation of the particles Larmor currents in an inhomogeneous plasma. Therefore this
current is called Larmor current and drift velocity (269) Larmor dnift velocity.

Plasma with current may occur to be unstable because the particles distribution function (264)
is thermodynamically nonequilibrium. The deviation of distribution function from equilibrium
one is small but namely due to this deviation, it arises the current in a plasma. The characteristic
time of developing instability may be estimated by the following way: using the expression
(269) one can compose the quantity g, with frequency dimension wgr ~ Ky Vdr and as a
result with time dimension g~ /og~QLe2/vT2. Namely this quantity occurs to be the
characteristic time of instability for the plasma magnetic confinement and this will be shown
below. But before let’s carry out some numerical estimations. In real thermonuclear devices
Bg-50-100KG, T ~Tj~0kev, Lo~10cm, pe<<pi- vTj 20 ~0.1-0.2 cm and agr ~10%71 .
Thus the characteristic time of drift instabilities is ~107 s. The instabilities create low
frequency fields which can lead to the anomalous diffusion of particles across the magnetic
field. Just for this reason the drift instabilities seem to be very dangerous for the problem of
magnetic plasma confinement.

For investigation of drift instabilities it is necessary to calculate the dielectric permittivity and
analyze the spectra of small perturbations. But before let us discuss the restrictions which arise
here.

First of all we must notice that the Larmor drifts and therefore drift instabilities are localized in
the region of plasma inhomogeneity, or their spatial scale is of the order of Ly. If we will
consider the oscillation with Ay~1/ky~1/ky<<Lg, then the geometrical optics approximation
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occurs to be valid. In this approximation all calculations can be carried out as m a
homogeneous plasma using the local description.
The second restriction concerns the ratio of plasma pressure to the magnetic field pressure. In
the thermonuclear devices with magnetic confinement n - nj- 1014 101015 cm=3. Therefore
(270)
_ - 3 -
B =8aing P By 107= 1

As a result
(271)
( dInnT.dx)dds(inBg=87)- Lp.Ly Boz;fiﬂniliaTu')")l

This means that magnetic field is practically homogenous and below we will accept this
condition. At the same time this condition means that the electric field of perturbations is
practically potential - magnetic field of perturbations is neglegible. But the potential
perturbations may be described by the much more simpie equation, which is
(272)
sl k) = (kikj D sjjtokx) = 0

Such approximation was used in homogeneous plasma and it is valid for mhomogeneous
plasmas also but only under condition of geometrical optics approximation when Ay
~1/ky << Ly.
In the geometrical optics approximation the solution of Vlasov's equation for perturbation of
type Sfa(x)exp(-imﬁikyyﬂkzz)
(273)
(-kyvy-kzvz)8fe + ivy0die /0% Q) 08f [B@=-iey { E+(1/c)[v*B1}0foy/Op

can be presented as exp(+i/Xk,dx) and the spatial derivatives of ky(w,x) are neglected. Then
for 8f,(k.x) we obtain from (273)
(274)
By (k%) = (e / QN oo [P do'[(1-kv/0)Si7kiv kg o0 9" X)Epy©
Ei(o.kexp[1/Qqy (pj‘P do"(0-kv)y ])

Using this expression and substituting it in the distribution (264) we can calculate the induced
current and conductivity of plasma and then dielectric permittivity. Here we will give only the
low frequency limit of dielectric permittivity. when w<<£2:
(275)
20,k X)= 1+ (0] o2 K2VTo 2 H -1 (ky VT 200 N (@INg /0x)HT o /0x)0/8T )] %
Agl kJ_ZVTOtEfQ(xz )30k VT

It must be noticed that the drift instability takes place only if @<0grg~kyVdrg and as
VdraVTa Qe lo<<vTy. then Odra VT2 /Qulo?<<Qy. By this reason we will restrict
ourselves by consideration of frequency range @ << €. In  other words w<10-3s571,
Below these inequalities will be taken in mind.

Let us finally generalize the expression (275) by taking into account the particles collisions.
First of all it must be noticed that distribution (264) which consists of the drift motions of
particles is valid only if v <<Q. As about ratio v /e then it may be arbitrary.

Under these conditions BGK coilision integral leads to the following result
(276)
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e(.k.X)= 1+ Z(OL o> k2 VT )n UHkyvTg 2 f{ivg + ) N (OInN g /OX )+
(0T :0x)E: aTa)]xAO(kJ_ VTa /Qa IT((0Hvy VKZVT o) X
[1-ivg A0+ive)Ag(k; 2y 21062 F (v VkgvTe)) !

This expression generalizes the formula (275)

* 21 Drift instabilities of magnetic confined plasmas

Before beginning the analyses of drift instabilities let us notice that in the static limit, ©—0,
despite the nonequilibrium of plasma the expressions (275) and (276) take one form
277)
e(0.k)y= 1+ E(DLa fk-vTa = l+l/k2rd2

which corréponds to the Debye screening of static potential field in such a plasma. Therefore
below we will consider oscillations in the frequency ranges
(a)

Vi KpVTi=<o<<kzvTe, Ve<<KzVTe

(b)

Vi, kpvTi<<o<<(kz2vreZ)ve, K VTe<<Ve

The first corresponds to the collisionless plasma whereas the second represents the collisional
plasma. Besides we will restrict ourselves by considerating only long wavelength oscillations
with k| vy;<<€);. They seem to be very dangerous for the problem of plasma magnetic
confinement. The dielectric permittivity and dispersion equation under these conditions look as:
(278)
e(w,k x) I+H(oL2/k2vg2) [1+(ky Vs oQ)mN/x-(k,Pvs2/o?) x
(1-(kva1 10Q;)8ImNT;/8x ) oy o, kz)(l +(kyv52me1)6/8x(h1(N/Tg))] =

where
(279)
V(m/2)1/ |k, | vTe, B=1/2 in the case (a)
X =
ve/kz2vTe?, B=0 in the case (b)

Dissipation is stipulated by the Cherenkov absorption and emission of waves in the case a) and
by the electron diffusion in the case b). However in contrary of homogeneous plasmas in
considered inhomogeneous plasmas they may occur to be negative and as a consequence they
can lead to the fields excitation in the frequency range © < 0Ogry. Really, from (278) follows
that if © > m gy the imaginary part of e(w,k,x) is positive and wave absorption takes place all
time. But if © <wogry . then the Ipe(0k,x)<0 and wave excitation is possible. Thus, in the
isothermal plasma with T, >> T, in the frequency range ©dry >>0>>k;vg from (278) we find
two branches of unstable oscillations (v—© + 13):
(280)

Nm /2
0 = -(kyveZ/Q)ANBx, 5112/ |k | V1) {k2rpe2-BolnT/AlnN) x

ve/| kz| vTe
unstable if k2rpo2>BonTe/0lN, and
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(281)
022 = -k 2 v i=oInT;/énN

unstable if AlnT, N -
Thus. above was shown that the inhomogeneous plasma confined by the strong extemal
magneue ficld is unstable - i the frequency range © ° w4y, the electrostatic waves can be
excited. Waves excitation takes place m collisionless plasma as well as in collisional one. Only
one restriction which must be required for existence of drift instabilities 1s

(282)

kg v m collisionless plasmas
Udro

] b} . o
K, =vTi= v n collistonlal plasmas

Taking k(?, ~1/L | ~1/Lg and kgypjy - 1L ;. where L | is transverse and L/ longitudinal sizes of
evi

system ( ces) from (282) we conclude. that the drift instabilities are possible if
(283)
L Qv 1 mcollisionless plasmas
L/Ly -
NQivi == 1 in collisional plasmas

In opposite cases the plasmas confined by magnetic field occur to be stable.

Now we can estimate the possibilities of drift instabilities existence in thermonuclear plasma. In
toroidal devices (tokomak or stellerator) Te ~ Tj ~ 10kev, Bg - 50-100KG, /=
2nR~103cm |, L 1~Lp~10-100cm and ne~ni~1014cm‘3.Therefore we have k;vre~6 10 51
>>ve-10%s-1 and k,vi~103s71>>v;~2 10271 that means plasma is collisionless. Then from
the first condition (283) follows: that if L | <10 cm then the drift instabilities can be developed
but if L i>1020m then cannot be developed. Namely on the basis of such estimations B.
Kadomtsev in 1965 proposed tokamak-reactor as a thick torus with R ~1,5m and a ~ Im. Just
such parameters are realized in the INTOR tokamak.

In conclusion of this section let us discuss very shortly the so-called flute instability which takes
place in the mirror machins. They were very popular at the beginning of thermonuclear
investigations. In the Fig. 11 the magnetic field lines schematically are presented for the mirror
systems.
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Figure 11

They have significantly large curvature with R ~1m in the real mirror systems. As a
consequence of the magnetic lines curvature there arises a gravitational force acting on the
charged particles and directed outside of the axis OX. The order of gravitational acceleration is

(284)
Ea VTaZ/R

and parallel to the axis OX. The gravitational force leads to the real drift of electrons and 10ns
with velocity

(285)

U =20/ 20,

parallel to the axis OY. As a result in the dielectric permittivity (275) @ must be changed
00y = (o—kyua, taking into account the gravitational Doppler shift.
Now we can mvestigate the effects which arise under the action of gravitational force. Let us
consider only the fluid modes with k,=0. Besides we suppose k leTa2<<Qa2 and o'y
>>k,vTq- Then from (275) the following dispersion equation can be obtained.

(286)
o T o 2Tk 2 ) (ky 2/Q 2 +H(ky Q2 0/ JOINN/BX) =
=1HoL 22k 22 Hky(Qi(0-kyui))-ky/ O (0-kyue)))OIN/3x] = 0
From this equation for v>>kyug we obtain
(287)

m2=(ky2geff(31anaX)/( 1 *-\f'Azf'C?')

where goff = (VT2 + vg2) /R, In the mirror systems with positive curvature or when
goffOInN/Ox <0 in accordance with (287) w2<0, or we have instability. This instability is
known as gravitational or flute instability.
The growth rate of flute instability is sufficiently large: for thermonuclear plasmas with Te~T;
~10kev and R~100cm we have 3m co~\fgeﬁt3]nN/ax~\f((vTi2+v52)/R2)~1063'1, which is two
order higher than growth rate of drift instabilities. However fortunately this instability is not
| dangerous for toroidal systems as tokamak because it can be developed only if Ly /Lj>
| VM/m), L Qv >> V(M/m). At the same time , namely due to this instability the mirror
machines were closed as thermonuclear reactors.
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LECTURE 10

Plasma in an External Homogeneous Electric Field

* 22 Plasma instabilities in a constant electric field

In this lecture we will consider the electromagnetic properties of a plasma in the strong
constant and varable electric fields. Let us begin from the constant electric field in which, as it
was shown i the lecture 4. arises a current with electron dnift velocity equal to

(288)

u = eEg/mv,

This expression 1s correct if u<vy, or
(289)

by - Eop=mvevrere

However when Eg ~E_, then the plasma occurs in a strong electric field and becomes
nonstationary, because electron drift velocity is very high and their collisions with ions and
neutral particles tend to zero. Then we have collisionless plasma and therefore we can use for
its describtion the Vlasov's equation

(290)
ofy/ot + eEgofp/dp = 0
The solution of this equation is an arbitrary function of characteristic
(291)
dp/dt =eEg — p=cEqt
Consequently
(292)

fo = fo(p-eEqt)

Thus we see that if Eg > E the electrons momentum will increase infinitly, or in other words,
they run away.
The critical field was firstly introduced in 1959 by H. Dreicer and is known as Dreicer's field.
So we can conclude, that if the field is less than Dreicer's critical field then the current is
constant and plasma can be considered as stationary, whereas in the case of overcritical fields
plasma occurs nonstationary. Neverthless below we will consider sufficiently fast processes of
instabilities and this allows us to suppose that plasma ts stationary.
Thus we suppose that electron drift velocity u is constant and parallel to the external field Eg).
Moreover we accept that the external magnetic field By, if it exists, also is parallel to Eq.
Under such conditions the plasma stability problem can be considered by the dispersion
equation

(293)

| kzﬁij-kikj-(m?—fcz)Sij(u),k)| =0

where eij(w,k) is dielectric permittivity of the plasma with moving electrons and resting ions, or
in other words, of current driven plasma. For calculating this quantity we will use the Lorentz
transformation for current and charge densities as it was proposed by A. Rukhadze i 1960. As
a result we obtain for current driven plasmas
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- A s L asaeAas =

A =

(294)
( ) J, +?1u( )[11\ (()u u Su\]B‘J

where

(295)

o' Okug Mg Kg = K+ ugyol(kug: ug 2N 1- 1/ya)-m/c2]
BU(“C() (mafu)ou*-ya[(umuajfua (e )- 1)1k uaJ/w] Ya=(1-ugy /02)‘”2

Here ug=u. and u;=0. and £;%(c.k) is the partial dielectric permittivity of particles of type o n
own (moving) frame, which is known from previous lectures.
Let us now consider some examples of using of the above presented theory.
a) Buneman’s instability. First instability of current driven plasmas was discovered by O.
Buneman in 1959. It concems the case when u>>vT, and the thermal motions of particles can
be neglected . Then

(296)
il k=1 (0L 2y Yi(o-ku)2)3j, i = (I-oLi2/0)5j

For simplicity we have neglect the particles collisions also.
Substituting (296) into the (295) and after in (294) we obtain the following dispersion equation
for purely longitudinal oscillations (with k//E0Q)

(297

1oL e2y-3 (o-ku)2)-oy j2/0? =0

From this equation immediatly follows that unstable solutions (with 3m®<0) may appear only
if

