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Chapter 1

Chaotic Motion of Particles

1.1 Chaos in the theory of dynamics

Chaos is a general and abstract notion implying complexity, perplexity, disorder, confusion,
etc., and it is difficult to give a clear definition to this subjective idea. In the theory of dy-
namics, especially in its ideal representation given by Hamilton’s canonical form, however, we
can characterize “chaos” as the complementary set of ordered motion that is represented by
“integrable” equations of motion (Sec. 1.2).

Roughly speaking, an integrable motion can be represented as constant-velocity motion in
an appropriate curvilinear coordinates. The simplest example is the motion of a free particle
that draws a straight-line orbit in the Cartesian coordinates. Applying appropriate coordinate
transformations, we can cast some class of orbits in straight lines in the new coordinates. For
example, let us consider a harmonic oscillator, whose Hamiltonian is

H= %(pQ + 32)1

where p and z are the momentum and position of the oscillator, respectively. The orbit, in the
“phase space” p-z, traces out circle given by H = constant. Transforming into polar coordinates

P=(p+2%)"", Q=tan'(p/2),

the orbit is given by a straight line P = constant (v2H), @ = ¢ (€ R) in the phase space of
Q-P.

One may consider that all curved orbits can be represented by straight lines by choosing
appropriate curvilinear coordinates. If we could find such representation, the equation of motion
is really “integrated”. Much efforts had been devoted to construct a systematic method of
finding such coordinate transformations, before we found fundamental difficulty pointed out by
Poincaré. In the next section, we shall give a clear definition of the “integrability”, and then
discuss non-integrable dynamics, that is the chaos in dynamical systems.



1.2 Integrable system and non-integrable system

Dynamics of a physical system is represented by an orbit (streamline) in the phase space. In
this chapter, we consider a dynamical system that has a finite degree of freedom. The phase
space is the Euclidean space whose dimension corresponds to the degree of freedom.

Geometrically, a curve in any N dimensional space is defined by the intersection of surfaces.
When each of these surfaces moves with a changing parameter(s) (the parameter couid be the
ordinary time), the curve of intersection will also change as a function of the same parameter(s).
The number of these parameters determines the degrees of freedom of the curve. Let us consider
a smooth real-number valued function F(z,y,z). For real p, the equation

F(:l:,y,z) =p

defines a surface. The set of points {z,y, z) that satisfies the above equation constitutes a level
setof F(z,y,z) in the z-y-z space. If p is appropriately chosen (i.e. it is in the range of F'}, and
if F is not “degenerate” in the sense that 3, F, 9y F and 8, F are non-zero, then we obtain a set
of solutions {(z,v, 2); F(z,y,2z) = p} with a dimensionality N — 1 = 2 for an original N = 3.
This set, then, defines a two-dimensional surface in the three-dimensional space. The solution of
G(z,y,2) = q, where G(z,y, z) is another smooth real-valued, and ¢ is a real number, will yield
another such two-dimensional set of points (surface). If these two functions are independent in

the sense that
(VF) x (VG) # 0,

then the intersection of the level sets of these (Fig. 1.1), viz., the solution of the set of simul-
taneous equations
F(z,y,z)=p, G(z,9,2)=¢

will generate a set of N — 2 = 1 dimension. This one-dimensional set corresponds to what we
commonly understand by a curve.

To determine a curve in an N-dimensional space, we need N — 1 independent real-number
valued functions F;(z1,---,2n) (j = 1,:++, N). The level set of each function defines an N —1
dimensional hyper-surface (manifold).! A one-dimensional curve is formed by the intersection
of these surfaces, and is obtained by solving Fj(z,, --,zn) = p; ( = 1,---, N) simultaneously.
We are thus able to demonstrate that given an appropriate set of functions Fj{zq,---,zn)
(j =1,---,N), we can always find a one-dimensional set of points (a curve) common to them
all.

Let us now consider the inverse problem. For a given smooth curve in an N-dimensional
space, can we find an appropriate set of functions Fj(zy,---,zn) (j = 1,---, N) such that the
intersection of their level sets coincides with the given curve? As far as we consider this problem
“locally”, the answer is yes. Let P be a point on the curve. We consider a neighborhood V
of P where the curve looks like a straight line. Changing the coordinates to align the zy

'For example, we can solve Fi(zi,---,zx) = p1 for 1y, in a neighborhood of a regular point
(BF(z1, -, Tn)/B2z1 # 0), we obtain the implicit function £, = f1{z2, -+,2n). This one-dimensional relation
among the variables defines a hyper-surface.



F(zayaz) =r

G(z,y,2)=gq

Figure 1.1: Intersection of two surfaces defines a curve in three-dimensional space.

axis to be parallel to the line, we obtain the equations z; = p; (constant) (j = 1,---,N — 1)
whose simultaneous solution represents the curve locally in V. In trying to solve the “global”
problem, however, we meet the following difficulty. The global problem consists in finding the
hyper-surfaces that include the curve throughout their trajectory. For a curve that moves about
in a certain domain of space, such hyper-surfaces must have a highly complicated structure. In
fact, for a sufficiently complex dynamics, well-defined smooth hyper-surfaces that contain the
complicated streamlines may not actually exist. This thought experiment gives us a glimpse of
the pathway leading to the concept of “chaos” in dynamical systems.

For a dynamical system, the existing of functions defining hyper-surfaces implies existence of
the constants of motion, because the fact that the orbit stays on a hyper-surfaces Fj(2y,---,zn) =
p; implies that this p; is a constant of motion. A search for such functions is an essential part of
the theory of dynamical systems. We revisit this problem from the view point of Hamiltonian
dynamics.

Note 1 (Hamiltonian system) Because of its special form, the Hamiltonian flow has less
degrees of freedom than a general incompressible flow. Let us see how? To determine a curve in
an N-dimensional phase space, we need a total of N — 1 conservation laws (hyper-surfaces). For
a stationary Hamiltonian flow in a N = 2v (v is the number of space dimensions) phase space,
on the other hand, we need only v independent conservation laws. The universal validity of this
assertion can be seen as follows: Let us assume that all momenta py,-+-,p, are constants of
motion. We can transform the coordinates so that only p, remains non-zero. Then Hamilton’s
equations

d Pj .
E.‘I‘j:;":ﬂ (]:1,2’...,;/_1),
generate a new set of constants x; = constant (j = 1,2,---,v — 1), which, when added to

the original ones, make a total of 2v — 1 = N — 1 conservations laws. The argument can be



generalized to the case when the v independent conserved quantities F; are combinations of the
momenta and the coordinates, such that their Poisson bracket vanishes,

{Fy,Fe} =0 (VE,0). (1.1)
This result is known as “Liouville’s theorem”.

When we have a sufficient number of conservation laws, the particle orbits or the streamlines
of the flow can be readily and uniquely (for given initial conditions) computed. A dynamics of
this variety is called integrable. Note that the present concept of the integrability is different
from the conventional notion of the solvability of ODE’s. It means that we can solve the problem
using conservation laws.

Looking for conservation laws is the first and foremost duty of every physicist. The basic idea
behind finding conservation laws for a given system is to find appropriate curvilinear coordinates
on which the curved orbits become straight lines (the standard action-angle approach). If this
effort were to be successful, the constancy of all “momenta” in the new coordinate system would
provide all the conservation laws needed to specify the streamlines.

The study of the three-body problem led us to notice that some complicated dynamics, that
are close to a periodic motion, do not allow us to find such transformations and hence the
desired conservation laws. We had shown in the preceding section, that it was always possible
(in an abstract geometrical sense) to find the required transformations “locally”. What has
changed is that we now seek a global expression of the conservation laws. And it is precisely for
the global description of the near-periodic but complex behavior, that the relevant conservation
laws defy discovery. This class of complex dynamics, which is inherently “non-integrable”, goes
under the popular name chaos.

In the following sections, we will discuss explicit examples of chaos in plasma systems.

1.3 Example I (magnetic field-line chaos)

1.3.1 Canonical form of magnetic field-line equations

In three-dimensional space (R3), by a skillful representation of the magnetic field (or any general
divergence-free vector field), we can cast the field line equations into a canonical (Hamiltonian)
form. For a given magnetic field B{z, ), the field line equation is

%a: = B(=z,1)}, (1.2)
where 7 is an abstract variable that indicates the position on the streamline. This 7 and the
time ¢ are totally different; the magnetic field line is determined for each individual time. Hence,
in (1.2), ¢ is regarded just as an independent parameter, just a label. In this section, we omit £
to simplify notation. Considering  as an “artificial time”, the field line equation (1.2) can be
regarded as a streamline equation for a steady (r-independent) flow B.



We begin with the simpler case, in which B(z) is homogeneous with respect to z, one of the
trio forming the Cartesian coordinates z-y-z. Because of this symmetry, and of the divergence-
free property of B(x), we can write B(z) in the form

B(z,y})=Vy¢YxVz+ B, V:z (1.3)
where ¥(z,y) and B,(z,y) are two scalar functions. From (1.3), we deduce
B -V =(V x V2)- (Vi) + B.(Vz)- (V¢¥) =0, (1.4)

implying that the vector field B(z) is tangential to a level set of the function ¥{z,y).> Hence,
t) is constant along the streamline of the flow (magnetic filed) B(&}, viz., ¥ is a constant of
motion of the dynamics defined by B(z).?

