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1 Introduction . - TR
Magnetic effects are distinguished for the different directions of the magnetisation or the applied

In optics wavelength dependent differences in the absorption of light arc observed illuminating a magnetic fieid The magnetisation can be applied in the plate of light incidence M’Pr perpendicular 10 it
birefringend crystal by light inearly polarised in two orthogonal directions. This phenomenon is called
dichroism for crystals with a single optical axis (uniaxial crystal) or trichroism in the case of two

M*™, or parallel to the surface normal M. The photon polarisation Is classified according (o the

optical axes (biaxial). In strength, the polarisation of light has to be paraitel or perpendicular 1o the components vectors of the Stokes-vector. Sy gives the inearly s, p polarisation in or perpendicular (o
optical axis, respectively. All other cases are called pleochroism if the polarisation has an arbitrary the plane of incidence. Sz corresponds to the linearly polarisation that Is aligned with +45° (RLP) or
direction with respect 1o the optical axis {1.1]. This so called dispersion of polarisation is the color- —45° (LLP) to the plane of incidence and S3 characterises the circular polarisation with right (RCP,G")
decompositionof light in different directions in crystals. or left (LCP, 07) handed helicity.

In angular resolved photoemission Spectroscapy. a difference in the photoelectron intensity or the
differential cross section is obtained if the polarisation of the incoming photons is varied.

A strong difference in the angular resclved intensities can be obtained exciting the photoelectrons by Effect switched fixed

circularly polarised light of opposite helicity. Tnitially, Ritchie [1.2] used the term .Circular Dichroism . . CDAD Sy; RCP-LCP

in the Angular Distribution of photoelectrons”, or in short CDAD, for the difference of the differential LDAD S, RLP—LLP Geometry

photoemission cross-section for excitation by right or left-hand circularly polarised photons, respec- .

tively. The circular dichroism in the angular distribution of photoelectrons was later theoretically Si; sp

predicted by Cherepkov to occur for oriented molecules simply in dipole approximation. The effect was MCDAD Ss

first experimentally verified by the group ofSchonhense. MLDAD 5 Magnetisation
+ &

If the photoelectrons are excited by linearly polarised light differem intensities are observed. The case Si M* MM

of switching the polarisaton from parallel to perpendicular with respect (0 the quantisation axis is well CMDAD Sy; RCPor LCP

known. 1n close analogy to the case of birefringence we call this effect Dichroism in the Angular Distri- LMDAD Magnetisation $y: RLP o LLP

bution {DAD) of photoelectrons. Another Case. where the polarisation is switched between two orthogo- M2 MP M MH_’M% S

nal directions 1wisted by 45° with respect 10 the quantisation axis has not been treated explicitly but is ' ! : !

included in the work of Cherepkav and Schonhense{l.3). Below we will show that this leads to results UMDAD unpoiarised photons

very similar 1o that obtained from CDAD and therefore we call it Linear Dichroism in the Angular
Distribution (LDAD) of photoelectrons.

Another type of 50 cailed dichroism is obtained from magnetic materials. [n this case the electronic The manifold of different effects and possibilities for variation of the quantities are used suceessfully

states are oriented by a magnetic Oeld leading (o differences in the angular resolved hotoemission .
y g 8 g P in experiments by a lot of groups. Angular integrated of photoabsorbtion techniques like MCXD will

intensities if the sign or the direction of the magnetisation is switched. The effects are classified by

CMDAD or LMDAD depending on the kind of photan polarisation. Recently Cherepkov has shown not be described here.

that there is 0o need to use polarised light to observe Magnetic Dichreism in the Angular Distribution

of photoelectrons. For filled shells of free atoms CDAD cannot occur in pure atomic theory, because any filled shell fias a

New types of insertion devices at the synchroiron facilites make it possible 1o work with elliptically spherical charge distribugion, even the j-splitted subshells in the case of 'spin-orbit_imeraguon. Sdn the
polarised light and the polarisation can be chosen very arbitrary (for instance: elliptical Undulator at other hand differences in the spmresol\:ed inensities c_an be Ubs_mﬁ,!' ms effect will be d.lSCIIJSS ) s 8
ALS. helical undulator at ESRF, and crossed undulator at BESSY). This opens a very wide fietd of pew class of CDAD the so called Spindependend Circular Dichroism in the Angular Disuibution of
new photoemission experiments by changing the lincar Or circular pant of polarisation or both at once. photoelecurons(SCDAD).

Below we give a single theoretical description for the angular resolv ed photoerission excited by We willlswn with the phmoemjssio.n (P_E) frgm free oriem?d or a.ugned atoms and finally we show _ror
arbitrarily polarised light. We will summarise all these phenomena by the term F1 cochroism in Photog= ?: vi}() gmple case !hal 2 surface is dlCl'll'OI.C or plenchrm(_: by nself.. The latter means. ;nﬁr?mams
mission (PIPE). The splitting of m, Jevels that is Dot secn in intensity Speclroscopy can be observed by D. in the case of initial states with spherical symmetry if an atom is adsorbed at a solid surface.
use of polarised light due to their different arientations as observed recently by Kisker in experiments We calculate the photoemission cross section from Fermi's golden rule and use the dipole approxima-
and theoretically explained by Cherepkov. Similar results may be obtained if crystal Seld spliting of tion in the relationship as used previously by other authors [1.6),(1.7]. The photoelectron intensity for a
adsorbed atoms occurs. Therefor we suggest that the observed effects in angular resolved photoslectron transition from a bound initial state ¢i= Pnis 102 free photoelectron final state qﬁ; = qﬁE ¥ excited by
spectroscopy from surfaces and adsorbates using polarised light are rather plecchiroic than dichroic. . L . - . b

a photon with energyhy is given in one electron approximation by: -

The term Dichroism originates from optics: it describes the different interaction of matter with light of
two orthogonal states of polarisation. Meanwhile much work deals with the polarisation dependence of

- - 1
(b, A7 77 Tlows)
the photoemission cross-section and the effects arsing from the orienation of the system under Eun

19.9)= L (Ew) = ¢,

progress by magnetic ficlds are included. Following reference [1.4], a classification of the observed 19.0) _ ] <¢ I _E) . —?|¢ > 2
effects will be given here. The basic distinctions are that of magoetic and non-magnetic effects or the P =Co En ndx
different polarisation of the photons. _4n-a-af
Ca==—3 ° hy
5
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A and p are the vector potential and the total momentum of the electron, ? . ";) =p is the dipdlc- -
operator. It is assumed that the vector potendal keeps constant so that

- End
?OA =V-A=O

vanishes. The unit polarisation vectot _e) is extended to describe elliptically polarised light, what is
discussed below in detail. 2p=0.579166A is the first Bohr-radius and c=1/137 is the fine-structure
constant. The polarisation vector does not depend on the integration variables and therefore can be
separated from the ransition matrix-glement;

19.0) = T+ (] Plol

From the equation it is seen that the photoelectron 10ss section can be described using produgts from
the components of the polarisation vector.

- da

- 2! . . .2
!(g)zm“ E'Cl =|5xgx+£:f‘;y+'5zczl

where €, are the real (x.z) and complex {y) components of the polarisation vector describing eltipticaliy

polarised light. E,(8.@) are complex functions describing the photoelectron wavefunction and therefore
the angular distribution of the emitied photoelectrons. The transition matrix-element is separated in 2
vector whose components are excited by the corresponding parts of the position vector. Each function is
produced” by the corresponding part of the dipole operator or the positioa vecior, respectively: &; by
£xtx By by €40y and &, by e, They depend on the initial and final states and are discussed in more
detail in chapter V. Solving and interpreting this equation will be the main pan of the present work

We simplify the expression by 1aking only the y-component of the polarisation vector as complex and
assuming the x- and z- components to be real. The explanation for these assumptions o be correct 1S
given below. In a length representation ihe matrixelement describing the angular dependent amplitude
of the outgoing photoglectron is given by:

- Ex C‘xr+|"q—zx

-3 I . - . ox
M.,r= el =) EpticEn [of Guti-in
[ Carti-Gu

(the prefacior ¢ is neglected here) The photoelectron current is propartional 10 the square absolute of
{he matrix element that can be build by separation into its real and imaginary part, leading 10:

R(Miy) = Exfxr+5yr€yr"5yi¢'yx+51‘-fzr
IMiy = Exbm +€yr’fyi+5y|c'yr+5:fu
- 3
£ é

2
!«‘ =|M,-,l’=<R2(M._,}+32(M,,)

[t is seen that the sum of Two intensities leads 10 a simplified equation if they are calculated or
measured with differing sign of one of the &,-COmponents. As shawn below, these sums (or berter
differences) are the dichroic signals called CDAD in the case of switching the imaginary part of g and
LDAD in the case of switching the real part. The simplified expressioas are given by

7
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a) switching the real part of thegy-component fromey>0 10 gyr<0:

Tioap = I =1 & 2oy {260 RELE+2 60 REED)

b) switching the imaginary part of thegy-component fromey>0 10 £y<0:

Tepp = 1% =1 « 2-6p {2 20 B(ELD +2- 2 B(E1ED)

If we are able 10 show that these expressions do not vanish then we have an instrumentation that makes
it easler 10 determine the dynamical parameters in photoemission compared 10 measurements of the
complete differential cross sections for different type of polarised or unpolarised light.

One may think apout a further simplification by setting cne of the components either €: Of € (0 Zero, at
this point. Indeed, this is applicable in gas phase physics but unfortunately not generally in surface
phiysics. because it presumes that either light incidence ot electron emission is observed in a direction
parallel 1o the surface, as shown and discussed below. The first case (light incidence parailel to the
sucface for £,=0) is not applicable and the second (normal light incidence for €,=0} is in gas phase
physics onty useful for truly oriented states and in spin resolved obscrvations, Below it will be shown
that normal light incidence in emission from adsorbates or the bare substrate leads (0 a new Lype of
CDAD asymmetries.

For completeness we give the intensitics for fully lineaz ste.=0, £.=0) or p- (£,={(}) polarisaLicn, 0.

)

2

]sqmt « “Evl *
s 1P ellEit 0 T =s

Lpopor = €M w6310 + 20D

AL irst sight (hese expressions look also simple. but nuke that we made no assumptons on the degree
of palarisation 1o derive icoap OF Iipap Whereds we used completely polarised light here. The intensity
for unpoiarised light car be found for example by adding (he intensities for two orthogonal polarisation
states (2.g. s- and p- polarised, or RCP and LCP) of the light incoherently:

I+ s
lo= ~5+ « -ZL-(s;lc,|1+

e et 2 e RELD)

Ey

whereas the intensity for any arbitrary elliptical polarisation has o include all four terms.

Multiplying out the components of the polarisation vector €€, we will find that the cross section for

arbitrary elliptically polarised light can be calculated using the components S, of the Stokes-vector
from:

I(ﬁ,t{)) =Cqg [S()Go + S\Gl + Sle +S3Gg]

The functions Gi(#,¢,8q) depend on Lhe transition [matrix element via the &-functions and on the angle
of photon incidence, as will be discussed in the main pan of this work.

In the following we will discuss these equations together with otter plecchroic effects. We will do this
from the experimentalise’s point of view and therefore have 10 give some remarks on the experimental
geometry, firstly.
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Fig. 1. “Natural™ handedness of a chiral molecule (a) and handedne
“induced” by a dissvmmetric experimental arrangement (b). Photon prop
gauon direction g. electron momentum & and molecular axis n define
handed coordinate svstem. Both {a) and (b) exhibit a lack of inversic
symmetry thus aliowing for circular dichroic effects.
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CIRCULAR DICHROISM OF ANGULAR DISTRIBUTIONS
OF PHOTOELECTRONS EMTITED FROM HEAVY
POLARIZED ALKALT ATOMS*

By R. PARZYR3SKI
Instltute of Physlcs, A. Mickiewlez Unlversity, Pomnad®®
{ Rerefverd Octaber 27, 1978, reviscd version received Febennry 12, 1979)

The angular distributions of photock itted froms the g I stnie of polarized

Iweavy olkall atoms, ars predicted 1o depend on the hellcity of the photon. The eifecty should

vecur, In the purcly eketric dipok approximation, for photon energies fram the reglon of

* so-called nonzero minlmum of the phololonkzation crosssccilon, Formulae are proposed
for experlnentui determinatlon of the frequency-deperlence of Fana's parmmeter ..

CDHAD appears ™ urclji;Polejpffok;Ma4iOh

—

1e 87, number 4 CHEMICAL PHYSICS LETTERS 2 April 1987

CIRCULAR DICHROISM OF MOLECULES IN THE CONTINUQUS ABSORPTION REGION

N.A. CHEREPKOV
A.F. foffe Physico-Technical Insriture, 19402} Leningrad, USSR

Received 7 August 1981; in final form 18 January 1982

The angular distribution of photoelectrons with defined spin polarization ejected from oriented optically active mole-
cules is derived. Circular dichroism in the angular distribution of photoelectrons from unoriented chiral molecules appears

already in the electric dipole approximation.
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Flg. 4.33. Angle resolved photoetectron spectra of
clean NI(100), curves at) and b1) and of a Ni(100}
surface cxposed 1o 3 L of CO, curves a2) and b2),
Photon chergy = 28 ¢V,

a) Nearly p-polarizavion, normal emission with two
upper curves;

b) s-polarization, nornmal emission with two upper
curves,

The insets in ench dingriun illusirute Lhe experimenial
conliguration, ¢, and &, denote the polar and
azimuthal emission angles; 0, specifies the angle
between A and the surface normal. Nowe thag the 5a

N (€} Counts per incident photon

and | x levels have changed order with respect Lo the -2 -B -4
833 phase. From Smith et al. (99). { £EK) Initial energy

CO/ N¢ ('{00)
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YOLUME 63, NUMBER 2 PHYSICAL REVIEW LETTERS 10 JuLy 1989 Theoretical studies in photoelectron spectroscapy. ivlolecular optical activity in the region
i of “continuous abse ption and .its characterization by tha anmaular dictribution of .
: . : photoelectrons Co :

Circular Dichroism in the Angular Distribution of Photoelectrons frnm-Oriented CO Molecules .
. i : "Burke Ritchie

+ G, Wesiphai, J. Baesmann, M. Getzlaf, 2nd G. Sciiduncnse - Ltz . Chemictry Daparoment, Unisersity of Alobama, Tuscaloosa, Alabama 15436

- Fakultdt fur Physik, Universitit Bielefeld, D—+300 Bielefeld, Federal Republic of Germany : (Received 30 Decomber (974, revised manuscript teceived & March 1975)
{Reszived 11 March 1989) . Tae phecomenon of molecular optical activity is examined Lo the region of continyous ab~

: sorption. When the “excited" seats of the molecule describes an infinite {loaized) system,
then the anguiar distribution of photoelectrons is the sum of coberent contributions corre—
spondieg to different magnitudes and Interfersoces of .[f, the asguiar momencum of the photo-
alectron. The amplitude for such a process is the sum of terms for each i; thus, since both
avsa and odd values of | can coexist at a single ezergy in the ¢ontiouous apectrum, the tlec-

- Thearetical predictions of a new phenomenon anising in photoelectron emission [rom orieated moke-
cules by circelarly polarized light have been experimenially verified for CO. For a special geometry . i

photociectron-intensity differences oceur upon reversal of photon helicity. The measurcd asymmetries '
(up 1o $0%) show good agrecment with an a3 initio caleulation 2t photan encrgies between 20 and 40 : fric amd magnetic dipols mairls slements cas coexist 1o this ampiltude, making posstble the
c¥. Theoreticaily, the new manifestation of circular dichroism is already obtained in the pure clectric e¥istance of tlectric-dipale—magnetledipale laterterance tn the npular distribution even for
dipole approai ion without incd of spin-orbit interaction, a molecule with a ceqter or plzne of symmetry, For discrate absorpdon, Lo which the jaten-
PP P s sity iz the surn of Incoherent contributions correspanding to the (atensities for populatiag the
R fine-seructure levels of a gfven exciléd stata, the coexistence of the electrie and magnetic di-
PACS numbers: 33.60.Cr. 33.53.4d. 33.80.Eh pole marrix elaments in th‘:lmpllmdc ts pas;tbll valy for a molecule with a site w:i‘::\ 1%

asymmelric with respsct Lo inversion or reflection; otherwise both sven and odd values of {
could not eoexist at 2 single energy (o the diserata spectrum. The signs of the siectric~-dipoie—
T TT T T T magnetic-dlpole Intérference terms are appasita for left and right circulacly polarized ligat;
o/ Pd (M) Pd &d thus there extsta a signal for the sogular distribution diffarence for absorption of left sod right
hv =307V ,".' circularly polarized light of order a celative to the aogular distribution for absorprion of llght
8 = 4LO° : of either polarization. This is just the phenomensa of "circular dichroism™ which character-
- izes molecular “optical activity” In the regicn of absorptivn, [t exists for the anguiar dlairi-
batfon of photoelectrons ejected from an orisnted molecule with 3 ¢ceater or plape of symmetry,
but vanishes for lactropic aystems @toms) owing to the |ndependence of the radial wave func-
Hoos from the magnetie quantum number. This easures the orthogocality of atcmic radlal
wave functions belonging to states of different »r apnd is responsibie for the selectica rule In
c D n D atomie spectroscopy that magnede-dipoie transitions are possible oniy between the fine-struc-
- K . tare levels of a girea multiplet. Measurement of the angular distributon characteristic foc
) g . : this process would provide 2 sensitive probs of the parameters of the (nital molecular orbite
al. The existence of eves-odd—type interferences of the parsial waves of the pholoeleciron
would provide a test of the time-reversal (nvariance of the wave fupction for the icnized sys—
tem, since these interferences depend on the sine rather than the cosine of the phase-saift
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I1 The co-ordinate systems

To avoid confusion we will give at first a description of the co-ordinates used.

