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ABSTRACT

*

This report develops the spectral theory of ballooning transformations relevant to toka-

T OE o=

mak physics from first principles in a rigorous and yet intuitively clear manner. The power
of the ballooning representation to throw light on the spectral characteristics of the plasma

problems to which it is applicable is emphasised and examples are given to illustrate the gen-

eral notions. The ballooning representation is shown to be essentially a method to separate

TET

variables and reduce two-dimensional partial differential equations with periodic coefficients
to infinite sets of soluble ordinary differential equations. Part I is concerned with an elemen-

tary approach to the techniques in the context of nearly exactly soluble problems involving

- . T

the anisotropic diffusion operator in toroidal geometry. Two different perturbation meth-

T

ods are discussed. In Part-II applications to plasma instability problems and the subtleties

involving the continuous spectra of ballooning operators will be taken up.
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I. Introduction

The idea of solving linear time-evolution problems associated with stability of physical
systems by suitable expansions in terms of known analytic functions is as old as the principle
of superposition itself and goes back to Daniel Bernoulli and Fourier. This method of ‘eigen-
function expansion’ is extremely well-developed, especially since the early works of Sturm,
Liouville and Green in the nineteenth century to the modern foundations laid by Hilbert, Von
Neumann, Weyl and their successors following the advent of quantum mechanics. Plasma
physics is no exception in being a field in which the techniques of spectral theory are remark-
ably fruitful. Partial differential equations of plasma physics, when linearized, admit rather
simple representations involving ordinary Fourier series in the cylindrical approximation.
In toroidal geometry, while azimuthal symmetry persists (in tokamaks), the poloidal vari-
ation of equilibrium quantities renders Fourier expansions somewhat unmanageable. The

b 234 was invented to overcome this difficulty, at least in cer-

‘ballooning representation
tain asymptotic limits of high toroidal wave number. The idea of this representation is as
old as Fourier’s representation of periodic functions and seems to have been invented by
Poisson and Jacobi (at various levels of generality) in connection with the so-called ‘theta
functions’ of classical analysis. The idea resurfaced again in solid-state theory and is known
in that field through ‘Wannier’ and ‘tight-binding’ representations, complementary to the
more usual Bloch representation®.

The purpose of the present paper is to introduce the basic concepts involved in ballooning

and present some new insights offered by examining the spectral properties of typical plasma

physics operators revealed by the ballooning transformation.

2. Basic Ideas of Ballooning Transformations

We begin with a discussion of the basic ideas of ballooning theory'. Consider the one-
dimensional interval, (—#, 7). If f(#) is any 2r-periodic function in this interval which is
sufficiently ‘well-behaved’ (throughout this paper, we will assume that the functions studied
are as reasonable as required for applications, except where special considerations are neces-
sary), then we have Fourier’s theorem which asserts that the function may be expanded as
follows:

J0) = S Fuexp(imd), (1)

m=-—00
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where,

fu = 5 [ (6)exp(—im0)ds (2)

27 Jx

This traditional ‘Fourier representation’ forms the backbone of the subject of mathematical
analysis and its applications but has certain drawbacks in plasma applications which we shall
discuss later. It is less well-known that there is another, related representation of periodic
functions called the ‘Poisson’ or ‘shifted sum’ representation which arises as follows. Consider
now the infinite interval, (—o0, +0c) in the variable 5. Suppose we consider a function, F(7),
which is defined in this interval and is as smooth as desired. We suppose further that ()
tends to zero sufficiently fast as | 5 |— oo, so that it is absolutely integrable. We then form
the ‘shifted sum’ constructed as in the theory of groups:

fy= 3 F(y - 2nr) 3)

n=—0oc

It is now easy to prove’® that under very mild conditions on F, the infinite series over
all integers n converges uniformly and absolutely and defines a function, f*(n), over the
same infinite interval. Furthermore, exactly as in group theory, we verify that the sum is
invariant under the transformation, 7 — 1 % 2%, and hence infer that the function f*(n) is
a periodic function of its argument with period 27 (ie f*(n) = f*(n + 2m)}. This trick of
‘manufacturing’ periodic functions on a finite interval from suitable functions on an infinite
‘extended’ interval is precisely one form of the celebrated ‘ballooning transformation’. The
reason for adopting such a procedure is that it is often possible to use asymptotic methods
such as eikonals(ie, WKB functions) to construct solutions to linear differential equations in
the infinite domain without necessarily satisfying periodic boundary conditions and use the
above shifted sum trick to define solutions of the same equations in periodic domains. We
shall consider cases where such strategies fail, but fortunately, in plasma applications, the
problems which can be solved using the technique are extremely important.

A classical example of the above transformation (of period 7) is provided when we choose

F'(n) = 1/n?, leading to,

L = i__lﬁ_ (4)

sin’g X, (g —nr)?
A corresponding construction in the complex plane yields most of the important elliptic
functions as well (ie double shifted sums giving rise to doubly periodic functions). Another
famous example is furnished by choosing F' to be (Gaussian:

0.7 = =g 3o expl-(n—nn)?/77) )

n=—--0oo




Here 7 is real and positive. It can be shown® 7 that the © function satisfies the heat conduc-

tion equation with respect to the ‘time variable’ 7 and the spatial variable i in the 7-periodic

domain:
g0 1 J@
or 4 0n? ©)

In fact it is the fundamental solution of the equation and can be used to solve the initial
value problem. This example provides an illustration of the fact that the Gaussians on the
right in Eq(5) are fundamental solutions of the same equation in the infinite domain. The
fact that the left hand side can be obtained by standard separation of variables of the heat
equation in the periodic domain directly leads to a remarkable identity, which is sometimes

referred to as the ‘theta function transformation’ formula of Jacobi:

oo o0

Z exp(—ﬂ"."n2 + 2nip) = 7_1175 Z exp(—(n — n1r)2/7r7') (7)

n=—co n=-o00

Note in particular, the remarkable feature that on the left, the time parameter 7 enters the
exponentials linearly while the dependence on it on the right is anything but simple. As we
shall see, this type of identity is characteristic of ballooning theory and can be manufactured
at will using a fundamental result due to Poisson. There are many forms of expressing
this basic theorem of Fourier analysis. We choose a form which appears easiest to use in
applications and depends upon the simplest properties of the Dirac delta function. Recall
the formula which expresses Fourier’s integral theorem in complex form in terms of the delta
function:

dk

bz —y)= f: exp ik(z —y)o— (8)