We have, thus, shown that every streamline of an incompressible stationary flow (such as
a magnetic field) with an “ignorable coordinate” must be integrable, and its trajectory must
degenerate on a smooth curve in R3. This important result can also be derived as a straight
forward implication of Hamiltonian dynamics. For B(z) of (1.3), the £ and y components of
the streamline equation become

dz

Ez y'f’;
d

E—g: - z¢a

which read as Hamilton’s equations of motion with the coordinate z, the momentum y, and the
Hamiltonian ¢(z,y). In this two dimensional phase space, one integral of motion suffices for
integrability, and we have already shown that the Hamiltonian % is a constant of motion. The
integral surfaces (curve)} of this system are the level sets of .

Note 2 (canonical form of 3D field-line equations) Consider a three-dimensional incom-
pressible field B(x) in a toroidal domain  (C R3) (see Fig. 1.2).
Such a vector field can be represented in the form{23]

B =V¥ x V(- Vyxx V9, (1.5)

where { and ¥ are, respectively, the appropriale toroidal and poloidal angles (1.2), and ¥ and
x are scalar functions of {, ¥ end £ (a radial coordinate). Since

Vi x V(- Vxx V=V x (¥V( - xVI),

2The level set in the z-y-z space of ¥(z,y) is a column whose section by an z-y plane is the contour curve of
¥(z, y} in the plane.

3In the magnetic fusion parlance , {1.4) is called the magnetic differential equation, and the function 4 is called
a surface quantity. The field-line traces a surface in three space, and ¥, by virtue of its constancy, can serve as
a label for the surface. For a geometry of such nested surfaces, ¥ becomes a convenient “radial” (orthogenal to
the surface) coordinate.



Figure 1.2: Toroidal curvilinear coordinate (£,49, ().

¥ and x are really nothing but the toroidal and poloidal components of the vector potential.
Due to the gauge freedom, we need only two independent components of the vector potential to
uniquely determine the electromagnetic fields.

If we replace the radial coordinate £ by the function x, and assume that the Jacobian

D(x,9,¢)
D(z,y,2)

(with the implication that the streamline does not turn back in circulating the toroidal domain),
the streamline equations read

=Vx-(V9X V() #0

dd _VJ.B
d ~ V(-B’
(1.6)
d_x _Vx-B
d( = V(-B’
After using (1.5) to evaluate the right-hand side of (1.6), we obtain the set of canonical equations
dd
-5
d¢ ¥
(1.7)
dx
rra -9V,

for which the toroidal angle ( parallels time, the poloidal angle 9, is the angle coordinate, Y,
mimics the canonical momentum (action variable}, and ¥ = ¥(x,9,() plays the role of the
Hamiltonian.

For a general flow (magnetic field), the Hamiltonian Y(9,x,() depends on all three of iis
arguments, i.e, there is no ignorable coordinate and hence no constant of motion. The Hamil-
tonian system (1.7), then, is not integrable. If ¥ were independent, say, of the toroidal angle
{, a constent of motion will emerge, and the system (1.7) becomes integrable.



homoclinic orbit heteroclinic orbit

Figure 1.3: Homoclinic orbits and heteroclinic orbits.

1.3.2 Poincaré map and perturbation

If we assume B, = 0, then the critical points of ¥(z,y) gives the null points. Since B is
homogeneous in the direction of z, the null points generates a straight line in the direction of
z. Critical points of ¥(z,y) are classified into “O points”, that are the maximum or minimum
points of ¥(z,y), and “X points” that are saddle points. The O points are isolated from field
lines {contours of ¥(z,y)), while there are normally four field lines that are connected to each
X point. For a given sense of T, two of the curves converge to the X point, while the other two
curves diverge. We call the former, the stable orbits, and the latter, the unstable orbits.

If an unstable orbit does not escape from a certain bounded region in the phase space z-y,
this curve must be connected with a stable orbit (Fig. 1.3), as far as the representation (1.3)
holds. There are two possibilities; One is the case when the unstable orbit starting from an
X point comes back to the same X point. Such a closed orbit is called a homoclinic orbit.
The other is the case when the unstable orbit is connected to another X point. This curve
is called a heteroclinic orbit. When we break the symmetry (homogeneity) with respect to z,
these homoclinic and heteroclinic orbits are strongly deformed, resulting in “Chaos”. Field-line
chaos stems in the neighborhood of X points. To see this, we first consider an abstract mode!
of perturbed Hamiltonian system.

Let us consider a Hamiltonian system which is perturbed by a periodic potential of period T;

‘gd; (;) = (_3‘;:#1])) ('.B(Jfay,‘f‘) = 1(z,y) + f(z,y,7)). (1.8)

The perturbation is assumed to be of the order of ¢ (> 0). When ¢ = 0, (1.8) becomes

autonomous.
We consider a streamline (orbit) starting from an initial point o, and take a series of periodic

points {zo,z(T),z(2T),---}. Denoting
z((n+ 1)T) = Pz(nT),

we define a mapping P. Since the system (1.8} is periodic in ¢ of period T, this P does not



Figure 1.4: Intersection of stable curve (S) and unstable curve (U).

depend on f explicitly, i.e., P determines a temporally discrete autonomous system. We call P
the Poincaré map.

The discrete mapping P produces series of points on the surface of the two-dimensional phase
space. Obviously, when € = 0, the series of points are included in the level set (contour curve)
of the unperturbed Hamiltonian v(z,y). Choosing different initial values, we can construct the
total structure of the contours of ¥(z,y). In a perturbed system (e > 0), the total Hamiltonian
¥(z,y,t) is no longer a constant of motion, and hence the behavior of streamlines can become
very complex. Let us investigate the complex structure by using the discrete mapping P.

If there exists a periodic streamline of period T, a point on this curve is a fixed point of P.
This fixed point is classified into O and X points by studying the eigenvalues of the linearized
mapping L of P. When L (2 x 2 matrix) has two real eigenvalues, the fixed point is an X point.
The two lines that parallel the two real eigenvectors are invariant under the operation of L,
and hence, points move on these lines in the neighborhood of the X point. The X point is the
accumulation point of these series of points. The converging curve, with respect to the X point,
is called a stable curve (denoted by S), and the diverging curve is called an unstable curve (U).
These curves contain many different series of points that have different origins. Therefore, S
and U do not necessarily connect smoothly. They may intersect each other.

When S and U intersects at one place, say ag, then infinite number of intersections occur.
Indeed, the mapped point Pag = a; must be on S as well as on U. Therefore, S and U
intersects at a; (Fig. 1.4). Repeating the mapping, we obtain infinite set of intersections at
points P"a = a, (Vn € Z).

The intersections of § and U yields a series of closed domains as shown in Fig. 1.4. All points
included in the area Ag are mapped into A; by applying P. By the incompressibility of the
canonical transform P, the area of A; is equal to that of Ap. We can define the sense of the



Figure 1.5: Area conservation of intersecting curves,

domain by the orientation of the order of points on the boundary. The P conserves this sense
of the domain, as well as the area (Liouville's Theorem). If Ag were mapped to By, this sense
flips, and hence, we see that Ag must be mapped to Ay. Therefore, between ap and Pao = a1,
there exists another intersection by.

If the series of intersection points P"a and P™b converges to the X point as n — oo, the
intervals between adjacent points diminished to zero. To keep the area of each domain bounded
by S and U, the amplitude of deviation between S and U increases (Fig. 1.5). Therefore, the
behavior of points near the X point becomes “chaotic”.

1.3.3 Symmetry breaking

Now, we consider the symmetry breaking of magnetic field, and observe the onset of magnetic
field-line chaos in the X point.
We consider a magnetic field given by the ABC flow;

Asin Az + C cos Ay
B =] Bsindzr + Acos Az | . (1.9)
CsinAy + Beos Az

where A, B, C and A are real constants. Since this B is periodic in z,y and z of period 27 /A, we
consider that a cubic domain of side length 27/ be a periodic domain (we can identify every

z +2nr, y+ 20’7 and z + 20”7 (n,n',n" € Z) with the fundamental domain 0 < ,y, 2z < 27).
First we assume that A = 0. Then, B(z,y) is two dimensional. By defining

¥(z,y) = A" (B cos Az + Csin Ay),
we can write {1.9) in the form of

B = Vi x Vz+ V2, (1.10)



(a) (®)

Figure 1.6: Poincaré plot for the ABC flow; (a) B=1,C =03,A=0,(b) B=1,C=03,4=
0.2 (after Y. Yamakoshi).
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(see {1.3)). Therefore, this ¥(z,) is the Hamiltonian of the corresponding field-line equation.