1.1 The guantisationaxis

This work deals with photoemissicn from surfaces and adsorbates, so the first 10 do is defining a
proper axis of quantisation. In the theory of photoemission from aligned or oriented fres atoms and
molecules usually the direction of light incidence (for circularly polarised light) or the direction of the
electric field vector (for linearly polarised light) is used. This is not always useful in photoemission
from atoms or molecules oriented or aligned by adsorption on a surface. Here the surface normal plays
the role of a natural quantisation axis and therefore has (0 be used rigorously, From this definition we
have the z-axis of the co-ordinate system always parallet to the surface aormal, whereas the x- and y-
axes always are within the surface plane. [n the most cases, these axes can be defined with respect to
Jow index crysiallographic directons.

1.2 The Lahueratory Frame

Mainly influenced by the experimental sei-up we use the following convention to define the various

angles and vectors. Howeves, in some cases a problem arises from the definition of the polarisation by
Py

the photon momentum ? or the electric field vector E or 7 to describe the CDAD and the LDAD in

theoretical works, hopefully this is removed in the description below. For the experiments we need an

unambiguous definition of all vectors included in the laboratory system.

The X-Z planc is always the plain build from the photon momentum and the surface normai. 1n our
experiment this X-Z plane is defined by the plane of the BESSY storage ring {or the ESRF) this is also
the plane of incidence of the incoming photons. At BESSY the linearly potarisex light has the electric
field vector £ fixed in thus plane. This is called the Eq component. The Z-axis is parallel 1o the surface
— . - . .
normal 7. The X-Y plane lies in the surface and the X-axis is defined by a low index crystallographic
direction. This crystallographic direction is determined. if the sample is once build in the vacuum
chamber. Furthermore we are able 1o rotate the sampte around the surface normal to change Lhe crystal-
lographic direction. The usable angutar range is approximately Tsample=45°..,290°, depending on the
sample size. The veciors and the corresponding angles we use are defined in e figure (uppercase
letters are used 10 assign the laboratory frame).

11.2.1 Special laboratory co-ordinates

The origin 10 use this XYZ co-ordinate system is the rotation of the spectrometer we use. We measure
O with respect to the Z-axis in the XZ-plane and @ with respect to the XZ-plane.

§ is used for the unit momentum vector of the photons and it is always parailel (@ the direction of
incidence:

. sin(@ ) cos(Py) sin(@y)
§= I_%I = sin(Dy) £ 0
cos(B,)cos(d,) cos(@,)

The identity arises from the fact, that we have always thy=0 in our experiments. It is worthwhile 1o
L=
note that it may be more convenient in some cases 10 usc the angles that describe — g inthe laboratory

10

L
e R T

frame, namely @q1=—Pq and Og 1>, what is 2 definition like in oplics where one uses ¢t as angle
of incidence with@®q1=0~0q-T.

—_
The polarisation vector —5) is defined by the electric field vector E and describes the polarisation of
the light:

— £x cos{@,) cos(Ty)
7 = «% ={ Z“ } =1 ey ticy | = sin{T"g) explin)
’Ei + £z ~sin{@,) cos(l"y)

ey )l X,z is the component kying in the plane of the storage ring and g, | y is the component perpendicu-
lar to it. For a more detailed description see next chapter.

-
k. is used for the momentum of the emitted electrons:

N sin(@,) cos(P.)
k. =ka- sin(d,) vko = Vz*'neEkm

cos{e,) cos(D,)

11.2.2 The standard spherical co-ordinates

In some cases it is more convenient (o use the alternative co-ordinates xyz to describe the problem, this
is the case i we use spherical harmoncs Yo 0.9} of ihe motccular frame. We use these co-ordinates in
all theoretical calculations. The posilion vector is then given by:

sin{ 3) cos(y)
=r-F=r-4 sin{Hsin{p)
cosi 3}

For the unit vectors of the momentum of e electrons and the photons we have:

sin(9,)cos(p.) sin{ 34)
f,=1 sin(8)sin{pe) ¢+ G+ 0
cos(3,) cos(3g)

light incidence in thex-z plane is assumed here.

The angles are easily transformed by the following relations, if the co-ordinates xyz coincidence with
XYZ:

_ ,(sin2(¢)+cosz(¢)sin1(®) _ o = sin(9) sin{ @)
R =TT os(®) cos(@) D) 9 costle)  cosi(9)
tan(p) = [:2((3; ; tan(©) = tan( ) cos{g)



' However, there may be more complicated cases. We use the Euler angles w=(o.B,y) and the Wig-ua; :

rotational matrix if the two systems are rotated with respect to each other. This is the case where the
molecules are adsorbed at the surface with a tilt angle between the molecular axis and the surface
normal, for instance.

Please note that for arbitrary photon incidence the polarisation vector becomes very puzzling in spheri-
cal co-ordinates. In comparison to the laboratory frame we have:

{gy - £, $in(D,) ] cos(@,)
7 = £, cos(d,)
-[en +&, sm(dh,)] 51n(®,)
( €y —£.5in(8,) sin(p,)
| ,/cosz(S,)+sinz(9,)cosz(cpq)
= cl‘/cosz(s Y+sin?(3, cost(p,)
£+, 5in(8,) sin(pq)

cos(G,)

sin(8 ) cos(g,)
‘/cos ) +sin’(34) cos(iwg) ) Jl

Special cases of some other laboratory co-ordinate systems used to simplily the calculations will be
given in context with the discussion of magnetic effects.

GH.Fecher. Nov w, "

Orbital Frame
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I The polarisatlon of the photons

In this chapter we will give a description of the polarisation of the photons playing the most important
role throughout this work. Most of the properties of the photons can be found in standard textbooks on
optics [3.11,[3.2], therefore we concentrate more on the things necessary to describe the photoemission
process. We start with a more general description of the polarisation, namely elliptical polarisation. The
next step will be to examine the influence of the photon polarisation on the properties of the pleochro-
ism. In the remaining part we will discuss the influence of a mixed or incomplete polarisation. Such
effects can arise if the polarisation is changed by some optical components of the experimental set-up.
But, more important is, that the sample itself is able to change the properties of the photon feld, at least
inthe VUV range of impact energies.

1.1 Description of ellipticaily polarised light

We will start this chapter giving the apparatus (o describe the polarisation of the photons. As we have
seen before, we need the x-, y-, and z-component of the electric field or polarisation vector to describe
the photoemission process. On the other hand in most textbooks only two components of the eleg.ric
field are given and we have 10 find a way to get what we need. Usually the electric field vector E is
separated into two orthogonal components, that are always in a plane perpendicular 1o the photon

- .

momentum g . They are called the parallel p-component and the perpendicular s-component (s from
German senkrecht). The p-component is defined as the one lying in the plane of incidence, but this
makes the definition of a co-ordinate system necessary. We will use a slightly different definition that
follows from the experimental set-up in use. The raciation emitted from (the bending magnets at) an
electron storage ring is in the plane of the ring is polarised linearly with the electric field vector lying in
this plane. Therefor, it is most useful to define in close connection to our experiments the parallel
component to be lying in the plane of the electron storage ring 1. (Note: finally the pleochroism will not
depend on this definition. It is just given because its most illustrative.)

Using this definition the field vector separated into its components is given by:

2 _ JE|\_p ooz cos(ly)
E “{ E. }‘E ¢=E {sin(l",,)exp(mq) }

? is the polarisation vector and Aq is the phaseshift between the components that is needed to describe
elliptically polarised light, what is particularly the case if Ag=(). The angle I'q gives the relation between
the electric field vector components E; and Ey via 1an{[g)=E, V(Eyl, but says nothing about their orien-
tation in space. For later use, we define the direction of Ej being parallel to the positive x™axis and of
E, being parallel to the y™axis, if the direction of photon propagation is along the z*-axis (see chapter
II). ‘This ensures that we work only with right-handed co-ordinate systems. We find two special cases of
polarisation depending on the parameters Iy and Aq. These special cases are Aq=0 for linearly polarised
light and Aq=+1/2 with equal values of the E-componentsfor circularly polarised light.

We define the case with I';=r/d, Ag=+r/2 {Am=+], ¢”) as right circularly (RCP) and that with
Tq=n/d; Ag=—1/2 (Am=—1, ¢") as left circularly LCP) polarised light {3.3]

{Please note: a) LCP can be represented by [q=3/4 or [q=—m/4; Ag=+m/2; b} the terms RCP and LCP
depend on the direction of observation {3.4].)

1 A detail of the co-ordinates was shown in chapter 2. We will keep that definition for the cases where
we work at insertion devices or with a laboratory source (gas discharge lamp, ec.) . In the later case
we use the same port o apply the source.
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A easy we to describe the polarisation is the density formalism [3.5]. The intensity of the photon bcam
is given by: [~ E,E?+EyE} and the density matrix describing the photon polarisation can be calcu-
lated from:

(E.E) (E.E})

n= (E\ED) (EsE})

E.EN+(E\E})

The expectation values "<>" (that are time averaged ) describe the degrees of polarisation. By use of
the complex E-vector components we can calculate the different degrees of polarisation for circularly
and linearly polarised light. In the case of circularly polarised light we have:

po- (e -iEl) - (B +iES)  2-3mEED
" <iEI ""EJz) + (|E5+EEL11> h EIEII."'EJ.EI

From the definition given above we see thaRCP is described by Pejre=+1 and LCP by Peirc=-1.
The case of linearly polarised light is some more complicated because we can define two different
degrees of polarisation by:
2
{|Eal*) - BN EgE5-E.E:
. = = = . -
(lEu|2>+(|EL|2) ElEu""E*_E;_

2-E\E;
EVE} +E.EL

and
_ <1E1 +E;'2> - (|E|| —El12> _ 2-Re(E4EY)
“ <|E|+E1|2> + (IEI _ELII> T EVEy+ELET

The first polarisation term describes p-polarisation (Pr=+1) and s-polarisation (Pe=-1). In the case of a
complete linear polarisation parallel 10 the plane of incidence we have Pe+1 this will be named PP
light. For light polarised perpendicular 1o the piane of incidence we have Pre—1 or Py=-Pe=+1 what will
be called SP light.

The case of circularly polarised light can be understood as a coherent superposition of the s- and
p-componentbeing equal in magnitude and having a phase shift 08/2 between them.
The second term Pas looks very similar to Pei. therefore we dafine in close analogy right linearly

polarised light (RLP) by Pss=+1 and left linearly polarised light (LLP)} by P4s=—1. This case of polari-
sation can be understood as a coherent superposition of the s- and p-component being equal in magni-
tude without any phase shift. Below we will show that such kind of terms describe the LDAD in close
analogy to the CDAD,

The total linear polarisation is given by:
P}, =P} +Pis
By use of the degrees of polarisation we can rewrite the density matrix (o be given by:

_;(P‘U _I'Pcl'rr)
1+ %P

1- ‘%‘Pn
TPas+iPar)
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The index | indicates that we have totally polarised light and no part of unpolarised light.

We have seen, however, that we need in its general form only two components to describe the polarisa-
_.) .

tion, because £ has no component parallel to E’ Ta calculate the differential cross sections we need

the polarisation vector in the XYZ or xyz co-ordinates and we have to use 3-component vectors. First,

we assume an arbitrary direction of incidence and describe the photon momentum by:

. sin(9 ) cos(pg}
I_T:—'T =1 sin(8,)sin(y,)
cos(8y4)
and the complex polarisation vector by:
ex+icy [sn —£s s'm(lbq.)]cos(@,)
T =4 ertify t=4q €ucos(®y)
£z +iE7 [y + e, sin(®g) ] sin(@,)

where we made the choice that &, has always only a ;-component. For easier use we used here the
laboratory co-ordinates for the polarisation vector, the ransformation to sphericai co-ordinates was
given in the previous chapter I1. Experiments are done easiest if the plane of light incidence coincides
with the parailel component of the photon polarisation. This is fulfitled in our experiments where the
plane of light incidence is defined by the piane of the electron storage ring with the sample surface fixed

in a perpendicular plane and therefore we have in spherical co-ordinates withpg=0:

£x [ cosiBs) cos(Ty)
T =d ey tien p = sin(Tg) explifg)
£z ~sin(3,) cos(l'y)

and the degrees of pelarisation are given by:

Pore = 2 sin([g)ycos(Ty) sAg) = sin(2T ;) sin(Ag)

Py = 1-2sin¥(Ty) =2cos’ ([ -t = cos{2Ty)

Py = 2sin{T cos(Teleos{dy) = sin(207g) cos{ag)

Pin = = feos?(2F) +sin*(2F g) cos(By)

As shown above, the three polarisation components are described by only two angles, namely Tqand
Aq. Meaning that only two of the polarisation componeats can be changed independenty at Once:

Pore
lan(A,) = Pis
and
Pg,,,_-‘*'Ph _ P?l'f+P§3
tan(2lq) = ( pT TP +PL]
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Finally we like 10 express the polarisation vector in terms of the polarisation. Applying the relations
given above we calculate the polarisation vector using the degree of polarisation o be given by:

[ cos(8) /1+Py ] Pp=-l

N Pys - P PL=+]
i R
2 H1+PH ﬂ]+PH
—Si!'l(sq) ,'1+P|| J

For completeness, the latter refation is only nesded 10 avoid a division by Zero and to give &P
correctly but not to describe the differential cross section.

As shown in the introduction {see Chapter I and also below), we ne=d products calculated from the
different components of the polarisation vector to calculale the cross sections. These are calculated 10
be:

2 3L+ Pycos(8e)
eh +eh %(1_P|.)=%51—§,ﬁ
& L +Ppsin’(89)
2exEyr Piscos(B,)
2ExEr Pc,,CCOS(Sq)
dexEz 3L+ Ppsin(28,)
2eniz —P45 sm(Sq)
leyiEr ~P e SIN3 )
Nuies: 1) Fur Py =1 we have nio By terms, meaning that the polarisation vector is rect. Do not
confuse Pyn and Pu b) At 100% polarisation the CDAD is calculated from terms with
Por==1, the LDAD from Pass=x1, and the spDAD from Pexl. ¢) Do not use these equations

for totally unpolarised light with P;=0, because one has no well defined direction of the electric fieid but
an average on siatistically distributed directions.

Tn PE-experiments at surface it may not be comvenient 10 use an angle of tieht incidence parallel 10 the
surface (94=1W/2) due to the vanishing intensity and spread of the light spot. At normal incidence the
photon beam may be shut by the electron analyser in a certain range of angles making impossible o
determine a complete angular distribution of the ejected photoelectrons. A good compromise may be
therefore to set =174 making use of the symmetry properties of Sine and Cosine.

Until now we made no assumption on the total degree of polarisation that may be effected by unpolar-

ised light. The total polarisation is given by the sum of the squares of the three different degrees of
polarisation:

p= [Pﬁ+P§5+P§m_ =\/P42m+P(2'rrc

By use of the polarisation vector given above we havd=1.
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" A partially polarised state (with | P|<1) can be obtained by a superposition of a totally polarised and
a totally unpolarised part using the density matrix formalism:

_ 10 1 P
=(1-P)-po+P-p =1zE£ £
pr=(1-F)-po p="3 (0 l]+2[pz; pzz]

To include effects arising from partially unpolarised light another kind of the description of the photon
properties is very useful. The polarisation can be described by a 4-component Stokes-vector [3.6] that
is given by:

So=T pPutpn 1 ]
= Si=4aly i | APu-pn) cos?(Tg) —sin®(Ty) {
=) Si=Als puztpn 25in{T g} cos(ly) cos(a, ) |

Sy=dlax | [ {prz—pay | | 2sin(T4)cos(Ty)sin(ay) |

The two relations at the right using l=1 are only true for totally polarised light. To describe partially
potarised and unpolarised light. we have to drop the assumption I=1. that means the Siokes-vector has
to be used in its general form, this case is automatically included in the first form of the detinition for
the Stokes-vector in the equation above. In this case we define the different degrees of polarisation by:

p=S31/S0, Pas=S2/S0. and pre=S3So

We use the lower case p to assign that the (otal degree of polarisation is not longer uaity.