To obtain the Poisson formula, we replace z — y by n — 2n% and sum over all positive
and negative values of the integer n. This sum, denoted by A(n), is evidently a periodic
generalized function over (—m, 7). Applying Fourier’s series theorem to it, we obtain the

rule,

[o u]

S Bg—2mm)= o Y explimn) (9)

n=—-—oo M =—00

The more usual, ‘classical’ form is obtained by multiplying both sides by ¢g(n) (an arbi-
trary function which has a Fourier transform f) and integrating over the infinite domain to

get,

Z g(2nw) = Z fim) (10)



flm) = %f_(:g(n)exp(imn)dn

o) = [ f(@)exp(~inz)dz

Evidently, we can readily obtain Eq.(7) and many other identities like it from Eq.(10). More
importantly, we also derive the following fact. If the periodic function f*(7) is constructed
using Eq.(3) from the ‘generating function’ F'(7) defined on the infinite domain, the Fourier
coeflicients, g;,, of f*(n) are simply expressible in terms of G(k), the Fourier transform of F.
We have quite simply, g5, = = [, f*(n) exp(—imn)dn = & [ F(n)exp(—imn)dny = G(m).
Thus, the Fourier coeflicients of f* are just the values of the Fourier transform of F' at integral

values of its argument. This statement is the content of the identity,
frmy= 3 Fln+2nm)= 3 exp(imn)gl,; [:o F(y) exp(—imy)dy (11)
A=-co T——
which will be frequently used and generalizes the preceding one.

This idea of ‘extending’ the definition of the Fourier coefficients of a periodic function
defined on the set of integers to a function defined for all real values (of the wave number)
played a basic role in the considerations of Connor et al'. They suggested that given a
periodic function f*, its Fourier coefficients g,, could be ‘interpolated’ by a suitable G(k) =
gm (for £ = m). Then, one can define F' in the infinite interval using the Fourier transform
of . This procedure ‘extends’ the definition of f* from it periodic domain onto the infinite
interval. Such an extension is of course not unique since many functions can be defined
which will interpolate the Fourier coeflicients of f* in this way. Connor ef al proposed the

definition,

ot 3, gitrinh)

m=—0o0

(12)

For suitably smooth f*, the g, die away rapidly for large | m | and the series for G
is convergent and defines a function G on the infinite interval with a well-defined Fourier
transform, F. Furthermore, it is clear, by construction, that G(m) = g,.. Hence, as claimed
by Connor et al, F(n) is indeed an extension of f* to the infinite interval and would satisfy
formally the same differential equation as f* with respect to a translation-invariant operator.
However, as we shall shortly demonstrate, this particular extension (ie defined by the specific
interpolation formula Eq.(12)} is a ‘trivial’ extension which is valueless in actual applications
of the ballooning theory.

To see this, we explicitly calculate £ from . Introducing the characteristic func-

tion, Z_,(n) = 1 for -7 < n < 7 and zero otherwise, we note its Fourier transform,

)

T ——— - - -
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X(k) = [ Z_o(n)exp(ikn)dn = [T, exp(ikn)dn = QW“—’:r(%ﬂ. It is then straightforward to
verify that, F(n) = f*(n)=_r.(n). Thus, F(n) is identical with f* in the interval, (—=,m)
and identically zero outside it. Furthermore, G(k) = 3= 7, f*(n)exp(—ikq)dn, can be
obtained by simply substituting the real variable k in place of the integer m in Fourier’s
formula for the coefficients of the periodic function f*.

It is elementary to verify that this ‘trivial extension’ leads back to f* periodic for all  if
used in Poisson’s shifted sum, as it is guaranteed to do anyway. The reason for categorizing
this extension as trivial is that F is simply the restriction of f* to the fundamental interval.
It is not in general a continuous or smooth extension of f* unless f* and its derivatives
vanish identically at the end points of the fundamental interval. While it certainly formally
satisfies the same differential equation as f* within the fundamental interval, outside, 1t is
a trivial solution which does not generally match with the interior solution. This fact has
apparently not been noticed in the literature’. As we shall see, most useful extensions of f*
do not vanish identically outside the fundamental interval unlike the Fourier transform of &
defined by Eq.(12).

It should also be noted that all extensions G* of g, are simply related to G(k) by the
formula, G*(k) = G(k) +sin(rk)H(k), where H (k) is an arbitrary continuous and integrable
function over the infinite k& domain. In interesting cases, the determination of G* (or its
Fourier transform) constitutes the problem and H itsell is never identically zero unless
homogeneous boundary conditions are imposed.

With these preliminaries out of the way, let us consider the following problem. Suppose we
are required to solve a linear eigenvalue problem defined by the partial differential equation,

d d

L(.’E, “a—x,g, 5‘5

)¢ =Ad (13)

where we assume that the z domain is (say) (—oc,00) and the § domain is periodic (-, 7).
We assume further that 8 enters the operator L periodically, ie it is ‘translation invariant’.
Thus, in principle, the operator is defined in the ‘extended’ & domain,(—o0, 00). Connor et
al ' had the idea of considering a related eigenvalue problem in the extended 6 domain for

F(z,n). Thus, they proposed to consider the equation,

Lz, %,n,%)F = AF, —00 < < 00 (14)
and impose the condition that F' should go to zero as | n |— oo, apart from the standard ones
relating to z. If this eigenvalue problem has a nontrivial solution, F(z,n), the periodicity of
the operator guarantees that F(z,n+ 2n7} is a nontrivial, linearly independent solution for

any integer n and the same eigenvalue, A. Thus, for the proposition to succeed, it is essential

6
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that in the extended domain, nontrivial eigensolutions of infinite multiplicity must exist.
Supposing that they do, Connor et al were able to prove that ¢(x,8) = 3.°°__ F(z,0+2n7)
is a solution to the original eigenvalue problem, but now satisfying the imposed periodic
boundary conditions. Crucial to the success of the method is the question, ‘what properties
must the operator L have for the eigenvalue problem in the extended domain to have a
suitable solution F?’