(298)
wp ¢?2(ku)?y3
and correspondingly solutions look as
(299)
(m2M)L3((-1+4iV3)2)op o712 if op ¢2=(ku)?y3
m:
iV(m/M)kuy3/2 if of o2 > (ku)2y3
It is inquisitive that the condition (298) can be written as
(300)

PZier = (ni4)(me3 re)(u3 /2y 3(112) «(ud/e3Xy3/ L;2)13 kA/em 2

In the nonrelativistic case when y — ! this relation reminds the wellknown Child-Langmuir
formula for critical current density above which the beam current in a diode becomes unstable.
Let us notice also that considered instability known as Buneman’s instability represents the
stimulated Cherenkov emission of low frequency electrostatic waves in a current driven
plasma. This follows from the condition of existence of instability © < ku. Above we
considered purely longitudinal propagation of perturbations, k | =0, or k//B0//OZ and therefore
E//BO. As a result the external magnetic field in this case doesn't influence the character of
instability.
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Let us now take into account the finite k| and suppose that the magnetic field is very strong
and magnetizes completely electrons but not ions. So. we suppose

(301)

7 ) k) 2

o= 0pe~ oL~

Under these conditions the Poisson's equation takes the form
(302)

(-0 j= ‘©2)AG - ((:)[_‘ezj!'?’=‘{(s)—k211)2)k22d) =0
And the simplest boundary condition we used

(303)

br—R =0

In other words. we consider the current driven plasma in metallic waveguide. The general
sotution of (302)

(304)
d(1r) = explic)T o rLLes' Ry
substituting in (303) leads to the following dispersion equation
(305)
(1-0p 2/02)(k,2 g2 R2) - of o273k 2 (0-kzm)2 = 0
from which follows the instability condition (compare to {298))
(306)

Taking into account that min peg = pg = 2.4 for sufficiently long length systems, L;; >> R,
from (306) the expression for critical current follows
(307)
Tep = (mc3/de)(2.4)2(y2-1)3/2 ~24y3 KA

As for the growth rates . we notice that equation (305) is similar to (307) and therefore the
growth rates are similar to {299)
(308)
(m/2M)13((-1+iV3)2)op ¥ 2mR2.4LH3 if 0f o2 = (2.4/R)2u2y3
u):
i(m/M) /22 4u/Ryy3/2 if o] o2 >(2.4/R)2uZy3

b) Fillamentation Buneman'’s instability as it was emphasized above represents the stimulated
Cherenkov radiation of low frequency fields in the current driven plasmas. It takes place when
ku = k,u - ©. Let us consider now purely transverse instability with k,=0. This instability was
firstly investigated by R. Vaibel in 1961. If k,=0 and k| = k then from (293) taking into
account (294)-(296) follows

(309)
(kZ-02/c>Ho e2ye ) 1-(of o273 /02)) = ((:)Lesz,'zkzuz)/(ym“cz)

It is easy to show that this equation in the low frequency limit when 02<<0 g2y~ has the
solution corresponding to the aperiodically unstable oscillations with spectrum:
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\ (310)
02 = (oLi2k2u2y2)/(k2c2+mLezy'1 ) < -mLiz(uz/cz)}'z

As we have neglected the thermal motions of particles then this expression is valid if
lool Kvg. kv what means that this instability can  be developed in the systems with
sufficientiy large transverse sizes, when

opi2uiey? > (L v vTid)

This requirement means that magnetic pressure m current driven plasma is higher than kinetic
one and as a consequence the selfpressing (pinch-effect) is possible. Just this effect takes place
when the considered instability develops. As a result the fillamentation of current plasma arises.
Such mechanism of instability is proved by the fact that it takes place in collisional plasmas also
when @<<v;. In this case the growth rate reduces to

(311)

: 2 e 2
o= i((oLi-,’vi)(u—ec2w~

Moreover in the external sufficiently strong magnetic field the fillamentation is impossible,
which proves also the above meutionned mechanism of magnetic selffocusing.

c)lon-accoustic_Instability The last instability of current driven plasmas which is very
important for the plasma confinement problem is so called ion-accoustic instability which takes
place when v >u>vT;. This instability as Buneman's instability is connected to the stimulated
Cherenkov radiation and therefore it takes place in the frequency range where accoustic
oscillations exist, or when kvTj << w<<kvTe. In this frequency range the equation (293) takes
the form

(312)
1+(0] o2/k2vTe2 X 1 HiVR2)((o-ku)kvTe)-0p i2/0? = 0

Taking into account the smallness of imaginary part of this equation we find the solution
(0—0+id)
(313)
02 = of ;2i( 1+o] 2/k2ve2), /o = -Vr/8(03 k3vred X 1-ku/w)

This spectrum corresponds to the ion-accoustic oscillations which in the absence of current
(u->»0) are damping. However with increasing of drift velocity the decrement decreases and
when ku>o it changes sign and becomes increment (or growth rate). From these conditions it is
clear that the mechanism of instability is the stimulated Cherenkov radiation by moving
electrons ion-accoustic oscillations in nonisothermal plasma with Tg > T;,

* 23 Plasma in a strong microwave field

Let us now consider the electromagnetic properties of plasma in a strong homogeneous
microwave field Eq(t) = Eqgsinogt, where wg >> 0f ¢,{e, Ve, or in other words the field
fequency is much higher than all characteristic frequencies of plasma. Besides, we will neglect
the spatial inhomogeneity of the electric field that means
(314)
ko2~ (mozfcz)s(mokm02/02<<k2
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In other words. we will consider the perturbations with wavelength much shorter than the field
inhomogenenty - | kg, Such approximation is satisfied by the obvious inequality k’kg ~ c/vTe
s s } ]

The equilibrium distribution function of electrons s deternuned from the Vlasov's equation
(315)

et - eEgsnot A /op =0

From this it follows
(316)

tge = tolp-pott)) = (N-"(Zmn']'e)?’*z)C\p({—m(v-vO)Z)QTe)

where pg = mvp(t). vgt) = (-eEgmogleosopt. As for 1ons we neglect the influence of
microwave field on them.
In order to investigate the stability of plasma with Maxwellian ions and with electrons
distribution(3 16} et us consider small perturbations 8f, and 6f}, satisfying the equations:
(317)
Odte/dt+ikvofe ~eEqgsinogtddte:op-(eic){v=B]adf, Ipte{ E+1/c[vxB] yofpe/dp =0

a6f;/0t + ikvofi(ej/c)|v=xBglodfy/op +e;Edfp;/op = 0

Here we suppose that &f j~exp(ik.r)ofit.v). The system (317) is completed by the Maxwell
equations.
(318)
rotE = (~1/c)3B/dt, rotB = (1/c)OE/dt+(4n/c)Zefsfvdp

For solution of the system (317) - (318) we use the following representations
(319)
Ve = exp((-ie/m )(kE(]sinmotfmoz))Sfe(p+(eE0/m0)cosu)0t)

(We,8)) = exp(-iot); Zexp(-inogt (Y en.0fin)

Substituting these expressions into the system {317) we obtain the infinite system of algebric
equations, which can be easily reduced if og »>®| ¢.Qe.Ve. As a result one can obtain the
condition of nontrivial solutions of this system. or the dispersion equation of small
perturbations
(320)
el k) Sel(0.K)[ 1 +3ek0.k)])- 12(kVE)? 7 ©92)

12[kevE (el 0.k) k262 (1+8eel(0.k))=0

Here gl=1+6e l+8e; and e, il are the vartial longitudinal dielectric permittivities of electrons
and ions, Vg = eEg/mey. Besides in derivation of (320) the following inequality was supposed
k-vE/og = (korp)<<1 and therefore only the second order terms of external field taken into
accoutt.

If (k.vg)#0 then the second term in {320) is much larger than the third and therefore the last
can be neglected. In this limit the oscillations is purely potential and stable. But m this limit a
new type of oscillations appears. Thus in the frequency range kvi<<a<<kvTe from (320)
follows (0—n+id)
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(321)

w2=( kvE)z(mLi2/2w02)+k2v52, 5 = -oV(rm/8M)
In the absence of external field. vE—0. this spectrum corresponds to the wellknown ion-
accoustic oscillations. However if vEwy ;g Vs the new branch of oscillations which is known

as electncal sound appears.
Very interesting phenomenon is observed when k.vE=0 and we have purely transverse wave

propagation. Then from {320} follows
(322)

eltok)-12(vE e )ded o k)de 0 k)=0

In the low frequency range when w<<kvTe but - -kvT; the equation has the nonstable

solutions
(323)
o = —mLi?-sz.-‘Zcz if o>vy
o = o] PVE21v; 2 if o=vj
The threshold of instability follows from the condition - "kvj and looks as
(324)

vg22e? > (I/LJ_Z)(vTiz+vsz)/ oL i2

where L | is the transverse size of system.

The considered instability is analogous to the fillamentation instability of current driven
plasmas, or anisotropic R. Vaibel’s instability. It is easy to understand this. In this case the high
frequency current creates high-frequency magnetic field, which compresses plasma, or usual
pinch-effect takes place. The multiplying factor 1/2 proves this. Thus in a plasma placed in the
sufficiently strong microwave field as in a current driven plasma the transverse fillamentation
takes place.
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LECTURE 11
Beam Plasma Instabilities

* 24 Stimulated Cherenkoy radiation of electron beams

In this section we will consider noneguilibrium plasma which consists of a rest dense plasma
and a moving monoenergetic electron beam with much less density. Such a plasma beam
system is unstable and as a result develops the instability. the monochromatic and coherent
electromagnetic radiation can be created. Let us consider this phenomenon with more details. It
is well-known that a fast charged particle (electron) moving m a medium can radiate. However
the radiation of one particle 1s a spontancous radiation and therefore its intensity will icrease
proportionally to t durmg the time of particles radiation. If we have not one but a sufficiently
large number of moving particles then the radiation of first particle can influence the radiation
probability of the second one. Moreover if the particles are identical, or in other words, if we
have a monoenergetic beam of charged particles. then their radiation becomes stimulative and
it occurs a monochromatic and coherent one. As a result the radiation intensity will increase
exponentially in time. as exp(dt). Namely such dependence indicates that the radiative
instability takes place. Below this phenomenon will be studied on the example of interaction of
monoenergetic and stright electron beam with a rest and cold plasma. The instability arising in
this case is the result of stimulated Cherenkov radiation of electron beams. Stimulated
Cherenkov radiation or beam-plasma instability plays very important role in many applications
and first of all just this phenomenon is the basis of plasma electronics, namely due to this
radiation very high power microwave sources are working out today.

1.1 Let us begin our consideration from the theory of spontaneous radiation of an clectron
moving with a constant velocity u // OZ. The current and charge densities we can be written as
(325)

j=euizd(r | )8(z-ut), p = ed(z-ut)d(r | )

Then we can calculate the work of the field of a nonmonochromatic wave on the electron with
current density (325). Representing the field of the wave as
(326)
E(z ) =Esm(ot-k ;/z+¢)

and assuming that the directions of the wave propagation and the electron motion coincide we
obtain the following expression for the work durmg T > 1/
(327)

iz 12

A, = j&jddﬁﬁd)ze]dtuEJatLﬂt:D
=142 -T/2

= meukl/smep (o - kju)=Ay,

(T—w)

Here ¢ is the initial phase of the wave, E; is the field component in the direction of particles
motion.

From (327) follows that; firstly, the work is nonzero only if E.u=0 and Cherenkov condition

(328)
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o =k/u

is satisfied: And. secondly. the sign of work dependes on the phase ¢. If sing>0 then A,,>0 and
one can say about the wave emission. whereas if sing 0 then A<0 and we have the wave
absorption,
The considered phenomenon is kKnown as spontaneous Cherenkov radiation or absorption of an
electron which takes place under the condition (328). If we have not one but the homogenous
in space and monoenergetic beam of electrons then the expression (327) must be summarized
over all electrons of the beam by unity length. As a result we obtain

(329)

Ay = meuk; o(ow-k u )J'}:sin(pj =0

In other words this sum occurs to be zero if phases ¢; are arbitrary, since the coherent waves
from electrons cancel cach other as a result of their interference.

1.2 in order to obtain nonvanishing coherent radiation it is necessary to refuse the assumption
that the motions of particles are independent, i.e. it is necessary to take into account the
reaction of the radiation wave field on the motion of each beam electron. It is the self-
consistent approach in which the stimulated coherent radiation appears.
Below we will consider the stimulated radiation in the case of a rectilinear beam of electrons
made one dimensional motion along a very strong external magnetic field. We will assume m
addition that the frequency of the radiated wave field

(330

E/fzt) = 172 [Ejexp(-iottik;z+ig) +c.c]

to be close to one of the own frequency of the system, or @ = ® (k//). Under this condition the
perturbation of the electron trajectories is determined by the equations
(331)
dz/dt = vy, dvy; it = e/mB(1-v;2/c2)372 By (zt)

where [3 is a parameter which characterizes the strength of beam coupling with the radiation
field, or in other words the quantity 3 takes into account the radial structures of electric field
E;fzt) and electron beam.
We solve the system (33 1) in using the perturbation method. Assuming
(332)
z =z + 0x(Ey)), zg = uft-ty)

and supposing E;; >0 when tg — -0o after some calculations with the accuracy ~ E/2 we
obtain
(333)
dP/dt = (-B20 80 op2(o-k; w((ay3)[(o-k/m)? + 802]2))P=280P
P=u k| E//l 2/(08)

Here we take into account that the frequency o contains an imaginary correction i6®
(increment) due to the exponential increasing of the field in the linear stage of the radiation
Pprocess.