In the following we will apply the equations derived here to describe the pleoctiroism depending on the
photon properties.

.2 Photon polarisation and the pleachroic effects

We describe now the pleochroism without any knowledge on the particular kind of the photoemission
matrix element. That is we like to determine the properties of the photoemission process that depend on
the photon polarisation. Properties that depend on the electron mementum will be discussed later. We
assume that the Z, or §-functions exist and depend only on the electron momentum but not on the
properties of the photons, The later was already shown in the introduction. It is easily seen that the
equaton we presented at the beginning can be rewritten to be:

_)
() = z
L) 20,000 Z0.0)
€3]
= (1+PE)G|+([‘-P||)G_L+P4§G4S +Pc.|rchirc = Co
_ Anaead
Ce="73 hy.

where the functions Gp=Gp(1,§.1q,Pq) Gepend now on the electron and the photon momenum The
first two can be interpreted as differential cross sections for 100% s- or p-polarised light. The functions
G; can be calculated from the £-functions by determining the first line of the equation. The different
products of the polarisation vector have already been given in the previous chapter. Assuming a
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complete polarisation (P=1) and inserting the products from the previous chapter we find the
G-functionsto be given by:
Gy =1cos? ()18  + 3 sin?(84) - 1€, 17 —sin(29,) - R(E,ED)
=4 |2
G, =3¢l

G2=Gys =2- {005(9,) ~R(ELEy) ~sin{Iy) - ‘-R(‘f;fz)}
Gs=Gan =2-{cos(8,)- IEL) —sin(9,) - T(E2¢0)}

The first two functions are rather non symmetric therefore we combine them in a different way:

Go=Gy+G,y =Heost(9,) 1612 +]&,|" +5int(8,)- 212} - sin(28,) - (&.ED)
=G1 -G, =Heos90-16.17 6,1 +5in?(8,)- 1,12} - sin(28,) - R(&2D)

These two functions can be interpreted easily. The photoemission cross section for unpolarised light is
equivalent to an incoherent superposition of the cross sections for polarised light with Por==1, Pe=1.

or Pas==1, as seen from the equations above. In the case of 100% polarisation (and only in this case)
the photoelectron intensity for unpolarised light can be determined from the measurements with polac-
ised light;

J {1RCP 4 JLCPy
I

or (PP + 1Py = 2.(Gy+GL)
TP 4 ISP

2.

or

Using Go=Gy+Gy, G1=Gy-G1, G2=Gas. and G3=G. we find the final form of the equation describing
the photoelectron intensity depending on the degree of pularisation. [n direct relation 10 the Stokes-
Vector we have:

HP) =co-5o-[Go+ PyGy + PisGz + P G
=ce - [$0Go +51G ) + 5261 + 5G4 ]

To describe partially polarised and unpolarised light, we have to drop the assumption I=1, that means
the Stokes-vector has (o be used in its general form, this case is automatically included in the complete
form of the equatjon above. According 10 the density matrix formalism, the cToss sections in the photoe-
mission can be calculated by an incoherent superposition of a totally polarised and a totally unpolarised
part:
do _ . _ d da
&0~ G000 P G

Products of the overall polarisation P with the components of elliptical polarisation Pey are obtained by
the incoherent superposition of the cross sections, if P does not equal 1. Therefore. we define the
degrees of polarisation by pa=P*Pac and calculate the products needed by replacing the capital P's by
lower case letters in the equaticns given above,

P =(1-P)-Io+P-I(P)x Go+p |G +pasGr+p:C
18
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The intensity is proportional 10 cgSe. In this equation we have divided the photocurrent in an part
arising from unpolarised light (G} and a part arising from polarised light, if one of the Stokes-
components §, =0 is present.

Now, having a general equation of the photoemission cross-section depending on the polarisation of the
photons, we are able to determine easily the pleochroism.

We are now able to give a very simple deftnition of thepleochroism in photoemission (PIPE):

The Pleochroism in photoemission is the difference in the photoelectron intensities that is obtained
by switching the sign of one polarisation component:

lpe=1"-1
The three cases singled out are given by:
Lgoap = 17 =17 = 2:|py] -(Gy -G
lipap = R 2'|p45l-G45
ICDAD = !RCP_IL[P = 2'lpnrc| 'Gc:rc

In some cases it is more useful o give not the differences themselves. but some normalised quaniiues.
The asymmerries. that are the normalised pleochroic differences in the case of 100% polarisalion. are
given by:

_oprerpr _Gi-G G
Ampoan = IR T 53 G, T Go
4 e G o _ G2
ALpAd = g - G|}+GL T Gy

]RCP_IMP Gere _ _G_"
Acoan = 21y = Gi+G. ~ Go

. In more general, we define the PIPE-asymmetry by:

Appg = ‘;::_—;:'

Al the first sight it seems that the normalisation by I'+I" may not be useful if [P)2100% leading to
1"+ #2l5. Neverthetess. we will show below that this pormatisaticn has some advantages. [n some
cases it may be more convenient to normalisdpipe by the normal emission intensityl(9=0).

An important case is the simultanecus occurrence of CDAD and LDAD, as will be shown later. By’

switching the sign (notchanging the absolute value 1y of both components pas and pe al once we have:

A _ |E¢1G3t|245|61
PIPE — GO+P|G:

that becomes more simple if py vanishes. The double sign arises not from the switching of polarisation
but from the initial orientation Of Pss that can either be positive ar pegative. A similar expression can be
found for the linear case.

We have now a complete formalism to describe the pleochroism in terms of the photon properties.
Nevertheless. we have to show that the G-functions do not vanish. As the experience telis us that the
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photoelectron intensities are in generat different if we use different kinds of polarisaticn or unpolarised
light we can be sure that our work was not done for nothing.

From the properties of the G-functions we can derive some propertes of the pleochroism. An interest-
ing question is what conditions are necessary Lhat the pieochroism vanishes depending on the photon
incidence. We will use the CDAD as an example, the case of LDAD can be derived straight forward,
simptly by inserting the real parts instead of the imaginary paris occumming in the following equatons.

The CDAD is described by:
G5 = Gein & 005(F¢) - HE:L5) —sin(8) - T(E5E0)
It is easily seen that it varishes for the condition:
Tepap =0 o cos(3IEL) =sin(B,)3(E;5.) = wun(8)) =
assuming that at least ene of the functions J(. Sy =0 or 3(¢;¢:) = 0 does not vanish. Additicnaily
we find Zeros in the CDAD if 9¢=0.1 or [Og=/2 just if the first or second jmaginary part varushes.

That jeads to the conclusion that J(¢.Z;) describes the normal incidence (By=my and J(E;<c) the
gracing incidence(ithq/=m/2) propenies of the CDAD.




v The Influence of mixed or incompiete polarisation on the pleochroism

Up to now we implicitly made use that we describe the photons in vacuum and that we know the
polarisation. In this chapter we will examine what happens if the initial polarisation is changed by
effects that cannot be corrected simply by the performer of the experiment. Firstly, this is the change of
the polarisation of the synchroiron radiation by optical components, and secondly it is the change of the
photons by the sample under investigation itself,

iv.1 Perturbations of the photon polarisation by optical components

The polarisation of the photons used 1o excite the pholoelectrons can be altered by different processes.
In the case of reflection at absorbing metal surfaces different reflection factors ry and ry occur for the
parallel and the perpendicular components of the electric field vector as well as an additional phase
shift & between these components. Such reflections are observed at the optical components of a
monochromator changing the polarisation of the incoming photons as discussed in the following part.
Unwanted changes in the photon polarisation may be avoided by a careful arrangement of the optical
components. Nevertheless, one has always a reflection at the substrate surface itself that cannct be
neglected.

We assume that all reflections occur in the same plane with gq=0, for simplification. We make use that

Be=m—d4 for the reflected beam and find that the electric feld vector of the reflected photon beam is
given by:

- ry cost8,) cos(lo) l J -y cos(9,) cos(Tg)
E0 sin(Tg) etsodd L=y p) sin(Tg) gliderd)
° l -ry sin(3,) cos(Fy) J —ry sin{3,) cos(I'p)

{Index O is used for the polarisation of the primary photons.) In general, and especially for the
UV-range the reflectivitiesr are complex numbers.

As in the case of the incoming beam, the degrees of polarisation do not depend direcily on the angle of
light incidencedy;:

_ Inl’ cos®(To) ~Ir, | sin*(To)

Py, =
" ] eost(To) +Ir, i sin?(To)
p |rpllr.] - sin(2T ) sin(Ag +8,)
“ IrHIZcosl(Fg)+lrL|zsinz(Fu)
|Fylir.l - sin(2T) cos{Ag +3.)

P45.r =

|r|||2 cos2(Ta) +|r. |2 sin?(To)

On the other hand the reflection (or transmission) coefficient’s 1y for the p-component and r for the

s-component as well as the relative phase 3; between them depend on the angle of photon propagation.
They can be calculated in the Fresnel prescription. The coefficients become dependent on the angle of
incidence and therefore the polarisation depends on the light incidence. 10o. The complex law of refrac-
Uon (Snell's law) becomes  $in(3 ) = (n — k) sin(3,) if the photons cross the barrier from vacuum

10 the substrate (note that in the co-ordinates used the angle of incidence is a=t—n}. Using the Fresnel
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equations, the complex reflection coefficients and the relative phase can be calculated from Fresnel's
equations to be [3.11:

(n—ik)—fa

" RTif.

AL At
(n—ik)fa + 1

_ Jln=ik)? -sin®(8y)
fe= (m—ik}cas(9,)

The phase 3=8—5, can be calculated from the real and imaginary part of the reflection coefficients,

Far away from the surface the photon beam is described by the reflected wave directly, because incom-
ing and outgoing waves do not interact coherently, In the case of compietely s or p potarised light the
reflection does not change the polarisation, but remarkably in the case of completely S3- or ;- polar-

ised light the reflection results in elliptically polarised light. In the case of a complete linear {S3) polari-
salion we have:

F’n|2+|n|2
— 5. 2'|’u51'[|f|||z+|r;|2]
#2|ry|lr.] cosd)
2| ry|ir,] sind)

1
ot o~

and for a complete circular ($y) polarisation of the incident photons we find:

2 2
1 Iyl +1r,d
$ = 0 —~ 5= 2-|r|||2—[|rulz+|rliz]
Y B +2-|ry|Ir.) sing)
+1

22| ryllr.l cosid)
The crucial point is that the change of the helicity for 100% circutarly polarised photons causes a

change of the sign of the reflected S; component, too, and vice versa. Therefore, the reflected photon
beam leads to the occurrence of an additionalLDAD effect.

The 53 or 83 polarisation is not influenced at normal incidence, reversing only the z-direction of the
photon beam. Therefore this geometry may be the best to build monochromators to work with circularly
polarised synchrotron radiation. Unfortunately this design cannot be used for photon energics above
about 40eV, On the other hand, for most materials the index of refraction is not very different from
unity for photon energies above hv=100eV. The behaviour of the polarisation at two typical monochro-
mators at BESSY (Bertin) is discussed in the next chapter,

In principle not only a single reflection occurs in typical monochromator set-ups what can be treated
by using matrix methods as can be found in the literature [3.6].

Before discussing the influence of the sample itself, we will give a short description of the polarisation
at some monochromatorsthat we use using in the experiments.
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Iv.1.1 Polarisation of the Synchrotron Radiation

Al the BESSY storage ring (6.5m NIM, SX700-II1 monochromator) we obtain g’ (RCP) polarised

light above and ¢ (LCP} polarised tight below the ring plane as well as linear potarised light (PP) in
the plane of the storage ring. Note, in some woek the notation RCP, LCP is used with respect 0 the
view in the direction opposite to the photon beam (view to the BESSY storage ring) rather than in the
direction of the photon beam, leading o confusion if different kinds of pleochroism are compared. The
degree of polarisation depends on the monochromator that is used. Circularly polarised light can be
obtained at the 6.5m NIM and the SX700-111 monochromator for different photon energy ranges.

At the 6.5m NIM one has photon energies in the range of approximately hv=0...40¢V with the circular

polarisation varying between 87% and 98% (150nm...30nm) [3.7]. Furthermore the degree of polarisa-
tion depends on the opening of the slits that act as polarisation selector (see figure in ref.[3.7]).
However, the light is always polarised with P=100%, meaning that P2 =Pl _+P]=1 Wehave
Pus=Py>0 and the normal incidence design of the monochromator ensures that there is no phaseshift
abserved between the s- andp-components. such that Pys=0. The CDAD-asymmeury is given by:

A - |Pnrr| " Grr:c = IPclrcl ’G}
CDAD (G“+GL)+pl(GI_GJ_) Go+G I_Pirf

The root in the denominator is about 0.3 even if the circular polarisation is in the order of 95%, and
therefore it cannot be neglected. The asymmetry does not scale linearly with the degree of circular

pularisation P, what has to be taken into account if one likes to compare it 10 measurements taken at
other devices.

The sitvation of the polarisation is more complicated at the $X700-111 monochromator [3.8].(3.9]
having a gracing incidence design. Here, P. can be as low as 30% (depending on the wavelength) and
one finds in addition 3 Pss-component that is nearly as high as Pc depending on the photon energy.

Moreaver its sign is switched simultaneously with the circular component. The Stokes parameters for
the VUV and XUV energy range given in hetable below were measured by theBESSY crew.

hv Pges Si=Py | S2=Pas | $1=Puire
30eV 85% 5% 2% | #32%
50eV 4% % £30% | +52%
T0eV 95% 5% 1% | 55%
90eV 63% 67% £15% | *40%

Due 1o switching of the sign (not the absolule vaiue!) of both components Pis and P, at once we have:

A _plGy 2 lpsslGy
oAb = Go+py Gy

The double sign arises no¢ from the switching of polarisation but from the initial orientation of Pas that
can either be positive or negative, in general. For the SX700-111 both components have initially the
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same sign and therefore the sign in the equation above has 1o be 4" .The origin of the ch.angm in the
photon polarisation was discussed in the previous chapter.

However, there is an unpolarised contribution. The crigin is unclear at the moment. but possibly radia-
tion from above and below the plane of the storage ring adds incoherenty.

v.z Misalignment of the Experiment

In the experiments one has oftenly a slight misalignment of the sample with tespect 10 the light

incidence. In this case we have 1o take irto zccount that the photon propa gation vector nas a @q compe-
nent. The polarisation vector is then complex in al} three components and given by:

Ex+igl [2) - &, sin(y) | cos(®y)
- P
£ =< gy+igy ¢ =14 £.c08(Dy)

Lr+icy [y + £, sin(Dy) | sin(@y)

[5” —£, sin(gpq)] cos(8q)
=< g coslpq)
[ey +e.sin(pg) [ sin(3,)

As far as Qg is small, we may set Lhe Cosine term in the y-component to unity but leave the additicnal
imaginary part in the x- and z-components. that became now complex, t00. Furthermaore we assume a
situation were no Sz Stokes component is present, that is: Pas=0. The LDAD case can then be treated
by replacing simply iPar by Pas and the imaginary parts of the products berween the conIpOREnts of
E-functions by their real paris. The simplitied polarisation vector for slighdy out of plane incidence is
then given by:

Eortiu cos(8) [(14P)) = iPore sinlpy)]

- L = ___L__ g
P AL+2y) sin(%,) [ “ir,
- 7

Ear F Ly (1 +Pi|)+iPLln: Sil‘l(Wq)]

To determine the CDAD, we have 5o calcuiate the difference of the square absolule of the product of
the polarisation vector (with opposite sign of the imaginary parts} and thé-function:

2

Exr +iEn Car+ & Exr ~ i€u Cur + iCai
Tcpap < ny, . fr+l'C',. - **l'Sy; . C'r+l'CPJ..
Eor+ ity Cor+ G4 Egr — iy Cortigu

= 4{(Exr£zj _Engr_r) . S(C‘;fz ) +Exrlyi S(C":i:) +Eplort 3(6;61)

The last two lerms are jusi the same as for in-plane photon incidence. The procucts of the polarisation
vector components of the first term is given by:

-r cire

(Exrbp— Enber) = sin(28 ) sin{y,)

Using this equation the CDAD for stightly out of ptane photon incidence js given approximately by:
Teoap = €08(@g) - 10pap — 2P are SIR(28 ) sinlgg) - 3G i)

9



The superscript O hints on the CDAD for in-plane photon incidence as described before. The additional

term has at =45° photon incidence a maximum, but it is always small because we assumed sin{qq) 1o
be small. Nevertheless, in special cases of the direction of electron emission the first term may vanish
and one has to prove that the xz-term does not become large. In such a case we may observe some
unexpected CDAD,

Note 1; Even in the more general case where a non-switching S2-component is present, we have the
same result:

Teoap o 2{eg - 3E1E) +exy - ELE}) + 8y - JEED]
Ex; = 2(Exrby — Euber) =~ Sin(284) 5in(@y) » Peire
oy = 2(Eatyi — E2r8yi) = CO5(B,) cOS(84) - Prire
£ = Z{Eyaf:.r - cyrfu] = _Sin(Sq) COS((O-;} “Pore

That is what we expected, because the difference is aiways effected oniy by the circularly polarised
component of the polarisation vector. So far the result can be generalised for any arbitrary photon
incidence, if we take ino account the dependence on both angles of photon propagation to be more
complicated (simply replace ¥.¢ by €, and use the transformation given in the previous chapter),
But, remember: the intensity for unpolarised photons gets some additional terms, 0o, what will effect
the asymmetry!