If none of A, B and C are zero, B(x,y,z) is three dimensional. The z-dependent term
introduces a periodic perturbation of period 2r/X. Plotting the cross point of each field line at
the surface z = 0, we obtain the Poincaré mapping (see Fig. 1.6). In Fig. (a) the parameter A
is zero. We observe that points move on the contours of the unperturbed Hamiltonian ¢¥(z,y).
We observe X points between ellipses of circulating points. In Fig. (b), we plot the perturbed
(three-dimensional) Poincaré maps. In the neighborhood of the original {unperturbed) X point,
chaotic plots are obtained.

1.4 Example II (particle motion chaos)

1.4.1 Motion of charged particles

Nonlinearity stems in the equation of motion of a charged particle from the spatial inhomogene-
ity of electromagnetic fields. The “magnetic null point” yields a strong enough nonlinearity to
generate “chaos” of the particle motion. The chaotic motion of electrons brings about rapid
production of entropy, resulting in efficient heating of electrons at a low-collisionality regime.
This nonlinear process can be applied to plasma production that meets the increasing demand
for low-gas pressure plasma source suitable for the use in ultra-fine etching of semiconductors.
Moreover, this effect may play an important role in high-temperature plasmas such as solar
corona, geo-tail and fusion plasmas. The magnetic null point is the place where the magnetic
field lines can reconnect if there is a finite resistivity (equivalent to the magnetic diffusivity).
In many different examples, the conventional “collisional resistivity”, that is deduced by evalu-
ating the scattering of current-carrying electrons by field particles, is very small and it cannot
account for the actual reconnection rates. Some mechanisms have been studied to obtain an
“anomalous resistivity”, including the possibility of the effect of the chaos.

We will start with a pure collision-less model, and show that the mixing effect of chaos yields
a rapid production of (kinetic) entropy. This process, however, in transient, and the heating
saturates after a short time. As the second step, we will study the effect of collisions with neutral
particles. By inelastic collisions of excitation and ionization, that have threshold energies, the
electrons lose the energy. This process opens a “sink” for the energy at a high-energy region of
the velocity space. A steady state is achieved when the same amount of electrons are provided
at a low energy region, and they “cascade” towards the sink. 4 The intermediate energy range
can be approximated by the collision-less model. The chaos accelerates the cascade, and hence
the energy dissipation is enhanced. In that the nonlinearity enhances the dissipation, the role
of chaos represents a generic characteristics of nonlinear dynamics commen to the turbulence
and self-organization phenomena. The following analysis gives a proof for the above-mentioned
scenario, and derives a quantitative estimate of the enhanced resistivity. We will see that the
chaos effect can yield a sufficiently large resistivity.

*In a real system, the ionization produces low-energy electrons. They are lost by recombination and spatial
diffusion. In the present work, we simplify the production and loss of electrons by a probabilistic process under
the constraint on the total number of electrons.
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We consider the motion of an electron that obeys Newton’s equation of motion;

d? d
meEE = e {E+ (Et-:c) X B] , (1.11)
where m is the electron mass, e is the elementary charge, E and B are the electric field and
magnetic field, respectively. If E and B are spatially homogeneous, (1.11) is linear with respect
to z. For example, let us assume that B = constant and E = Egsin(wt) (Eg = constant). If
the frequency w is not resonant with the cyclotron frequency w, = eB/m, the particle motion
is periodic, and hence “heating” cannot occur. We may appeal to some mechanism, besides the
resonance, to “disorder” the periodic motion and heat electrons. Collisions are the most simple
process to randomize the phase of oscillation of the particle, resulting in non-zero average of
energy transfer from the electric field into the particle motion. The other possible process is the
chaos, that is a deterministic dynamical process producing complex orbits of particles. Here, we
consider a strongly inhomogeneous magnetic field that makes (1.11) nonlinear with respect to =.
Once the adiabatic invariance of the magnetic moment is destroyed in such an inhomogeneous
field, the degree of freedom increases enough to obtain chaotic motion of electrons.
We formulate a slab plasma model assuming, in Cartesian coordinates,

0 0
B=Jz|1|, E=Esinwt)|0], (1.12)
0 1

where J is a constant number (J/puo has the dimension of current density; ug is the vacuum
permeability). This J and the frequency w characterize the spatial and temporal scales, re-
spectively. The length scale is defined as follows. For the given w, the cyclotron-resonant
magnetic field B is given by solving w = eB/m for B. This resonant magnetic field occurs at
z = L = mw/(eJ). We define normalized time and coordinates as

- -
t=swt, &= I
The equation of motion (1.11) now reduces into
23 .
i’ = -5t [F(f) + C)z. (1.13)

Here / denotes the normalized temporal derivative (d/di),

o gl JEPE __eE

mi®  mLw?’
and C is a constant determined by the initial velocity 2‘; To derive (1.13), we have used the

z-component of (1.11) that reads, after integrating with respect to {,

52
é’=—?+F+C.
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Figure 1.7: The disordered meandering motion of an electron in the neighborhood of the mag-
netic null point (£ = 0).

In the y-coordinate, the particle moves with a constant velocity.

The nonlinear equation {1.13) becomes “most nonlinear” when all terms have the same order
of magnitudes. ® As a numerical example, let us assume a radio-frequency {RF)} electric
field with @ = 27 x (13.56 x 10%) sec™? and Ep = 10° V/m. When the length scale of B is
L = 2.4 x 10~% m, then we obtain the normalized electric field E = asini with an amplitude
a=1.

When a = 0, the energy (Hamiltonian) of the particle conserves, and hence, the nonlinear
equation (1.13), whose degree of freedom is one, is integrable. The particle describes a “me-
andering” orbit in the neighborhood of the magnetic null point (¢ = 0). A finite electric field
(a # 0) changes the energy, resulting in non-integrable (chaotic) motion. Figure 1.7 shows a
typical orbit of an electron put in an electric field with @ = 1. The initial energy of this particle
is zero. We observe that the typical length scale of the “disordered meandering” is of order
unity (O(L) in the physical unit).

1.4.2 Entropy production by chaos

Let us describe some numerical diagnostics of the chaos. The Lyapunov exponent is about 0.2
for @ = O(1), which implies that neighboring particles decorrelate after about five periods of
oscillations of the RF electric field. In Fig. 1.8, we show the Poincaré plot on the phase space
#-3'. The orbit covers almost densely over a region in the phase space. The kinetic entropy can
be defined by S = — 3, pelog pe, where p; is the probability of making a visit at a cell, labeled
by ¢, in the phase space. In Fig. 1.9, we compare the increase of S for the chaotic motion and
periodic motion (B = 0). While S for the periodic motion achieves a small constant value after
a short time, ® that for the chaotic motion continues to increase. The rapid increase in S is
due to the “mixing effect” of the chaos (Fig. 1.8). The rate of the mixing is of the order of the
Lyapunov exponent. After the first rapid increase, S goes up slowly. In this slow phase, the

*When |£] > 1, we may write £ = Zo(1 + £) with a constant £o and |£} € ©(1), and the nonlinear term of
(1.13) is linearized as —i*f2 —23(1 + 3%)/2. Then, the drift motion of magnetized particle occurs. Similarly,
when |F| 3 1, the linear term Fz dominates the dynamics, and hence the particle motion recovers the regularity.

$The absolute value of § depends on the division of the phase space into cells. Since the periodic orbit is
measure zero, the corresponding § converges to zero in the limit of zero cell scale.
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Figure 1.8: The Poincaré plot in the case of a = 1.
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Figure 1.9: Increase of the kinetic entropy 5. Here, a = 1.
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Figure 1.10: Heating of electrons by the chaos.

domain, over which the orbit moves, does not expand appreciably, so that the average energy
of the particle is almost saturated.

1.4.3 Collision-less heating by chaos

Figure 1.10 shows the velocity distribution of 104 particles. Each particle has different initial
condition, but obeys the same equation of motion (1.13), viz., there is no mutual interactions
such as collisions or collective motions. However, we observe that a small variation in the
initial state expands to create almost Gaussian distribution. While the oscillating electric field
is constantly applied, we find that the total energy of many particles approaches to a constant
vale. The statistical equilibrium may be regarded as a canonical ensemble. As we have seen
in Fig. fig:Poincare, the motion of a particle is approximately ergodic, and hence, the Gibbs
distribution can be deduced from the equal probability in the phase space.

In the above calculations, we have seen an essential difference between the collision and
the chaos. In the above model, we assumed no process of energy loss, while we applied the
RF electric field constantly. If collisions are the mechanism of entropy production, unceasing
heating of electrons must occur.

We estimate the effective resistivity by the total change of the energy. In Fig. 1.11, we show
that the effective resistivity is enhanced by the mixing effect of chaos by factor 102 in comparison
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with the case of B = 0.
Figure 1.12 shows the spatial distribution of the dissipative current demsity (the current
density that has the same phase of the RY electric field).
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Chapter 2

Chaotic Oscillations in Plasmas

2.1 Chaotic time-series produced by a simple dynamical law

Some toy models of mathematical science demonstrated that some simple low-dimensional (i.e.,
low degree of freedom) dynamical system can produce chaotic solutions. These findings give us
motivation of searching a simple dynamical law to account for observed complex data.

