UNITED NATIONS EDUCATIONAL. SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL ATOMIC ENERGY AGENCY @)
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LC.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

B

H4.SMR/1013-3

SCHOOL ON THE USE OF SYNCHROTRON RADIATION
IN SCIENCE AND TECHNOLOGY:
“John Fuggle Memorial”
3 November - 5 December 1997

Miramare - Trieste, Italy

Synchrotron Radiation

Mikael Eriksson
MAX - Lab, Lund University
Lund, Sweden

MAINBUILDING STRADA COSTIERA. 11 TEL. 2240111 T ELEFAX 224163 T ELEX 460392 ADRIATICO GUEST HOUSE V 1a GRIGNANO, 9 TEL.224241 T ELEFAX 224531 TELEX 460449
MICROPROCESSOR LAB. Via BEIRUT. 31 TEL 2249911 TELEFAX 224600 TELEX 460392 GALILEO GUEST HOUSE VIABEIRUT, 7 TEL.2240311 TELEFAX 2240310 TELEX 460362
ENrIG FRRMI BIEDING  ViA BEIRUT. & (TELEPHONF. Fax AND TELEX THROUGH MAIN Rinrnmc)



Synchrotron Radiation.
Mikae!l Eriksson
MAXlab
Box 118, S-221 00 Lund, Sweden

Introduction.

A full and exact treatment of the properties of synchrotron radiation is a pretty
demanding task for the teacher as well as for the student. Trying to give sucha
treatment in the limited time for this course should imply that we were to rush through
the material with little time for discussions and interpretations.

I have thus rather chosen to transmit a somewhat more intuitive picture of synchrotron
radiation which mainly is based on the Lorentz transformations and diffraction, both
effects often taught at the high-school level. The hope is then that you will remember
this picture if you in the future will rather be using the synchrotron radiation than
calculating its characteristics. For the future expert in synchrotron light generation, it
might serve as a tool when going to more elaborate studies.

1. Classical Dipole Radiation.

A charge is situated as shown below at =0. The electric field lines are distributed
homogeneously in space. The charge is then suddenly accelerated downwards. If we
now freeze the picture at time t=r, the field lines will move with the charge. Ata
distance L=c 1, we will still have the old field lines, since the new signal is
propagating with the speed of light. We will thus see the vertical field component
moving outwards from the charge with the speed of light.

This moving vertical field will then induce a circular magnet field around the charge
and we have an electromagnetic wave moving outwards from the accelerated charge.
The original vertical electric field lines will remain unchanged and we can thus expect
that no radiated power is emitted in the vertical direction.

q at t=0

9Jd field lines
Qi >

new field lines

Fig. 1. Electric field from an accelerated charge.



From this, we can suspect that the outgoing electric field component can be written

E «<qacos@ where ais the acceleration of the charge and 0 is the angle to the
horizontal plane.

The total power emitted is proportional to the square of the electric field or more
exactly
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From this we learn:

1. The outgoing electric field vector is parallel to the acceleration.
2. The radiated power is proportional to the charge squared.
3. The intensity distribution looks like:

Fig. 2. Dipole emission power distribution.



2. Relativity and 4-vectors.

Synchrotron radiation (SR) is a relativistic version of the classical dipole radiation. To
get the power, spectrum and angular distribution of SR we need a convenient
relativistic formulation.

7 a. Classical transformations (v<<c).

Fig. 3. The two co-ordinate systems.

Let’s assume we are in the (x,y) system. Another co-ordinate system is moving along

our x-axis with a constant speed v. If someone in that moving system were to measure
a yardstick placed at rest in our system and also need some time for the measurement,
he (she) will measure a shorter distance than we in our system.

We write this in the following form:

X =x-vt
Y=y
=t

We put this in the matrix formulation

1

x 1 0 x
yi={0 1 0]y (2)
t 0 0 1/t

-V



2 b The Lorentz transformation in the matrix formulation.

The Lorentz transformation is given by

1

x'= s (x——ﬁt)
y'=y 3)
z'=z
.. B _Y
r'= - (r C) where ﬁ—c

We will now introduce the 4-vector (r)=(x,y,z,ict) and write the relation above in
matrix form

X y 0 0 ifyi(=x

V' 0 1 0 0|y 1

17 o o i , where y = -y (4)
ict' -ify 0 0 y J\t

When working with synchrotron radiation, ¥ =~ 10> — 10*. We can then often

A 4-vector (r)=(x,y,z,ict) is invariant under Lorentz transformations, that is its length

Ir| = sz +y* +27 —c’? is constant in all systems. (To prove this, just apply the
Lorentz transformation to the vector (r).)