The quantity vy =( 1-u2/c2)~1/2 and o depend on the radial distribution of field E/(zt) in the
waveguide, it takes into account the connection of the field energy density P to the [E //] 2 In
accordance to the conservation laws
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(334)
d'dt(P-Py) = 0. Po =npm<( [v2ie2y 12>

. . | ] . .
where ny, is the beam electrons density. op, = ¥(4me=-ny, ) their Langmuir frequency, and the
bracket - means the averaging over all electrons of the beam.
From ¢334) we can draw a very important conclusion: the energy of the wave increases,
3ty - 0. only when k u -0 or the Cherenkoy radiation condition holds. We will maximize the
right hand side of (334) by adjustement of ©-k . As a result we obtain
(335)
. o - ! Y30 143
o -k u=00 V3 00 - (V3)2((Broop=) Cayt) -

Moreover the optimal condition of stimulated radiation is known as the single particle
Cherenkov stimulated radiation. or. as the Thomson regime of stimulated radiation.

1.3 Let us now consider the Raman regime of stimulated Cherenkov radiation. This means that
the frequency of beams own oscillations is comparable 1o the growth rate of instability. Then
instead of equation {331) we must write the equations which take into account the beams
collective oscillations with its own frequency - £y
(336)
dz/dt = vy
dvyidt + Qp2(z-2g) =(e/e)B(1-v/2/c2)3/2E (z,t)

where z = z +u;/t-tg). The calculations similar to these carried out above give the following
result (compare to (333)):
(337)
dP/dt = (-B2op2(0-k/m)dm.0.P)(ay’ [(m-k//u)z—Qb2—8m2]2+4(m-k//u)28w2) = 28w0P
P:C(k//I E//| Z{08m)

When Qb2—>0 this equation coincides with (333). However when Qb2>>6m2 the new regime
of instability arises. The maximum value of the increment is realized for the condition
(338)

w=k;u-Qy,, 60):l,-”2(mwb2[32«’(2(1”{39b))1/2

This regime is known as collective regime, or Raman regime.
In conclusion let us notice that for magnetized unbounded electron beam the dispersion

equation for small oscillations 1s
(339)

| - op (73 (o-km)2) =0

From this equation follows that Q, = op/(y3/2). Therefore if
(340)

(Db,-‘(y3f"2) s (N3 )ffz(ﬁzmwbzf(a2y3 Nl /3

the Raman regime of stimulated radiation takes place, whereas in the opposite limit the
Thomson regime 1s preferable.

* 25 The dispersion equation for plasma beam interaction in infinitely
strong magnetic field
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1.1 Stimulated Cherenkov radiation corresponds to the radiative instabilities of the plasma
beam system. This means that the above considered phenemenon can be described in the frame
of macroscopic electromagnetics of non equilibrium media. Below we will show this for a thin
relativistic electron beam interacting with homogeneous strongly magnetized plasma. The
dielectric permittinvity of such a plasma 1s

(341)
Ep l-(opze"coz

Let us consider first of all the own oscillation of such a plasma without the beam. Substituting
(341) into the general dispersion equation we obtain
(342)
| k38ij-—kikj-(m?~:’c3)aij((o.k) | ::kJ_ECZJr(k,-;zcz-m?—)( l-mpszz) =0

Here k| is perpendicular (across Bg) wave number, and kj, is the parallel one. This equation
determines two branches of plasma oscillations, the spectra of which are presented on the Fig. 9
(lecturs 8) as a function of k| = peg/R ( in the case of magnetized plasma waveguide)

(343)

m’l.z2 = (”2){ U)pz +k'c? i\/(kzcl +mp2)3 -41(”2(:20)',},

where k2 = k| 2 + k;/2. The first solution corresponds to the fast wave, 0] > ky/c, whereas the
second one - to the slow wave with 0y < k.
It is obvious that only slowing wave can be excited by electron beam as a result of stimulated
Cherenkov radiation. In fact, taking into account that the thin electron beam is located at
r | =T |}, one can easely obtain the beam correction to the equation (342):
(344)
(@200 2(Kk) N2~ 2 (k) (ki) 2 - wop2iy372] = BZotap2iay3

The quantities B2 and o take into account the wave amplitudes radial distribution in the wave
guide and the beams geometry. The equation (344) describes four branches of oscillations. The
left side of this equation describes four branches of noncoupled oscillations, from which two

correspond to (343) and another two are beam's waves
(345)
32

©3 4 (kK)=kutop/y
The right hand side of (344) describes the coupling of these four branches. However it is easy
to show that only slow plasma (k) and beam w4(k) waves can interact to each other, or in
other words, only these two branches can intersect wy(k) = ©4(k). { see Fig. 12 and Fig. 9)
Such intersection of dispersion curves corresponds to their interaction and as a result the extra
energy from the beam converts into the electromagnetic energy of plasma wave. Namely this
conversion is the stimulated Cherenkov radiation of plasma waves by the beam.
Therefore representing
(346)
© = oz(k)+i dw
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and substituting this into the dispersion equation (344) we obtam 30 equal to (335), if opposite
to inequality (340) takes place and to (338) when (540) is satisfied. Thus the method of

dispersion equation is completely equivalent to the microcospic description which was used
ahove.

O (J)I k <
(3
A
“y
()
P
o)
k
Z
Figure 12

1.2 Up to time we considered the interaction of monoenergetic electron beam with high
frequency and fast plasma waves. Let us show now that the stimulated Cherenkov radiation is
possible even when the energy spread of beam electrons is sufficiently wide. The corresponding
instability in this case is the sign irreversible Landau damping. The growth rate of the nstability
in this case , which is known as kinetic one in opposite to the above considered
(hydrodynamical instability), is much less and therefore this mstability has much less practical
applications. However, at the same time it occurs very interesting from purely scientific point
of view, because it had leaded to development of quasilinear theory, which will be studied
below. For simplicity we will consider the stimulated Cherenkov radiation of a spatially
unbounded hot plasma electron beam with energetic spread for the case of nonrelativistic beam
supposing u<<c. Then the potential approximation is valid and dispersion equation for " cold”
plasma and "hot” beam system looks as

(347)
a&mzlmm%ﬂ+u%bﬁwmﬁncmm¢wmw%n:0
Here vT}, is the thermal velocity of beam electrons in the own frame.
If (@ - ku)>> kv, from (347) we obtam
(348)

1 -(op?-f(x)z-(ob?‘/(m -ku)z =0

This equation corresponds to the above considered stimulated Cherenkov radiation of "cold"
beam ( for the case o = B = 1) in the case of Thomson (single particle) regime; Thus the above
considered approximation of cold beamn occurs to be vahd if

(349)

dw > kvTp = u/vTp >~ (nbonp)” 3

In the opposite limit the thermal motion of beam electrons are essential and equation (347)
takes the form

(350)

l-o)pzfmz + i\/(rc/Z)(wbz(w-ku)) / k3va3 =0
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From this equation we obtam (©0—0+i0)
(351)

O = O e, 60 = (-NT1/ 8) mbz((ﬂ-k“))f k:;'V’"['b?’

The instability (6 - 0) is possible only when ku ¢ and this means that it corresponds to the
stimulated Cherenkoy radiation of plasma waves by the "hot” electron beam.
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LECTURE 12
Nonlinear Wave Interactions in a Plasma

* 26 Multiindex diclectric permittivities. Shortened equation for nonlinear
wave interaction

In a plasma exist two types of nonlinear phenomena - nondissipative and dissipative. To the
nondissipative phenomena must be concerned the creation of nonlinear combinative harmonics
of waves. o1, more general. wave-wave interactions. whercas to the dissipative phenomena are
concerned the wave absorptions which lead to the changmmg of such plasma parameters as
particles temperature and thenr distribution function. Below we will consider these phenomena
separately and compare the ume scales of their developments.
In this section we will begm from the wave-wave interactions. The theory of these phenomena
is based on the nonlinear dielectric permittivities. or. more exactly, on the nonlinear material
equations. Namely for such a description nonlinear opties and nonlinear theory of solid states is
used. The advantage of the plasma theory consists in the existence of correct nonlinear
equation for its description. that is the Vlasov kinetic equation. This allows us to obtain exact
nonlinear material equations and nonlinear dielectric permittivities. In order to obtam the
nonlinear material equations, the Vlasov equation

(352}

ofiot + votior+e{ E+1/c[vxB]}otidop = 0

must be solved by using the expanding procedure
(353)

=ty +H+. fat.....

where fjy is the Maxwellian distribution function and f;, - EP. For simplicity below we restrict

ourselves by consideration of nonmagnetized plasma, or Bg = 0. Then from (352) follows
(354)

of, /ot ~vofy/or + el E+(1/c)[vxB]}}dfy.1/0p = 0

Representing all quantities as Fourier transform
(355)

A(r.1) = [doldkA(o.k)exp(-iotikr)

we can express f,(0.k) m terms of f,_) and so on. After some calculations we obtain the

expansion
(356)

Hok) = Selfvdp = jy +jo+ oajn e

where j, - EI Finally we have
(357)
Dy(w,k) = aij(o),k)Ej((o,k) + “izzoofda)l, ............ dop.1dky...... dky-1x
Eijl...... in(okopky,... Oy 1.kp-Ej (-0 k-K)..... Ejn(wn-lakn-l)
Here si(jl(m,k) is the wellknown dielectric permittivity second index tensor, and Eij1.---jn is the

multiindex dielectric permittivity
(358)
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aij]._‘__‘J'“(m.k.(gl.kl ..... con_l,kn_l):61115ij,-4n(-ie)n“]fdp(vi/m)glrjl ..... gnrjnfg

where
g=1 (o-k.v) gy~ 1ok v)
(359)
P =0 (- -on ) (kp-Kp-1 )jn‘ranj(“’n'(’)n-I"’(kn'kn-lma/apj

The nonlinear material equation (357) is exact and naturally the Maxwell equations m taking
into account this relation is very complicated. The simphification of these equations can be
reached by neglecting bigh order nonlinear terms. If we will restrict in taking into account the
nonlinearity to no more than cubic terms then the three waves interactions can be considered
only. Below we will consider this approximation. But before that it must be noticed that for the
analysis of nonlinear interactions the linear wave behaviour is very important. They are
described by the dispersion equation

(360)

|k zéij-kikj-((:)szcz)gij((e).k) | =0

which determine the relation (k) for linear oscillations. In the linear approximation the wave
amplitudes are constant. However when the nonlinear wave interactions are considered they
become slowly varying
(361)
E(r,t) = E(w,k,t)exp(-iot+ikr)tc.c

The equations for the amplitudes one can be obtained from the relation
(362)
EoD/at + BOB/t + (1/4n)div[ExB] = 0

by substituting the expression (357) into this relation and taking into account only the terms
with n<3 and averaging over the phases of waves. Taking into account that we get
(363)
<E(w.k)> =0
<Ejf(0k)Ej(w' k') > = <EiEj>g 18(0-0)3(k-k')
W(o.k) =(1/4r)0/00] Mj; ((u,k)m]<EiEj>co,k
Mij=gij(.k)-(k2c2 /02 )(Bj-kikjk?)

and expressing the more higher order collecrators in terms of second order one we obtain the
following nonlinear equation for the quantity <EiEj>w,k which is known as shortened equation:
(364)
wd/ido[w Mij (o),k)6/6t<E,'Ej>w,k]=2i8ij3(m,k)<EiEj>w,k+
ldo'dk'{Q L 0.0 K K)<EEPg k<E Evzo-o) k-k't
Q2ijuv( 000 K K'-K)<EiE0 k<E Eygk!

The tensor quantities Q and Qy are very complicate functions and we will give below only
their explicit expressions for the concrete cases. But it must be noted that they are proportional
to Mij'l(m,k), that means that they have the resonance dominators, correspondng to plasma
own oscillations. Besides of this the first term in the right side of (357) describes the linear
mechanisms of waves absorption.

The equation (364) takes into account all types of 3 waves interactions. It is obvious that the
complete consideration of them is impossible. Therefore we will consider only the simple
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examples. Morcover we will suppose that the amplitude of one of the waves is given and
constant. Then the problem of 3 waves interactions reduces to the problem of plasma wave

excitation under the action of external electromagnetic field as a result of wave decay
Processes

* 27 Parametric plasma wave excitation in a variable homogeneous electric
field

Let us consider a plasma in a variable homogeneous electric field

(365)
Eqg(t) - Egsinog t

This problem was considered m the section  *23  (lecture 10) under the assumption
0g 7 O] .2 Now we will refuse this restriction and therefore will take nto account the
resonance wave excitations when 0g-0] o 2. Only one assumption remains unchanged. Eq is
sufficiently small and only the quadratic terms of Eg2will be taken into account. This
assumption exists in the equation (364) which leads to the dispersion equation for wave
excitation for the considered problem

_ (360)
(e(w,k)/(8ei( .k ) 1+0e(w.k)] )+(krE)2f4[ l/e(wtag , K)+H 1A Ve(w-0g , k)] =0

where rg = vg/og = eEg/mog? - is the amplitude of electrons oscillations in the field Eg,
g(wk) = 1 + o ;¥ Beg(wk), where dey(w,k) are the partial longitudinal dielectric permittivities
for electrons and 10ns, o=e,l.

From (366) it is easy to see that the most strong interaction of external high-frequency waves
with plasma oscillation takes place when the resonance conditions

(367)
g(k)=0 and elotog.k)=0

are satisfied simultaneously. or in other words, when @ and o*wg coincide with the own

frequencies. This means that
(368)

wg = 011w

and ©q,0(.002 are the plasma oscillations frequencies. The conditions (366) are known as
decay conditions.