Roughly speaking, we mean by “chaotic behavior” the difficulty of predictions. Even if model
equations provide deterministic description of temporal evolution, the prediction is difficult
when the solution has a high sensitivity to small variation in initial conditions. However, this
is not a complete definition of chaos. Consider a linear model

%x =az, z(0)=zo (2.1)
with @ > 0. The solution z(t) = e*®*zq is unstable and a small variation in the initial value zq
expands exponentially, while this system does not have any complexity. Chaos develops in a
bounded domain of the phase space; the state variable does not escape from an certain domain.
In this sense, chaos has two different aspects, instability and stability. Co-existence of these
two characters is possible in nonlinear systems. Let us revisit some well-known examples.

If we modify the growth rate a of (2.1) to a function of z, we obtain a nonlinear model. For
example, let us assume a saturation effect and put a = a(1 — bz). Then, we obtain the so-called
logistic model

d
i a{l — bz)z, =z(0)= =o. (2.2)
Although (2.2) is non-linear, we can “linearize” it by transforming z to y = b — z~!;! we obtain
d -1
¥ = —ay, y(0)=b-z5 . (2.3)

We can solve (2.3) as y(t) = e *'yo, and hence, we obtain z(t) = (b — e %'yo)~}. Since (2.3)
has a negative time-constant —a, the solution of the nonlinear model (2.2) is basically stable.

!This is not a “linear approximation”, but is a rigorous transformation.
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Figure 2.1: Logistic map for A = 3.2 and A = 4.
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Chaos occurs when we discretize time in (2.2). Let us consider a finite difference equation
Tpsr = Tp = a(l — bzy)zy, (2.4)
which defines the famous “logistic map”
Uns1 = A{1 = Uy )tin, (2.5)

where u = (ab/1+a)z and A = 1+a. We denote f(u,) the right-hand side of (2.5). We assume
that the domain of z is [0,1]. For 0 < A < 4, the range of the logistic map f is included in
[0,1]. We can construct the solution of (2.5) by a diagram method (see Fig. 2.1).

By changing A, we observe different behavior of the solution. For 0 < A < 1, the parabolic
curve and the line in the diagram do not intersect in the domain of u, and hence, we observe
limy oo un = 0. For 1 < A < 4, we obtain the intersection, which represents the fixed point
of the logistic map. As far as this fixed point appears in the range of u < 1/2 (1 < 4 < 2},
it is stable, so that u, converges to it. In the range of 2 < A < 4, u, oscillates around the
fixed point. For 3 < a < 4, the fixed point becomes unstable. However, the double-period map
f2(un) = f(f(ua)) has a stable fixed point for a slightly larger A than f. The quadra-period
map f4(u,) has a more large range of A. Therefore, by increasing A, we obtain period-doubling
bifurcations. It is known, however, the period diverges around A4 = 3.57, and beyond this
critical value, the sequence u,, does not have any periodicity. This infinite-period oscillation is
called “chaos”.

By comparing the continuous model (2.2) and the discrete model (2.4), we find that the
nonlinearity behaves very differently under a slight modification. We never observe such a
drastic difference when we discretize the linear model (2.1).

The discretization may introduce a slight destablizing effect. By the competition of the
instability and the fundamental stability of the system (as shown in (2.3), the discrete logistic
model produces chaos.

2.2 Carleman embedding

Let us consider a simplified version of the continuous logistic model {2.2);

d
Eu: —u+u2, (2.6)
and introduce the following “linearization” method. We write
yi=u, Ya=ul, yy=ud, e, (2.7)
By the definition, we observe
dyn no1du
FTERr TS
Using (2.6), we obtain
d
¥ = MY+ nnpr (n= 1,200, (2.8)
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If we consider the infinite number of variables 1, ¥, - - - as independent variables, (2.8) reads as
a system of infinite-dimension linear ordinary differential equations (ODEs)

n -11 0 - h
d {9y 0 -22 0-- ¥2
Zlw|=loo0o-330-||wl| (2.9)

The nonlinear ODE (2.6), obeyed by u, and the system of linear ODEs (2.9), obeyed by y1,y2,- -
are equivalent under the condition (2.7). To put it in a more precise way, let u(t) be a solution of
(2.6) with the initial condition u(0) = ¢ (0 < ¢ < 1). By (2.7}, we can define y,(t) (n = 1,2,---).
Then, these y,(t) satisfy (2.9) and the initial condition

ya(0) =" (n=1,2,---). (2.10)

On the centrally, if we could solve (2.9) under the initial condition (2.10), and if they satisfy
v, = ¥ ( = 2,3,---), ? the first component #(t) = u{t) solves (2.6). We call this technical
linearization as “Carleman embedding” [8].

Note 3 (Fock space) Let us consider a nonlinear ODE obeyed by a vector variable u € RV,
We assume that the nonlinear term is given by polynomials. We denote tensor products

W=y, uW=ugy uP=-ugusewu,

The linear space of j tensors is denote by ®’ RN, Let A; be a linear map of ®' RN — RN,
If the highest order of the nonlinear term is k, the general form of ODEs can be written as

d
au:A0+A1u+---+Aku(k). (2.11)
Denoting y; = ull), we consider an infinite-dimension vector variable y = (11,92, ), which
is @ member of a “Fock space” .

o J

F=PRR",

=1
where @ is the direct sum of linear spaces. The solution of the nonlinear ODFEs (2.11) can be
embedded in the solution of the linear ODEs in the Fock space F.

Mathematical justification for the above-mentioned infinite-dimension linear ODEs must be
carefully done, since the coefficient matrix contains unbounded elements. Let us solve (2.9)
explicitly. We appeal to the Laplace transform. Let us define

¥a(s) = '/000 e "ty ()dt (s € C). (2.12)

2(2.9) has non-unique solutions that do not satisfy this condition
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We assume that, for some real number so and Re 3 > 3¢, the integral of (2.12) converges.
Integrating by parts yields

® s .
|7 e Edt = siats) - val0)
o di
Using this relation in (2.9), and using the initial condition (2.10), we obtain
(n+ 8)in(s) — nina(s) =" (n=1,2,---).

We can solve this equation sequentially as

. . c c? 2¢3
W) = St arsees T aroest s T
= 3 F(r)l(s + 1)c* = ic”’B(n,s + 1), (2.13)

— F(n+s+1) =

where T is the Gamma function and B is the Beta function. By the identity

B(p,q) = %lf_(—g = '/: ?~1(1-z) 'dz (Re p,Re ¢ > 0),

and (2.13), we obtain )
#his) = /0 (1 —ex) (1 — z)°dz. (2.14)

Transforming (1 — z) = ¢, (2.14) reads

i st c d
7] = e dl.
yl(s) ‘/(; € C+(1—C)€t

Comparing the definition (2.12), we now obtain

C

WO =0

As we have shown in the previous section, the continuous logistic model (2.6} is very close
to a linear category. If we consider a truly nonlinear system that produces chaos, we meet the
following problem, that reveals the origin of complexity. Let us consider an abstract nonlinear
autonomous system. Let us denote by £ the infinite-dimension matrix that is embedding the
nonlinear dynamics. We formally write the eigenvalues of £ as A; (f = 1,2,---), each of which
represents a time constant of the infinite-dimension system. If Re A; < M (VA;) for some real
number M, the infinite dimension system can be solved by the Laplace transform, and we can

estimate
lyi()] € Cie™ (G=1,2,--9), (2.15)

where C; is a constant determined by the initial condition. For the continuous logistic model,
the eigenvalues of the generator in (2.9) is given by A; = —j (j = 1,2,---}, and hence, the
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above-mentioned condition is satisfied. However, if {Re X;; j = 1,2,-+'} is unbounded in
the positive direction, the general solution contains infinitely large growth rates. Roughly
speaking, when the maximum Lyapunov exponent of u(t) is A, then u()(t) has the maximum
Lyapunov exponent of order nA. If u(t)(®) is embedded in y(t), (2.15) implies that there exist
eigenvalues that have larger real parts than nA. A chaotic orbit u(t) has A > 0, and hence
{Re A;; 7 =1,2,---} is unbounded. In this case the chaotic solution y(t) =* (u(t),u(g)(t),---)
exists as a special solution of the linearized equation, while its general solution cannot be
generated by the evolution equation.
This situation is similar to the “inverse” diffusion equation;

du = -2y, u(z,0) = uo, u(0,t) = u(w,t) =0.

By Fourier transforming u(z,t) = }_; u;{t)sin(jz), we obtain

Uy 100 U351
d | uz 0400 --. o
TG lu|=]0090 0 uz } - (2.18)

This “ill-posed” problem cannot be solved uniquely, while it has special solutions. The funda-
mental difference between the Carleman-linearized system and the linear system (2.16) is that
“mode interactions” (i.e., off-diagonal components in the generator matrix) does not occur in
the linear system.