A special 4-vector is the “proper time”

5 x2+y2+z2 ﬁ t
T=4jt' ———F5—— =yl =—
c c ¥

The proper time, that is the time measured in the rest frame system, is thus conserved
in all systems. In the rest frame system 1=t.




Now we can define the 4-velocity

U=

dr dr(dt

;1-; = -&; E;) = (Fy.icy)

The 4-velocity must also be conserved under the Lorentz transformations since it
consists of the ratio of two 4-vectors which don’t vary under the Lorentz
transformations.

Then, the 4-momentum

p=muu=(myv, MGV MGV, ICTM,) (5)

must also be 4-vector since we only have multiplied the 4-velocity with a constant
m,. ymyc’® is the total energy E.

We multiply a 4-momentum with ¢ and get

\K(ymocz)z_ﬁzcz)z [E? _pic? = E, =mocz (6)

We have thus the relation between total energy, momentum and rest energy.

Finally, we can now define the 4-force:

FE——=—'—;=()/:1}‘}"E_‘;;' ‘ (7

which also is an invariant.

3. Radiated power at relativistic velocities.

Let us rewrite (1) to
L1 (@) :
T3¢ mi \dt ®
This is the classical formulation. We now suspect that this classical expression is only

o dp : dp
an approximation and replace I force with the four-force I7) These
T
expressions are of course identical in the rest frame system. Assuming that the energy

L dE o
loss by the particle is replaced (-d—t =0 ), we get the relativistic expression
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T 3m] dr

For a charged particle in a magnet field

dp _ ymgv’ - yme e’

a p P
so we end up with

2q9%¢c
P= —3;3'13'7‘ (10)

In more comfortable “engineering” units we get the energy loss/turn of an electron in
a storage ring

E*(GeV)

keV)=2885
AT =885t

Iy

4. Angle distribution.

We showed earlier that for the classical case
dP < g*a’ cos® 856

The power is then peaked within +- 1 radians.

We can now use a Lorentz transformation to see how this angle transforms when
moving from the rest frame (unprimed) system to the lab system (primed).

. ,cosé (. cosf)
P, ho c ¥ 0 0 iﬁ}’ hU_““‘_c
o, ,siné 0 1 0 0 cosé
Dl = H| AT (12)
P 0 01
2 Ou' j 00 Ou
e ih— =iy Y ih—
¢ ¢
Thus:
v'cosd' = yu(cosB—-ﬂ)
v'singd'= vsinv (13)

This gives us the Doppler shift

v'=2yv for O=n, p=1 (14)
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Fig. 3. Light intensity distribution in rest frame and lab frame systems.

5. Energy spectrum.

Fig. 4. Wave-front from a relativistic electron.

A relativistic electron is bent in a magnet field. Let’s look on the light waves emitted
at the points a, b and c. The electron, being relativistic is moving close below the
speed of light. When the electron is situated at point ¢, the wave front emitted at point
a is situated at the point a’, the distance a-a’ being somewhat larger than the distance
a-c. The same applies to the light emitted at the point b, but the difference in path
length between b-b’ and b-¢ is somewhat smaller.

The snapshot shown above when the electron is situated at point ¢ shows us the
wavefront being the sum of all previously emitted waves ¢-b’-a” which is bent to the

right.



Let us now look at another snapshot where we look at a storage ring with only one
electron circulating from above.

Fig. 5. Snapshot from above of the light emitted from a circulating electron.

As the particle rotates in the ring of circumference O, the light will be emitted in a
spiral D with the distance O between the turns. An observer looking into the storage
ring from the side will thus see light flashes of a frequency ¢/O.

To find the wavelength of the emitted light, we now calculate the width of the wave

front. {é‘”[—: § ~ai

!/f}o

Fig. 6. The observers view of a radiating electron.



We remember that the angle of emission, which is typically 1 radian in the rest frame
of the electron, is reduced with a factor ?;7 in the lab system. The light from the
electron can thus only hit the observer when the electron is situated between the points
a-b, that is over a distance f . (This distance is in most cases just a mm or 50). Now

we look at how much the electron is lagging behind the light emitted at point a. This
path length difference must be

P P .
A =5(1- B} = — since y>>1

The observer will see light pulses of width A separated by the distance O.

>
-

Fig. 7. Pulse train from the electron in fig S.

Looking now for the harmonics to the rotational frequency we notice that we have
harmonic coefficients of equal magnitude until we approach wavelengths comparable

with the pulse length A = —;13 , the cut-off wavelength. A more strict treatment defines
the critical wavelength

4z p
1 = 16
(3 3 }’3 ( )
Half of the total power radiated at wavelengths shorter than the critical wavelength,
half at longer.
The intensity spectrum is shown below.
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Fig. 9. Synchrotron radiation spectral distribution .