We will begin analysis of decay instabilities with help of equation (368), namely from an
isotropic plasma in which two branches of longitudinal waves exist: @]~0[ e and low-

frequency ion accoustic waves with mr~kv. For this decay processes the equation (366) takes

the form
(369)

oo ;2-k2veZiop 2(1-N(/2) (o/kvTe)) Hirg Y2 2(ANA2-402/092)) = 0
where A=(0[ ¢Z/wg? -1) is the so called resonance shift. It is easy to see that if

(370)
wp = o gtkvg =0 T

then the solution of (369) is {(0—>w+id)
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(371)
o = kvgTid = 01410
- I b2y ‘ L 2 2
3 = (=01 =) 160-(N2int}krg)-kvTe/k“TDe”

We see that the instability takes place in the frequency range g~ o. where plasma is
wransparent. This instability corresponds to the decay of external microwave into the Langmuir
and ionaccoustic waves. Obviously it takes place if & ~ve 2. or when
(372)
n=Fg= 8unTe-N(8xM. M)ve 0

This inequality determines the field threshold developing the istabilities. Really it is
sufficiently small. Thus. of og- 101151 and ve- 107571 (or n-31012¢m=3 and Te-lO5K) from
{372) follows E--30V:cm.
In a magnetized plasma the decay processes have much more diversities, because there exist
much more number of various oscillation branches. We will consider only one example of
decay processes when external microwave g decays into the two purely electron oscillations
w} and 0>

(373}

O] ~OLe ., ®2 ~ Qelkz/k|

Such oscillations exist in a sufficiently dense plasma where (DLe2>>Qe2- The first branch
corresponds to the Langmuir waves and the second one - to the oblique Langmuir waves. We
suppose g~ ]+03 and then the dispersion equation (366) takes the form

(374)
012/ 2 +i01/28 - (k.0g)2/8(0x(wp2-Qe2)(A+iB)ng2) = 0
where o=01+18 and A =wg-w]-w7. Supposing
(375)
A=-m/M({k.rg)2/8)(Qe3cosBsin20) o ¢2)>>3
where 0 is the angle between k and By, we obtain
(376)

32 = m/M(Ao]_e/2)

We see that in the frequency range A>0 the quantity 52 > 0 which corresponds to plasma
instability. However there exists a threshold, which follows from the condition 8 > vel2.

* 28 Plasma in a strong electromagnetic wave. Stimulated scattering of
transverse waves in a plasma

Above in the previous section we considered nonlinear wave-wave interactions for
homogeneous waves in space and therefore only potential waves can interact. Below we will
take into account the finite wave lengths of waves. This means that under the condition when
the amplitude of one of the 3-waves is given (as above we will consider only this case ), we
have the problem of plasma stability in the field of external electromagnetic wave
Eq(r,t)=Egsin{oqt-k.r). Then from (364) we obtain the following dispersion equation for the
longitudinal plasma oscillations

(377)
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elio.k) ((0-0g)e(w-0g K)-c2(k-kg)?)
Seei((:)_ k)(kzt(oo-(o)z[(k-k{))va]z) ;‘4(,)07’-(1{-1(0)2:0

Here we restrict oursehes to the consideration of unmagnetized isotropic plasma. Besides of
this. we suppose that og 0. O ¢ kvTe.0p ;. Moreover the given wave g and the
combination wave 0, o - 0. are perpendicular waves whereas the wave o 1s supposed to
be parallel. or Eq Lkgy and Eg 1(k-kg). © and k are the frequency and wave vector of the
parallel plasma wave. Thus we have the 3-waves mteraction which corresponds to the decay of
pempendicular wave mto the perpidencular wave and longitudinal plasma oscillation

(378)
) T L tr =t ¢
Under these conditions
(379)
elfw. k) ~1 O o= { O St “ -0 om0 . £Mwo-o , k)~1
As a result the equation (377) takes the form
(380)

(02 "DLez X U-‘sz _C2k32 )ZmLezkszZM

where wg=wg-0, kg=kg-k, og-—cky, og-ckg
Now we can solve the equation (380) and investigate the process of wave scattering i the
plasma. There exist two regimes of scattering: a) when w>>wg, which is known as Thomson
regime and b) when w=w[ o+i5, 8<<w] ¢, which is called as Raman regime.
For Thomson regime
(381)
Imw—V3 Re(:):\)‘B/Z(RQWEQ(J)LQE.’SUJO)lBS(\B)/2((00mLesz2/202)”3

The maximum value of growth rate corresponds to k~2kg~2wg/c, or the back scatterng of the

incident wave. This regime takes place if
(382)

0
VE=/C 2> 0] o/0(
In the opposite case of sufficiently small incident wave amplitude we have Raman scattering

(383)
W= g 10. BZ(kz\'Esze.«’16(1)0)1/3 < (VEZQ)O(oLeMCZ)”z

In this case also the maximal value of growth rate corresponds to the back scattering of
incident wave, when | k|=1k-kg| ~2kg-2mq/c. The threshold of this regime is given by

(384)

(VEZ;’C?-)(QO OLe \/@2 2
In conclusion let us notice that the above results can be easily generalized to the problem of
stimulated wave scattering on a relativistic electron beams. This phenemenon is the basis for the
very popular high power microwave sources as free electron lasers (FEL). In such devices the
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relativistic electron beams represent the purely electron nonequilibrium plasmas and therefore
the energy of beams can be transformed nto the energy of scattering wave.
In other words . the electromagnetic energy generation or amplification takes place. The
growth rate of instability and scattered waves frequency in this process can be easily calculated
from the above relations by using the Lorentz transformations. Then for the scattered wave
frequency one obtams

(385)

(:)534‘/2030

where v=(1-uZ¢2)"l 2. This formula indicates the significant shortening of incident wave
length. in the order of 4v2 times. For example if ©g - 1011 s=1 (y ~ 3 em) and
v~30 ( or beam energy - 15 MeV) we have oy 4x1014 s-I(or K5~10'3cm~10u), which
corresponds to the optical frequency range.
For growth rate of the scattering processes the Lorentz transformation leads to the following
result

(386)

o028

where &' are the growth rates in the beam frame and are determined by the relations (380) and
(382).
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LECTURE 13

Nonlinear Waves and Solitons.
Quast Linear Relaxation of Plasma Oscillations

* 29 Quasi linear relaxation of plasma oscillations

Let us begin from the quasilmear theory of plasma oscillations. Above it was noted that besides
of non-linear wave interactions. purely nondissipative processes. exist dissipative nonlinearities
in the plasma. As a result of wave absorption the temperature and other equilibrium parameters
of a plasma will change. or more exactly. the equilibrium distribution functions of particles will
change. This leads to the changing of wave absorption in fact. And finally new distributions and
wave amplitudes will be established. The goal of quasilinear theory is to determine of the such
new states m the plasma under the action of oscillation fields and their absorption.
Here we will consider for simplicity only potential fields (E= -A¢) and only simplest problems
of quasilinear theory in the absence of external magnetic field. Such systems can be described
by the following Maxwell-Vlasov equations:

(387)

otiot + votior +eEctiop =0
divE = 4nZeifdp = JE/Ot + anZelfvdp = 0

The last two equations are completely equivalent. We suppose that the oscillation fields are
sufficiently weak and therefore the fellowing condition takes place
(388)
(e2n1/3/T )32y /op o <<E2/8rnTg <<1

The last of these conditions allows us to neglect the particle collisions, whereas the right side
allows us to use the linear approximation for field perturbations:
(389)
fip.r.t) = fo(p.t) 1 (p.r.t) = fo(p,t) + (ZRef | kexp(-intrikr)

Here f](p.r.t) << fo(p.t) is a small perturbation of the equilibrium distribution function fo(p.t).
In the linear approximation E(r.t) also can be presented as
{390)

E(r.t) = (TReEgexp(-iot+ikr)

Substituting (389) and (390) into the equation (387) and averaging in time we obtan two
equations for fp(p.t) and f}(p.r.1):
(391)
dfy/or — e~ Eof/op> = 0
of /ot + votyior + eEdfp/dp = 0

Taking into account that f(p.t) is slowly varying function, the solution of the second equation
(390) can be presented as
(392)
f1x = (-ieE/(w-kv))(Ofp/Op)

This expression leads to the following formula for dielectric permittivity of a plasma and
dispersion equation
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(393)
e(o.k) = 1 +S(dnelk2)(kofy/dpAo-kv))dp = 0

From this equation follows the results of linear theory:
(394)
Lyl

CLER] = et =18
k2 m(ketp p)io-kv))

0
ok = (-1 7 S4melo’k 3

d

Now we can use the relations (391) and (393) and substituting them into the equation (390) we

obtain the equation for i g(p.1)
(395)

dfg/cn = (810p)Dy0fn/Cp;
DU—-e—_(kukJﬂ k°jEk\- ImlA{w-k.v))

The equations (392) - (394) represent the complete system of quasilinear theory for
longitudinal oscillations of an isotropic plasma. It can be easily generalized for the anisotropic
plasma and arbitrary electromagnetic oscillations. They provide the general conservation laws

as are conservation of particles number, their momentum and energy:
(396)
d/dtffdp = 0
d/dt[=fpfdp + ksz Ey | 2/8n0] =
d/dt[Zfdp(p22m)f + | = rEk |2/87] =0

Let us now apply the system of quasilinear theory to the concrete problems. Suppose that at t =
0 in a thermodynamical equilibrium plasma the initial oscillations are given in the definite
narrow phase velocity range

(397)
0 if o/k<vy
W0y = [E) 28 = W =const if v] <o/k<vy
0 if ok > vy

On the Fig, 13 are presented the initial Maxwell distribution Fy(v,0) (one dimensional case) and
the velocity range w/k € (vy, vp). where Av =v3 - vi<<vTe

F
\ Fy[v. o]
0
Vl V2 A%
Figure 13

(398)
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As a result of oscillations absorption the function Fp(v.t) will be changed and oscillations

intensity Wi (1) decreases. The quasilinear equations describing the time dynamics of this

process are
(399)

chg ot = .0Vl o
D e 2mI S 23mO) (o-kv)) - (3 25e? [Eg | 2m2ky
by 2o 20 L ER 2
Ok ‘”llc; h=ldvkefy ov3Imel (o-kv)) - (ﬁ.l)ti)Le-ﬂ’szOFO/@v| v=w/k

From this system follows that it admits the stationary solutions, if in the velocity region
v e (vi.va) takes place OFg.0v = 0 As a result 6 = 0 and | Ekl 2 0. This solution is shown
in the figz. 9 and 1t 15 known as a "ploto” solution m the final stationary state. From the
conservation of the number of parucles we find
{400)
Fotvis) = T4{voh - vyp) \‘,_l-": Fa(v.0)dv

Now from (390) we can deternune the final state of wave energy
(401)
Wid{x) - W (0) = lnsze4/4ne2k2 WJ‘VZ dv{1/(vy-v2) wjvz dvF(v,0)- Fo(v,0)]

It must be noticed that " ploto" state can be reached only if the initial wave energy is
sufficiently large. If not, then the oscillations are completely absorbed before the "ploto" arises
on the distnbution function.
Finally let us estimate the quasilinear relaxatton time. From (398) follows that this time is order
of

(402)

tr-vZ/D~ VZ“Te/VTe‘DLeWk”‘(mLeZ)kaVTez(“Te/Wk)( 1oL e) >> oL e

Moreever this time is more than /9
Let us now consider another example of the quasilinear relaxation. Namely we will consider
the relaxation of "cold” monoenergetic beam interacting with "cold" plasma. For simplicity we
will consider nonrelativistic beam. when purely potential plasma waves can be excited (see
lecture 10) with spectrum

(403)

Re(v)) = kot = 0 o, Im{w) = 0k = (\}3),f2(llbrfznp) I/B(’)Le

These oscillations acted on the beam electrons which leads to change its distribution function,
the beam electrons decelerated and their velocity spread increased. Really from the quasilinear
equations (399) m the case of one dimensional instability we have

(404)
oF it = (d/dv)DoFg/ov
D = -e22m2(. | By T)2:"sm( | {w-kv)) = (-e22m2)3 T | Ey | 2
8] By 120t =28Ey |2
Here 8§,=3, where & is given by (403) and it 1s independent from k.
The system (404) must be solved in taking into account initial conditions
(405)
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Fo(v.0) = 8( v-u). | Ex(0)] 2 = W(0)

After introducing the vanables
(406)

dt dt = D(t). d:di=(dt-dt)d dt = Dd:dt

the problem can be reduced to

(407)
OFg a1 = 02F0:av2. dDidt = 28, D= (-dme?/m28)W

where W = | ZWy, is the total energy of oscillations and the conditions (404) takes the form
(408)

Fo(v.0) = 8(v=u). D(v.0) = Do=(-4ne?/M23)W(0)

The solution of (407} in taking into account (408) has the form
(409)

Folv.t) = V(2T Jexpl ~( m(v-u)zl’Z‘c)

We see that the beam distribution function becomes more and more widespread in a time. This
is result of increasing in time of the diffusion coefficient D(t), that follows from (406)
(410)
D(v,1) = Dg+281 =261

The solution (409) is valid until
(411)
(nb/2np)” 3 >vefu = V(21/mu?)

After that the instability becomes kinetic which can be considered as above was investigated the
"ploto” creation on the distribution function. Here also the “ploto™ creation takes place. From
this condition we can estimate the relaxation time

(412)

Tiax = 2tmax — mu2(ap/np) 113, 15 ~1/8=(2np/p) 3(lioLe)

We see that on the hydrodynamical stage of instability the 2(nb/2np}1" 3 part of energy transfers
into the thermal energy of beams electrons.

* 30 Solitons and nonlinear waves in plasmas

In the last section of our lectures we will consider some exact solutions of the field equations in
the nonlinear plasma media. As above we will restrict ourselves by consideration of a
collisionless plasma neglecting all the dissipative processes.