2.3 Example III (chaotic oscillation of magnetic filed)

2.3.1 MHD equations and Beltrami condition

The nonlinear magnetohydrodynamics (MHD) involves a variety of complex phenomena. It is
impossible to construct nontrivial theory by direct analyses of the basic equations. To eluci-
date a specific phenomenon, we must apply a reduction of the model with appealing to scale
separations, singular perturbations, coarse-graining (averaging), etc.

In this section, we discuss a slow motion (or a steady state) of a low-pressure magnetized
plasma. In more specific terms, we consider the following singular limit. The general MHD
equations read, in the standard normalized units,

v =—(v-Viv+ ef(V X BYx B—fVp+epAv, V. .v=0, (2.17)
B =V x (v x B)— ¢,V x(VxB). (2.18)

Unknown variables are the magnetic field B, the flow velocity v and the pressure p. The Alfvén
number €4, Lundquist number ezl, Reynolds number f}il, and the beta ratio § are nondimen-
sional positive parameters. The incompressibility condition (V- v = 0) may be replaced by an
evolution equation for the pressure p in a more sophisticated model.
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This system of nonlinear parabolic equations (2.17)-(2.18) is a close cousin of the Navier-
Stokes system describing neutral fluids (see [9, 19} and papers cited therein). The MHD system
includes coupling between the magnretic field and the fiow velocity through the nonlinear induc-
tion effect and its reciprocal Lorentz force, which adds a considerable complexity to the usual
Navier-Stokes system. Surprisingly, however, we observe a more regular and ordered behavior
in some MHD systems. Such phenomena are highlighted by a singular perturbation of ¢4 — 0,
with fixing the time-scale, in the momentum-balance equation (2.17). This limit is amenable
to slow motion of a strongly magnetized low § plasma. The determining equation becomes the
force-free condition (V x B) x B = 0, which is equivalent to the Beltrami condition

V x B = AB. (2.19)

Here A is a scalar function. By the solencidal condition (VB = 0) and identity V. (Vx B) =0,
taking the divergence of the both sides of (2.19) yields

B-VA=0. (2.20)

Since (2.20) means that the function A should be constant along the streamline (field line)
of B, analysis of the system of equations (2.19)-(2.20) requires integration of the streamline

equation

d
e B(z). (2.21)

The solenoidal condition (V - B = 0) parallels Liouville’s theorem for the Hamiltonian flow,
and one can formulate (2.21) in a canonical form (see Note 2). For a general three-dimensional
B, the solution of (2.21) exhibits chaos (Sec. 1.3). Hence, the general analysis of the system
(2.19)—(2.20) includes an essential mathematical difficulty. Two special cases, however, can be
studied rigorously. One is the case where B has an ignorable coordinate (two-dimensional).
Then, (2.21) becomes integrable, and the system (2.19)-(2.20) reduces into a nonlinear elliptic
equation {3, 24]. The three-dimensional problem involves the non-integrable streamline problem
(2.21), however, it is decoupled from the Beltrami problem (2.19)-(2.20}), if we assume a constant
A that make (2.20) trivial. This “constant-A beltrami field” will be discussed in Sec. 3.5.

2.3.2 Reduced model of interacting magnetic islands

In this section, we consider nonlinear interactions among plasma elements with inhomogeneous
M. Each element satisfies the constant-A Beltrami condition (2.19). Different elements are sep-
arated by a thin layer where the magnetic field lines are weakly chaotic. Hence, the connection
lengths among different elements are considerably long. If we consider a small deviation from
the Beltrami condition (2.19), and write

VxB=AB+a, (2.22)
then (2.20) receives a small correction and becomes

(B-V)A=-V.a. (2.23)
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Figure 2.2: Magnetic-field perturbations induced by resistive instabilities (tearing modes)
change the field-line structure in a tokamak plasma to generate magnetic islands, and their
overlapping leads to magnetic chaos.

Integrating (2.23) along a field line, we obtain a finite inhomogeneity in A after a long distance.
This allows us to assume inhomogeneous A in the following discussion. We comnsider a cylindrical
plasma with radial inhomogeneity.

We introduce a reduced ODE system that models nonlinear interactions of magnetic islands
produced by the tearing instability (see fig. 2.2). The basic idea of the reduction is the use of
the Beltrami condition (V x B = AB) to convert the spatial derivatives in the PDE system
(2.17)~(2.18) into the multiplying of A. We note that this procedure differs from the Fourier
decomposition and truncation, which are usually used to derive reduced models in different
problems. For each mode of Fourier decomposition, we can replace derivatives by multiplying
of wavenumbers. In the present method, the conversion applies to the exact function, not to
expansion modes. The A is a dynamical variable to be determined by the evolutions equation.
Here we invoke a quasilinear turbulence model of MHD fluctuations (see (1, 13, 22] and papers
cited therein).

Magnetic field B is decomposed into the fluctuating component b and the ambient component
Bg. For the plasma velocity v, we also assume two components; One the a uniform flow V
and the other is the fluctuation © driven by the MHD instabilities. Assuming a qguasilinear
turbulence of resistive instabilities, we may write the ensemble average of the nonlinear term
(# x b) in terms of the growth rate of the instability, the energy of fluctuations, and some
geometric factors. The parallel (with respect to the mean magnetic field By) component of

(® x b) makes an essential contribution, which is denoted by —E|(|2). The quasilinear turbulence
theory [13] yields
2 .
E|(| V= -V (DV50),
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Figure 2.3: Feigenbaum diagram for R in the range of 2.0 x 10* — 3.8 x 10*.

where 7{%) is the hyper resistivity given by

(2 1 ri
n Tk 2 k
= =5 — 15,21 . 2.24
po 2 Z,,: @k ((r - + 7,3/(3,::,,)2) (224

Here the subscript k indicates a Fourier component of the fluctuation, v, is the growth rate and
ky is the parallel wavenumber with k(rx) = 0. The ensemble average of Faraday’s law (2.18)

becomes

3 = —eLV x (V x b) + V x (V x b— E{V2). (2.25)
We assume Bg = Vz. The Beltrami condition reads V x b = A(b + Bp). We obtain
V x (V x b) = A2b+ VA x (b+ By),
Vx(Vxb)=—-(VxbxV=-AbxV.

We consider a low pressure plasma, so that the parallel component of b is neglected. In the
cylindrical coordinates such that Vi X Vr = Vz (p and r are the angle and radial coordinates,
respectively), we write p = b, and ¢ = b,. Inhomogeneity of the plasma is assumed in the
direction of Vr. We may write the ¢ and r components of (2.25) as

p = —eLAlp — Vg, (2.26)

g = —e A q+ Vap— 3,-EI(|2) (2.27)
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The last term in the right hand side of equation (2.27) represents the effect of the MHD fluctu-
ations. We can write @
PR _ 2800

ar wo Or Ort’
Two unknown variables p and ¢ represent the amplitude of the magnetic perturbation 4. The
third unknown variable A characterizes the “curl” of b. The equation obeyed by A, which is also
derived from (2.25), becomes [22]

B\ = C(p)2/\222 + EpA?
ar? ’
where Ej, is the external driving electric field.

We note that the factor #2A/dr? represents the diffusion of the helicity induced by the MHD
fiuctuations. We discretize the radial coordinate into points where some different instabilities
are resonant. Replacing the spatial derivatives of the helicity diffusion by difference quotients,
we obtain the reduced model equations

Pn = —€LA2pn — VAugn, (2.28)
q'n = "'GLA?an + VAnpn + Qn(Pn—hpn+1,/\n—-l¢ )\na ’\n+l), (229)
f'\n = f\i (Ln(pna’\n—la/\ns ’\n+1) + Eh)a (2-30)
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where n (= 1,2,--- N) indicates the n'P radial position,

(pn+1)2 - (pn-l>2 Ar|.+1 + An—‘l - 2An
A A2 ’

Qn(pn—-lspn+11 ’\n—la -‘\na ’\n+l) =2C

2/\n+1 + ’\u—-l - 2)\11.

Ln(Pm )‘n—h Ana’\n-é-l) = C(Pn) Az '

A is a radial distance between the radial grid points, and N is the number of interacting islands
with different helicities.

2.3.3 Lyapunov dimension

The model equations (2.28)-(2.30) generate chaotic orbits of the solution. The typical parame-
ters are

A=10"Y ~ 1, |p|, lgl=107"* ~ 107% ¢, =10"% ~ 1075,
C=10"1'~1, A~10Y V=10%~ 103 E, =10"% ~ 1077,

Changing the Lundquist number R = ezl (magnetic Reynolds number), we observe bifurca-
tion and inverse cascade in the chaotic behavior of the solution. Figure 2.3 shows the Feigen-
baum diagram, where we plot peak points of the time series with changing R. Here we fix other
parameters as N =3, C =10, A =01,V = 7.72x 1075 and E;, = 1.0 x 10~%. We observe
two branches bifurcate into chaos. For a larger R, the chaos quenches and periodic attractor
appears.