Unfortunately, not all operators L periodic in # admit of this approach since infinite
multiplicity of eigenvalues in the extended domain is a very special property. We shall
consider a typical counterexample.

Example 1:

Let the operator, L be defined by,
2 2

L—E%-}-%—!—ucosﬂ (15)
where u is a real parameter. Evidently the eigenvalue problem in a finite x domain and
periodic § domain can be solved explicitly by separation of variables and the exact prob-
lem has a well-defined discrete spectrum of eigenvalues which depend analytically on the
parameter . If the ‘ballooning approach’ is attempted, it is easy to show that there are
no solutions to the extended eigenvalue problem. In the infinite domain the nature of the
spectrum is totally different to that in the periodic domain. This is because, in the infinite
domain, there are no solutions to the Mathieu equation which go to zero at infinity. Thus
the ballooning transformation fails in this case to generate the true solution in the periodic
domain. The same fate awaits any operator L which is separable or ‘close’ to a separable
one. This negative result shows that the ballooning transformation is not the appropriate
tool for certain problems. It can be (rightly) argued that if the problem is separable, it is not
necessary to use ballooning in the first place! It must be stated that while nonseparability
is a necessary condition for the applicability of ballooning transformation, there appear to
be no simple necessary and sufficient conditions.

Our next example deals with a problem which is much closer in spirit to plasma applica-
tions and in particular to the problems solved by Connor et al. It illustrates, in a technically
manageable model, all the relevant aspects of ballooning theory and presents at the same
time, a physically nontrivial equation of considerable importance to plasma theory.

Example 2:

We begin by considering the heat diffusion equation in a slab in the presence of a sheared
magnetic field. Thus, consider the geometry where z,8,{ correspond respectively to the
‘radial’, ‘poloidal’ and ‘toroidal’ directions. We assume that the domain is periodic in the

8, directions and infinite in z. In addition to a uniform B, field, we consider a sheared
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‘poloidal’ field By(z). We are interested in temperature fluctuations and consider the
linearized, anisotropic heat conduction equation for the temperature perturbation © which

1s assumed to take the following form:

00

e X1Vi0+ x| Vi@ + pcos 60 (16)
32

Vi = dz?
1,9 J

xr
Vi = L_”(EE + (1_,)8_()

In the above equation, we note that the thermal diffusivities y ., X are taken constant,
as are the two lengths, Ljj(~ ¢R in tokamaks) and L,(~ ¢/q¢' in tokamaks). We have also
modeled the perpendicular transport using the ‘radial’ Laplacian, neglecting the ‘poloidal’
term. The parallel gradient operator is taken with respect to a particular origin in z and is
the simplest generic approximation to a typical tokamak problem, as the reader can verify
by considering the single-temperature Braginskii energy equation with constant density in a
cylindrical tokamak approximation. Finally, the x cos 8 term (it can be easily generalized to
an arbitrary periodic bounded function of @ if required) with (¢ real) simulates a poloidally
modulated source/sink proportional to the temperature perturbation. This is included to
demonstrate the effects of ‘toroidicity’. We require the solution to be 2r-periodic in 0, ¢ and
to vanish at infinity with respect to z. The most general problem one can consider with a
parabolic equation of this type is the initial value problem, in which one imposes an initial
distribution ©(z, 4, (,0) satisfying the boundary conditions and square integrable over the
solution domain with respect to z, 8, ¢ and seeks the solution for ¢ > 0. It should be noted
that in this model, time reversal symmetry is violated (ie heat diffusion is dissipative). The
closely related problem of the Schrodinger equation is obtained from the above by merely
changing ¢ — ¢7. The resulting equation for the complex wave function, O(z,0,(,7) is of
course conservative (ie f | © |* dV = C'onst) and gives a better motivation for the square
integrability condition on the solution. This problem is less close to plasma physics than
the heat diffusion equation, but as we shall see later, has a more subtle analogy with shear
Alfvén and drift dynamics.

If we wish to solve the initial value problem for the heat equation, it is clearly expedient
to calculate ‘eigensolutions’ of the form, ® = ®,(x,8) exp(in — At). Apart from the trivial
case of n = 0 where separation of variables works, the equation with suitable redefinitions
of variables z,t can be brought to the following general form. Thus, letting £ = nz/L,. 7 =

2 . .
Lﬁ/x”,Q = LI/x.,t" = Lt = e = z;—munz = %nz and redefining the eigenvalue

8
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appropriately, we see that the eigenvalue problem reduces to the solution of the equation,

_ _aiq) ﬂ(£+i§)2¢’ — u"cosfdP, = AP (17)
6862 n 89 n H LU n

This two-dimensional partial differential equation is to be solved for the eigenvalue X subject
to periodicity in @ and square integrability in £ over —oo < £ < +oo, for given €, pu”.
Obviously the n dependence of the equation is through the parameter ¢ which measures the
ratio of the parallel and perpendicular heat diffusion times.