30.1) Up to day the most developed theory of solitons is in the plasma. The basic theory of
solitons will be discuss below. Before let us remind that in the plasma exist two types of
dispersion dependence o(k): accoustical type with

(413)

w(k) = kvg-Bk3, B = verDe?, vo=s
and optical type for which
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(414)
o(k) = 0g - BK2. 0g=0] e B = 32(vTeDe)

The gquantties vy, |3 and og are given for ion-accoustic and Langmuir oscillations in the
1sotropic plasma (see lecture 0)
The field equations corresponding to the relavons (413) and (414) may be written as
(415)
GO vl O [3(.“’3c|).(?‘x3 - ()
(4106)
ICh = ool - [Jl(ﬂ‘zd) o2 O

Let us now generalize the equations (415) and (416) by taking into account the nonlinear
effects. In the case of 1on-accoustic oscillations this is the electron heating under the action of
oscillations which leads to the mcreasmg of vy

(417)

AT rid)m'l

where m--1 and « is the wave absorption intensity. At the same time substituting (417) into the
(415) we obtan the nonknear equation
(418)
B/Bt + v dd/dx +H{(ct/m)BPM/dx + Ba3¢/ox3= 0

which is known as kdv equation. This equation admits the exact solution. Really representing ¢
= gl 1-m )ﬂx-vst,t) can be written as
(419)
Aot +(1/m)Afm/dx + BA3fiox3 = 0

Below we will consider the solutions of the equation (418) depending only on £ =x-vt, where v
= const. Then from (418) follows
(420)
BOZLIE2 —vf + My = Cy) = const

The solution of this equation under the condition f{§)—0 if §—c0 can be easily found. From
this follows that C4=0 and the solution of kdv equation looks as a soliton
(421)
fi£) = fimax/chZI(E/A)
where
(422)

n=tim-1) >0, M- = 2(1+n)(1+2n)B/A2. v = 4nf/AZ

EEEEAN

On the Fig. 14 it is shown the solution (421) for 3 >0

ffmax

.
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If B-0. then the solution occurs to be negative and symmetrical, or f— -f, E—>-£ and v—> -
v. Thus the soliton type solution exists for arbitrary sign of . In the case when m=2 this
solution corresponds to the 1on-accoustic soliton with 3 = Verez .
Let us now consider the optical soliton. In order of this let us return to the equation (420) and
take into account the nonlmear dependence of wg on {¢|. If this dependence looks as ( the
result of field dependence on plasma density)

(423)

O = Voo 41|d,|3ny

where m: -0, from (420) then we obtam
(424)

100, 0T ~0Wg -t | ¢ | 2mg+Bolg ax2=0

This equation is known as nonlinear Schreedinger equation (NS). In the "stationary” case,
when ¢ = \exp{-iot) from (424} follows
(425)
62qnax2-*((U(XJVOB)+EMU::O

Here U(x,t)=-6c | \/ | 2Zm i5 the potential energy slightly varying in time and e=(w-0q)/B is the
own value of this equation. If U(x,t)>0 in the finite region of x and U(x,t} =0 when x —>+vo ,
then in this region there exists the localized solution of (425). Moreover if U(x,t) represents the
solution of kdv equation then the own value & = const. In this case we have optical soliton
which is rounded by accoustic soliton. For ion accoustic soliton with n=1 we have
(426)
U(x,t) = (6BUQ)/ch2(E/A) = -6a | y | 2m

where £=x-vt. Then the equation (424) with m=1 has the solution as a hypergeometrical

function i which corresponds to the eigenvalue with k <'s
(427)

s=1/2(N(1+4Uq A2)-1), £y = -(s-k)2/A2

Taking into account that m=1. from (422) we have U0A2=2 and therefore s=1 and n=0, or
{428)

g=-1/A2 = -Up/2

Such soliton is called a rounded soliton.

30.2) The nonlinear transverse wave in a cold plasma with nonzero components B,(zt) and
(zt) and frequency near to the electron Langmuir frequency can be described by the

following system of equations
(429)

0By /0z - lfcaEy/Gt = (4m/c)eNevy, (3‘vy/8t ={e/m)Ey , 8Ey/62 -1/cOBy/0t =0

This system of equations must be completed by the density distribution in the average potential
of high-frequency transverse field. If Te = const then
(430)

N, = Noexp(-e2 | Ey | 2/4mo2Tey-Ng(1-(e? | Ey | 2/4mw2Te))
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Taking into account this relation from (429) we obtain one equation for Ey:
(431)

- - - “ ~7 ] 2. 2 _.

t(,‘r:_\.‘r"t “"l.cl'g\ —c= of o0~By dz- (1 Sm(-)[‘e)e—ITe‘ Ey \ —Ey =)
This  equation  represents  unonlinear Schrodinger  equation  with  potential U(zt) =

D e 12 T T . . -
3i4e? | Ey1-mop o Te. Theretore if | Iy, | 250 when z— o, then this equation describes an
. .. L . - ) [ b} . .

optical soliton which is surrounded by the funcuon [, | 2(z.1). This phenomenon is known
also as self focusmg of nonlinear transverse wave. )
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PART 3

Problems and their Solutions
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LECTURE 14

The Problems for thermodynamically equilibrium plasmas

Problem | (Lecture 1)

For the purely electron plasmas draw the n(T) diagrams and indicate the regions of
degeneration and gascous approximation

Solution
The region of degeneration is determined by the mequality
(1)

B T T T TG o SO
ep - ((3x=)" =n-n=")2m = T
On the figure | it corresponds to the line |

In n

quantic gas

-3

n -l&3 cm
er

quantic liquid

classical liquid

claszical gas

T 510 K InT
[=h§

Figure 1

The region of gaseous approximation for the classical electron plasmas is defined from the
inequality
(2)
Nel = (821‘1”3)/T <1

and on the Fig. 1 is given by line 2. Finally, the region of gaseous approximation for the
quantum degenerate plasma is determined by the line 3 on the Fig. I, which is
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(3)

All these three lines mtersected at the point A. corresponding to ngp - 10 3 em3and T ~ EF ~
SeV (or 5 104K) For real metals at T - 300K and o -~ 10 22 em=3 we have SF~16V~IO4K
=T, therefore the metallic plasmas occur degenerate. At the same time Ngyant 1. which means
that they are sufficiently nonideals. or quantum liquids. Quite opposite sttuation takes place for
the ionospheric plasma. where n~100-107 cm=3 and T - 10*K. As a result, ef << T and ngj ~
10-3<<1_ or the ionospherie plasima represents quite ideal classical gas.

Problem 2 (1.ecture 2)

Using the model of mdependent particles calculate the energy loss of a fast nonrelativist
charged particle in an isotropic plasma.

Solution

The energy loss of charged particles is determined by the work of Lorentz force on this particle
(1)
W =F.viv=g(vE)v | r=vt

Here q is a charge of particle and v its velocity, E (r,t) is the field induced in a plasma by the
moving particle. As v << ¢ the potential approximation is valid and therefore E = - V¢, and ¢
satisfies the Poisson's equation

(2)
div D = 47qo( r - vt)

Using the Fourier expansion ;
D(r) = § dk exp(ikr)D(k). 3 (r - vt} = (1/(27)3)f dk exp(ik(r-vt)) &

and taking into account the relation for isotropic plasma s
D(w.k) = ¢ (0)E(w.k) = -ike(w)d{w.k) “

where in the model of independent particles s
g(wy=1- (wLezl(m(co + 1ve)) @

After very easy calculations we obtain

(6)

o(r,t) = (q/272)] dkexp(ik({r-vt)/k2e(kv))
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Now we can substitute this expression into (1) and taking into account (5) calculate the
searched quantity. These calculations oceur to be easy in the collisionless limit when v 0 0.
Then from (1) follows

(7)

W (-2¢2 13y gl odo I (2d2 (27 - 0 v )3Im (o))

(Zq2 vy U,l—'“:(-)d:-)d{ z‘,{t)))oj‘m(idi (iz EETRINAN

0 9

(q:(-ch \2)()}"f§(]i_ (3_3 O] e V)
e (qz(-)[_c2 2\'3)111(\'333,““\. '(-)1163) (qz(qi“_,2 ‘2»’2)En(v2/vTe?-)

Here we take into account that the mdependent particles model is valid when © >> kvTe and
introduce the maximal value of 2,5,y = O] ¢ VTe

Problem 3 (Lecture 3)

Show that the Alfven wave with spectrum o = k/; v4 is the exact solution of nonlinear M.H.D.
equations for noncompressing and ideal conductive liquid.

Solution

For incompressible liquid p = pg = const. and therefore div v = 0. This means that the fluid
velocity v as well as the magnetic field occur to be transverse. Then if all the quantities are
depending only on the longitudinal space component z which supposed parallel to Bg from the
M H.D equations follows:
(1)
JB/Ot = Bgovidz, dviot = (By/4rpg)oB/dz

Here v and B are perturbations and pg and B represent the equilibrium quantities. It is easy to
see that the system (1) has the exact solution of type exp(-iwt+ikzz) and for @ and k, the
following coupling exists

(2)
(!)szzz\'Az
which 1s valid not only n linear approximation but in nonlmear too.
Problem 4 (Lecture 4)
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Calculate the plasma static conductivity in the Lorentz gaseous approximation
Solution

In the Lorentz gascous approximation only electron-ion collisions are taken into account. This
approximation 1s valid when 2= ejet > 1. Then the Landau kinetic equation for the plasma
electrons in a static external elecuric field Eq takes the form

(n
cEgaety op= 2nzze4n]‘l,(8/0pi)((\'zéij—\'i\j) 3 )0fe/op;)
The solution of this equation is represented as
(2)
fe = fl»l - Vfl S
where fl1 i1s the Maxwellian distnbution and 4 f) | f“_ Then from (1) follows
(3)
eEgdfyidp = (4n22e4niLr‘mz)vf 1 VA
As a result of solution of this equation we obtain
(4)
fe = £}, + (eEQ/mVv(v))Ofy /dv. W(V) = (4netz2n;L)/m2v3
Substituting this expression into the formula of current density we have
(5)
j = el vi. dp = (32/3n)Xe2ne/mvef)Eqg = o Eg
where
(6)

o = (32 e2 ng)/3nmveff., Veff = (4/3 )(\’2nfm)(e4zzniL/Te3/2)

is the static conductivity of plasma in the Lorentz approximation, which differs from the
Spitzers formula (91) (see Lecture 5) by the factor of the order of =1,5.
From the condition | f | << fy, follows that the above obtained results are valid only if

(7)

<v> = eEg/mveff << vTe

Or in other words if
(8)
| Eg < E¢r = mveffvTel®

This critical field E. coincides with the Dreicer’s field introduced in the lecture (10) for
completely ronized plasma.

Problem 5 (Lecture S)

|
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Starting from the equations of two fluids hydrodynamics of " cold” collisionless plasma

calculate the averaged force acting on the plasma m the external inhomogeneous microwave
field.

Solution
The equation of motion for electrons m this case can be presented as
(1
vt - (v = (e E(r) + (erme)] v (BgB(r,1))}

Here By is the external homogeneous magneuc field and E(r.t). B(r.t) are the components of
microwave field with frequency oy

2
E(r.t) = E(rism(ogt). B(r.y) = (¢ioag)rotE(r) coswgt @

In the first approximanion from (1) follows X
OV Ot = (k) m)~eme[ VB v
The solution of this equation is @

Vo = Vsinogt + V7 cosogt = (e2/m2c)[E(r)*Bgl(wg2-Q2))sinogt -
(ewg/m)( 140g2-Q2 ) E(r)-(e2im2c2)( 1/wp?)Bo(BoE(r)}} coswpt
where Q = eBg/mc is the Larmor frequency for electrons.

Substituting the expression (4) into the nonlinear terms of the equation (1) and averaging over
wq we obtain the averaged force acting on the electron component of plasma

5
Fay = -m <(VV)Vgs + (e/0g) <[Vo*rotE(r)jcoswgt> v
=(-m2)(V1VIV1 + (V2 V)V -(e/mp)[V 1 *rotE(r)]}
In the absence of external magnetic field. By = 0 . this expression becomes very simple ;
Fay = -(ez:'4|11(:)02)VE2(r) ()
This force 1s known as Miller's force
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Problem 6 Lecture (6)

Investigate transverse electromagnetic field penetration into the isotropic purely electron
plasma as a funcuon of its frequency o.

Solution

The transverse field penetration mto the isotropic plasma is described by the solutions
k(w) of equation

(1)
kZe? -0 el (k) =0
Penetration depth is determined by the relation
(2)
tgk = | Tmk(w)
Let us consider the different limiting cases.
a) In the frequency range o~ va. kvre
(3)
el (,k) = 1o o202 ) 1-ive/o)
Substituting this expression into the (1) we obtain
(4)
ZCmZ/mLezve if 0> 0Le> Ve
Agk =
c/0] e if ve<<<<ol e
b) In the frequency range kvre > 0. ve
(5)
ell(w,k) = | ~ V(12 o o2/okvTe)
After substitution of this expression into the (1) we obtain
(6)

hgk = 2(N(2/m )(szTe/@)Lezm)) 1/3

This expression coincides with the penetration depth of transverse field in the case of
anomalous skim-effect. which takes place under the conditions

(7)
(VT /)0 e "0 0% =Va( Va2 /0] o2VTa2 ) AE
¢) And finally. when vg >> kvTe,w
(8)
eMok)=1+ ia((oLez,fmve),
which leads to the expression for penetration depth in the case of normalous skin-effect
%)
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7 b 2
Agk = (Z\Jec-ﬁamee—)”-
It 15 obvious that m this case o o* v and o = | corresponds to weakly ionized plasma

whereas « = 1,90 to completely ionized one,
The results of the analvses s presented m the Fig. 2

Figure 2

Problem 7 (Lecture 7)

Show that for purely longitudinal propagation of transverse electromagnetic waves In a
magnetized plasma it appears the collisionless absorption if the relativistic effect of electrons
mass dependence on their velocity is taken into account, even when the spatial dispersion of
dielectric permittivities is completely neglected.