Note 2: If additicnaily a switching $;-component is present, we have to add both terms to find the
dichroic signal: Iptpe=lcpap+ILpan!

iv3 The polarisation near the sample surface and inside of thin films

So far we have omitted the adsorbate layer. The changes in the polarisation caused by an adsorbate are
successfully used for ellipsometric measurements or the magneto-optic Kem-effed®OKE).

To caiculate the behaviour of the electric field vector we can in principle proceed as follows. A part of
the incoming wave is reflected by the vacuum-adsorbate interface The transmitied wave is damped and
partially reflected at the adsorbate-substrate interface. The reflected part of the wave going through the
adsorbate backwards leads finally w0 multiple reflections inside of the adsorbate layer. Now we can
calculate the reflection and transmission coefficients at each boundary using the Fresnel equations and
sum up the infinite series.

We will describe first the behaviour of the photon polarisation in dichroic films on isolropic substrates
and for dichroic substrates without adsorbates. Then we simplify these equations for isotropic films.

Iv3.l Thin bifringent,dichroic films

We start with the general case of an anisotropic adsorbate on an isotropic substrate. The photons cross
in this case the adscrbate with thickness d and a complex index of refraction ne ;=na-i k, before entering
the substrate with nes=ne-i ke. In general, the optical constants can differ in directions in and perpen-
dicular to the thin film. We write the complex index of refraction of the thio film as ne=nj-i kj (j=x,¥.2)
and assume that the substrate is not dichroic. To calculate the reflection and transmission coefficients
we make use thal the tangential components of the electric field E and the magnetic field H are coatinu-
ous at the boundary.

25

A complete description of the derivaton for the Fresnel coefficients for thin anisotropic films can be
found in textbooks on oplics.

We find that our problem can be described by the four coefficients for the amplitude of electric field of
the reflected (R), the transmitted (T) and the beamn inside the adsorbate travelling into the adsorbate (A)
and back (B).

r@ + r9 exp{—i2x " d)
1+ rlaro exp{—i2ii"d}
(2)
= 14 retr exp{—i2x P d}
flab )

B= l+r(°)r(ﬂexp{-124u "d}
1t exp{ -i(x —a(”)d}
1 + ri s expl{~i2n ™ d}

These equations depend not directly on the polarisaton of the photons. On the other hand. the coeffi-
cients r and t depend not only on the material but also on the kind of photon polarisation 2s well as the
direction of photon propagation.

The singie-boundary coefficients for reflection and transmission of g-pelarised photons at the adsor-
bate or the substrate are given by

o (@ 2,
r s A KL (0 =1 +r7) = S
Ty = ( a
xg +x£a' K tRg
@ i -,
(s) N =Ky m_[“_ sl] _"“‘s..-_.-
I I NI
K +Ua +K:

The wave-vector fors-polarised photons inside of the anisotropic adsorbate is given by:
0) 12
K = fewd - )

In the case of p-polarised photons the single reflection and sransmission coefficients given by:

©)
P O sl
(-}
T k@ ek k)
(a)
o g =gt @1+ m] (& _ 26,K2 , ,IEx
r= ex® e ’ & " ek rent

The wave-vector for p-polarised photons inside of the anisotropic adsorbate is given by:

£ 0
xi‘ﬂ—/f.,xu &l oy

Furthermore we find the Cosines and Sins of the angles 10 evaluate the photoemission intensity depend-
ing on the angle of refraction inside of the anisotropic adsorbate and the substrate.
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We insert the expression for the wave-vector depending on the index of refraction and find for the * 77 7
Cosine-terms: -

J(ny —iky)? - sin*(8)

@y _
cos(8; )= e —ike)
(e — ike)J{ne = ik)? —5in?(S0)
@y _
cos( ) = (n ~ 1)
{n, - ik,)? —sin®(8q)
(Y —
cos(38N = i)

and the Sine-terms:

sin®(80) — (ny — ik,)? +{n, — ik;}?
(n, ~ik,)?
(n, - ik.)? sin?(S0) = (me = ik (= ik )2 + (0 = Tk
{n,—iky)*

sink(3M) =

sin?(95") =

. sin’ (o)
(5 = oy

in all cases we have sel the relative permeability to be p=1 in the adsorbate and substrate. The angle of
refraction is now depending on the state of polarisation of the photons, as is typical for dichroic
materials.

On the first sight this seems (o be puzzling, but 1o calculate the photoemission we do not need the angle
of refraction directly but only the componeats of the electric field.

Befare looking at the particular case of an isolropic adsorbate in more detail, we like 10 express the
single reflection and transmission coefficienis in terms of the complex index of retraction (for short we
use a instead of (n-ik);

1) s-polarised photons

cos(Sa) - 53 ~5in?(8¢)

re =
cos(3e) + '55 -5in?(8a)

— —
o an—sm (90) —[ﬂf-sm (%0)

4

- J;l—sinl(so}+ g}—s‘ml(so)

-y

1

(a) 2cos(80)
t =

" cos(So)+ }g: —sin*{3)

2 g: —Siﬂz(gu)

ﬁi—sml(so) + Jn2 —sin*(80)

=
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by p-polarised photons

o nn, cos(So)~ ﬂg: —sin’(8q)
n_n cos(3o) + /n? —sin*{8¢)

n? [n? —sin’(30) —gxﬁz—‘sinz(su]

r(:) . !
0 =
n:anHSml(gn) +1 fnt—sin’(3s)
- -r ha 4 -3
ol 2{1_‘51803(90]
tp =

nn, cos(So)+ (n? —sin*{3q)
{(n ZErQrvgf —sz({}o)

tp =
gi‘jgf—sinz({}u) +a, ﬂgf—sinz(\%)

1v.3.2 Isotrepic samples

In this case ail nj, kj are equal and Snell's law of refracuon becomes:

sin(80) = (Ma — i+ ka) -+ sin(B®) = (n, —i- k) sin(3)

The reflected photon beam is not influenced alone. but the transmitied wave tow. This will influence the
measurements of dichroism in photoemission from substrale siates. Firstly refraction occurs with a
complex index of refraction n-ik. that changes the direction of the photon propagation. We will rewrue
Snell’s law and the Fresnel equations 1o include the transmission coefficients:

sin{a) = nsm{f neos(f) = Ja* +sin’(a) =ga

_ cos{a) — g _ 2cos(m)
Fe="cos(a) +gs t = Coslar + 2o
_ ntcos(a)-ga __2ncosla)
"= R cosla) + g9 M= Tcos(a) +go

First, we assume that the adsorbate is located in the coherence zone of the direct and the reflected
wave. Directly cutside the surface we find for the potarisation vector:

[—cos(a) {1-ry) J1+Py 1

Pss + 1P,
o L L4ry Eutife
Eaur—'J—z— ( 1) m

1 sin{a) . (L+r) J1+Pp )



" and for the wave just inside of the sample we find for the polarisation vector;

—cos(f) 1y J1+Py ]
Peys+iP
-2 .1 p, SE—E
R ey
sinf) n J1+Py |

If the initial photon beam was completely circularly polarised, we find:

[ —cos{f) ]
(n+ik)(n +1k)? cos(3) + gg)
iP.
cos(B)+gs
2sin(f)
(n+ik)({n+ik)cos($) + ga) |

?:m =7 cos(3)

V.4 Description of the Dichreism in isotropic samplies

We have found that all three components of the polarisation vector become complex inside of the
adsorbate. On the other hand. only the sign of the y-component is changed, if we swiich the sign of the
initial polarisation. The difference is that now both components, the real and the imaginary part of the
y-componens, are switched a1 once. This leads 10 a simultaneous cccurrence of CDAD and LDAD. We
write the poladsation vectar inside of the adsorbate for the twe opposite signs of the polarisation as:

. Erti-Eq
3% .
£a=f tley+i-en)

££r+f'5:r

The components &x, €, and €; are those being changed by the adsorbate and substrate as described
above. The dichroism is as before given by the difference of the cross-sections for the polarisation of
opposite sign:

—+ 12 —- _|2
lp,wc:\ £a o:i —| aa-:|
If we insert the complexZ-functions and calculate the dichroism, we find the result:
Ipap =Icpap +1pan

lioan = 4{ RC(C;E;) Re(fxf;) +Rele,e; ) Re(fr‘f;)}
Icoap = —~4{Im{e.e;) Im(Z.¢;) + Imle,el) Im(&, &)

These equations are essentially the same as those we derived before, In particular all properties
connected 10 the =-functions keep the same. The only difference is that both kind of dichroism occur
simultanecusly making a distinction of CDAD and LDAD impossible. To distinguish the effects we
must make use of the symmetry properties of the Z-functions. that will possibly allow 10 suppress one
kind of dichroism, if the measurement makes use of a special geometry or initial states.
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IV.4.l The field at the boundaries and in an adsorbate:

Directly at the vacuum-adsorbate interface we find for the electric feld:

_L =1+R= (+rv4)01 +ra_,cxp{..“2xgﬂ)d})
Ew© 1 +rvatas CXP{—ilxgﬂd}

In the middle of the adsorbate we find for the electric field:

(a} )
%@' =Aexp{~i-k{"4} + Bexp{i- x5}
_ el +raexp{=icd}] { .xE”d]

"1+ rearasexpl-izn@at P12

As an example, we will now examine these equations for a alkali monociayer on a non-chiral d-band
substrate. We assume that the excilation energy is well above the plasma frequency and well beside of

semi-coreleve! or corelevel excitations. In this case no damping of the wave occurs and we have k=0,
The index of refraction is than between 1<n,<(.9. Furthermore we assume that the index of refraction
differs for the directions in the layer and perpendicular to it, that is ny=np.n,ny. For fourfold order of
the adsorbate both in plane components should be equal and we will write them like: =n,+4an. 1n case
of adsorbates in two-fold or hexagonal symmetry the in-plane components can differ from each other,
in this case we at the direction as an index toAn.

a) We assume that the index of refraction in the z-direction is that of the vacuum (n=1) and only the
in-plane components differ from 1. The Fresnel coefficients read than:

for s-polarisation they stay the same as before:

@ _ cos(@) —fi"
rsr =

" cos(ay+£"

£ = [n? —sin*(a)

@ _ 2c0s(a)
e =
145

2
!Jn)_]: N 2- .rm

5
(4]
e s = a 5
ﬁa)_‘_ :.1) s ﬂ]+ﬂ’)
= fin, =ik,)? - sin’ia)
dp. e d
g, =4r f§ 2o

Y
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for p-polarisation:

@ _ M=l @ _ 2

Te “;Tl Py

o cos(a) - fL WM 2cos{a)
i T cos(@)+f0 P T =ik cos(a)+fS
" n,,/(n,-—:k.) —sin*{a)

5= (g —iksY

4, = 4nn,cos(a)fig

In a monolayer we can assume thatd<<ho and the phasefactor exp(-i8) becomes unity. This results in:

_ cos{a)— jf,”

" cos(a +f.‘,
2An,+1) _ cosla)

nln, — k) cos(a) +ﬂa”

p =

{ne— ik, ) —sin(a)
(n,— ik

5=

We find for the reflection and transmission coefficients:

£ 4+ 9 exp{-id}

R= [+r("r‘”cxp{—i(5}
A= U L

T 1+ rlareo exp{—ig}
P e exp{-id}

T4 plalpls Cxp{—ia}

l!(13)t(1) CXP(-l’é} @ "

r= 1+ rier o exp{—id} expli(nt” +x:")d}
d= 2xi"d

in this case we have for the field inside of the adsorbate:

E(ﬂ) 2"’
E(cn e+ 1+ (s — Dhra exp{—i2e®d}
E® 2n,raw expi=i2n{’d}

B =
P= Eo g+ 1+ (ny— 1ra- CXp{—iZKE“)d}

_ ER4EY _ L@ _ 2 J L+ ro, expf =i d}]
fo T Fo T ng+14{n. - Dra exp{—i2xi"d}
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Iv.S A Concluding Remark

We have seen that the use of Fresnel equations leads to substantial effects on the photon polarisation,
Nevertheless, the Fresnel equations are a strong oversimplification of the problen The complete influ-
ence of the surface has 1o be treated in a microscopic theory. The dichroic measurements can provide 10
be a 100l to measure the local optical properties on a microscopic scile in photon energy ranges were
ellipsometric measurements can ot be performed.
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v The polarisation and orientation of the states

We will define now what is meant if we say an atom, orbital, of electronic state is polarised, aligned or
oriented. There is no uniform definition of these terms. From a formal point of view we find in a rough
characterisation that a free atom or a specific electronic level can be either of spherical symmetry in the
case of filled shelis or of cylindrical (axial) symmetry if an unfilled shell is not of s-like character. Here
we made use that we describe the interaction of the electrons with the core by a central potential. To
observe the cylindrical symmetry we need to assign properly a z-axis, what can be done by applying
external fields like electric (Stark-effect), magretic (Zeeman-effect), electromagnetic (photoemission)
fields, or the interaction with the solid surface.

In principal, every physical quantity can be charactetised by its expectation value {n=1) or its n-th
statistical moment that is given by:

CO™ = (plxr iy =[xt e - dX

This can be used 1o define different quantities like odentation and alignment

V.1 Definitions

V.11 QOrientation of the angular momentum

The orientation of the angular momentum can be characterised by the state muitipoles. that are the
expectation values for the total angular momentum operators. The degree of orientation @ or alignment

A of the total angular momentum for states{j,m,> that are at least of cylindrical symmetry are given by:

O m) = m
o Uiy G0
_ Imi -+ 1)
AP Gm) = =

Jii+ 1
The same equations can be used for any anguiar momentum and especially for the orbital angular
momentum if simply replacing j byl.

The orientation and alignment of states ‘¥'=n(m;} [j,m;> build from pure states [j.mj> are given by the
mean value of the individual states weighted by their occupation probabilitiea{m;}:

O =L, nlm))05”.my)
AG) =X n(m)AS G.m))

1t is seen that both vanish for a filled shell where all my; are distributed equally. For s- and p- stales we
find for the degrees of orientation and alignment:

state |j, mp> o' AD
[1/2-1/2> 143 0
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12,4102 +113 0 .
[372,-312> 1S 615
[372.-1/2> W15 613
(372,+172> +IM15 6115
[312,43/2> +31s 615

For filled 5152 or p12 sheils we find that both the mean orientation and the mean alignment of the total
angular mementtm vanish.

V.1.2 Orientation of the electron spin

The spinpolarisation vector of an electronic state®'=c T>+{|L> build from two spinors is given by:

[ ap+a'p | [ 2Re(ap) = 2Re(af®) |
2 L e i .
P Y i(af ~aff) T 23m{a*p) =-23mlaf")

| lal®~181% | ( lat® - igI* J

The denominator is the totai intensity, In close analogy to photeons we can define a 4-component spin-
vector to describe the spin-polarised electrons:

[ lal?+tg* )
2 | apeap |>
_‘1 iaf* ~a*f) |

| lal*-1g1% |

The polarisation vector becomes simple in all cases where Imyl=j=0+1/2, in this case the spin is purely
z-oriented:

_)
B(lj=i+1/2.m=%)=1

—_ O @

The spinpolarisation vectors of the remainingp-states of an atom are given by:

5 sin(28) cos(¢)
P{pinma) =% sin(28)sin(y)
cosi(3) —sin¥ (D)

N 45in(23) cos{p)
Plpinain) = to——peaq 4sin(29) sin(p)
Jcos¥B)+1 N
Scos?(9) -1

35

If we add the intensities incoherently, than the spinpolarisation vanishes for any closed‘sheu aod
additionally for any filled subshell, as can be seen from the double sign. The absolute value of the

—_
polarisation is | P | = £1 for any of the states, iin agreement with the Pauli exclusion principie.

In photoemission we have 10 account for the final (free electron) states that are given by a mixture of
pure spinors, what will give surely a different answer than the case of the pure spinors.

V.13 Orientation, polarisation and alignment of the charge distributien

The angular dependency of the charge distribution of an atom or specific orbital is given by the square
of the electron wavelunction:

28,9} = ¥arin(8.0)|

The overall charge density depends on the radial part Rq¢j of the wavefunction, too. If the number of
electrons in a particular subshell is N, then we normalise thewavefunciionby:

N
N= (-3 §f (9. 9)ddde

The equations to calculate then-th moment of the position are given below.