The operator is not separable as it stands. Following the philosophy of ballooning as
proposed by Connor et al we consider it in the extended(ie infinite) § domain. We recognize
that the operator, % + ¢ annihilates the ‘eikonal’ function (aperiodic in 8), exp(—2£(8 — b)),
where 8, is an arbitrary constant. Thus, we try a solution of the form, ® = exp(—t£(0 —
80))W(#). We note two features of this trial function. It is not periodic in @ since the
exponential factor has a period varying with {. More disturbingly, it is certainly not square
integrable in ¢ over the infinite domain. However, we proceed formally. The transformation
is effectively a ‘separation of variables’. Thus we find that W satisfies, upon setting 8 = y+6o
the so-called ‘ballooning equation’,

2
Jy?

where we emphasize the fact that the eigenvalue A is a function of both p*, € and the ‘sep-

+ ey®W — u” cos(y + 0o)W = A(p", ¢, 00)W (18)

aration’ parameter 8. We note the crucial feature of the ballooning ansatz of representing
the solution in the extended domain with an aperiodic eikonal factor: the partial differential
equation Eq(17) in £,6 has been reduced to an ordinary differential equation in which 6y
enters through a periodic function but y has a periodic as well as ‘secular’ dependence via
the second term on the left.

The equation for W (ie,Eq.(18)) can be solved in principle in the infinite y domain for
a complete orthonormal set of eigenfunctions, Wy(y, s ¢, 0o) and eigenvalues A, g, »(p =
0,1,2,..). This is best seen in the case when p" is small(corresponding physically to a source
rate small compared with the parallel diffusion rate). Then we can carry out a standard
quantum mechanical (‘Rayleigh-Schrodinger’) perturbation solution based on the Weber-
Hermite/harmonic-oscillator functions which evidently satisfy the u* = 0 equation. Since o
enters the equation periodically, both the eigenfunctions and the eigenvalues are periodic,
entire transcendental functions of this parameter. Evidently, & is a continuous ‘eigenlabel’,
just as the discrete index p = 0,1,2,.. is an eigenlabel. Thus we see that in this case,
the Connor, Hastie, Taylor approach apparently leads to an exact solution for the eigenvalue

problem in the extended 8(or y) domain, with the eigenvalues labelled by the discrete indices
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n,p and the continuous parameter §y which can, without loss of generality, be taken to vary
in (~m, 7).
Since, by construction, the functions W, decay rapidly at infinity, the shifted sum can

now be constructed to give the solution to Eq.(17) as a function of £ and 8 in the ‘physical’

domain.
+o0
b,,6(0) = Z exp(—t£(8 — 8o + 2mn ) )W, (8 — 8y 4 2m=, b,) (19)

This is a formal solution of the eigenvalue problem corresponding to the eigenvalue, A(x*, €, p, o).
The ballooning transformation has enabled us to effectively ‘reduce’ a two-dimensional, non-
separable equation in a periodic domain to a one-dimensional separable equatton in an infinite
domain.

The eigenvalue A is obviously an entire function of z”. It is also clearly a function of the
three eigenlabels, n,p, 8, as is required of a fully three-dimensional eigenvalue problem. Its
most important property is that while the labels n and p are manifestly discrete integers,
the ‘poloidal’ parameter &, introduced during the course of the ballooning transformation is
a continuous eigenlabel. Thus the present problem has a continuous eigenvalue spectrum
as it stands.

However, the continuity of the spectrum must give us pause. Let us examine in somewhat
greater detail, the eigenfunction ®, 6, (£,8) obtained using the ballooning transformation.
By construction, it is periodic in #, thanks to the shifted sum. By changing £ — £ + 1, we

find immediately the relation,
D p,o (€ + 1,0) = exp(—i(6 — b0)Pn,p,00 (£, 0) (20)

Clearly, this proves that the eigenfunction behaves in the classic Floquet-Bloch manner (ie
quasi-periodically in £) with Floquet exponent dependent on 8 — 8. This immediately shows
that ® cannot be localized in £. Therefore it is not normalizable in the infinite £ domain.
Indeed, it is clear that the absolute square of the eigenfunction is actually a periodic function
of ¢ with unit period. This ‘translational invariance’ in the radial direction indicates that
all rational surfaces are ‘equivalent’. As we shall see later this invariance is at the heart
of the ballooning representation. In the present problem, the invariance is exact whereas
in applications, it tends to be a ‘broken symmetry’. It is a consequence of Hilbert space
theory® that the solution constructed is not a proper eigenfunction and the ‘eigenvalue’
Anpg, 18 DOt a proper eigenvalue either. According to the spectral theory of self-adjoint
differential operators® (the present one falls within this class), an ‘eigenfunction’ associated
with a real eigenvalue must be square integrable with respect to the independent variables in

its domain of definition. Bounded formal solutions which are not square integrable are related

10




to a continuously varying ‘eigenvalue’ and define the so-called continuous spectrum(a typical
example is furnished by the one-dimensional free particle Schrodinger equation and plane
wave solutions). In the present problem, there are no true eigenvalues and only a continuous
spectrum as determined above. This is all the more remarkable when it is recalled that
the p* = 0 problem in a slab has a pure discrete spectrum labelled by n,m,p where m is
the ‘poloidal’ wave number. Thus toroidicity is a ‘singular perturbation’ in the sense that
the eigenvalue spectrum is qualitatively different with and without it, however small the
coupling constant may be. The genesis of the continuous spectrum due to toroidicity will be
explained later.

To appreciate the significance of this result and the full implications for the initial value
problem, it is necessary to consider a seemingly totally different approach to ballooning
theory, this time not based on the ‘shifted sum’ representation but on the familiar Fourier
representation of a periodic function. It is therefore convenient to leave the discussion of
our model at this point to consider the alternative approach to ballooning due to Dewar®,

Mahajan* and coworkers.

3. An Alternative Approach to Ballooning Theory

Further insight into ballooning transformations is afforded by an alternative route, also
considered by Connor, Hastie and Taylor in their paper’, but developed to its full potential
by Dewar®, and by Mahajan and Zhang et al*. To motivate this, we start with Eq.(17) for
®,.. Since the solution is required to be periodic in § we may always use the Fourier series

representation,

o o]

®.(£,0) = > exp(—ilf)gni(¢) (21)

{==00
Substitution in Eq.(15) gives the following infinite system of difference-differential equa-
tions for the Fourier components, ¢, ,(£),! = 0,£1,42, ...
62¢n,l
o¢?