Solution

From the general expression of dielectric permittivity of magnetized plasma (179) follows that
when spatial dispersion is neglected (k «0). the nonrelativistic wave absorption completely
vanishes. However if we take into account the relativistic dependence of electrons mass on its
velocity the wave absorption appears again even when k o 0. Really if in the (179) we suppose

(h
m = mpy = mg ( f-v2ic2y 12— mg( 1+v2/2¢2)
and in replacing Q. by Qa/y. we obtam
(2)
g] = 1+ (2me2/o))dp(dfge/deXv | HotQely) = 1+
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( 47ce2f3(o)J'dpv2( ofge/oe)| 2 (I ely)-ind(wdely)]

For the Maxwelhan distnibution f(, this leads to

(3)
£ (0) 1-0p e ((0-(24))
I ito Qe
i(4m:)Le3c5 3000V Te HQem0) ) 2=
0 o - Qe

Here we restrict ourselves by :€2a - L. | -0 B Q.. After substituting this expression into
the dispersion equation we obtan
(4)
klc2 = (J)zaL((o)z —((1)(:)LC2J((:)-QC))[I - (”“CS‘3"Te5)((Qe"D)/Qe)5'}2]

Comparing this equation with (180) we conclude that its solution (oow+id)
(5) ‘
\
0=Qe-00[ o2/k%c2, 8=-4th5f’3vTes(oJLezf’k202)7/ 2 |
|

differs from (190) by the existence of non exponentially small purely relativistic wave
absorption (8+0).
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LECTURE 15

THE PROBLEMS ON NONEQUILIBRIUM PLASMAS

Problem 8 Lecture(8)

Investigate the electromagnetic waves m a planar laver of "cold” collisionless plasma
Solution

Let us orientate the OX axis perpendicular to the surface of layer. Then the clectromagnetic
field equations for the components Ex. Ez. By (TM-mode) can be reduced to the one equation
for Ez:

(D

O2E20X2 -k, E, - (07 ek, = 0

Here
(2)

s(x)— | '(”Lez(-\')’wz

and k, is the wave vector along the surface.

Equation (1) is valid not only in the plasma-layer, 0<x<a, but outside of it, x<0, and x=a. In the
layer we suppose e=e{w)=const because ne=ng=const, whereas outside the layer € = 1. Taking
into account this from the equation (1) one can easily obtain the boundary conditions

(3)
{Ez}x=0.a= 0. {By} x=0-a — 0
Here
(4)
By = -(ime)(S(x)/(kzz-mzs(x)fcz)
Now we can find the solution of { 1) in the form
(5)
I Cyexp(xox) x<0
EAx) = {Caexp(yx)+C3exp(-xx), 0<x<a
FC qexp(-xox). X=a

where ¥2 = kzz-((.o:'cz)e((:)). x()z = Lzz - »2ic2. . Besides it was supposed that x()z > 0 and

+2(©) > 0 for surface type waves and v 0 for bulk waves,

After substituting the solution (5) into the boundary conditions (3) (taking nto account (4) we
obtain the following dispersion equation for the small electromagnetic oscillations of a plasma
layer

(6)
(sz(m)/)(2 ~].fxO3)zexp(-xa) = (8((0)/)(+lfxg)2exp(xa)
For the surface wave (x-’- >0) in the short wave length limit from {6) follows
{7)
e(o)o ty =0
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This equation coincides with (233) for the surface waves in semibounded plasma. At the same
time. in the long wave limit when xa <<= I mdependently of sign v2 we have

(8)
I ~glo)ayg=0
The solutions of this equation exist only when (o) - 0. or © - ©j e and then
(9)
ko, it o o eM | kzla
0 = o
o M 1Kk, | a), if (')-'Tu|kz|c
Finally if x> ~ 0 (bulk waves) and |% |a>1. we obtain from (6)
(10)
1022
x-a< = m-n-
n =12 which leads to the bulk waves dispersion relation in a plasma layer.
(11)

21202 - 1200202032 o W2
0= = ky=c- ~ m-n=c-a= O] ¢

Problem 9 (Lecture 9)

Usng the equation(285) investigate the fluid instability in a strongly collisional plasma in the
mirror geometrical magnetic field confined plasma

Solution

As it was shown in lecture 9 in the mirror magnetic field confined plasma arises the real drift of
particles with velocity uy=-g, /(2. For takin into account this drift in the dispersion equation
of strongly collisionnal inhomogeneous plasma (285) the following change must be done
O Oy = 0-kyug. As a result this equation for " cold” collisionnal plasma (Tg 0) takes the
form

(1)
(0. X) = 1+ o TOL o 22U g Hive Vo' g (k) 20262k 2 00 g Hivg)? +
(ky/ Q' Hivy))0ImNy/ox} = 0
Let us now suppose that
(2)
W'e << Ve, ©0F 7> vy, ©>> kyua
Then from (1) follows
(3)

(1+c2va2)k 12 + idrok, /o {c? gefrky2vAZ0?)3IN/Ex = 0

where 6 = o[ ¢2/4nv, is the plasma conductivity and geff = (Vg2 +vTe2)/QiR. For fluid type
oscillations with k; a0, from (3) we find unstable solution

4)

116

W ECE A T A N



o2 = o geﬁkyzf( [RRY Al-'&))alnwax( 17k lz) ~ ~gaff OINN/OX

Instability takes place if gofy @INN/Ex - 0. or. in other words. when the curvature of field 15
positive. At the same time. in accordance of (3) the finite value of k5 leads to the stabihsation
of tluid mstabihty when
(5)
]\72 kLz WEnS 2 (1 dnan ’geﬂ@.lnN@x |

Problem 10 (1L.ecture 10)

Show that in a purely clectron plasma in the external microwave electric field it arises the
parametric instability when the relativistic effects in the motion of electrons are taken into
account.

Solution
Supposing that the microwave field has the form
(1)
Eq (t) = Eg sinot

the relativistic equation of motion leads to

u(t)/ /1~ u*(t)/c¢’* = - (eEg/mag)cosot

Taking into account this relation the hydrodynamics equations for the small perturbation of
motion can be written as

(2)

(3)
08N/t + diviNgoNu(t)) = 0

(0I5t + u(0)BAr)SY + u(udV)c2)(1-u2/c2)3/2y= -e/mVe
Ad = -4medN
Here we suppose that the electric field of perturbation is potential, E = -V¢

Below we will restrict ourself by consideration of the perturbations ~ exp(ikr) in which k/Au.
Then the system (3} can be reduced to one equation for 6N:

4
(ot ku) 14 1-u2ic2)3 2)(8/at + iku)oN = -0 28N
where o, = \Mne:ij—/“;r_] is the Langmuir frequency. Using the substitution
y = (1(1-u2/c¢2)3/2)38N/Btexp(ilt ku(t')dt'
from (4) we obtain
(6)
Oy + wLez( 1-u2(t)/c?)32y =0
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In a weakly relativistic case when u® /c* < <1 from (6) follows

d2v.di? + (a-2qcos2upt)y = 0
where

(7)

(8)

a= ((-)ch u()l)( 1-3 4(L|02,c2)); q= 3.-"8(211103 ¢2)y 71, ug = eEg/mag

In the Fig. 3 was shown phase diagram a (q) and to the parametric instabilities correspond

stroking regions.
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When g << 1 these regions are determined by the condition a = nZ, or
nzwo2 = ("Lez ( 1-3/4u02fc2)
and growth rate of y (y~exp(ot) is equal to

0 ‘_3“6((0Leu02/02)

)

(10)
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Problem 11 (Lecture 11)

Show that the beam- plasma corresponding to the stimulated Cherenkov radiation takes place
i a “cold” colhsionnal plasma also

Solution

Let us consider only nonrelativistic case. when u - ¢ and potential approximation is valid. The
dispersion equation for potential perturbations looks as (see equation (354))
(1)

IR P ? 2
| - of o= 0~ (1-1va 0) - op~ (o-ku)- =0

Here we suppose that -y s Ve Besides we had neglected the beam electron collisions
which pracucally always 1s possible.
In the absence of beam ( o «0) equation (1) describes the wellknown plasma oscillations,
which are damping due to the plasma electron collisions (c+1d()

(2)

0= g 00 7 -Ve 2

In the presence of beam these oscillations can be excited by the stimulated Cherenkov radiation
of beam electrons. Really representing the solution of (1} as

(3)
= 00Le *10=ku+1d
From (hH we obtain
4)
(i+\/§)/2(nh /’2np)”3ﬂ)1_c [8]>>ve
(1+i)x‘\/§(nhwl_eonFVE)mmLL, |8} << ve

The first expression corresponds to the collisionless plasma and was obtained in Lecture 11 for
nonrelativistic beam interaction with plasma. The second is new and corresponds to dissipative
instability-dissipative stimulated radiation of beam electrons in collisional plasma. It takes place
when vg == |61 => v}, where vy, is collision frequency of beam electrons.

Problem 12 Lecture (12)

Calculate the limiting current of the monoenergetic relativistic electron beam in a drift chamber
in the external infinitely strong longitudinal magnetic field.

Solution

Under the action of electrons space charge in a drift chamber there arises a space potential ¢,
which can be calculated from the Poisson’s equation
(1)
A$ = 4mjiv = -4mjic[1<y-ed/mc2)-2]

119

e e A g ' ' A g v e v ¥y -~ g e r =



Here j is the beam current density, y = (1 -u2/c2)-1/2 | where u is the injected velocity of beam
electrons and v is determined from the energy conservation law
(2)

2 RS it
me2(1-v2e2y 124 eg = me3y

The equation must be completed by the boundary conditions. For the plane drift chamber these
conditions look as
(3)
O x=td = 0. 0| x=0 = 0

where x = *=d corresponds to the surfaces of chamber and ¢y must be determined from the
condition
)

199) = Imax=0

quite analogical for the cylindrical dnft chamber with the radius R we have the following
boundary conditions
(5)
¢| =R =0.¢{r—=0=00

Here also ¢ 1s determined from the condition (4). _

Below we will restrict ourself by consideration only the result of the solutions of the
mathematical problems. In the plane case the nonlinear equation can be exactly solved only in
the hmits of nonrelativistic, y~1, or ultrarelativistic, y>>1, beams. The result is

(6)
(2¥2)/9)y-1)3/2 =1+u2/2¢2~1
=
jo = (1mc3/2me)(1/d2)
Y r>>1
Analogically for the cylindrical drift chamber completely fullfilled by the beam we have
(7)
(2¥2/9)(me3/e)(y-1)3/2 y~1+k2/2¢2~1
Ip = nR2jg =
(mc3/e)y v>>1
The formulas (6) and (7) can be written in uniform by using the mterpolation
(6)
jo = (12m)me3/e)((y2/3 -1)id?)3/2
)

Ig = (me3/c)y2/3 -1)3/2

Let us notice that mc3/e ~ 17 kA

Problem 13 Lecture (12)
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Using (381) investigate stimulated scattering of incident transverse waves on the ion-accoustic
oscillation of non-isothermal { Ta -~ Tq) isotropic plasma Mandelstam-Brilluen stimulated
scattermg

Solution

In the frequency range of ion-accoustic oscillations. 0] g KvVTe - © =7 kvTi.vi, we have

(1)

Sael = (OL e RV L - I 20 KT ). (Ssi} = -0 j2/o”

Substituting these expressions mto the equation (381) we obtam
(2)

k31‘0e3 - (’)29'('-)Li2 -i\:(Tt;'l)((:)f‘lw']*e)kzrDe2 =

(K2 (ko) W [k 12 € 200g e H(k-Kg)?)

The denominator in the right side corresponds to the scattered wave with frequency npow and
wave vector kgak, or taking mto account o “-.
(3)
(00-0)2eM(0g-0)-c2(kg-k)? = 200q + c2(k2-2kkg)

In the equation (381) we must take into account also the scattered wave with g + o and kg +
k, which can be done quite analogically as for og-w and kg-k in the right side of (2).