Atoms that are adsorbed at a solid surface become polarised. Here | polarised” has a different meaning
compared 1o free atoms. It denctes (he effect that the charge distribution is altered in such a way that it
results in a net dipole moment. The effective dipole moment (at a surface) is propurtional to the Cosine
of the angle measured with respect to the z-axis that is cos(9). From this we can define the polarisation
or better crientation of the atom ur a specific electronic state by the expectativn vajue of the first
Legendre Polynomial:

*|

0, = {cos(3)) ={D =if: Yoo ds =) W dz

The dipole momemum is given by the oriertation muitiplicd by the first statistical moment of the
position vector, that is the mean distance between the ¢lectron and the core:

po=01'(rl)

For ©,>( the dipole moment points in the direction of the z-axis. In analogy the alignment of the
charge distribution is given by the expectation value of the second Legendre Polynomial:

]2(322 - 1)
2

+1
As = {P2(z =cos(D)) =_II [W{z) -dz

For Az>0 we have a z-alignment of the charge distribution and it is of xy-type for Ax<0. Due 1o the
cylindrical or spherical symmetry free atoms or orbitals of free atoms cannot be oriented but are only
aligned. We call an atom or orbital as ,really oriented” if the degree of orientation does not vanish

0120. In this case not only its angular momentum or spin is oriented but also its charge distribution.

From the probability distribution of the pure spinor spherical harmonics it is seen that such states
cannot be truly oriented because only even potencies occur idV; m.

Note 1:In both cases it is assumed that the radial part of the wavefunction depends only onr but not on
dor .
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Ngte 2;The statistical moments of the position weighted by the square of the radial part of the
wavefunction are given by the following integrals: :

¢y IR -rdr
(r0) " IRL,eredr
2 is used for normalisation and r' is the expectation value of the mean distance between the electron
and the core.

Note %:It is also possible to define the orientation with respect 1o other directions than z by repiacing
the integral onzdz by integrals cnxdx or ydy.

V.2 The case of LSJ coupling for ferromagneticmetals

Io the case of rare earth metals the orientation of the different angular momenta (spin, orbital. and
total} is given most oftenly for LSJ coupling assuming that in the magnetised case <J;>=-J, meaning

that only M,=-] is occupied. The expectation values for the spin and orhital angular momenta of the
coupled wave functions are then given by:

<J.»> =-J

JI+ DN+ LL+1D) -85+ 1)
25+ 1)

JIA+D+SS+ ) -LiL+ D)
IS D

<L;>=<J;>

<§.> =<J.>

The z-component expectation values of the spin (S), orbital (L), and 1o1al (1 angular momentum for
completely polarised siates are given in the lable below for open shell ions of some ferromagnetic
materials with parually filled d- or {- shells:

Ton open |Ground-si S <S> L <Ly ] <I>
shell 1ate

Fe'* 3¢° ¢Sen 512 -572 0 0 512 -52
Fe®* 3a° Dy 2 ) 2 2 a 4
Cot* 3d *Fon a2 -45/22 3 -2 972 -9/2
Ni** 3dt Fy 1 -1 3 -3 4 -
Gdt af 'S ylvl 12 0 0 12 702
o3 art "Es 3 3 3 -3 6 -6
Dy’ af [ SHum | 52 | 11534 5 Jors1 | 152§ <1572
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va Disturbed states

Here we will deal with some effects that arise if the angular part of the initial state is described not
cnly by a single orhital angular momentum quantum number, but by a mixture of different orbital
angular momenta,

If only onre orbital angular momentum ¢ contributes we find from the cylindrical symmetry of the
spherical harmonics, that any sum of the type

}"; ﬂin.m

will be of cylindrical symmetry, 100, meaning that we cannot observe an orientation of the charge
cloud, but only an alignment

In the following we will weat some wavefunctions of the type:

W= e PumRan+ /2 YamRnn

where x gives the partition of the second type of wavefunction. Such types of wavefunctions typically
appear in MO or LCAO theory or for the so called surface molecules. The later are in the simplest case
a atom adsorbed on top of a surface-atom.

The normalisation integrals forz-ailignedsiates (m=m=0) is then given for any | by:

To =2 [I¥17 = (1 - 0drd ) + <lrfs)

The integrals giving the staistcal moments are given by:

[ =2x I|‘P|zzdz =2z fx{l-x) (R.ﬂ_uR,,z;:r)J- Yio Y;:‘o: nedz
Iz = 20 Wi = 20 (1 - 00 [ Yoo Sz ird) | Yeo 2z}

<Rai1nRezpr> i called the overlap integral. Furthermore, we made use of the symmelry properties of
the spherical karmonics Yip that are funcdons of z only, We will see later, that the various integrals
including the radial parts will not be nesded to describe the dichroisni but only the angular pans, there-
fare it is convenient to define the orientation and alignment of the angular parts of ihe wavefunctions
only:

a
2= [d(T=9) [ Yno¥ao-2ds

o
g_; =3{(l"-’f)jY.'1.o'Ildz+xJ. Ym.o-zzdz}—l

V.3l Mixing of s and p states

We start with an somewhat academically case. Firsily we assume that the initial state wavefunction is
given by a coherent superposition of the not perturbedp,-wave with small amount of ans-wave:!

W,=JT—n -ptJn-s=Jl-n YR + /0 - YuoRo
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" O<n<l is the pant describing the s-like wave. We omitted the main quantum numbe:r assigning I:hc
radial part R of the wave function, to avoid confusion. Such a wavefunction has an oriented charge
distribution as can be seen if we caiculate the statistical moments with respect 10 the z-axis. The
normalisation and the degres of orientation or alignment connected to this state are given by:

iy = (1 —n) - (RI)+n-{RD)
P 2 + fﬂ(l—ﬂ) :<R|Rur>

or= 73 (I-m-{(RD)y+n-(R3)

1 5(1=n) RIr*)+9n-{RIF

5 (1-n)- (R"l’)+nv(Rf> -

7
Ay =

<R, Ror> is the overlap integral.
The equations become simple, if we neglect the dependency on the radial pans:

oslp =i%v‘n—n2

a¥ =an

V.32 Mixing ofz-allignedstates

An interesting case is the coupling of p- to d- states as can be observed in adsorption of light atoms
like C, N or O on d-band wransition metals. The binding energy of the 2p-states of these atoms is
comparable 1o that of the metal d-states, so that hybrids can be formed by an overlap of the
wavefunctions.

The most simple is the coupling of z-aligned states. Assuming that the initial state wavelunction is
given by a coherent superposition of the not perturbed pe-wave with a small amount of a dy2-wave one
finds for the resulting wave function {0<a<1):

=J1-n 'p;iﬁ 'dzz=q‘l—n - YR tﬁ + YooRa
so that we-have to solve the following integrals to determine the properties of the charge orientation:
Ty =2n Wil adz =t4,ll—l5 Jn—n? -(R\Ryr)
= 2,2 - 2 2
L= W) = 105 (63(1 n)-(REr?)+ 55n - (RIrH))
From this integrals we find the orientation and the alignment of the mixed state to be given by:

AR R
0"*“\/_(1—:1) ®+n- RY)

A, 1 631 —n)-(R¥r2)+55n-(RI*) ~1
=35 (1-n)-RH+n. (Rz)
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Again neclectingthe radial parts, we find simpiified
oy =44 ﬂfs— Jn-n?

The alignment is always bigger than 1 and therefore in z-direction, whereas the sign of the orientation
depends how we add or subtract the two states from each other.

Another interesting case is the dp surface state of the hep rare earth metals observed at the (0001)
surfaces. A shift of the charge distribution towards the bulk can be modelled assuming a mixing with an
f,3 state (note: mixing with p; does not describe the complete charge distribution in the surface plane,
such a coupling will shift this part towards the vacuum). The initial staie is then (J<n<l}:

Wi=Jl-n dat o -fo=Jl—-n YRt /n ViR

Its charge distribution and orientation can be calculated from the following equations if we make use
that for the z-directionparallel 10 the surfice normal one has (o subtract (use negative sign}.

J-iS Jn—n? [R:Ryrdr

f=2n IV 2dz =

Jn—n? -{RRr)
,,’_(l-n) R+n- R

If we neglect again the radial parts we find:

m:i
35

]
n—n-

having a maximum for n=1/2.
More general, the orientation has its maximum value of

=3 R,k (R +(RD)

Otas = 735 {R3}-(R%)

2
at Mmax = _L_(Rz)i(i’-?z)

e
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Vi Photoelectron cross sections and Pleochroism

Usually the photoemissicn differential cross sections are calculated in terms of spherical harmonics, or
the orbital angular momentum. To make it easier to compare the different PIPE effects like CDAD,
LDAD and spDAD, we will give a description in terms of the polarisation of light.

To calculate the photoemission cross section for electrons excited by a photon with energy hv we start
with Fermi’s golden rute that describes the transition probability from an initial state ¥ to a final state

- =
Wy if the Hamiltonian H is effective. The Hamiltonian in question is the dipole operator H=¢9+r.

buin )|

Ag was shown in the first section Lhis equation can be rewritten in the following way:
- H
-
2o (0, 2l Plbnin )| =c
Epn. £

50 that is divided in the polarisation dependent part and the general photoemission part. The position
vector is given in spherical co-ordinates by

. - —. -
where £ is the polarisation vector and r is the pasition vector,

<¢ |2-7
A
Epn k

%(Ehn) = |<‘PA1’_1| “Pj)lz = %0003 ~hv-

2
da 2
S

=
E(Ehn)—ca' £

sin(3) cos{g)
P =r sin(Y)sinfp) r=r-F
cos(9}

Firstly, we will ¢xamine this eguaton for rec! orhitals.

VIl The cross section for real erhilals

We start with the matrix slements, that are calculated by expanding the wave functions of the initial
and tinal state.

A28 W] The initial states
The initial.state wave functions are solstions of the Schrisdinger equation far bound states and given
by:

¢nlfn = Rnl ; n(m}yl,m(st (P)

Rq =Ry is the radial part of the wave function depending on the main quanfum number n, the orbital
quantum pumber { and the magnetic quantum number m The Radial-parts have (¢ be determined
numerically from the Schrédinger equation using a Hartree-Fock (HFY or Hartree-Fock-Slater (HFS)
method. The n{m)’s are coefficients to form real orbitals from the spherical harmonics Yen=Yom(3.9).
Both are given in tables, below in Appendix.

G;.H.Fecher, Nov. 1997 &>

VIL.1.2 The final states

The final state wave function depending on the kinetic energy Eiq of an emitted electron is written
using a partial wave expansion:

g, p=4n P}j i expl-idp  ¥; 1 (Y2 m (R4 (Eniny 1)

b g

F and F are unit vectors of the momentum and position. The radial parts Rir(Ewn.r) Of the final state
wave functions have 10 be determined numerically. From the dipole selection rules we have Al=1 and
{=0-1.0+1. The dipole selection must 1ot be used as a priori condition as will be shown below.

VI.1.3 The cross section

We insert initial and final state wavefunctions {9, and @) inc the equation for the cross section.
Furthermore we iniegrate the r-dependent part of the matrix element (k marks the dependence of Yem

on the angles of emissionty, Qi)

(=Y Yool 71 Vi ) - exp(i8r DR Yo (R +

—
<¢AH|¢‘ > =dme .mz;:n’ ntm) +(f£J'*‘(YM,..-Ir‘1 YJ‘..‘> - CKP(!BM)R.‘H Ym;n’('E)

Ris =] Ressi(Exmord 1 Ruglr) - ridr
0

The radial matrixelements Ryy| are named by the final states but nevertheless they are depending on the
initial state. wo. In the following we will use the abbreviation pe for the complex radial matrix

elemnent:

Pz = (-0 R -explid )

The angular distribution of the phosoglecuon amplitude is then given by:
— - -
(#dH]9.) =42E o X (Yenll¥in) - Yeri (K)-pr
m

pua = (02 - exp{idu } | Resgr(Exin, 1) 1 Railr) - rrdr
0

To determine the cross section for transitions between resl atomic orbitals we have to ¢alculate the
following transition probabilities:

Tow =(Yerm!HYim)
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Bearing in mind the selection rules Am=0,+1 — m'=m,ms1. Note, that now the wnit posiu'on vector '
appears, due to the integration on r. The dipole-operator can be written expanding the unit position
vector in terms of spherical harmonics:

- .

£ oF = g -sin(3)cos{p) + &y - sin(9) sin(g) + &, - cos(F)

e B (i = Vi) + (e g - ifE (Fu+ Vo) e - 20F Yo

Using the first form of the dipole operator we can determine the trace of the diagonal transition matrix
from the following inlegrals:

"

j[.[ Yii e - sin(8)cos(p) - Yfde]Sm(S)dS
+n [1n

p(Trm)=| 4n-] ff Y e - SI(9) sin(p) - Y,,ndw] sin(8)d9
9 10

+x (In
an-f [I Yiiw cOS(8) - Ylmdqu] sin(9)d9
o lo

and the E-functions can be calculated from the following equations:

$ra -Z 1{m) - Ty = Yiriw pen1

Cy.!:: —Z‘ ni{m) - Tm.-n‘ Yo pn
mm

G ol =Z‘ nlm) - Ty - Yorrw frey

leading to the X-functions used byGoldberg et al.:

il
bl

—
Lmm=¢6+%

Besides the work of Goldberg we have included here the case of circularly polarised light. The calcula-
tion of the Tross section for linearly polarised light in terms of Xy..X3+| functions is given in the paper
of Goldberg. The polarisation dependence of the cross section is not directly seen using the X-functions:

X X X A XY+
w2 X X + Xt - Xign) €088 =81} + e
e 2 (Ko - Xep — Xogor - Xopa) sin{dp =950

The poiarisation dependence of the cross section is not directly seen using the X-functions.

To show the influence arising from the different polarisation-vector componems of the exciting radia-
tion we will use the explicit form involving the §-functions. We expand the dipole operator in terms of
spherical harmonics:

Tei= % AV = V1o dee+ i (Fiy + V1o +igw) + 42 - Yioe:)

to continue the caiculation of the transition matrix. We use eithesj-symbols ( f=Am )

x [2r 2111 l 2 + - - .._‘.
gl! yaw,mn..dw]sm 9)d9 = J—_———” )+ 13( ””['” ! ’][’i,' ! 'J

4 0 00 m Gl m
.

cpe [CEDFDS o (121 1 1
={-1) T am Citioag m 0,41 mJ

or Clebsch-Gordan €™, 10 solve the integrals, resulting in the Gaunt coefficienc®(l',m’. !, m):

fimidymy
F j‘{j Ymm.Ywh,,.dga] sin(8)d8 = FJ: ;?}:‘l:l cle, it
=cui - CiaTy
=Tt msflmy =g+ Lm+ B, Lm)
B=4am=0,+]

The modified Gaunt-coefficients g(P=1,m+p.0.m} are 1abulated below in the appendix. The first C-G
coetficient Cy, o vanishes for 0+1+0=0dd. that is the selection rule §={=] or Al=+1. The second
vanishes for m'#m+f including the selection rule Am=m'-m=p=0,2[ resulling in the following
&-functions:

el = —47:-2 g2 L, m+ 1, L m) Yy me — g2 Lm— L L m)Yiz1mes } o

{47 ‘_,r:,,.{g Itm+ i mYeinn gl 2 L m - UL myY st 1 0121

iy

il

LAt

r.etl
o = 4nd2 - ; mgUI 2 Lm L)Y iy mpin)

Eavy

Finally, the trace of the transition matrix for emission trom a siate {m 1o a final state
{'={+1,m'=m.nt+1 is given by:

—glxl.mzl.4m)
sp(Trm)=dn-q i-g{Itl,mtl{m)
JZ gt i.mm)

and the equaticn for the =-function for the emission from a state with definite orbital angular momen-
tum reads:

== {; e ;Z‘Z: [Tym- Yy,,.fpr]]

dl

.
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V1.1.4 Result: The G-functions

We are now able to calcutate in more general the G-functions from the real and imaginary parts of the ' ~
E-functions using the equations derived above:

Gy =1cosi(8) 18]+ dsin?(8) 16,17 ~sin(28,) - RE:S7)

G, '—'%lfr :

Go = Lcost(8,) 1612 #], | +5in?(8) 1¢.!* | —sin(284) - R(ELE)
G = HeosH9) 18T =167 +sin?(8,) 12,12} —sin(284) - R(GED)

Gas=Ga =2-{cos(Bq) - R(EZ) —sin(8,) - R(E3E) )
Gore =G =2-{COS(3q)-3(5:5:)—Sm(8q)-3(§;g’,)}

In the following we will give some applications of the equations derived above, namely the emission
and PIPE from initial s- and p-staies.

VI.1.5 =-functions for pure spherical harmonics

We start with the -functions for pure spherical harmenics. From these we ¢an build the X-functions

for real orbitais. later. We start with the =-function for initial Yoo that is s-stales.