We note that the differential operator on ¢, is invariant under the simultaneous trans-

— € + (€ = 1)2ppg — %(¢n,z+1 + Pui-1) = Any (22)

lation, £ — & + 1,{ — [+ 1. The finite-difference operator acts on exponentials involving [
in a simple way. This ‘invariance’ {called ‘ballooning symmetry’ by Zhang et al') suggests

that the ¢, ; should be represented as follows:

+ o0
G = exp(illl) [ exp(=iy(§ — D)W (v.bo)dy (23)

11
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An arbitrary constant 8, (chosen real to ensure boundedness w.r.t [) has been introduced.
The [ dependence is exponential and ¢ enters only in the combination § — . Of course, the
function W depends upon n (via ¢) and also on g*; this dependence is not explicitly indicated
to avoid needless subscripts. It is now straightforward to substitute in Eq(22) and obtain
the following ordinary differential equation for W(y,8) in which n and 6y appear only
parametrically, the former via .

3 W
Oy?

+ ey?W — u” cos(y + o)W = AW (24)

It is evident that W satisfies Eq.(18). Thus, in attempting to represent the Fourier coef-
ficient ¢,,(€) as the Fourier transform, we are following exactly the procedure suggested
by the Poisson surnmation formula and end up with the same equation. Note that in this
representation, y appears as the Fourier conjugate of the ‘twisted’ radial variable £ — ! whilst
in the shifted sum approach it was related to the poloidal angle variable in the extended
domain. Clearly, 8 is an eigenlabel analogous to n{conjugate to the toroidal coordinate ()
and p(labelling the eigenfunctions relative to y). The eigenvalues depend continuously on
fo. Suppose we have found the solutions labelled by the discrete index p. Substitution in
the Fourier series, Eq.(21), leads to,

Oupan(€0) = S exp(—il(8—00) [ exp(~iy(€ — D)Wily, fo)dy (25)

f=—0o -0 ’

This looks very different from Eq.(19). Yet, we expect the two functions to be identical
apart possibly from a constant multiplier. Indeed, the general Poisson summation formula
Eq.(11) shows that the two results are identical. Using the results obtained, we can now
establish a ‘completeness’ relation for the continuum eigenfunctions @, , 4, exp(in¢). Thus
multiplying this function by the complex conjugate of a similar function labelled by »’, p’, 8,
and integrating over (,8 and the infinite z domain, we obtain the following ‘resolution of

the identity’ or expression of completeness:

1
(2m)?

] f " dCdOr gy By exp(iC(n = 1) = Gurnby,B(0) — B0)  (26)

In deriving this important relation, we have made use of the orthonormality of trigono-
metric functions and of the W,’s. As is well-known, this shows that an ‘arbitrary’ function
of z,(.8 can be expanded in terms of the complete set, ¢, 4, exp(:n() labelled by the dis-
crete parameters n,p and the continuous one &y (called A by Zhanget al'). The latter is,
without loss of generality restricted to the fundamental interval, (-7, #), since the expansion
functions are manifestly periodic in it. We have also proved that the operator on the left

in Eq(17), when acting on these functions reduces to the generalized ‘multiplier’ (NOT a
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proper eigenvalue, since the functions are not square integrable) Anp6,- The solution to the
initial value problem of the heat equation can be readily constructed by superposition of
the above ‘continuum modes’. Indeed, the Green’s function of the problem can be explicitly
obtained.

The above spectral representation of the problem shows the following features which have

already been noted:

1. The basic operator is not separable but the ‘ballooning symmetry’ is exact and the

transformation leads to one-dimensional equations for the eigenfunctions.

2. The solutions are periodic in (, 8 but are quasi periodic in z, with the Floquet (stable)
exponent depending upon the angle. This inevitably results in a continuous spectrum
with respect to the conjugate variable 8o, which varies continuously in the fundamental

interval.

3. The generalized eigenvalue ) is labelled by the discrete indices n, p and by the contin-
uum parameter, 8. It is perfectly ‘respectable’ as a continuum eigenvalue in the sense
that it occurs in the solution of the initial-value problem exactly as does any ordinary

eigenvalue.

4. The Fourier coefficients ¢n  are smooth at specific rational surfaces for given n,! and
their Fourier conjugates W), are thus square integrable and hence localized in k. The
fact that they are localized implies that the shifted sum converges. Conversely, if the
¢n. are sharply localized in £ — I, the label p would be continuous and there is a
serious problem with the shifted sum as convergence in the ordinary sense cannot be

guaranteed.

5. The eigenfunctions determined as above are complete and may be used to solve the
initial value problem and the inhomogeneous problem where a time-dependent source
is prescribed and ‘drives’ the linear response (this is relevant to plasma transport
applications in which the temperature fluctuations associated with a given electro-
magnetic fluctuation spectrum may be required, as discussed for example by Haas
and Thyagaraja®). It is remarkable that the spectrum which is discrete (but infinitely
degenerate) in the cylindrical problem pg* = 0 becomes a conlinuous spectrum for

arbitrarily small toroidicity.

6. If one deals with a problem in which the partial differential operator discussed con-

stitutes a ‘principal term’ and a perturbation about its solutions are appropriate, the
P p pprop
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exact eigenfunctions can always be expanded in terms of the complete set. The equa-
tions for the expansion coefficients can be solved perturbatively to determine the ‘true’
spectrum. In this sense, the exact ballooning contuum eigenfunctions can be thought of
as a useful expansion set, just as plane waves in quantum mechanics (ie the ‘momentum
representation’ associated with the free particle continuum resulting from translational
invariance ) are useful in the solution of problems, whether or not the exact problem
admits translational symmetry and irrespective of the nature of the exact spectrum.
For example, the momentum representation can be used to solve the harmonic os-
cillator (discrete spectrum, no translational invariance) as well as the Bloch problem
of a periodic potential (continuous spectrum with ‘gaps’, full translational invariance

‘broken’ but periodicity obtains).
In the rest of this paper, we shall systematically exploit this spectral perspective.