The total number N of modes defines the freedom of the model equations, which is 3 x N,
Figure 2.4 shows the dependence of Lyapunov dimension Dy on N.
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Chapter 3
Complexity

3.1 Mixing

Mixing induced by inhomogeneous flow is one of the central paradigms of generating complexity.
When an inhomogeneous flow transports a physical quantity, the spatial variation of its distri-
butjon is enhanced. This process acts also to homogenize distributions of physical quantities
in a “coarse-grained” sense. When we mix milk in coffee using a spoon, we intend to smooth
out the density of milk, but not to create complex distribution. These two different aspects,
the creation and annihilation of complexity, are the simultaneous characteristics of complex
systems, i.e., complex systems show different faces depending on our view points.

We start with a simple model of mixing process that simulates baker’s work of making a pie.

Let ¢ be a transform
(?“") (0< 20 <)
Ey'n.

Tntl | _ Tn | _
(yn+1) - ¢(!lu) - 22, — 1 . ’ 3.1)
(%(ynu))(?s”"“)

which maps a rectangular domain @ = {(z,y); 0 <z < 1,0 < y < 1} into Q itself. Figure 3.1
illustrates this map.
By applying the transform of z,y induced by ¢, we define a transform of a distribution f.{z,y)

that is continuous function of §;

[ L]

fﬂ(%zvzy) (0<y< %)
fas1(z,9) = fald7 ' (z,9)) = . (3.2)
fugz+ 1,2y - 1) (3 <y <)
After many application of this transform, f.(z,y) becomes to have a strong inhomogeneity in
y-direction (Fig. 3.1). Since we bite a pie in the vertical direction, let us integrate f,(z,y) with
respect to y;

gn(z) = /01 fa(z,y)dy. (3.3)
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Figure 3.1: Baker’s transform.

This “integral” introduces a “coarse-graining”. By the definition, we observe
4 g g

172

1/2 1 / 1
gen(@) = [ fuGewdy+ [ fulGlz 4+ 1) 20 - )y

= 3 [;m(2) + aa(zte+ 1)]. (3.4)

This process yields averaging of the left and right sides of the center z = 1 /2, and hence, g,(z)
converges into a homogeneous distribution at the limit of n — oo.

By this simple example, we have seen that Baker's transform (3.1) induces mixing in the z-y
plane, and it produces complex distributions in y-direction. However, the coarse-grained distri-
bution gn(z) relaxes into a homogeneous distribution. We notice that the transform (3.2) of the
detailed distribution f.(z,¥) is temporally-reversible (we can calculate f, — fa_1 uniquely),
while the transform (3.4) of the coarse-grained distribution g.(z) is no longer reversible. This
irreversibility is introduced by the loss of information associated with the coarse-graining. As
long as retaining the microscopic detailed data, we can backtrack the process. Throwing away
unnecessary details, we obtain a more sensible description of a complex system, but this intro-
duces irreversibility.

3.2 Convection and induction

In this section, we give a formal representation of mixing induced by a flow. We comnsider a
flow v in a domain (phase space) 2 C RY. Let v be a smooth function of time ¢ and position
z (€ Q). We can define the “streamline” by solving the following initial value problem of
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ordinary differential equation
dx

dt
In terms of geometry, the streamline is a curve whose tangent vector is v. The time ¢ is a
parameter indicating the position on the curve {cf. Sec. 1.3).
We consider a physical quantity u that is a smooth function of t and = (€ ). In evaluating u
on the streamline (t), that is a solution of (3.5), the temporal derivative along the streamline
becomes d

Eu(z(t),t) =du+ (v Viu.

If u is constant through every streamline, viz., if u is a conserved quantity associated with the
phase-space dynamics v, this « must satisfy the “transport equation”

= v(z,t). (3.5)

du+ (v-Viu=0. (3.6)

This partial differential equation (PDE) has a wave-type solution that represents the prop-
agation of the variation of u induced by the flow v. In mathematical terms, the streamlines
correspond to the “characteristic curves” of the hyperbolic PDE (3.6). When the streamline
equations are written in a canonical form, the study of the characteristic curves parallels the
Hamiltonian dynamical system theory.

Note 4 (Hamiltonian flow and Liouville’s equation) Incompressible flow is of particular
importance. The streamline of incompressible flow does not break out or disappear, and hence,
defines an isomorphic transformation group. The most important class of incompressible flow is
the Hamiltonian flow. Let & and y denote the canonical coordinate and momentum, respectively.
Hamilton’s equation of motion reads

d {= OyH
dt (y) - (—g:c?i) ’ (3.7)

where H is the Hamiltonian. We denote by 8¢ and Oy the gradients with respect to x and y,

respectively. Writing
_{* V = OyH
x= (y) - (—%H)’ (3:8)

we observe that (3.7) is just the streamline equation (8.5) in the phase space z-y. In this space,
the divergence of the HHamiltonian flow is calculated as

V-Vv=Y08,0,H-Y 8,0 H=0.

Therefore, the Hamiltonian flow V' is incompressible in the phase space (Liouville’s theorem).
The convective derivatives of u(x,y,t) becomes

Qu+ (V-Vu=0u+{H,u}, (3.9)
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where, by (3.8),
(M, u} = (yH) - (9zu) — (M) - (Byu).
We call the bilinear operator {,} the Poisson bracket. If u is a constant of motion, Liouville’s
equation holds:
diu+ {H,u} =0. (3.10)
We have shown that the canonical form of the convective derivative is represented by the Poisson
bracket.

The simplest model of fluid mechanics is the Euler equation, which describes the acceleration
of an ideal incompressible fluid by a pressure (potential force). We assume that the mass density
of the fluid is 1. The “inertia force” is evaluated by calculating the temporal variation of the
flow v along the streamline. Equating the inertia force and the pressure, we obtain the Euler
equation

o+ (v-Vio=-Vp, V.v=0 (3.11)
Calculating the curl of the first equation of (3.11), we obtain the “vortex equation”
Gw - Vx{vxw)=90, (3.12)

where w = V X v is the vorticity of the flow.

In (3.11), the spatial derivatives appear in the form of the convective derivative (v - V), while,
in (3.12), they take a different form —V x (vx ). We call this second type of derivative as an
“induction”. This induction is a close cousin of the convection. In fact, using vector identities,
we observe

~Vx(oxw)=(v-Viw—(w-V)v. (3.13)
The first term in the right-hand side of (3.13) is nothing but the convective derivative of the
vorticity. The second term plays an essential role in the discussion of nonlinear behavior of fluids
and plasmas. Here, we note that this second term disappears in the case of two dimension (N =
2), and hence, for a two-dimensional system, the convection and induction are not distinguished.
A two dimensional flow is embedded in a three dimensional flow (we consider z-y-z cartesian
system) by assuming 8, = 0 and v, = 0. We observe

w=we,, (w-V)=w.d =0.
Hence, in two-dimension system, —V X (v X w) = (v - V)w.
Let us give another important example of the induction. If we consider a perfectly conducting
fluid (plasma), the electric field in the fluid must vanish. When the fluid moves in a magnetic

field B, the vanishing of the electric field in the fluid is represented in terms of the electric field
E and the velocity v, that are evaluated in the laboratory frame, by

E+vxB=0. (3.14)

Using the Faraday’s law 8B = —V x E, and taking the curl of the both sides of (3.14), we
obtain
8,B -V x(vxB)=0. (3.15)

We note the analogy of this “induction equation” and the vortex equation (3.12).
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3.3 Linear theory of mixing — Landau damping

We now proceed to show a very simple example of a low-dimensional dynamics that can gen-
erate appreciable complexity. We would also show how a very innocent-looking coarse-graining
procedure can introduce irreversibility. The system to be studied is so simple that we need to
invoke neither a statistical model, nor collisions to create irreversibility.

Complexity, however, develops in the system, because all particles are un-correlated.

Consider a set of “independent” particles that move with constant velocities (v) in one di-
mensional space. The relevant phase space z-v is two dimensional. The phase space density or
the distribution function f(z,v,t) obeys the Liouville equation (3.10)

Ohf+vd:f=0, (3.16)
which allows the D’Alembert solution
f(z,v,t) = fo(z — vt,v), (3.17)

where fo(z,v) is the initial distribution of f. For fo(z,v), let us assume, as an example, a
Maxwell-Boltzmann distribution in energy E (= v%/2 for particles of unit mass), and a sinusoidal
wave (on a constant background) in z;

fo(z,v) = (A + aeikx) e~ vt
Here, A, a and vy (thermal velocity) are constants. For this initial condition, (3.17)yields
f(z,0,8) = (A + ae*le=v0) e=/%, (3.18)

For a fixed v, this solution represents a free wave propagating at a constant velocity v. If different
particle have different velocities, the distribution of f in the z-v space becomes complicated. In
order to obtain some kind of a representative picture, we “coarse-grain” the structure in v by
integrating over v , and obtain the coordinate-space density

[os] . x .
n(z,t) = f flz,v,t)dv = V2xAvr + ae"“"] e~ikvte=vI T gy
-—

—00

12,22
= VT Avr + TavketTe Kot/

The factor e~ v5t*/4 decays to zero as t — oo, and hence the macroscopic quantity n(x,¢)
relaxes into a flat distribution /27 Avy.