[ L(ri-via) |
EI(YOO]= Vfi " .
Z(Yoo) =1 {uYoa) = p=dn-y Ly +Yiy) (4
$:(Yoo) = 2
Yio |

Now we calculate the =-functions the pure spherical harmonics Yi1.m that contribute 10 the initial

p-states:

a) Y
| “{{EYH‘ % Yzo}p2+J_-2L.pro} ]
=) =dr- i'{{ﬁy22+ “llaYzo}ﬂz—J?Ympo}

{ % Yum i
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b) Yia
T FrdfTren]
E(¥in) —4::-* 4T Yo+ T reafpr - [T Yoopo]
L EYZ—IP?. )
) Yo

[ —E{Yzi‘yz—l}pl !
E(Vio)=dn-| i 5 (ra+ e

{ {Eympz‘?'}’mpo} ]

The =-functions far real orbitals can be build from the =-functions for spherical harmonics writing the
initial state as:

i) =‘_>:_n(mm,,

First we find for an injtial s-state having only m=0:

It
=

it
=

$:49)
=5 = \jy(j)ﬁ =dx- I e
g:(9) I

For the 3 real p-states that are px. Py. Pz We have:

nim) m=+1 m=-1 m=1

| !
. Y= = 0
S |
PR
P 0 0 |
from this we can find theZ-functions from:
46



a) Px
2 =dn-{ [Tdo-pe
{ Edz'l’d J
b) By
{ Edv'ﬁ’d 1
[ Edn‘ﬂd |
Q) Pz

(G|
E(P:)=4ff'1 ¥ dnpa
lgd¢x°Pd+S-PrJ

VI1.1.6 CDAD and LDAD from s and p orbitals

To show the influence arising from the different polarisation-vector components of the exciting radia-
tion we will use the explicit form involving the Z.functions that are given above for different initial
states.

For initial s-states we see, that there is no difference in the phases of the final state E-functions, there-
fore the imaginary part of the xy and yz mixed products vanishes and therefore no CDAD can be
observed. On the other hand the real part of the mixed products leads to the occurrence of LDAD. The
LDAD can be found from the equations:

I . .

Lioap _ . pyg - {eos(9,) - REL) +5in(8y) - R(E3Eo))
R(EE3) = 1602 - pupy- RE = § -sin(8)sin(2p) - R
R(G3E) = 16n - pype- RE =3 -5in(28) sin(p) - R}

50 that the LDAD for an initial s-state is given by (sening P=1):

-j—% = % {cos($,) - sin?{ S} sin(2p) + sin(§4) - 25in(2) sin(p)}
o g

For initial p-states the mixed products are given by:
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ARTERVI Q-V:ﬁ%

a) Px
G5 =—16K2[%d,_,- {Edl: —dxl_,-!] -Ri+ E - ‘P:P;)
£36.= 16033 - dudyy R
b) Py
4y = 16nt '[%dﬂ{g do+diiop - RE = [ 3 sdo -p;p«]
&4 =—16n? '(%dﬂlgd!‘+dx=-y“ -R}- ESd"‘ 'p,'de
c) Pz

(13 = 16072 - dudhe- B}
C';C_z = 16ﬂ2[%ﬁd'zdr’ : R: + g-’dﬁ - p;pé)

The CDAD can be found from the equation:

low > =2.Pc-{cos(s.,)-S(c“xf;)—sin(Sq)-3(é;c'=)}

The angular dependent functions are all real. and one has (o lake the Real and imaginary part only of
the part arising from the combination of different complex matrix elements. The preducts of the radial
matrix elements are given by:

pupy = (=) - Ry explids) - ()? - Ryexp(-idy) = =R;Raexp(~i(da =)
pipa = (0)°- Ryexp(=ids)- () * Ra exp(idy) = —R:Rq expli{da —0s)

50 that their real and imaginary parts are described by:

Rip.p3) =—R:Rq cos(dq —ds)
I(p,p3) = +R,Rysin(da = dy)

Rip:pa) =~R:Rac05(d4—01)
I(p}pa) = -R.Rasin(ba —ds)

Inserting these imaginary parts we finally find for theCDAD of initial real p-orbitals:
alpx

Lcbap =-2 E -¢0s(84) - 5dsy - ReRa  sin(da —dr)

l6n2c,

% +cos(B,) - 5in® (3} sin{2¢@} - RaRa - sin(dq4 — &)
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b) py

J
!_6%3%3 Z'E -[cos(Sq)-sd,,+sin{94)-sd,z]-R,R,;-sin(csd—é,)

2 -[cos(9,) - sin™(9) sin(2p) + sin(8) - sin(29) sin(@)] - R:Ra - sin(de - 3.)

C)p:

5 3
—LDAD . —2-£ sin(3) - sdy; - R:Ry - $infda — &)

16wic,
-2 sin(34) -sin(29) sinlp) - R, Rq - sin(ds =3,)

Adding ail three 1erms theCDAD vanishes as expected.

The LDAD is more complicated because we have more (erms remaining from the real parts of the
equations given above.
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V1.2 The case of spin-orbit interaction

V121 Including the electron spin

We have measured a non vanishing CDAD for Rubidium 4p-states adsorbed at platinurm. The 4p shell

of Rb is filled by 6 electrons and therefors they may be equally distributed (o px, py and ps like states.
In this case no CDAD is expected as shown above, ang is seen also from the spherical symmetry of a
filled p-shell, On the other hand the p-states are split intc piz and i due 10 spin-orbit interaction that
can be resolved easily.

The states are described by the threg quantum rumbers §, j={+s and m, corresponding to the orbital,
the total angular momentum and its peojection on the z-axis.

The initial state wave functions are described by spinor spherical harmonics that are tenser spherical
harmonics for spin ¥4 particles as given by Varshatovicher al.{5.1]:

2 (0= 1 = B O Vind®00i s,
= Clte e PO OU T H gy Vil Bopl )

_ anvmj)Y!ﬂlJ—lQ
- bl(f.-m;)YlJn:d-lfl

mg and i are the projection quantum numbers of the orbital angular momentum and the electron spin
and ¢ are the basis spin functions. The Clebsch-Gordan coefficients C’,’,:", L, Can be interpreted as
probability that the state £, s, mg. ms> contributes to the coupled statelj.m>.

The quadratic forms of the spherical harmonics describing the angular distribution of electrons show
that the angular distribution of electrons in spin-orbil split states is independent on the orbital angular
momentum [ and the angle ¢ meaning it is of rotational symmetry with respect (o the z-axis {cylindricai
Syimmery).

For a filled initial p-state we have 6 different wave functions that differ at least in one quantum
nuziber: j=1/2. m=+1/2 and j=3/2, m=+3/2,=1/2. From Wimiz=IYool! we see that the distribution of
electrons in the pyp- Of Siz2- Slates are spherical symmetric and do not expect that CDAD occurs.
Maoreover for all filled sheils a spherical symmetric charge distribution is obtained in averaging over all
m; substates for given tolal angular momenmum j, therefore no CDAD is expected for emission from
unperturbed filled shells.

By applying the equations to determnine the photoelectron cross sections as described above we get the
spin resolved intensities. [n our PIPE experiments Lhe electron spin is not measured and therefore we
abtain the intensities from an incoherent superposition of the cress sections for spin up and spin down
electrons.

In our experiments we ohserved CDAD for initial states with spherical symmeiry as well for C-1s as
for Rb-4pys states that cannot explained by the formalism described above where we assumed emission

from free atoms. In the following we will discuss the influence of the surface showing that this is the
origin of the measured effects.

Three spherical harmonics are contributing to the spin orbit resolved pip32 States, namely Yio. Yin,
and Yi... The G functions connected to these three spherical harmonics are given in the Appendix.
From the equations for G it is seen that for truly oriented states the CDAD does not vanish if z.k and
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q are parailel (or antiparaliel, respectively), that is for ©4=0, 3=0. How such a state can be prepared is
discussed in connection with magnetic effects.

As shown above, Icoap is given by 2Gec . applying this relation to the pvj2 states we have:

e 112

LepAD g ; . 5.
AcenR] {sin(D,) sin(28} - sin(dy = 8,) - 1o + ...

ot 2eos(@ M3 sin?(3) - 1] - [3cos?(8) - 11 cos(8a —d) - ra=rf) +...
e 5in(D,) $in(28) - 5infda 3.} - 7}

-1

PAD . {2 cos(D N [3 - sin*(9) - Ij —[3cos(D) - 1]cos(dy =87, —r2}— ..
dc R

.~ sin{,) sin(28) - sindy ~&,) - re}

In the case of an incoherent superposition of the intensities we have spin resclved:
172,11

T _ g, _ o
dcanRy {+sin(® ) sin(28) - sin(ds =:) - 75 = ...

e = 5in(D ) sin(29) « sin(ds —ds} - re}

Without resolution of the electron spin Icoap vanishes as expected for a state with sphericai symmetry.
On the other hand if the two states are split by a magnetic field then we have without spin resolution a
CDAD of opposite sign for both states:

Iehan _, (1 2 . : )
m=i {1 cos(® M [3sin*(3) - 11 -{3cos?(9) ~ 1 cos(@u =) - s =r}} + ..

o+ 5I(D,) sin(28) - sinfdy — ;) - 75}

Note that a magnetic fieid to produce the splitting {simitar (o Zeeman-effeci) must be applied parallel
or antiparallel 1o the surface normai, that may be inconvenient (o be prepared in experiments.

VI2.2 * Spin-orbit interaction in the final state

In the description above we have omitted the possibility of spinflip as weil as the j-dependency of the
phases and radial mamix ¢lements of the final states.

The S-O-spit states are described by the wave functions:

0, 5, j, my > = I, my, 5, My, j=0+s, mp=mp+me>

Where my and m, are not good quantum nufmbers. From the dipole selection rules we have for the final

state Al=1 and Am=0,+1. Now we have to consider the conservation of the total angular momentum
leading to the selection ruleAj=0£1 in addition. Thus the final states are given by:

10 s=1/20 50, my > =1 =0, s=142, =) L my=mmpE] >

making use that m; is a good quantum number, The dipole-operator does not act directly on the spin,
but a specific fized my'=my’+me'=myt1 can be reached by Ame=t1, Am=0 as well as Ame0, Ame=t1, - -
bearing in mind that the m's cannot exceed., s, or j.

Two new features are shown, firstly the final state wave functions now depend on j rather than ¢ and

therefore we have to use j-dependent phases 8 and matrix elements Rj. These quantdtes can be
computed by sotving numerically the Dirac-equation for bound and free states using either a suitable
potential or directly a Harres-Fock method. Secondly, even in transitions from states with pure spin

orientation (say YoolT> like $12,12) the final states can be build partly by a mixture of IT> and K>
states showing the possibility of spinflip

The initial s1ates are given by the spinor spherical harmonics described above:

. ai(j.m) Yiw-12(F)
¢x = Qim‘(r) . Ru_“ =( b,(;.mj) Y[:+[ﬂ(f) ]Rn.iJ

Where a and b are the Clebsch-Gordan coefficients for me=+1/2 and -1/2. and 7 is the unit position
vector describing the anguiar dependence. The final states are expanded in a sum of spinor spherical
harmonics given by:

gr=dn X (—f)fnji;;(a?)gf (PR, explid; )

/o,
l' af m'
Jomy

Inserting both states we find that the differential cross-section for a state with given magoetic quantum
number m; is given by:

(GAHIP) =4n T <(—i)rQﬁ;-(I€)Q)‘:ml(r")R,-exp{i&,‘ﬂ?-?}ﬂjm(ﬂ.R,._,‘,>
I'j.m ' !
i ?e T {0 A, 0 ) -0l
Ij.m ! i

pf,‘j'; = I'J’ cxp{iéf } IR)J “r-Ragi- ridr

The final state radial-function and phase depend on the kinetic energy of the electrons (e=Ejjn). The
radial integrals depend on the initial and final state radial-functions but are assigned here only by the
final state total angular momentum for short:

-
o 3
Ry =R =£ RuyjRoyy rdr

From the radial integrals we define the complex radial matsix-element as:

py =i Ry explid;} = pi3f
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To find the angular distribution of the photoclectrons we make use that the angular dependent panis of

interest can be written as: The abbreviations a=ag(j,m;j} ard b=by(j.my) and similar for the primed coefficients are vsed. The
5 o ar Gy Vit modified Spinor-Gaunt-coefficientey (", m, j,m;) for spinflip emission are shown in the appeadix.
= Q) = . ! . . .
¢ Py Tmi o | be(f vm,')Y&1}r|3+l.fZ Using the mexdified Gaunt-coefficients ), the £ _functions for initial 5- and p- sfates are gived by the

following equations. Thereby we use the complex radial maurix element as given above, but take 2j as
index for abbreviation:
According 1o the Al=+1 sejection rule this sum can be divided into two paris.
phy = i'Rag yexplid)
ai (. m;) Ymmj—uz

= z bl m) Yy Ml

J==30-112
m}=m,.mftl

o
i »m;)‘{mm;-m

!
bl m;)Yifl_m;HfZ

+ z
J =l

'
= +
my=m;m 1

Note that the selection rules must be fulfilled. limiting the number of possible final states. For initial
s-states only final p-states are possible. For initial p-states one has two {j=1/2) or three (j=3/2} final
j"-states depending on j, whereas in all other cases with {>1 a maximum of three j'-states are reachable.
It is worthwhile 10 note that the selection rules are superfluous to be used a priory beczuse they are
included in the properties of the Clebsch-Gordan coefficients that occur during the various steps in the
calculations. On the other hand they prevent Uoing SOME UNRECEsSAry work.

Finally the transition probabiiity matrix elements M, can be calculated as in the case of reel orbitals
and from these the &-functions needed to determine the polarisation dependent differential cross

sections.
My ={HD = <QJ’ZM,|T;’ A0, >

?omg=tiani =7 (010, )

To calculate the transition probability maurix elements one makes use of the orthonormality of the spin
functions, that is <T|l>st and <T|T>=l. Inserting the initial and final state wavefunction in matrix
representation we have:

x (i
M.f =j l I Qj::" IT,' Yk.l';.oﬂﬁjm,_d(o] sm(S)dS
ola !

a¥im- 112
- E H( a Y;.m;—lﬂ b Yt";n;*m )thj-o.t] dip sin{ 313
bYlan-]fl
s{a'a gl Lm+f- 12 0m-12)+b'b-glt 1, + B+ 12,1 m;+ 1/2)}

=?:s(j"m;’-f‘ m)
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al) sizviz 2 p

r (\/—Psfzm" 11 Pit- m) .03 Jpnfz-m ,0.}
Z(siza1r) = ‘ =i (J_Psrzm"‘ 18 P, m) pi-1pian- Pl} }
[~ JPm.lrz - 1s Pazan Pl} J

aN sipanz=—p

E(sin-1n) = —f{(ﬁpsrz.-m +J7% Pm.m) Py +3pinan P{}
l "\[2_ {';'PB-Q.-IH. 'P§ + Tlg P Pf}

( —{(Epm.-m - EPJ!’MR) -ph=3p1ran - P } ]}
J

bl) przanz —»sd

({(Edm.m— Tlg'd}fl.—l,fz] -pi—tsinmin - p]} ]
_"{(Edm,m * \/%dm-*lﬂ) P+ $sinan 'Pl}

{ —ﬁ{'}dm.m'ﬂﬁ"' 715511'2.1,'2'9?} J

Z(pinan) =

b2) pr2,an ~rsd

"'{(Edm,-m +J1 d.\rz.urz) A -t5in .p?}
| _ﬁ{%dl"l--lfz'nﬂ%‘ 1_1351/2.-1,2',0?} ]

Z(pin-tn) =

(T (F )+ bemin ] ]}

cl)pnan —sd

( {(E dsnsn = ‘5"0' dsrz.m) -pE+ Ed:rz.m -pi- Ehrz.m 'P?} ]
-f{(,[%_dm.m + )% dsn.m) -pi- Edm.m -pi+ Ehrz.m 'P?} »
—ﬁ{gdmgrz'ﬁ%—gdm.m'P%} ]

Z(pnsn)=

c2) psnaz —sd

{ {( 75 dsy — Eds.-l) °P§+(\/7—J§d:.3 +ngd3‘-1) P} = 15 Sua 'P?}
Zpinan) ={ —i{( s dsa+ )& d&—l) - p} +( 5 d33 —%d:.—;) p i+ 5 s -P?}
| —E{E‘:dil 'Pg‘\/%dn 'P%‘%Su 'P?}
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C3)|}3n i —sd

[ - \/;ds‘3 \,_d“) P‘-‘—( 75 ds, 1+15d31) FIENE XINE Pn} !
E(pan. 1&)—{ 'i( 75 ds_3+ mdjl) ps ( 35 d, 3-”d31) p3+ l! St pl} *

L {.[;dj -1 P5+J;d3 -1 P] 3.':‘1 - pl} J
) paz.az — sd

[~ (,/_d'm-m 75 dsn- vz) pi- ,/:dm - p3- J_S1n e ,01} !
Z(pn-in) = { }
L~ J

—f J_dsn—sn+J;dsa Irz) 5+J;d3f2._|f2 p3+J:S|a_-1Q'P|}

25 dsnn - pi+ J:dm.—m . ,D%]

We write the spin-up and spin down parts of the Z-functions using spherical harmonics to calculate the
CDALD of the spin-orbit split initial states.