6. Angle of emission.

We have shown earlier, that the angle of emission at the critical wavelength is 1/y by
using the Lorentz transformation. We will now look into the angle distribution

somewhat more in general.
Lt’s assume we have a long light source, it could be an undulator or the part of a

dipole source visible to an observer.

chsarve”

Fig. 10. Light emitted from a long, thin light source.

Let us assume that the light is emitted within an angle 0. The observer will then see
the as it came from a shining disk situated in the middle of the line source. This disk
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has then a diameter d=L6. We will then use the Frauenhofer diffraction relation which

tells us

dsin@=df=A

d=18 (18)
which yields
o [
VL
(19)

d=~LA
Let us now take the case of bending magnet radiation:
L=p8

A !
yields 8* = ; or G« A}

Since B=1/y at the critical wavelength we get

1

0= —1-( A )E 20
= \7. (20)
7. Matching.

Some figures of merit for a synchrotron radiation ring are flux and brilliance. The flux
@ is defined as
n, . .
QO=—""77 expressed in photons/(s, 0/00 energy spread, mrad horizontally)
5,0/00 R Y

The brilliance (brightness) B is the flux density in phase space defined as

ny :
B= expressed in

AE
50/00=-,2,,%,.3,. T,

x2Sy

photons/(s, permille energy spread, mm?, mrad’)

%, is the RMS sum of the electron and photon beam sizes (i=x,y)

_ 2 2
z, = ,/0',.', +0;;
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and X', is defined likewise for the angular spread.

The flux is mainly defined by the circulating current, the number of emitting poles
and the electron energy.

The brilliance case is somewhat more complicated. Let us first consider the electron
and photon beam emittances.

In the electron case we have

&, =0,0",, ,theemittance being defined by the lattice parameters. The photon
emittance is given by

A .
=0,,0,,= I (for gaussian distributions).

The photon emittance is defined by the diffraction as discussed earlier and is given by
the radiation wavelength only. If we are to maximise the brilliance from a storage ring
we need to decrease the electron emittance down to the value given by diffraction. If
we are operating in the x-ray domain, say around 1 A, we need an electron emittance
of 10" rad m, which really is a challenge. Third generation light sources have an
horizontal emittance of 10? - 10 *® rad m and a vertical emittance some two orders of
magnitude smaller.

The situation is somewhat different for VUV and soft x-ray rings, which have similar
electron beam emittances but the photon beam emittance is naturally orders of
magnitudes larger than in the x-ray case.

In this context we should also point out the potential of linac-based electron sources.
The electron beam emittance is reduced during the acceleration as

£r

£, . .
&=~ where an optimised electron gun can achieve g, around 10 rad m. An x-ray
4

diffraction limited linac source then needs an electron energy of at least 10 GeV while
some GeV is needed for a VUV soft x-ray linac. The emittance demands on a IR linac
are more relaxed.

A small electron beam emittance is however not sufficient to optimise the brilliance.
We also need to match the diffraction defined beam size and angular spread to those
of the electron beam. A striking example is to compare the brilliance from a dipole
magnet to that from an undulator.

For this purpose, we can use the parameter numbers for the MAX II ring:

€= 10°radm Bending magnet Straight section
Ope = 0.1 mm 0.3 mm
o', = 0.1 mrad 0.03 mrad
gy,e=10""rad m
Oy = 0.03 mm 0.014 mm
o'y~ 0.003 mrad 0.007 mrad

= 3 mm 25m
A=] nm

o= 0.0002 mm 0.004 mm
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Fig. 11. Electron and photon beam emittances (horisontal).

We can see from fig 11 above, that the matching in phase space between the
diffraction induced photon emittance and the electron beam, emittance is poor. The
overall emittance must be transported down the beamline and we have diluted phase-
space a factor of four. The situation is even worse in the vertical phase space where
we have a dilution of a factor of 100.

If we now turn to the undulator case, we notice that the angle of emission of the
emitted light is decreased considerable, due to the longer light source. The situation is
also shown above for the horizontal phase space and we have no dilution at all. The
dilution in vertical phase space is a factor of two only.

The undulator source brilliance is increased compared to the dipole case of two
reasons; first we can use some 100 undulator poles and second the matching is some
factor 100 better. We can thus expect the undulator brilliance to be some four orders
of magnitude higher than in the dipole case, provided we have a relatively small
electron beam emittance.
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Below, we see the brilliance curves for the MAX [ and MAX II storage rings. The
undulator brilliance is as pointed out above some four orders of magnitude higher than
12400

A

that from bending magnets. The abscissa is given in energy units (£, =

10w BRILLANCE {ph/(s,mradee2,mmes2,0.1 %))
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Fig. 13. Brilliance from dipoles and undulators in MAX 11
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