Now we can solve the equation (2) supposing that o = kvg+id. The maximal value of 6
corresponds to the resonance for scattered wave (3) and it is equal

(4)
5, = 1/'2(\/(nm 8lkv )+ o, 120k ) ([k, - kv, F Ak -k, ¥ )= x /S(m/M)kvs)

max

This expression is positive and therefore the stimulated Mandelstame-Brilluen scattering occurs
to be unthreshold. Only one requirement must be satisfied

(3)

. . Yy D
. , 2wl
Omax ~ VeWlLe /200

which corresponds to the nondamping of mcident wave during the process of stimulated
scattering.
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Problem 14 (Lecture 13)

Investigate nonlinear dynamic of the "cold" plasma beam instability assuming that stimulated
radiation of a monochromatc longitudinal wave takes place

Solution

For monoenergetic and nonrelativistic beam the potential wave excitation in a "cold” plasma
takes place. Supposing that the plasma density 1s much higher than beam density and therefore
the linear approximation for the plasma oscillations is valid. Then the nonlinear system of
beam-plasma nteraction can be written as:
(1)
Audt - cnveax = 0. AVIOt—vOv. Ox=-e/m(0¢/0X )}

( 1-mpz/m2)a2¢xax’ = -4me(n-ng)

—

Here o = Nf«me:n‘, .m . where ng is unperturbed plasma density. Moreover, we restrict

Yo
ourself by consideration of only one dimensional case, or all the quantities are the function only
x and t. Supposing that this dependence on & = t - xk/w from the system (1) follows first

integrals

n/(o/k -v) =npplwk -u)=C;, m/2(o/k -u)2 = m2(w/k-v) + e = Co @
Taking into account these integrals the third equation of (1) takes the form ;
(1~ 2/02)d2¢/dE2 = (0g20?m/ek2)[((u-0K)N(u-o/k)2-2e¢/m) )-1] ®
where ©, = \fm
In the linear approximation on ¢ we obtain well-known dispersion equation (354) 5
l- mp2/m2 - (obz/(a)-l{u)2 =0 (
which has unstable solution ® = wp+0 = ku + & and 5)

8 =((-1+iV3)/2Xnp0/2np) 130y

The field potential then will increase until in the frame of wave its amplitude is less than energy
electrons. Therefore the maximal value of ¢ 1s equal
(6)
edmax = m(u-o/k)> ~ (n/k2)32 ~ muz,f2(2nb0/np)2/3

This value corresponds to the saturation of unstability. At this stage we can estimate also the
field energy and as a result the efficiency of stimulated Cherenkov radiation
(7

n = E2/(8nnpomu2/2) = 1/2(npo/np)}/3 << 1
It is easy to understand that the saturation of instability is a result of beam electrons captured in
the well of wave potential.
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Problem 15 (Lecture 13)

Investigate the form and velocity of one dimensional ton-accoustic soliton in a nonisothermat (
Te - Ti) wsotropie plasma in taking mto account the capture of electrons in the field of soliton

Solution

Let us use hvdrodvnamics equations for describing 1ons motion

{1)
Gt vey oxo -(le Mo S ANLOt +ENivigx = 0

2o dme (N; - Npexpled:1,) -AN]

Here Ny 1s the electrons and ions density at ¢ = 0. AN 15 the density of captured electrons in the
field at 1on - accoustic waves
(2)
AN (4Ng3vaed Ta) 2

Moreover for simplicity we consider only the case when ei = -e

The system (1) admits the existence of solution which depends only on £-ut, where u = const.
For such solutions vanishing at & otoo we have from (1)
(3)

(v-u)v' = (-e¢/M)p, (Njv) -uN;'=0

Taking into account that at Eotoo, a0, va0 and NjaNg we have
(4)
h = (Muzfle)[l-(v—u)zf'uz], Nj= NO/\/(I-Zetb/uuz)

Substituting (2) and (4) into the equation for ¢ in (1) and taking into account that , ep << T,
({2) was estimated under this condition), we obtain
(%)
¢"-4me N To[(1-ve2u2)h + 331 NTYVe(¢3 2y T2 = 0

Now we can use the general theory of solitons developed in the lecture 13 which leads to the
following soliton type solution
(6)

DE)= D ACH*[(E/VI5)r, (e nT )"

m

u=vg[! + & 15(e¢m,‘n'[‘e)1f2]
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APPENDIX

On the History of Fundamental Papers on the Kinetic Plasma Theory

This appendix is printed trom Plasma Physics Reports Vol 23 N°S 1997 pp 442 - 447
following to the paper of A Alexandrov and A. Rukhadze.

1. 1996 is marked by a number of important dates related to milestones in the history of
the development of the Kinetic plasma theory. te. the theory of a gas consisting of particles
interacting via an electromagnetic field. Sixty years ago. m 19306, one of the most frequently
cited papers by Landau. " Kinctic Equation for the Coulomb Interaction” [1], was published. In
that paper. the well-known mtegral describing of elastic Coulomb collisions between charged
particles ( the Landau collision mtegral). which plays an important role in the kinetic plasma
theory. was derived. Ten vears later. in 1946, Landau published the very popular paper based
on the kinetic Vlasov equation. "Qscillations of an Electron Plasma"[2], in which he described
a new discovered phenomenon-collisionless damping of electron Langmuir oscillations; this
damping was later referred to as Landau damping. Between the appearance of these two papers
by Landau. in 1938, Vlasov published his fundamental paper “Vibrational Properties of an
electron gas"[3], in which the kmetic equation for plasma was derived m the approximation
treating Coulomb collisions as the interaction through the self consistent field. This equation
was later called the Vlasov equation. Although, initially, this equation was not justified
precisely, results obtained by using this equation (including, first of all, the results obtained by
Vlasov himself) became a foundation for the present-day kinetic plasma theory.

N.N. Bogolyubov was the first to accurately justify the Vlasov equation in his
monograph "Problems of Dynamic theory in Statistical Physics™ [4]; this brillant monograph
was published fifty years ago in 1946. Bogolyubov not only justified the Vlasov equation as an
equation corresponding to the leading order approximation in describing gases that consist of
particles interacting via Coulomb forces but also showed that the Landau collision integral
describes the next-order effects in the Coulomb interaction of particles in a plasma. The Vlasov
equation supplemented by the Landau collision integral forms the general kinetic equation for a
plasma and is referred to as the Vasov-Landau equation. Hence. Vlasov and Landau laid the
foundations of the kinetic plasma theory.

Below, we will briefly discuss the papers by Landau {1.2] and Vlasov [3] in the context
of the present-day views, which coincide conceptually with the interpretation proposed by
Bogolyuubov in his monograph{4]. In conclusion, we will present our own opinion about the
critical paper by four authors [3] and the answer by Vlasov[6]. which. unfortunately, was
published in an almost unknown (at that tine) departmental journal.

2. By the early 1930s. the development of the kinetic plasma theory of neutral (on the
whole) gases consisting of electrons and ions became relevant. This stems primarily from the
experimental investigations by l.Langmuir on the relaxation processes in a gas-discharge
plasma in wide density and temperature ranges. Landau was the first to make significant
progress in this field. In 1936, he derived a kinetic equation for gas consisting of particles
interacting via Coulomb forces. To derive the kinetic equation for the distribution function fip,
r. t) determining the probability for a particle with momentum p io be observed at the point r
and the time t, he used the Boltzmann equation

(1)
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df/dt = ofidt + (dr/dt)ofior + (dp/d)efiap) = 1( £, ).

in which the change n f{p.r.t) is govemed by pair collisions.! Here ,
(2)
drdt=v . dpdt= F=e¢{ Eg - 1 c(vxBgl}

and I(f £ ) is the mtegral that describes pair elastic collisions and is a bilinear functional of
fip,r.t). In the Boltzmann approximation. the force F is external. so that the fields Eg and Bg
are external fields defined by Maxwell's equations in which the prescribed charge pg and
current jq densities are treated as sources of these fields.

It is notable that. in dernving equation (1) for conventional gases consisting of neutral
particles. Boltzmann regarded the particles as solid spheres of radius ag, which is the radius of
the interaction region. For such gases. the condition for the applicability of the kinetic equation
(D is

(3)
ng 1 3ag” |

where ng is the particle density. This inequality, which assumes that the particle size ag, i.e., the
radius of the interaction between particles, is small compared to the mean distance ~  ng 1/3
between them, is the condition for the applicability of the gas approximation for a system of
neutral particles; as long as this condition is satisfied, the particles move freely most of the time
and collisions are rare. Although the potential of interaction is infinitely high and the mteraction
can be treated as strong, this relates only to short intervals of time corresponding the mfrequent
collisions between particles.

In deriving equation (1) for a gas consisting of particles interacting through Coulomb
forces, Landau could not use condition (3), because, for such a gas, the characteristic radius of
interaction is infinitely large. He used the condition that the mean potential energy ( which is
proportional to ~ eZn I/ 3y of the interaction between particles is much lower than the mean
kinetic energy T of their thermal motion and adopted the following condition for the plasma
to be a gaseous medium:

(4)
e2 n V3 /4T << 1,

where y is Boltzmann's constant. This assumption allowed him to obtain the converging
integral of pair collisions and to write the kinetic equation { 1) in the form

(5)
Ofidt + vofy/or + e {Eg + Lic[vxBg]} = 1 ( fg, fB)

=nely L BZG@pi(Idp'eﬁz (uzﬁij - uiuj')/u3)

x[Ofey/Bp £R( P'.1. ) - f(AFR(P".r.0)/ED']

[1] As in the papers by Landau and Vlasov, we restrict ourselves to considering only the electron plasma
component assuming that the electrons are scattered elastically by infinitely heavy plasma ions.
Here, u = v-v' is the relative velocity of the interacting particles, and L is the Coulomb

loganthm
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(6)
L= In(xT felnm)3 >> |
The summation in () is carvied out over electrons and tons.
Note that. under condition (4). the electric field of the test static charge q is screened m a
plasima. and the field potental has the form
(7)

D(ry=q rexpl-r+ 1,)

where r, = xT. e n s the Debve radius. which can be regarded as the charactenstic
radius of the interaction between charged particles in a plasma. It is this circumstance that
allowed Landau to derive equation (5) and obtam the converging collision integral by cutting
off the Coulomb interaction at the Debye radius. On the other hand. comparing the Debye
radius r,, with the mean distance between particles. we can see that their ratio is large,

(8)

o' =T dre’nt s>
This indicates that there are many other plasma particles within the Debye sphere, and, in this
connection, the question arises of the extent to which the allowance for only pair collisions is

justified and. hence, the Landau kinetic equation (5) is valid.

3. Vlasov was the first to point out that the Boltzmann approximation cannot be used to
describe the plasma. In paper [3], he wrote, " For a system of charged particles, the method of
the derivation of the kinetic equation by taking into account only pair collisions between
particles interaction by impact is not, strictly speaking, correct. In the theory of such systems,
long-range interaction should play an important role, and, consequently, the system of charged
particles should be, in essence, treated as a peculiar system governed by long-range forces
rather than as a conventional gas."2 Vlasov justified this assertion by inequality (8), which
follows from (4) and showed that there are many particles inside the Debye sphere, whereas, m
the Boltzmann approximation (3), the opposite condition should be satisfied. This gave Viasov
a lead, and he supposed that the main interaction between plasma particles is the interaction of
each particle with all the other particles through the electromagnetic fields produced by them.
In this case, pair collisions should be incorporated as small corrections.

As a result, the kinetic equation for electrons takes the form

9)
OO0t + vofior + e} E + Lic[v x B} afiap =0
Here, unlike the Landau equation (5). E and B are the total fields generated by plasma particles
and by external sources.
Hence. these fields should satisty the Maxwell equations
(10)
div E = 4n(prpy), div B =0,

rot E = -1/c 8B/ét, rot B = 1/c OE/0t + 4mic(j + J0),

[2] This idea is coherent to the definition given by D.A. Frank Kamenetskii, who called the plasma “ the fourth
aggregative state of matter” Also, Vlasov was engrossed in developing this idea: to the end of his life he did
not stop attempts to describe also the crystailine state of matter by using the model of the self-consistent
interaction mechanism.

which include, along with the external sources pq and jg, the sources p and j induced i the
plasma;
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(11)
pszj fdp,j=Zj vidp.

Here, as before. the summation is carried out over all species of the charged particles.

As for the collision mtegral { which we have not written out here) in (9), Vlasov assumed
it to be small and. m place of 1. used the Landau collision integral (5). The only difference was
that, in terms of the Boltzmann approximation. he proposed that the Coulomb interaction
should cut off at a length on the order of the mean distance between electrons rather than at the
Debye radius. Consequently. he used the Coulomb logarithm L., which was reduced by a factor
of 3/2 in comparison with (6). Although, at first glance, this dicrepancy seems to be
insignificant. it is of fundamental imporntance. In this connection, we must point out the intuition
of Landau whose predictions concernmg the cutting point turned out to be completely true.
However, the validity of the Landau collision integral was completely confirmed only in the
late 1950s by A. Lenard and R. Balescu. who not only obtained the integral describing pair
collisions with allowance for the plasma polarization but also justified the fact that the Coulomb
interaction should be cut off precisely at the Debye radius. As mentioned, based on the
expansion in parameter (4). the mathematically correct derivation of equation (9) was made by
Bogolyubov in his monograph [4]. In the literature, the set of equations (9)-(11), m which pair
collisions are neglected, are usually called the Vlasov-Maxwell equations, and the kinetic
equation (9) is referred to as the Vlasov equation or the kinetic equation for collisionless
plasma. However, the latter term seems to be inappropriate, since equation (9), even without
allowance for the right-hand side, takes into account the long-range interaction or more
precisely, the particule interaction through the self-consistent fields’>. Based on above set of
equations neglecting pair collisions, Vlasov studied small linear plasma oscillations in the
absence of external sources and external fields. He showed that, in such an isotropic plasma,
purely longitudinal (E = -V¢) and purely transverse (div E = 0) waves can occur and obtained
general dispersion relations connecting the frequency o and the wave vector k for perturbations
of the form exp(-iot + ikr). Here, we restrict ourselves to analyzing only longitudinal
oscillations, since the results correponding to these oscillations can be compared with the results
obtained by Landau in the cited papers.

The analysis of the dispersion relation was performed by Vlasov for small longitudnal
oscillations for an 1sotropic electron plasma with an equilibrium Maxwellian velocity electron
distribution function.

(3] Here, we must draw attention to the fundamental properties of the system censisting of like-charged
particles interacting via Coulomb forces, 1.2, systems characterized exclusively by either repulsing or attracting
forces (also. the latter case corresponds to systems of gravitating bodies}. In such systems, no Debye screening
of the electric field of the charge exists, and it is impossible to obtain the converging, collision integral. For this
reason, thermodynamically stable gases consisting of such particles cannot exist. In the absence of external
forces, these gases either collapse (in the case of attracting forces) or expand (in the case of repulsing forces).
For the gas to be stable, it should contain oppositely charged particles. However, in this case, it is impossible to
construct the theory of a nonideal plasma based on the inequality that is opposite to (8) or {4) and coincides
with the condition for the applicability of the Boltzmann approximation. This seems to be suitable for
constructing the kinetic theory. Unfortunately, in such gases, oppositely charged particles are trapped and
recombine into atoms. However, these problems are beyond the scope of our study, which is aimed at a
historical overviewing of the development of the kinetic theory of an ideal plasma.