For 512 states we find:

a) $12.412 P
= e -t v i)
Cle= ""Jrl’m (pi-pl)
gty = *f'{EYn'P§+‘}EY|-;-(;)§Q+2-;){)}
N
¢ro= T 12 pleph)
¢l.= _"J_YH Apy-pi)

b} SizZ.n—p

¢te=4 A ro-y-p)

T ENES RIS FER ARSI
£ty = =i+ 3 o Goh o)

cty = =i-{JErap v 4 [T v i +2- 00
£1e= 4T v Gh-ph)

gl =4 i to-Q@ph+ph)

it

The influence of spin-orbit interaction to the final state is seen clearly. It leads to a spin flip if there is a
difference in the compiex final state radial matrix elements, that is iﬁm—p[,q#().
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To calculate the CDAD we have to determine the contribitions of the both spin channels and mc wo
m; substates.

Nov.l997

For the pi states we find:

a)pir.s1n —* 5d

Sty = —J;L;(Yzl—f'z-x)-pg

o= (\[?‘;Yn‘%ﬁl’m)-pg-

q— Ty = f-[‘il.?(Yn*l-Yz-i)'pg
El, = —f-{(‘/% Yzl*'%ﬁymj‘ﬂ%*%}’m'ﬁ'?}
§t, = -%EYZO'Pg*'%Ym‘P?

Cle = —11‘123' Yo - pj

b) pin-iz ¥ sd

VI3

cte=( & Yoo =4 ¥u) 93— $ Yoo
$re =5 (= tu)-p
or < [(F o3 1) st
él, =—i.j}:(}’1_1+m}-p§

=‘[1:5Y2—1'P§

&
v 2
fre =1 o sl et
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Fig. 4.37. Observed CDAD of the 7'P,, state of cesium. Theoretical calculations by

Dubs, er al.™ Dashed curve is the long time limit using the model of Greene and Zare.’

Fig. 4.40. Photoelectron angular distributions from the 7°P,, state of cesium using both
left and right circular polarized light.
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viuu Inmitial state effects: Perturbation of states at surfaces

Initial state etfects occur in photoemission due to a perturbation of the initial state wave functions.

VIIL1 Initial state effects in emission from real orbitals

Gadzuk {7.1] has first discussed the Influence of initial state effects on the photoemission angular
distribution from real ocbitals of adsorbed atoms. He explains initial state effects as initial state inter-
fetence of the adsorbate valence orbitals with such from a d-band substrate. He used the tight binding

approximation te find for the initial state wavefunction [ig that is build by coupling of the pure initial
state (> to the metal orbital |g> of symmetry g:

i) =10 +Z a;- Blos)

o= 3 A0H)

TNy ST -
Where the sumn is taken on all Ny nearest neighbours in the substrate. aj=+1 are geometry dependent
phase factors matehing the sign of the coupledwavefuncticn:
a; = sign({(R)) - loy(-R)))

P, measures the coupting strength if the interaction energy is given by H. The sum can be expressed as
a bond site structure factor depending on the momentum k of the emitted electron:

i - —
St g. k) =2 —:—,'J-'cxp{—i koo Rj} =2 %cxp(—i[k,r”I +k,ry,'+k;r;_,])
PR | FEA ]

=X - expi=i- Kl -[x, sin(B)cos(p) + ;sin(B) sin(p) + 2, cos($) |}
! 2

The final state is then of the form:

[fa) =l+ 1>+|$3,::1>

Gadzuk has discussed only pdo and sda like coupling of the states. But in general one has 10 take idn
and id8 (i=s,p) like bonding into account, tog.

The tables for the structure factors for On-Top, 2-fold bridge. and 4-fold hollow sites are given in the
appendix.

In the work of Gadzuk the wave functions as given above are not normalised. and the interaction
strength is not seen directly, In the LCAQ approximation, the initial state wave functions are described
by:

|i_,)=u1‘I’p+u1‘Pd

“,;) = M],LPF - H1"Pd
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We apply first order perturbation theory to this state. From the secular equation we ca]cu!afe for the
energy dependencyE(k) of the coupled state:

. L 2
o= Mt tJ(W' ) Wbl

To estimate the coupling coefficients we choose the phase of the first coupling coefficient such that it
becomes real and calculate the second according to the structure factor above, so that the initial state

i =c(1+ JT+1al)-li)+a-|o )}

reads:

Wl . 1o
AE gy o= 2(1al®e 1+l

Q=
Here W4 is the exchange energy and AE=/W;- W2 the difference of the binding energies of the adsor-
hate valence orbital and the substrate d-band. both taken at k=0. Wig can be calculated from the band-
witdth Eaw of the coupled state:

o= () R

Erom the initia) state we find theZ -functions describing the photoemission matrix elemenMi to be:

= l+yl+lall =
== - &+

=2
q

Y=

&

)

VIELL.I  Special case of Oxygen adsorbed onCu(110)

In oxygen adsorption on copper a Cuf111}-p(2x1)-O superstructure is observed. The substrate has a
twofold symmetry and onty one kind of bridge sites occur. Different kinds of adsorption sites have been
discussed like missing row or buckled row models, both in flat and out of place bridges. Alternatively
one may discuss an On-Top adsorption site. We assume an orientation of the adsorbate in rows along
the y-axis, the coupling to the copper d-electrons in the different cases can then be established like

follows:
adsorption site initial states coupling function
coupled state d-state Stp.d.k)
symmelry
On-Top P dyz —exp{i k hcos(3)}
Flar bridge By thzy2 § sin{k &/2 sin(B)sin{ @)
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Px dyz —exp{ik hcos(®)] coslkada/2 sin(Fcos(@) :
Qut of plane e
Bridge Py dyz — explik h cos(9)} costk dy/2 sin(B)sin(p))
Pz dyz —i explikn cos(®)] sin(k dy/2 sin(D)sin(@))

Where k is the electron momentum and h, d are the height above the substrate or the disiance between
the neighbouring Cu atoms: dy=dwn, dy=a. As shown above, the initial state can be expressed by a
coherent superposition of theQ-2p and Cu-3d states:

c-ly=a-10-2p)+ - S(p.d. k) - 1Cu-3e)
W
a=(1+ T plstl ) =22
c:HI+BZI.S(k}\2+ [1+FIsr )

Where [ is a parameter describing the coupling strength between the oxygen 2p and the Cu 3d
electrons. This parameter depends on the energy dispersion of the bands observed for the different
symmetries of theCu-2p states [7.2].

Making use of the dipole selection rules al=*£1) the final state can be writlen as’

Iﬂ = {S-pmp-; —d'ﬂmpﬂt} +i {,’7 P Caldp ‘f'P(‘u!J—f}
pi= e""rR!.

Here complex radial functions p are used. The indices assign the atom and the initial and final staie
orbital angular momentum.
For the On-Top adsorption we find that the O-2p; state is mixed with the Cu-3d;2. The coupled pz
state is given by;
liYe a-10-2p )+ B-expli-kh} - 1Cu-3dzd

From ISF=1 we find that this state shows ng dispersion in contradiction 10 the experiment, where all
states show dispersion, therefore we can exclude this case of the adsorption site.
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Inserting the final state wave function we find the Z-function. If the electrons are collecled in the _
y-z-plane at g=r/2 the equations become simpler;

{ 0 ] [ 0

)

3 sin(9)cos(3) Fn

oT= Cp

)

|

sin(9)[ 252 - 3(5 cos¥(8) - 1) ‘
£s

l W—BCOSI(S)—I] ) |L COS(S)[4——3(5C082(9) J

¢p=a 2. L
o a3

ca=i-f-expli-khcos(®)) - —— ‘/_

Here py denotes the complex radial matrix element. Cotlecting the photoelecirons in the y-z-plane. the
CDAD from the unperturbed O-2p; state is given by:

Ipap = sin{3)cos(B)R, R sin{dq — )
Whereas we find for the coupled case:
1805 = sint3) cos(§)R, R 4 sinlds - 4,)

+ E g sin{9) {2R.R, cos|kh cos(8) +d, 3, ]+
. +[5c0s2(9) — 1|RR cosfkhcos(3) +dr—ds] — .
o= 2%cos () - []R,Rdcos[khcos(SHJP —c)'d] -
~[cos?(3)+ VIRyR,coslkhcos(§) +d;—dal}

2
+%[§] sin(9) cos(9)[3 cos(9) — 11R, Ry sin(d; =3, )

Inthe bricfgc adsorption site the O-2py state is coupled 1o the Cu-3d states. We find for the CDAD for
electrons collected in they-z-plane of the uncoupled case:

I hap = —sin{ 3} cos{ 8RR sin(da —5,)

That is the negative of thep,-CDAD, whereas for the coupled cases it is changed in the following way.

In the case of adsorption in the flat bridge site the oxygen 2py-state is coupied to the copper 3dy2-y2-
state and in the case of the out of plane bridge site we find from the coupling of the 2py state 10 the 3dy,
state. The CDAD of the coupled py-states is given by the following equations:
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the Flat Bridge site:
13.p < —sin(3) cos{H)R,Rysinlda —J5)

f;asml(S)cos(S) {5-R R;sm[é,r 8,1+
6 R,Rdsm[éd o +.
..+R4R,rsm[5f 64]) Sll'l(k Sll'l(S))

2
-%[é] sin*(9) cos(B)R, R,sin(dy—8,) - sin® (k§ sin($))

a) For the Out of Plane Bridge site:

Icmn « —sin(S)cos(S)R,Rd sin(dy —d,)

VIIL.2

[7.1]
(7.2}

+J_ o sin(9) {R,R, cos{ khcos(9) +6, -3} - ..
.. ={5c0s*(8) - 1R Rycoslkhcos(3) + 3 J, 1 + ..
. +2[3c0s3(8) - LIR, R4 cos| khcos(§) +dp —8a]+
. +[cos2(8) — 21R 4R coslkhcos( 9} + 6, — 541} - sin(k% sin{9))

2
~3(%] sin(9) cos{8)(cos*($) - 21R,Rysin(d;—d,} sin* (5 sin(3))

References

1.W.Gadzuk; Phys.Rev. B10 (1974) 5030

S.Hiifner, .Electronic structure of NiQ and related 3-d-transition-metat compounds”™: Advances
in Physics 43(2) (1994) 183-356

see also:

1.C Slater, G.F.Koster; Phys.Rev. 94 (1954) 1498
I.W.Gadzuk; Surf.5ci. 43 (1974) 44

J.W.Gadzuk; Solid State Comm. 15 (1974) 1011
J.V;/.Gadzuk; Surf.Sci. §3(1975) 143

1.W.Gadzuk; Phys.Rev. B12 (1975) 5608

J.F Herbst; Phys.Rev. B135 (1977) 3720

S.Froyen, W.A Harrison; Phys.Rev. B20 (1979) 2420
R.R.Sharma; Phys.Rev. B19 (1979) 2813

" ¥_Boudeville, ] Rossean-Violet, F.Cyrot-Lackmann, S.N.Khanna; J.Physique 44 (1983) 433

68

v

s



X Photoelectron diffraction
X.1 Scattering and pleochroic effects

One has to involve scattering theory into the photoemission process, if the electron wavelength2] de is

of the order of the interatomic distances. As in the case of refection, the overall wavefunction is build
from the direct wave $o and all scattered waves ¢;. We neglect multiple scartering and write the
wavefunction (or say better: its complex amplitude) in single scattering approximation as:

(7. 7) =67 0) 5207 7.%)

In experiments the detector is situated far away from the emitting centre and all waves 0,j can be taken
to have a limiting spherical wave form. Nevertheless, the effective amplitudes and phases are dependent
on the photoexcitation matrix element.

The amplitudes of the scattered waves depend on the amplitude of the initial wave and the distance
between the emitting and the scattering atom r;. From the linuting spherical waveform the decay is
proportional 1o tr,. The scanering excitation probability of thej-th wave is then given by:

=7
Adr,. 8.0 = éLrj‘l)

—
As usual, the scattering angle 8;is measured with respect to the momentum k ; of the primary emitted
—
electron and the mosmentum of the observed electrons is k . The scattering angle can be calculated

from the scalar-product of the unit momentum vectors:

J\:g - .E)-
sin(9) sin(;){ cos(@) cos{g,) + sin(p) sin{g, ] +cos(H) cos(3))
sin( ) sin( 8,) cos{p - @,} + cos(9)cos(8))

cos(f,)

1

if the observation angle is ¥ and the scatterer is situated at a distance r; and an angle W regarding the
emitter, where both # and §; are measured with respect (o the surface normal. In the special geometry
we use in our experiments we havep=m/2 and therefore:

&p = %) = arccos{sin(9) sin(9,) sin(p,} +cos(8) cos(9;)}

The final state waves 9, are produced by electron atom scatering that is described usually by a

complex plane wave scattering factof,(8)) including the scattertng phaseshiftn;:
£6)=1718)| - explin;(6)))

The scatiering factor is calculated from a partial-wave analysis in terms of the orbital angular momen-
tum §:

ﬂé’)— Y‘(2!+l) [1-exp{2id,}]- Pricost&)) = AP - explin(d}

1 The de-Broglic wavelength of the elecrons is given by: A=21k
ki
T

. 'G_H.Fecher. Novﬂm
i O
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Where 8, are the partial-wave phaseshifts and P; are Legendre polynomials. 8 is measured wuh respect
to the momentum of the primary electron.

The overall difference in the path between the primary and the scarnered wave is tjf1-cos{8;}] and
therefore the total phaseshifte; of the j-th scattered wave is given by:
a8 = Lr,{l —005(9 )] +1,(0))

klni

If we neglect thermal effects and inelastic scattering, the photoelectron intensity can be written in
single scariering plane wave(ssc-pw) approximation:

l ¢U(S}- ';Uj)
g

2
: |fJ(8,l)| -exp ’.ui(BJJ}

45 < 909,943,

Due to inelastic processes the initial and the scattered waves are damped during their propagation
inside the crystal-surface-adsorbate system. The inelastic attenuation length A. or the electron mean
free path has (0 be determined experimentally and the amplitude is expected phenomenclogically to fall
off by an exponential law exp(-L/ZA)=exp(-yL). Euch wave o and ¢; has to be muitiplied by such an
expanential factor involving the path length Lo and L. Furthermore the amplitude of the scatiered wave
decreases due [0 vibrational effects that can be included simply by multiplying each ¢; by an associated
temperature-dependent Debye-Waller factorV;.

We assume that the emitting atom is located in ihe topmost layer and that the shortest path length

(parailel 10 the surface normal) to the vacuum is ro. The patis lengths LaL, depending on the emitting
angle for the emitting and thej-th scattering atom are given by:

ro+on
and L; = 2

Lo = os(] * sl ®)

The perpendicular distances z;g can be calculated from r, and the difference in the path lengths are
given by:

cos{d) ]

T P

If the overaHl wavefunction is normalised byexp(-¥Lo}, than the scattered wave can be writien as:

§ $o(8;.0,) - T, - 69, 90 - explind 88, 9,
B exp{-yAL} - W,
i= [5}

We have to pay attention on two points calculating the damping of the electrons. Firstly, the mean free

path and therefore ¥=Y(Exn) depends on the kinetic energy of the electrons. Secondly, the mean free
path inside the adsorbate layer can differ strongly from that inside of the substrate because it is material
specific.
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Finally, the averall wave function including scattering is given by:

‘*‘(?) =1¢0(8.¢) +¥ {$a(85 0 - T - Lfi(6))] - expiai(8p)} ]l"a

Where T includes the influence from the refraction and damping of the primary wave as described in
the previous chapters. The cross section has to be corrected due to the influence of the Debye-Waller
factor to Tj, as described by Fadley. We will discuss it later (see below). Tp influences the PIPE inten-
sity but not the asymmetries. The influence of the scanenng 10 PIPE will be discussed first in general
and later for some special examples.

X.2 Dichroism Estimated for Single Scattering Photoelectron diffraction

Before giving examples, we will estimate a more general case of the dichroic signals. We can write the
CDAD (and LDAD) equations for the cases of 100% polarisation as:

[1PAD = 3¢, {cos(B)TUEE;) - sin(8)R(E54:) }
160D = 2¢, - Lcos(8)T(E.E3) - 5in(84)3( 360}

'=¢q- |‘:,~|
1P = o {cOsHOREN - sin(28 IREED +sin (B IEA )

From these equations we have 10 determine theS-functions. As above, we divide those into two parts:

i $:(8).0))
Z=Sp+=E, =1 St ]S850 —,’—exp{ikr,(l—-cos(@,)}
C—.—O ’ ‘fr(311¢})

For LDAD and CDAD we need the mixed products:

Zi +Z &9, rp,)ﬂr i exp ilkri(1 —cos(ﬁ,)}]

B '{f§o+;f;{9h¢’: f‘E, exp -l{kn(l—cosw)}]

ﬁ|
I‘u
~

&6 = [ézo +; ég(S,.wj)f*(';jL expilkr(l -605(5;)}]
a
'[f;a +2 C';(S,'.qo,-)f‘f.jj) exp —il{kri(1 —cos(aj)}]
i
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In the case of Glled shells, the diredt terms do show neither LDAD nor CDAD and the differences
between the direct and the cross terms can be written as ifEXAFS theory.