4. Broken Ballooning Symmetry

In realistic problems, the ballooning invariance exhibited by plasma equations such as
Eq.(16) is only ever manifested (if at all) in leading order of some parameter. When the
symmetry is broken, interesting effects arise which can be tackled using the leading or-
der spectral representations. A typical example illustrating this arises when we consider a
sheared toroidal advective flow in addition to the diffusio.n. Toroidal and poloidal sheared
flows are thought to be of considerable importance in stability theory'®. The present model
offers a concrete and relatively elementary introduction to this topic. Interestingly, the
problem actually becomes non-self-adjoint, implying a complex spectrum in general. We
consider a new term on the left of Eq.(16) of the form, Q(z/L, %, where {2 is a measure
of the vorticity(ie flow-shear) in the advecting velocity. Accordingly, we are now required to
solve,

a? d
— 68—6241)“ —{5
where the flow shear effects are measured by « = Q7. Adopting the approach of Mahajan

+1€)2 P, — " cos 8P, + kP, = AP, (27)

and co-workers(cf. Zhang et al'), we substitute the Fourier expansion for the eigenfunction
and derive the following equations for the ¢, ;({):

82 ¢'n,l
lel &

—€ + (€= P s+ k(€ — Doy + ikldny — %—(ﬁﬁn,tﬂ + Pnic1) = Ay
(28)
In the above equation, it is clear that the 7! term violates the ballooning symmetry. Iol-

lowing the principle of the method of variation of constants, we expect the solutions to be
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superpositions of the previously constructed continuum modes. Accordingly, we express the
Fourier coefficient as follows:
1 L . +oo .
Py = o d@gexp(zlﬂo)/ exp(~ty(£ — 1))W(y, 6o)dy (29)
-7 —0G

Substitution gives the following partial differential equation for W, in contrast to Eq.(24).

*wW aw ow " .
= 5 +nay —nago—f-ey W — u* cos(y + 6)W = AW (30)
The term involving the first partial derivative with respect to y is easily handled by the

substitution, W = Z exp(sy/2), A = A + x%/4. We then find that Z satisfies the equation,

- Ey_z + rca—ao +ey’Z — p*cos(y + 60)Z = AZ (31)

We solve this equation following the standard Rayleigh-Schrédinger perturbation theory of
quantum mechanics. To keep the notation as perspicuous as possible, in the following work
we set 8, = u, and drop the star on p* and assume y < 1. Although x is essentially
unrestricted, it is convenient, but not necessary, to write, x = ag and formally equi-order «
and pu. We shall see that the results apply for arbitrary real a # 0.

We first consider the eigenfunctions of the operator, L° = —%-}eyz. It is easily seen that
these are expressible in terms of the Weber-Hermite harmonic oscillator functions denoted
by ¥,(y) with eigenvalues ¢, (linearly proportional to 2p +1). We now expand the solution

Z and the eigenvalue in powers of .

Z(y,u) = Y p2z¥ (32)
=0

A = Y prAt (33)
p=0

The above expansions are substituted in Eq.(31) and the following equations are generated.

Zeroth order

[0 7(0) — A0} 7(0) (34)

We now solve this trivially with the proviso that interest is focused on a specific eigenfunction.
For definiteness, we label this by the suffix j. Thus, Z(® = f®(u)¥;(y) and A©® = ¢, The
arbitrary function f(®(u) is required to be periodic in u, but is undetermined in this order.

First order

df®)
£0zM — AP Z0 = —aﬁ—u%(y) + cos(y +u) fOU,(y) + AV SOV (y) (35)
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This equation determines, in principle, the unknown function f(°, the correction to the
eigenvalue, A(Y)) and the first order perturbation, Z(). From the Fredholm Alternative,
the equation is soluble for Z{!) if and only if the right hand side is orthogonal to ¥(y).
Multiplying by ¥; and integrating over all y we obtain, the ordinary differential equation,

(0)
“dzu = 8;(u)f® + A0 (36)
where,
+o0 .
aw) = [ cos(y + w)¥i(u)dy (37)

The function Aj(u) is obtainable explicitly using the generating function for the harmonic
oscillator functions and is manifestly a periodic function of u such that, {7 Aj(u)du = 0.
Note that this is a general fact, applicable to arbitrary periodic perturbations in the original

eigenvalue problem. It is plain that the periodic solution of Eq.(36), with f%(0) = 1, is:

O = exp|(ADu+ [*A,(s)ds)/a] (38)
where,

AY = dma (39)
and,

m = 0,%£1,£2, ... (40)

We see that the integers, j and m are eigenlabels in this problem. We recall that e already
includes n, the ‘toroidal’ label. It is interesting to note that in this order, the eigenvalue A
becomes complex. This is due to the fact that the advection-diffusion equation is not self-
adjoint. Note also that in this order, the real part remains unaffected. Thus, the sheared
flow does not affect stability. However, it clearly makes the spectrum discrete, in contrast to
the preceding problem where the spectrum was shown to be continuous for arbitrarily small
i

Having thus self-consistently determined A, f® | we turn to the calculation of Z().
Observing that the rhs of Eq.(35) is now completely determined, and is also orthogonal to

¥,, we expand Z{1) in cigenfunctions orthogonal to ¥,:

ZW(y,u) = 3 [ () ¥(y) (41)
PE]
In this expansion, the index p runs over the complete orthonormal set ¥, with the exception

of p = j. Substituting in the first order equations and taking the projections with respect
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to ¥,, we get a system of first order ode.’s for the functions f with simple ‘particular
r g y P p

integrals’ which may be written as follows:

() FO

o = WO (42)
with,

Vilw) = [ Wyly)cosly +u)¥;(v)dy (43)

The result demonstrates that f;” (and hence Z()) are bounded, periodic functions of u.
The denominators cannot vanish since A(®) can never equal any of the €,’s. It is important
to observe that this is only the ‘particular integral’ of Eq.(35). We must add the ‘comple-
mentary function’ to get the complete solution. The complementary function is of the form
f;l)(u)‘I’j(u), where the function f}l) is to be determined (in the next order).