The cause of the above-mentioned relaxation is the mizing induced by the inhomogeneous
flow in phase space (Fig. 3.2). The instrument we used to “mix” was the integration in the
velocity space. Note that before mixing , the phase space density f consisted of a set of waves
merrily propagating with a distribution of velocities. If the particle motions were correlated,
for example, if we used a delta function as the velocity distribution (instead of the Maxwellian),
the v integration will do next to nothing (no mixing), and the coordinate-space density will also
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Figure 3.2: Phase-space flow representing free particle motion. This sheared flow in velocity
space induces mixing. The coarse-graining (averaging) over v results in relaxation.

turn out to be a wave propagating with the common velocity of the particles. There will be
no relaxation, then! Thus the possibility of relaxation, or irreversibility was created entirely by
destroying the individual uncorrelated memories by churning (by integration) them together.

The collision-less mechanism of relaxation is a profound many-body effect, that is the central
issue of the “Landau damping” of collective motion (waves) in plasmas. It plays a fundamental
role in the understanding of collective phenomena in plasmas, and gravitational many-body
systems.

Let us show the mixing damping of a wave is a characteristic of “continuous spectrum”. We
consider a linear convective equation (Liouville equation)

8cf + ydsf = 0. (3.19)

Here z € R represents the position and y € R represents the velocity (momentum), and f(z,y,1)
is the distribution function, which is assume to be in L*(R.).
Fourier transform f with respect to z, and write f(k,y,t) = F f(z,y,t). Then, (3.19) reads

3, f(k,y, t) + iky f(k,y,t) = 0. (3.20)

When we consider that & is a fixed parameter, the generator is (—ik} x A, where X’ denote the
“coordinate operator”

X(z) = o(z), D(X) = {¥; b(z),a¥(z) € L*(R)}. (3.21)

On the contrary, when y is fixed, the generator is (—iy) X X'. In both cases, the generator has
continuous spectrum.

Let us define
f < A,
s = {25 (.22
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For every ¢ € L?(R), we have

[ 2dE e = [ " xd ( I/ ; ¢(z)mdm)

o0 P —

=/ zP(z)p(z)de = (X, p).

-0
Therefore, we may write

X = /w AE()). (3.23)

We may formally write the generalized eigenfunction of X corresponding to a continuous spec-
trum A as

ex = b(z — A),
where § is Dirac’s delta function._
We consider “correlations” of f(k,y,t) with some physical quantities g(y) or g{k);

(Flewt) oy = [ Jku 0500y,

(Flk,,0), 9(k))e = / : F(k,y, Yk

Let us assume that k is fixed. Using the spectral resolution (3.22)-(3.23), the solution of
(3.20), with initial value fi(y) € D(X'), is given by

flbut) = TWA), T@)= [ g0, (324

— 00
Therefore, we observe

N o0 ) A -
(flk,u,t), 9(¥))y =/ e~tkAg U_m fk(y)y(y)dy]

= ]_Z e~V fi(y)g(y)dy.

The most right-hand side is just the Fourier transform of fi(3)g(y) [€ L'(R)]. By the Riemann-

Lebesgue Theorem' we obtain lim; .o (f(k,y,t),9(y)}y = 0. Similar relation is obtaired when
we fix y. In summary we have

lim (f(k,y,1),9(u))y =0, (k #0), (3.25)
tlirgo(f(ka Y, t),g(k))k =0, (y # 0) (3‘26)

These relations are the mathematical representation of the phase-mixing damping (or the Lan-
dau damping).

'For u(z) € L'(R), we have limi_, oo (Fu)(k) = 0.
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3.4 Nonlinear effect and self-organization

The mixing effect in a linear system induces a continuous generation of complexity (inhomo-
geneity), and simultaneously, the relaxation into a homogeneous distribution in a coarse-grained
sense. As a simple example, let us imagine a long-distance race on a track. If every runner goes
with different speed, the dispersion of the group develops and finally, the distribution of runners
on the track relaxes into a homogeneous distribution. However, in a real track event, we do not
observe such a simple relaxation phenomenon. Each runner cares other people, and controls
his speed. This introduces a nonlinear effect. Generally, we observe that runners make some
groups. This is a typical “self-organization”. A nonlinear effect cooperates with the mixing
effect to produce structures in a complex system.

In the next section, we shall discuss the mixing of magnetic flux in a plasma, and the nonlinear
effect of lorentz back-reaction that produces a structure of enhanced magnetic fields.

3.5 Example IV (MHD dynamo)

3.5.1 Constant-lambda Beltrami field

There are many different observations suggesting the creation of constant-A Beltrami magnetic
fields (force-free fields; Sec. 2.3) in astrophysical, space and laboratory plasmas. Magnetic flux
tubes (flux ropes), in which field lines are twisted, are produced through interactions between
the magnetosphere and interplanetary magnetic fields [11]. In a laboratory plasma, detailed
measurements of magnetic fields showed that the field produced after self-organization through
turbulence is closely approximated by a solution of (2.19) [14]. Galactic jets are also considered
to have similar configurations of magnetic fields [7].

The constant-A condition for the Beltrami field (Sec. 2.3) is a strong ansatz based on the
following physical reasons. The streamline equation (2.21) in a three-dimensional magnetic field
is generally non-integrable, and hence, we may assume that streamlines (magnretic field-lines)
are embedded densely in a volume. Since (2.20) demands that X is constant along each field
line, it is natural to assume a constant A over such a volume. The theory of energy relaxation
also derives the constant-A condition. Woltjer [18] pointed out the importance of the magnetic
helicity

K= -1— / A - Bdz.
2Ja

Here V x A = B, Q is the entire volume of the plasma and dz is the volume element. The
viscous dissipation does not change the helicity K, while the magnetic energy diminishes toward
a “ground state”. The magnetic field self-organized through this energy relaxation is charac-
terized by a minimizer of the magnetic energy W = f, B%dz/2 subject to a given helicity.
This variational principle reads as §(W — AK) = 0, where X is the Lagrange multiplier. The
formal Euler-Lagrange equation, under appropriate boundary conditions, is identical to (2.19).
Taylor [14] formulated an equivalent variational principle, however, his model is based on a
different hypothesis to justify the preferential conservation of the helicity. The energy dissipa-
tion proceeds faster than the change of the helicity, if the resistive dissipation is dominated by
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spatially concentrated fluctuation currents (see also Hasegawa (5]). Both effects, the viscous
dissipation, resulting in ion heating, and the resistive dissipation, resulting in electron heating,
were compared for a specific relaxation process [21].

3.5.2 Fast dynamo

The Beltrami field plays an essential role in the so-called “dynamo theory”. To understand the
rapid generation of magnetic fields in astrophysical systems, we have to invoke a “fast dynamo
action” that has a growth rate of the magnetic energy independent of the resistivity (see [17]
and papers cited thereir). In a highly conductive plasma the evolution of the magnetic field
B obeys Faraday’s law (2.18) with ¢, — 0. A plasma flow v with chaotic streamlines (maps
with positive Lyapunov exponents), which may have a large length-scale, bring about complex
mixing of magnetic flux, and the length-scale of the inhomogeneity cascades toward a small
scale, resulting in amplification of the magnetic field. If the length-scale reduces down to the
dissipative range, and the resistive damping becomes comparable to the induction effect, then
the magnetic field energy turns to diminish. In this classical picture of the kinematic dynamo,
the magnetic field energy accumulates into small scale fluctuations, and the life-time of the
amplified magnetic field is limited by the time-scale of the cascade process. To obtain a larger
length-scale and a longer life-time of amplified magnetic fields, an appropriate limitation for the
scale reduction should occur. The nonlinear effect of the amplified magnetic fields, that is the
Lorentz back-reaction, plays an essential role in this “post-kinematic phase”. Here we assume
that the plasma achieves a quasi-steady state through the energy relaxation process. Then, the
momentum balance equation reduces into (2.19), and the fiow » must be chosen in such a way
that B satisfies (2.19) implicitly. The parameter A characterizes the length-scales of B. Hence,
the condition (2.19) imposes a bound for the length-scale of the field, if the magnitude of A is
restricted by some reason. This bound avoids scale reduction down to the resistive regime, and
extends the life-time of the amplified magnetic field.

Through the kinematic dynamo process, the current (x V x B} tends to concentrate in
small volumes, which may be disconnected. When the sectional length-scale of such a volume
becomes small enough, the Lorentz force dominates (<% < 1). Let £ to be such a “clump”
of the magnetic field. Its length-scale is denoted by £.. This {} may have a complex topology.
We want to find a constant-)\ Beltrami field in 2. If the parameter A can be chosen such that
Al € A; = O(£;1), then equilibration of the clump into such a Beltrami field results in a lower
bound for the length-scale [26]. Here we solve the Beltrami condition (2.19) for a given helicity
and an “external magnetic field”. The external component of B is defined by decomposing
B = By + h, where VX h = 0 and V-h = 0. This h, which represents the magnetic
field rooted outside 2, is assumed to be a given function. Its complement Bg is the unknown
variable. We define the gauge-invariant helicity by

K = / A-Bydz (3.27)
Q

We prove the existence of a solution with |A| < A, = O(£7!) for every h # 0 and K in the next
section (Theorem3). The nonvanishing k plays the role of symmetry breaking.
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3.5.3 Spectral resolution of curl operator

The constant-A Beltrami condition (2.19) is regarded as an eigenvalue problem with respect
to the curl operator. Interestingly, the topology of the domain plays an essential role in this
eigenvalue problem.