This analysis showed that, withowt allowance for pair collisions between particles, these
oscillations (i.e. waves) do not damp when their phase velocity is higher than the electron
thermal velocity and can be described by the dispersion relation

(12)
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0= mpz + 31(2\/']‘62,

where o =+vdme'n mis the plasma frequency introduced by [ Langmuir. and

v, =yrTe m is the clectron thermal velocity. The presence of high-frequency electron

oscitlations with low group velocities,

(13}

fns

Vg ocwCh o (ke (‘s)p)\"[‘e C Ve

agrees well with the resuits of familiar experiments carried out by Langmuir and Tonks [8].
The fact that slow longitudinal oscillations cannot occur in a purely electron plasma also
confirms the validity of Vlasov's theory' in the range o'k - vTe. the field of these oscillations is
screened at distances on the order of the Debye radius. Note that this is in agreement with the
length of the Debye screening of the field (7) of a static charge m a plasma obtained by Landau
on the basis of entirely thermodynamic considerations, *

On the other hand. the fact that there was no damping of oscillations, although particle
interaction was taken into account in the approximation of self consistent fields, was somewhat
unsatisfactory. However. Vlasov did not consider this fact to be discouraging. Moreover, he
believed that the damping of oscillations via pair collisions. which, according to the [andau
theory, is governed by the electron-ion collision frequency,

(14)

v, =4 f3\/f27te1efniL /m{yTe)"”
1S negligibly weak by virtue of the condition
(15)
Veffiop = (e2nl3/3Te)2/3 << 1

He considered the dispersive spreading to be a more important process. In fact, by using the
dispersion relation (12) to estimate the time g required for an inhomogeneity of the length
~}/K to spread, we obtain
(16)
QpTg ™ 1k(Qw/iok)y ! = mpzmszez = 1/K2me2 > 1,

ie., this time is long in comparison with the oscillation period. In this case, the effect of
collisions is governed by the quantity Touefy: which is a product of the small parameter (15)
and the large parameter (10). B

4. In [2], Landau rejected the concept of Vlasov in which the dissipation of small oscillations
was absent when pair collisions were neglected. He acknowledged that the Vlasov equation
could be applied to describe electron plasma oscillations but. nevertheless, wrote.

{(4) Note that Langmuir and Tonsk[8] applied the hydrodynamic theory in order to develop the concept of the
self consistent field; moreover, they obtained a dispersion relation similar to (12}, which differs slightly from
(12) in coefficient 1 (in place of 3} in the correction term: also not that the low frequency longitudinal field 1s
screened at the Debye length They also showed that smali oscillations in a plasma have the frequency wp. do
not damp aperiodically as tume elapses. and that their weak damping is governed by only electron-electron
collisions.

"Vlasov searched for solutions of the form exp(-iot + ikr) and determined the dependence of
the frequency @ on the wave vector k. In fact there is no definite dependence of » on k, and
arbitraries values of © can exist for the prescribed k.” Using the same approach as that applied
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by Vlasov, Landau solved the initial problem for small oscillations and obtained the same

dispersion relation®
(17}

1 -~ el mkléfy/av(dvio - kv)) = 0.

which was analyvsed by Viasov. Here. fi(v) is the equilibrium velocity distribution function,
which was assumed to be Maxwellian and is normalized to the electron density ne,
(18}

fp(v) = ne (27{1111Te)3"zexp(-fll\'2 24Te)

Equation (17) contains the Cauchy improper integral having a pole of the integrand at the point
v = w/k on the real axis. The different approaches of Vlasov and Landau to taking this integral
led to misunderstanding and disagreement between them. Viasov suggested to find the principal
value of this integral and, as a result, obtained the solution w(k) to equation (17) in the form of
undamping oscillations with the dispersion relation (12), whereas Landau proposed to integrate
along a contour (the Landau path- tracing rule) corresponding to the following representation
of a pole:

(19)

[.(0-kv) = Pi{o-kv)-1md(w-kv),

where P denotes the principal value of the integral. This gives rise to a small imaginary
correction to the frequency {© o o + 1y),
(20)

y = -\Jn/S(wp/(krDe)3exp(-(1/2k2r1)ez)—3/2)

which describes a weak damping of oscillations corresponding to the dispersion relation(12).
This damping was subsequently called the Landau "collisionless" damping. We use here
quotation marks, because, in fact, the Vlasov equation takes into account multiparticle (or
collective) collisions and does not incorporate only pair collisions, for which the right-hand side
of the Vlasov equation should be supplemented by the collision integral. Taking into account
pair collisions yields the appearance of additional damping, v o y + 8y, where

(21)

&y = -vef2

and vegris defined by expression (14).

Because of conditions {15) and {(16). both the collisional (21) and collisionless (20)
damping rates are weak in comparison with the oscillation frequency described by (12).
However, the question arises of which of these processes. i.e.. the collisional damping or the
Landau collisionless damping, is dominant.

When
(22)
/8y = 16L(x To/e2n113)3/ 21 ((krpe) exp(1/2(krpe)? > |

{5) Landau rejected even the notion of the dispersion relation, which is especially obvious from this paper [3]

The Landau collisionless damping dominates over the collisional damping, and when the
opposite inequality is satisfied the collisional damping dominates. Hence, the ILandau
collisionless damping should be taken into account for rpe << & < meVL. Since, for real
plasmas, the Coulomb logarithm is L = 10, we can see that, for purely electron longitudinal
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oscillations. the range in which the Landau collisionless damping 1s important 1s very narrow.
Moreover. the time scale - v for the collisionless damping and the time scale~ 1/3y for the
collisional damping are always much larger than that tor the dispersive spreading defined by
relationship (16). Due 1o this. w15 difficult 1o distinguish the collisional and collisionless
damping occuring against the background of the dispersine spreading.

However. the above fact that the range in whieh {andau damping is important is narrow
and that the time scale for tis dampmg 15 targe in companson with time scale for the dispersive
spreading is valid only for a thermodynamically equilibrium plasma with a Maxwellian velocity
distribution of charged particles and for purely electron longitudinal oscillations. In the general
case of arbitrary oscillatons of amisotropic and. especially. nonequilibrium plasmas. Landau
damping. or. more precisely. the collisionless dissipation associated with the poles of the
integrands. which anse m sohang the Vlasov equation and calculating the induced charges and
currents in the plasma. not oniv can be verv important but also can change the sign and almost
entirely determme the absorption and emission of the electromagnetic field by the plasma.
Moreover. in a completely ionized plasma. collisionless dissipation is always dominant over
collisional dissipation. except for particular cases when collisionless dissipation tums out to be
weak for one reason or another. as m the above case of longitudinal electron oscillations. This
is a distinctive feature of the plasma that is regarded as a system of charged particles interacting
via the Coulomb forces. and this makes the Viasov approach to describing the plasma very
effective.

The above considerations have become physically obvious only when the nature of
Landau damping and, consequently, of collisionless dissipation, was completely clarified. This
nature can be clearly seen from the Landau path-tracing rule o = kv, which was proposed by
Landau in the form of relationship (19). This relationship indicates that the energy dissipation in
a plasma is governed by the particles for which the condition ® = kv holds; i.e., the emission
and absorption of electromagnetic waves by charged particles are related to the Cherenkov
resonance. Obviously, the probabilities for a charged particle to emit or absorb quanta of
electromagnetic radiation are the same, and, consequently. the answer to the question which of
the processes, emission (corresponding to the amplification of the field) or absorption
(corresponding to the damping of the field). is dominant can be obtained by analyzing the
velocity distribution function in the vicinity of the point v = o/k. If 0fy/dv <0 (as in the case of
a Maxwellian equilibrium distribution). then the dispersion relation (17) shows that the
electromagnetic wave energy is transferred to charged particles; and this gives rise to the
Landau damping; Otherwise. if Ofp/dv > 0 in the vicinity of v = w/k. the amplification of
electromagnetic waves can occur in a plasma.©

The Vlasov equation, involving the self consistent field. describes the direct interaction of
the charged particles with the field ie.. the emission and absorption of the field as first-order
effects in the small parameter defined by (4).

[0] In parucular, this interpretation of the physical nature of collisionless dissipation assumes that, in the
approximation under consideration, undamping oscillations can exist in a plasma. Obviously, Landau damping
should vanish if the equilibrium distribution 15 such that. for velocities close to the phase velocity of the wave,
either the derivative is dfp/dv = 0 or there are no particles with such velocities, as in the case of, e.g , a Fermi
degenerate distribution when w/k > vE and also when w/k = ¢ (see. for detail, monograph [9])

The second-order effects in this parameter correspond to the interaction between the particles
that can be treated as the emission of quanta of the electromagnetic field by one particle and the
absorption of these quanta by another particle. This interaction relates to pair collisions between
particles, which are incorporated by the Landau collision integral. Hence, the Vlasov-Landau
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generalized kinetic equation for the plasma takes into account the particle interaction correct to
both first-order and second-order terms in parameter (4).

5 The above considerations were, in fact. given by Vlasov in paper [3], which, in tumn,
was initiated by paper [1] by Landau. Vlasov [3] not only physically justified the kinetic
equation with the self~consistent field (the Viasov equation). which takes into account for the
main distribution of Coulomb forces nto the mteraction between piasma particles, but also
showed clearly that the Landau collision integral is correct to the next order terms in the
Coulomb interaction. Moreover. Viasov supposed that the kinetic equation with the self
consistent field should be supplemented by the Landau collision integral in order to adequately
describe the damping of oscillations with time. He believed that nontrivial solutions of the form
exp(-iot+ikr) to the set of Vlasov-Maxwell uniform equations can exist for the specific
relationship between the real ©» and k defined by the dispersion law. Thus, Vlasov was the first
1o use the dispersion relation m the kinetic plasma theory and to find its solution w(k) for
longitudinal oscillations.

In tumn. Landau showed that the analysis of small oscillations carried by Vlasov was
incomplete. He showed that, even when collisions are neglected, small initial perturbations
should damp as time elapses, and the nature of this damping 1s associated with the emission and
absorption of electromagnetic waves by charged particles under Cherenkov resonance
conditions. Later on, the damping of electron longitudinal oscillations obtained by Landau for
the case of a Maxwellian equilibium plasma was, by right, called Landau damping.

Thus, paper [2] by Landau completed the formulation of the physical principles of the
kinetic theory developed by Vlasov and pointed out the pecularities of the solution to the
kinetic equation introduced by Vlasov. As mentioned, the Vlasov kinetic theory was
mathematically justified by Bogolyubov in his monograph {4]. He developed the methods for
deriving the kinetic equations for two cases, namely, for a system of neutral particles that can
interact strongly approaching each other, but the mean distance between these particles is much
larger than the characteristic radius of interaction (the Boltzmann equation), and also for a
system of charged particles interacting through Coulomb forces when the characteristic radms
of interaction is much larger than the mean distance between the particles, and, consequently,
the mean potential of interaction is much lower than the mean kinetic energy of the particles (
the Vlasov-Landau equation). In other words, he justified both the Boltzmann equation and the
Viasov equation with the Landau collision integral. We have not given the mathematical
essence of this justification, because already described in detail in a large number of
monographs and even in textbooks on statistical physics of gases and plasmas. Note also that,
Yu. L. Klimonotovich publicated a review on this topic in Ups Fiz. Nauk[10] which is devoted
to the fiftieth anniversary of the paper [2] by Landau and is naturally focused on the problem of
a thorough justification of the kinetic plasma theory.

Thus, as early as in 1946, the monograph by Bogolyubov, m which the kinetic plasma
theory was mathematically justified. in fact clarified the relevant problems.

In this connection, the appearance of paper [5] in 1949 seems to be puzzling-because of
is sharp and unjustified criticism of Vlasov's studies and, especially, Vlasov's approach to the
kinetic plasma theory. In that paper, the monograph by Bogolyubov [4] was not mentioned at
all. This is even stranger as, by that time, this fundamental monograph, which was closely
related to the kinetic plasma theory, was generally recognized and widely cited in the literature.
It is even surprising that the editorial board of Zh. Eksp. Teo. Fiz. refused to publish the answer
of Vlasov, who was forced to publish his answer in a departmental journal 6], which, at that
time, was neither widely known nor read. This was done in spite that the fact that the answer
dealt with very deep problems, in particular, a description of plasma as a continuous medium in
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which the mean radius of interaction between particles is much larger than the mean distance
between them. in which sense plasma is similar 1o liquids or solid bodies.”. These ideas are not
yet completely understood by the scientific community. At the same time. from remarks of the
editonal board. we can see that the authors of paper [3] read the answer by Viasov and.
moreover. ook mto account this answer in preparing the tinal version of their manuscript.

As for Viasov's contmibution to creating the kinetic plasma theory, it is widely recognized
by the physical community all over the world. In the scientific literature. the kinetic gquation
with a self-consistent field was reterred 1o as Viasov equation. Every year, hundreds of papers
on plasma theory are published in scientific journals. and. at least in each second publication,

the name of Viasov 15 mentioned. In 1970, he was awarded the Lenin Prize "For a series of
papers on plasma theon™

7) In this answer . in connection with the problem of describing the plasma as a continuous medium, Vlasov
discussed the problem of the spatial averaging of microfields and a description of macrofields, i.e.. a problem
that has still not been completely resolved. In our opinion . this problem could be resolved by constructing the
model of the medium and deriving the relations determining the induced charges and currents in the case of a
plasma, and there is no need for additional averaging, Note also that this problem 1s discussed in detail in the
above mentioned review by Klimontovich in Usp. Fiz Nauk {10}
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