We proceed to the second order to demonstrate that the expansion is really consistent
as claimed. '

Second order

dzW

FAVACINQ AL BN ot cos(y + u)ZM) + ADZO 4 A ZO) (44)

u

We recall that neither the complementary function in Z(ie fj(l)), nor the second order
correction to the eigenvalue, A?)) are yet determined. The Fredholm Alternative requires

the equation,

df,(l) ) | A VoV
= A . {0) (1} £(1) ip Vps
a u _,(u)fJ + AR LA fJ + pg#j __-_.-—ep o

A (45)

In deriving this relation, one must take account of the fact that the particular integral
in Z( is orthogonal to ¥; and the definitions of A;,V,;(u). Evidently the substitution
fj(-l) = f(o)(u)CJ(I)(u) reduces Eq.(45) to,

dc) Vip(u)V,; (1)
21— AQ) LA RSt 4
[ du + pZ#J €& — A(O) ( 6)

The periodicity condition on f}l) requires periodicity of CJ(-U, which in turn implies that,
| Vip(u)V,i(u)
@ — - ZopA %) Tt -
A T 9r _[_FZ[ AO) — ¢, du (4‘)
p#Ej
This condition determines the second-order correction to the eigenvalue. Moreover, the

particular integral determines fj(l} completely. The complementary function is denoted by

f}z) and can only be found in the next order. If required, we may now construct the particular
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integral of Eq.(44) as before. [t is by now obvious how the successive terms of the power
series are generated. It seems highly likely that these series expansions actually converge, at
least for sufficiently small y.

It is evident that o need not be small and can even be large (ie « =~ O(1)). The matrix
elements are all readily calculated, bounded periodic functions of u and decay quite rapidly
with respect to their suffixes. There are no resonant denominators and the solution seems
valid for all 4 and non-zero k. The real key to the success of the method is the fact that
the operator L° has a discrete spectrum and the non-self-adjointness of the full problem
avoids ‘resonances’ in the perturbation series. It is equally clear that the method applies
virtually unchanged to any problem involving a one-dimensional operator L° generated by
the ballooning transformation with a discrete spectrum in the extended angle variable (ie the
Fourier conjugate of the ‘twisted radial’ variable { —) and an arbitrary (not necessarily cos 6)
periodic perturbation in the presence of a sheared advection. Let us recall that the ‘true’
eigenvalue of the equation is A = A — «%/4. The complete correction to second order must
take this into account in estimating effects of advection. The eigenfunctions are different
from those of the k = 0 case since the latter effectively have a §(6y — 83) variation in the
6y space and are associated with quasi-periodicity in the £ direction. The introduction of
sheared flow delocalizes the solution relative to 6y = u but destroys the quasi-periodicity with
respect to the radial coordinate. The solutions are now radially localized. The eigenfunctions
are not orthonormal due to the non-self-adjointness but the Green’s function for the initial
value problem can be constructed using the solutions found by the perturbation expansion.
A completeness relation using the solutions of the adjoint equation can also be derived.

The method suggested above enables the solution to be obtained as power series in
#. Zhang et al in their paper used an apparently different method®. This will now be
explained with reference to the present problem. The key idea here is essentially that of
the famous Born-Oppenheimer '* method in atomic physics and parallels in some respects
the original scheme due to Connor at a'. Recall that in the Born-Oppenheimer treatment
of a molecule, the ionic motions are ‘frozen’ in leading order in (;‘”—/ﬁ)l/“ and one solves for
the electronic eigenfunctions. The electronic levels serve as effective potentials in which the
ions move. This solution gives the true eigenvalues. The method is really a systematic
multiple-timescale technique and uses the method of variation of constants systematically.
To formally implement it, we regard u (dropping the star!) in Eq.(27) as not small but treat

x as small in some sense. We are therefore faced with solving,

8z 07 9 o
—a—y2+f€a+€y Z—,ucos(y-l—u)Z—AZ (4b)
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We now choose the leading order operator to be, L*(y, a%’ u) = —%f-{-ey?—p cos(y +u). This
too is self-adjoint and has a discrete spectrum of Weber-Mathieu eigenfunctions, ¥;(y,u)
and eigenvalues E3(u), which are entire, periodic functions of u. We assume these are chosen

real and orthonormal. To proceed further, we formally expand the solution Z:

Z(y,u) = E Fo(u)¥(y,u) (49)
(50)

Substitution gives the following infinite matrix differential system for the coefficients fp(u):

T2 o (A BS, - T Vi) 1)
Vo = [ W s (52

It is useful to note two simplifying relations. Firstly, since the ¥ are real and orthonormal,
it follows that V,, = 0. There is therefore no ‘diagonal’ term in the sum. Secondly, the
periodic functions Ej(u) may always be written in the form, Ej(u) = E7 + Aj(u), where
E' are the average values over a single period and Aj(u) are the residual parts which are
periodic with zero mean. Observe that for 1 =~ 1, the functions A*, V,, vary on a O(1) scale
with respect to u. The f,’s can vary more rapidly with respect to u. In order to solve this
system, we formally expand in powers of V. Thus we introduce a ‘book-keeping’ parameter

& on the right and consider the system in the form:
df . .
"'d—; = (A-E p)fo— O (u)fp — 62 Vog(u) folw) (53)

At the end of the calculations we set é = 1.
Choosing a specific mode j as before, the zero order equations are:

Zeroth order

df;” © _ ey O _ A*(u)f©
WD o (A0 - B - A3 (54)
Clearly, periodicity of the zero order solutions requires us to set, f;o) = 6, exp(imu —

~ fo Ay(s)ds), A= = E} +imx, where, m =0, +1,.. runs over all integers. Thus the modes
are labelled by j,m. The necessity for setting f(o) to zero for p # j is obvious, since these
functions cannot be periodic in u once we choose An(,-‘m, unless E* happens to be equal to E"
for some p. In this case of degeneracy, the eigenvalue has a multiplicity greater than unity.