To study the spectrum the curl derivatives, we need the fundamental theory of vector function
spaces. Let Q (C R®) be a bounded domain with a smooth boundary 892 = UL, I (F; is a
connected surface). We consider cuts of the domain Q. Let Iy, -, Ly (m > 0} be cuts such
that £; N E; = @ (i # 7), and such that 2\ (U2, E;) becomes a simply connected domain. The
number m of such cuts is the first Betti number of Q. When m > 0, we define the flux through
each cut by

R e

where n is the unit normal vector on I; with an appropriate orientation. By Gauss’s formula,
&y, (u) is independent of the place of the cut T, if V-4 =0in @ and » - u = 0 on Q.

We denote L*(f2) the Lebesgue space of square-integrable (complex) vector fields in €2, which
is endowed with the standard innerproduct (a,b). We define the following subspaces of L} (Q);

LA ={w; V-w=0inQ, n-w=00n8%, g, (w)=0(=1,---,m)},
L) ={h; V-h =0,V xh=0in$, n-h=0o0n a0},
Ly(Q) = {V¢}.
We have an orthogonal decomposition {15]
1Y) = LE () @ L(2) & L3().
The space of solenoidal vector fields with vanishing normal component on 9 is
L3() = LE(Q) & LE (D).

The subspace L% () corresponds to the cohomology class, whose member is a harmonic vector
field and dimZ%(Q) = m (the first Betti number of 2). When Q is simply connected, then
m = 0 and L}(92) = 8. We have the following theorems [20].

Theorem 1 Let ! C R® be a smoothly bounded domain. We define a curl operator S in the
Hilbert space LE(S2) by

Su=Vxu, DS)={ueclli(Q); VxueliQ)}

Then S is a self-adjoint operator. The spectrum of S consists of only point spectra 0,(S), which
is a discrete set of real numbers.

Theorem 2 In L2(Q) we define a curl operator § by
S$=Vxu, D) ={uweli(®); Vxuell(D}
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(i) When dim L%(Q) = 0, i.e. if Q is simply connected, then S =8, and hence, the spectrum
o(S) = op(S).

(it) When dim L%{(Q) > 0, t.e. if Q is multiply connected, then S is an extension of S. The
spectrum o(8) consists of only spectra o,(S5), and 0,(8) = C. Hence, for every A € C,

(S-Mu=0 (3.28)

has a nontrivial solution.

Theorem 2 proves the general existence of the constant-A Beltrami function for every A € C,
if Q is multiply connected. In the next theorem, we solve the constant-A Beltrami equation
(2.19) for a given helicity X and harmonic field & € L%(£2). Now X is an unknown variable.

This problem is related with the magnetic clump discussed in Sec. 2.

3.5.4 Topological genus and topological symmetry breaking

We assume that € is multiply connected. Let {¢,} be the complete set of the eigenfunctions of
the self-adjoint curl operator & (Theorem 1). The corresponding eigenvalues are numbered as

e ha S p <0< S pg € (3.29)
For every B € L2(f1), we have an orthogonal-sum expansion

B(a,t) = ¥ ¢;(t)e;(2) + h(z,1), (3.30)

7

where b € L%(Q). The harmonic field k is a given function, which plays an important role of
“symmetry breaking” in the following discussion. The first summation in the right-hand side

of (3.30) is denoted by Byg. The energy of B is given by

W= %;.:j! + %nnn?. (3.31)

There exists g such that A = V x g. The vector potential of B is given by

o
A:Zﬂ—’_tpj—}—g. (3.32)
J 2

Denoting D; = (¢;,g), the gauge invariant helicity (3.27) becomes

1 1, ¢
K==(A,Bg)= = A ci ). 3.33
.2( ,Bz) 2;(% + Dje;) ( )
For given K and h, we can solve (2.19) by the variational principle (W — AK} = 0, and

obtain
Al

¢ = ij (V) (3.34)
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Figure 3.3: Typical graphs of the energy W(A) and the helicity X(A) (arbitrary units). For
every Ky, the equation K()) = Ko has a unique solution in the range of u_; < A < .

The energy and the helicity become

W = 28( /\)2 Pt glaR, k= ZA:E,(E#_JA)Z)D?' (3.35)

We can show that K is a monotone function of A in the range of p_; < A < p; (see definition
(3.29) and Fig. 3.3), if D; # 0 (3j), viz., if we have a “symmetry breaking” h # 0. For every
x € R, the equation K(A) = « has a unique solution in this range of A. Now we have the
following theorem.

Theorem 3 Let Q (C R3) be a multiply connected bounded domain. Assume that h (€ L4(Q))
is finite. For every k (€ R), the Beltrami condition (2.19) has a unigque solution B such that
its helicity K = k, and A such that g1 < A < .

3.5.5 Invariant measure and statistical ensemble

Using the phenomenological variational principle (W —AK) = 0 (Sec. 2), we develop a statistical
mechanical model that reproduces the constant-) Beltrami field at the “zero temperature limit”.
A finite temperature (in the sense of MHD fluctuation) equilibrium includes fluctuations. The
statistical theory predicts the spectra of macroscopic physical gquantities such as the energy,
helicity, etc.

A key step is to find an invariant measure of the temporal evolution equation. It corre-
sponds to Liouville’s theorem in the Hamiltonian dynamics. Montgomery et al. [10] used the
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“Chandrasekhar-Kendall functions”, which are the eigenfunctions of the curl in a cylindrical ge-
ometry {2], to expand the solenoidal vector fields B and v, and defined an infinite-dimensional
phase space spanned by the expansion coefficients. The formal Lebesgue measure is shown to be
invariant against the nonlinear ideal (¢5,¢; — o0) dynamics. The completeness theorem of the
eigenfunctions (Theorem 1) gave a mathematical justification of the expansion, and generalized
the Hilbert-space approach for an arbitrary geometry. An important development in recent
work [6] is the treatment of the harmonic magnetic field, which brings about a symmetry break-
ing associated with a topological constraint. When we consider a multiply connected domain,
the harmonic magnetic fields, which are rooted outside the domain, are represented by the co-
homology class. If we impose the ideal conducting boundary conditions, these harmonic fields
are invariant. The rest orthogonal complement spans the dynamical phase space. The invariant
harmonic component plays the role of an externally applied symmetry breaking. Interestingly,
this term yields “power-law spectra” of the energy, helicity and helicity fluctuation. It is easy
to verify the following proposition.

Proposition 1 (Invariant Measure) Let v(z,t) be a smooth vector field in ). Suppose that
B(z,t) obeys

6B =V x(vx B) inf, (3.36)
nXx{vx B)=0 on Q. (3.37)

Using the eigenfunctions of the curl operator ¢, and the harmonic field hy, we write B(z,t) in
the form of (3.30). Then, dC = []; de; is an invariant measure.

(proof) By the boundary condition (3.37), we observe dé,/dt = 0 (V£). Using (3.36) and (3.37),

we obtain

d
P (Vx(vx B),p;)=(vxB,Vxg;)=XvxB,g,)
= A |2 erlo X @) + 3 el X hayip))| (3.38)
k =1

Since (v X ¢;) -, = 0, we find d(dc;/dt)/dc; =0 (Vj). Hence the measure dC is invariant.

(Q.E.D.)

The ansatz of the variational principle 6{W — AK)} = 0 suggests that two additive quantities
W and K are the relevant state variables that characterize the statistical equilibrium. The
possible ensemble consistent with this variational principle is the Boltzmann distribution

P(W,K) x exp[-B(W — XX)] (3.39)

where 3 is interpreted as an inverse temperature of the magnetic field. The helicity and the
energy of each mode is (cf/yj + Dje;)/2 and c?/2, respectively. The Boltzmann distribution
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for the amplitude ¢; is

P; « exp {—E (cf - -)\—cf - /\ch,-)] : (3.40)
2 Hj
The ensemble averages of W and X over the phase space become
[ . AZy?
K Ky 2
W) = + D?|, 3.41
W)= 2 |50 0 ¥ 8, - V7 Jl (341
[ 1 Aui(205 — A) o
K= + J d D). 3.42
e ZJ: 28(n; — )~ B(u; — AP (3.42)

These results are compared with (3.35). The first term of the right-hand side of (3.41) and that
of (3.42) are the contributions of the fluctuations. In (3.41), the energy of the harmonic field,
which is constant here, is omitted. This classical statistical model suffers from the Rayleigh-
Jeans catastrophe, viz., when we pass the limit of the infinite summation over the all modes, the
fluctuation terms diverge. To avoid this divergence, we can appeal to the Bose-Einstein statistics
with second-quantizing the mode amplitude ¢; and defining bosons MHD fluctuations [6].
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