This can only happen if the L* operator has a rather strong periodic part (ie g large or ¢
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small). Excluding this degeneracy, which requires a special treatment, we proceed to the

next order(for given j,m).

First order

p=17:
a4 ) _ foxy (0 _ axr) f@) L A (1) £(0)
“du = Q=BG - 85T+ A0S (55)
p#i:
driv) B}
R = (AL = B = AW AD — Vi () £ (56)

Without loss of generality we have, f}l) = 0,A™) = 0. Turning to the p # j equations, we
must find periodic solutions for this inhomogeneous set. Since we assume nondegeneracy, we
immediately find that the ‘complementary function’ must be identically zero in order to sat-
isfy periodicity. To find the particular integral, we write, W= exp(—~L [ Ar(s)ds)CIM (u).
Substitution shows that C{"(u) must satisfy (for the case p # j),
dc
du

This forced equation with constant coefficients has a periodic forcing function and obviously

K

= (A= B)CY) ~ V() 0w exp( [ ap(s)ds) (57)

has a periodic particular integral which can be obtained readily by Fourier expanding the
forcing function and C';(,l). Moreover, the solution is bounded and periodic for all p considered,
as there cannot be any ‘resonant’ denominators. Thus the solution has been completed to
first order. We shall demonstrate that the procedure works in second and all subsequent
orders.

Second order

p=7:

- B - At A Vol (%)
p# i

ST (N B - A 5 Yl (59

a
The first equation is an inhomogeneous one with a free parameter A® in it. This must be
chosen so that the particular integral (the complementary function is identically zero without
loss of generality) is periodic in u. Making the familiar transformation, f;z) = f}U)C}Z) and

requiring periodicity of C(-z), we get the equation,

A = = 2 Vinlu @)/ ) (60)
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where the integrand is a periodic function determined by functions calculated previously.
This condition ‘suppresses the secular term’ in the equation and enables the periodic function
f(z) to be calculated (using Fourier series). Nor is there any difficulty in solving the p #
equations. The process can obviously be carried out to any desired order. Note that we again
obtain a discrete spectrum, the eigenvalues being related to the ‘averaged eigenvalues’(ie E"‘)
of the unperturbed problem. The solutions are well-defined, ordinary functions in physical
space.

The expansion is clearly not a power series in either ¢ or & and it is not clear under
what conditions the formal expansion converges. It is more likely to be asymptotic. Unlike
the previous Rayleigh-Schrodinger expansion, the dependence of the solutions and the eigen-
values on g and « is not through a simple power series. The results are likely to be valid
even when p is not small. The success of both expansion methods is crucially dependent
upon the spectrum of L° or L~ being discrete. If this is not so, the eigenfunctions ¥ will
not be square-integrable over k and there is effectively a non-integrable singularity in ¢ni(z).
Furthermore, it is questionable if the shifted sum converges to an ordinary function of z,8
in the physical domain, since the terms of the series do not go to zero.

The case when « is purely imaginary is of interest. This happens when we consider
Eq.(48) to be a Schrédinger-like equation. When we come to consider the solutions using
the Born-Oppenheimer technique sketched above, everything goes through as before except
that we have, instead of Eq.(57), the C;”(u) satisfying(we set ix for « and consider the p # J

case),

. dCl(,l) ©  evai) o L

i du = (Aj"‘—EP)CP _V;’.'f(u)fj (U)CXP(;/O Ap(s)ds) (61)
Since A.?.m = E; + m« in this case, we will encounter resonant denominators unless the

averaged eigenvalues, E; satisfy a ‘nondegeneracy’ condition. Thus for the above equation
to have a periodic solution, it is necessary and sufficient that no two of these averaged eigen-
values differ by an integer multiple of . Whenever the nondegeneracy condition is satisfied,
the solution can be carried to all orders. The eigenvalues in this model are always real since
we are solving a Schrodinger equation with a self-adjoint spatial operator. When only a
finite number of eigenvalues are degenerate in the above sense, it is possible to formulate a
problem involving a finite Floquet system and carry out the perturbation expansion. This
is analogous to degenerate state perturbation theory in quantum mechanics. If, however, an
infinity of the unperturbed mean eigenvalues differ by integer multiples of x, the perturbed
system has a continuous spectrum. The entire perturbation scheme breaks down if the un-
perturbed system has a continuous spectrum(this does not obviously occur in the present

examples).
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As we shall show in Part II, this is precisely the situation which occurs in applications.

The treatment of continuous spectra in ballooning problems will be taken up there.

5. Conclusions

In this expository paper, the principal ideas of ballooning theory have been discussed
making use of a model derived from the anisotropic diffusion equation in a slab model of
torotdal geometry with a minimum of technical complications which tend to detract from
the main lines of the argument. Two complementary approaches to ballooning exist. These
are shown to be mathematically equivalent using the Poisson transformation formula. The
model problems chosen do not explicitly require large n, but do imply rather simple equi-
librium structure in the radial variable. Many of the special properties of the ballooning
representation are most readily understood in this context in which WKB ideas play no
fundamental role. The ability of the method to provide useful basis functions to expand the
complete solution is thereby emphasized. The radial localization effects of sheared flow are
simply illustrated in the model showing how it is an instance of ‘broken ballooning symme-
try’. The model captures the essence of more realistic problems where shear flow plays a
crucial role in stabilizing certain instabilities'®.

Two different perturbation techniques, each with its own strengths and limitations have
been explained in full, illustrating the singular nature of toroidal perturbations when the
unperturbed system has infinite degeneracy. The fact that an arbitrarily ‘mild’ perturbation
of a system with infinite degeneracy leads to a continuous spectrum is explicitly illustrated
by the example given. The phenomenon is discussed in the literature® and is well-known
in quantum mechanics: thus, an infinite periodic array of atoms tend to form the Bloch
spectrum from the original degenerate atomic levels when they are brought closer together,
starting from a very large lattice distance. Perturbation methods of ballooning theory require
care when the relevant operators lead to extended eigenfunctions. The treatment of such

problems will be presented in Part II.
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