6,
Yoy =Exl; = Ex0Clp =& L vfx(S,-.«p,-)ﬂ—"-rj ) exp i{kr;(1 ~cos(8;)}
8.
0 T£3085 )2 exp ~ ilhry(1 - cos(6))

are=E36— &l =& L 4B, w,)ﬂ expi{kr;(1 —cos(8)}

r
RaZ &8 p et @)

exp — ilkri{1 —cos(8; 3}

SOIRE) )ﬂ

We neglected the sum over the i-j combinations of the kind —F .7 17
arising from the scattering and path difference LDAD and CDAD are given from the real or imaginary
parts of:

. Combining the phase-factors

8 8;

=q ZCI(S} (01 ]-ﬂrJ | CXP{'GJ}"'CG) Z‘f-(sl'(oj)lﬂr )j"cxP{_‘ﬂ.l
&

Y PN (9,.qp,)|ﬂ 6) explia,} +¢0 L&} 8,.¢,)m )| expl~ia,}

a; = k{1 ~cos(6)) +n(B)

The first {xy) term is connected through the polarisation vector (o cos(dq) and the second (yz) 1o
sin(®q). To show that there is a possibility to have CDAD even at normal photon incidence one has to
proof that the first term does not vanish for a particular initial state independent on the crystal

SYIumerry.

For inital s-states we have:

o | P sin(3) coslg)
Eoal py tpp=1 si()sin(g) [Rpexplid,)
Pt cos(3)
leading to:
. N -
1r =sin(3)sinlp) X sin(H;) cos{g;) lf(,;)i expidy
+sin(8) cos(e) X sin(8;) sin(g;) exp - ig;
. . &) .
In =.run(.9)sm(«a)'f,c:os(Sj)l‘ﬂJ,.jJ | expia;
8.
+cos(9) X sin(9;) sin(e;) |ﬂ,_1’)| exp - i
80
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finally CDAD is given by the equations:

25PAP = sin(8) sin(e) 2 sin(9;) cos(e)) bﬂ(fj)l sin{kr(1 — cos{8;) + n(E)}

F
B.
—sin{ 3} cos(e)} h sin{ 8} sin(¢)) Lﬂ,.j’)l sin{kr;(1 - cos(6,} +n6n}

£5PAP = sin(9) sinfp) Z CUS(Sj)’l'ﬂ_fj)_l sin{kr,(1 — cos(8)) +7(6;)}

—cos(3) 2 sin(9;) sin{g;) ]ﬂgj)l sin{kr,(1 —cos(8;) +n(6;) }

Both terms depend only on the phaseshift introduced by the scattering and not on the photoemission
phases, therefore CDAD from s-siates can be used to determine the geometrical properties of an adsor-
bate sysiem directly. The first term gives the possibility 10 observe CDAD even for normal photon
incidence here we have:

ISPAR o 5in(9) sin(p) Zsm(S,)cos(w,]lﬂg’)l sin{kr,{1 —cos(8,}+1(0,}}

1)l
) 7,

‘ 6
15940 < 5in(9) T sin(3,)[sinp - 0,)] !ﬂrf”

—sin(®) cos(p) 2 sin(3,) sin(g, sin{kr,(1 —cos(8;) + 08}

sin{kr(1 — casi@)) +n(8)}

vorsicht mit dieser argumentation !!!! --> Both lerms are symmetric in the emission angle ©, therefore
the CDAD at normal photon incidence shows indirectly the symmetries of the crystal system and

characteristic Zeros occur if the plane of electron emission coincides with a plane of SYMMEryp=g;.

In an symmetric arrangement we have the same angle ¥=0; for all neighbouring atoms {or atoms in
cquivalent shells around the emitter having all the same distance (o the emitter) leading to:

193D o 5in(93 X {sin(3,) Z sin{ga-w,_,)‘ﬂgf)l sin{kr,(1 —cos(f:) + (6,5}
! [

cos(6,.) = sin( %) sin(3,) cos(p — ;) + cos(F cos(8,)

The sum has 1o be taken aver all equivalent sheils containing atoms of the same distance to the emitter.
In every sheit withn-fold symmeuy we can write the angleg;s as @ +(f — 1)1,.—" for j=1..n leading to:

NLopm

I$PA2, « sin(®) T sin(®,) 3 [snto ¢ = - 12 8L in ke (1~ cost@) + a8}
¥ =
cos(8,) = sin(9)sin(3,)cos(p — s = — )E) +cos(3)cos( 91}
If the symumetry is odd like n=2,4,6 we find al every angle ; one atom at #j and one at -0 and we can
rearrange the equation (o be:
nf
IPAP = sin(3) X {sin(s,) X (Fo - Fx]sint - ¢, - 26— H3)
B -~
Fp= -lﬂ%‘u sin{kr;(1 —cos(fs)+n(f:)}
cos(fy) = +sin(8)sin(8,)cos(p — g, ~2(j— 1)3) +cos(§) cos(8,)
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and the sums over j in diffefent symmetric arrangements are

for n=2:
15942, 4 = sin(®) T sin(8,)sin(p = @) Frv = -]
Fa= m?fﬂ sin{kr,{1 - cos(8:)] +n(f:e)}
cos(fy) = +sin{3)sin(9,) cos{p — ;) +cos($) cos(3,)
for n=4:

Ig?f—?au = sin(3) Z sin(S,)sin(;o—w,){[F“ ~Fi)=[Fn —Fz‘]}

g
Fp= Iﬂ:)l sin{kr,[ | —cos(8e) ] +n(84)}

cos{f:) = +5in(3) sin(3,) cos(e - @) +cos(3) cos(8,)
cos{fy) = —£5in($) sin(3,) coslp — @.) +cos(3) cos(:)

The }yz-term connected to the Sine of photon incidence shows the possibility to have CDAD in norma!
emission where we have@j=1; and therefore:

15240« sind3) X s.in(SJ,)sin(qi;r,)L‘TJ{,}J!)| sin{krj[i ~cos{ 3 ]+ (31}
1

In any symmetric arrangement we have the same angle ¥;=; for all neighbouring aloms {or atoms in
equivalent shells around the emitier) leading (o:

JEPAD L gin($ ) 2 sin(S,)-ﬂ—‘-Li ? 1s'm{;cr,[l~cm;(8,)1+q(s,)}Zsin(w,-,')
K] 1 ;

NE.sym

where the sum has (o be taken over all equivalent shells around the emirter. The sum over the Sine-
terms vanishes in any n-fold adsorption site {or symmietric arrangement) hecause we have for n from 2

10 6 independent of an rotationyy of the system:

$ sinlpo + i~ 1)22] =sinfgo) &, cosl(j — 1) ]+ cos(po) . sinl(— %1 =0
J i 1

So for symmetric adsorpiion sites no CDAD can be ohserved in Normal emission, at least for initial
s-states and 100% circular polarisation.

[n one of the previous chapters we had meationed that there caa be a slight misalignment of the photon
beam In that case we had to take the §,§; combination into account. The additional term in the CDAD
was piven by:

Iucﬂgw = =2P e sin(28,) sin(pg) - {3
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The scattering contribution to the dichroism from the imaginary part of the E,E; combination for an
initial s-state is given by:

LOA
lﬂ;i

15PP = R} sin(%) cos(p) ¥ cos(8)) sin{iri{1- cos(ﬁb] +7(6:)}

~R2cos(8) 2, sin(8;) cos(g;) sin{kr,[ | —cos(8;] +n(6))}

Depending on the geometrical arrangement, this term is as big as the yz-term. The complete CDAD is
given by:

lf;w = cos{Dy) coslpy) { U( 5| sin{a(d;)}
-sin($) cos(p) 2 sin(9) smw;)m—l sin{a(6;)} ]
-sin(3,)cos(pg)  {sin(8)sin(p) Ecos(9)|ﬂ Al sin{a(6)}
~cos(9) X sin(8;) sin(g;) m il sin{a(8; )}]
~25in(28,) sin(p,) |sin(8) cos(qo)Ecos(S)lﬂ ! I sin{a(6))}
cos(3) ¥ sin(3)cos(p; )Uw ) sin{a(#; )}l

If we take the geomery most often used in the experiments witlp=m/2 and o=r/4, then we have:

_,CDOAD
,’f = - J3 costpy) [Sm(S)Y[sm( /) cos(p,) - cos(9; )]Lﬂ 2l sin{a(8)))
P4 e
+cos(9) Zsm(s,}sm(%)lﬂ })l sin{a(@,)}]
—4 sinfp,) {cos(S)Esm{S,)cos{w, g ’ )l sm{a(f))}}

The scattering coniribution can be easily calculated if we ke only the mext nearest neighbours in an
adsorbate into account. 1n this case we have %j=1/2 and assuming a misalignment of 5° we find for the
CDAD:

AR s & = T sin(9 + | A6 sinfal8))}
70.06cos(8) T cos(p;)| 8| sinla(8}

cos{8;) = sin(8) sin(p;)

It is seen, that the out of plane component is only of influence if cos{®) becomes not too small, and that
it is negligible at large emission angles.
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The situation becomes more difficult if one likes to calculate the dichroism for Initial states wn.h ]
angular momentum higher than Zero, because one has to average on all m-substates of degenerated -
initial states. We will give here a short description of initial reap-orbitals.

For an py-state the CDAD is given by:

CDA.D
l6 = "Z(do {J— ,z_,:} {Ed?: —di’;_,;}d'xy)ﬂsin{aﬂ
' 4 c,
+ E% T{d?,sisin{a, + (3, -8a)} - s%dh sin{a; - (5, —8)}}F;
AD
Ky @) j ; .
1671 cal Rz E(dg,d'n - dE,d’;,)F,— sm{a,-}

165
Fi= Tj’l

a; = kr{1 —cos(8;} + n(8;)

For an initial py-state we find for the CDAD:

4 CoAD 7
161[ - {f;z = S{aun{ﬁdg: +d?z-,1} —df.’,{,/-';diz +ﬂp;z_yz}}F, sin{a,}
a3
+E§_; E{fﬂdlésm{ﬂj-(é. —d4)} ~dls sin{a; + (d; —Jd)}}FJ
ZEDAD(Py)

- —Z{a‘ﬁz{ﬁd?:*'dgl—ﬁ} _dez{ﬁa" +a‘;:_,:}}F,sin{aj}
+E% Y(s0dhe sinla; — (6, ~ da)} — s/ sin{a; + (&5 — ) DF;

16n2c, 3RS

For an initial p,-state we find for the CDAL:

CDAD
dn ) _ T{d%dx - d%dye) F sinday)
16n2c, 2R3 4
AD
2P .
et = LA G- ) sinta)

+3 [T {0 sinla, + (6, ~60)) - cdesinta; (3, ~00)} ) F;

B4

o

s



The CDAD for the complete {a filled degeneraled state) p-state is given by the sum of the values calcu :
lated above: )
7EPAD (1) . .
ey S (d8, e — %l )F, sinfa,}
1673c, 5 R:

., COAD i

Xt gjp)2 = Y{d%,de - d%dh)F,sinla;}
].61'[1C¢'5Rd
ST b a3 o s} Esinta)

It is seen that final siate s-waves do not contribute to the CDAD, but we have interference between the
direct and scattered final state d-waves only, at least in the approximation neglecting ij-cross-terms and
multiple scattering.

In terms of the angles we find:

15 (p)

m = Y sin(29) sin(@) - sin(29;) cos(yp,) F, sin{a; )
- sin(29) cos(p) - sin(28;) sin{y)F; sinl,}

£ CPAD () -z . . n{a)

—m = ) sin (3)sin(2¢p) - sin{28,) cos(p;}F; sinla,

- sin(29) cos(p) - sin®(9,) sin(2p,)F, sin{a;}
=Y {3cos¥(9) +sin?(B) cos(2p) — 1} - sin(28,)) sin(p,)F, sinda,}
+ ¥ sin(29)sin(ep) - {3 cos?{B) +sin’(9,) cos(2e,) — 1}F;sin{n,}

As in the case of initial s-states there is one term remaining in normal emission:

ICDAD 9
M = ~25in(9,) E,sin(zs,)s'm(gp,-)‘ﬂ,,’)t sin{kr,[ 1 —cos(9,)] +n(8)}
Gnc.Ry ]

that vanishes for the symmetric adsorption sites.
The Normal incidence case is given Dy

LCOAD 4

) sin(23) T sin(28;) sin(p —@,) lﬂrj)l sin{kr,[ i —cos(B,)] +(8}

erc,R,z,

This is similar to the case of NI-CDAD from an initial s-state, but here 29-terms occur rather than
O-terms.

For not degenerated p-states, where we can distinguish between pa. py and p, states we find in the
special geometry where the electrons are collected in the-z-plane (p=1/2);
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1 0ps) R
A =oos(9) Lsin'(9) Sin{lwf){si“{aﬂ - sin{a; + (54 —5,)}]5
LLr
176,
F,=—rj’—
a; = kr {1 —cos(6)) +(6))]

b) Py

LCDAD

,(gnc (;2,) = Z5m1(9;)5m(2@;){{35in2(9)—1}sin{a;}+%";sin{a,——(r5,—ad)}}}?1

ZC_DAI;(};V)

T ¥ {sin(29,) sin(p;}{ 3 sin(B) - 1} - sin(28){3sin’(8) — 11} F sinda, }

d
+§—; Y (sin(28,) sin{p,} sinfa; = (3. = du)} -~ sin(28) sinfa; + (s —SIMF,

<) P:

. CDAD(

e te L sin29) T sin29,) sin(p)F sinfa, )

afly
L2003 neas 7 ] 2g) in(29,) sin(e )1 F, sind ;)
“6mic,RE T (sin(29) 3cos?(8,) - 1] —(3cosH9) — 1sin(28,) sin(g))F, simta;
+—§j T {sin(28)sin{a; + (3; ~ da)} —sn(28;} sin(p,) sinla, — (J —3)YYF,

X3 Spindependent scattering

As in the case of scattering independent of ihe glectron spin we write the amplitude of the wavefuncyon
as sum of the initially emitied wave Wo and all scattered waves ‘). The spin-dependence is introduced
via the spinflip amplitude and the spin dependent transition probabilities.

Y= Wo+Y 5, T
!

- 7 .
The wave function of directty emitted electrons is given by Wo(3.p)= € » & as calculated in the
-, .
previcus chapier. The j-th scattered wave has the complex amplitude ¥; = W r;) given by the
amplitude of the primary wave at the jocation of the scatiering atom.

The spin dependent scattering matrix
Si=fi- l—fg,--?-ri,-
connected to the j-th scattering atom depends on Lhe spin vector composed from the Pauli spin matrices
and furthermore on,
the non flip amplitude: f; = fA6) = |8, explia,}  and
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the spin flip ampiitude: g; =f18)) = ]g(ﬂj)[ explif;}
where the difference in the path of the scattered and direct wave is included:

a; =kr,(1 —cos(8))+nd8) : Bi=kri{l —cos(8;)+1,(6))

The scattering geometry is defined by two quantities, the scattering angle and the normal vector to the
scattering plane, that are given by:

— -
_r)j .k s _r)j x k
cos(8)) = = el TS =
lrj]-lk| njz |rjx.l'cl
Finally we have the completed complex scattering matrix given by:
Ji—Egmp —g{i-nu+njy) 4 Sy
Sj = = i J

S §%

~gili iz —ngy) fi+ign

The damping factor T includes the L/r decrease of the spherical wave, the inelastic processes and
thermal effects:

{ - }
CXP1~Tay
i= F ML

The direct wave "o and the amplitude ‘¥j of the primary wave at the location of the j-th scatering
atom can be written as spinor:

SRR RARH
T8 ATy B

Inserting these spinor into the equation given above the tal amplitude of the wave is given by a coher-
ent superposition of the spin components of the wave functions:

¥ ger =[ “] { do }ra +‘>,J:[;j'(f’""'3’"")'ﬁ" B i+ i) ]r;

B Bo o fy i gmia) =850 Bl Mis NGy

=( a0 ]1..0 +3 { aj: Sju +ﬁj‘551 ]F,—

Bo T\ B S te S

The total intensity of the photoelectron current is then given by:

19, p)=aa* +8* =1al® + |41
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If the spin of the photoelectrons Is rescived, then the electron spin polarisation can be calculated from
the reiations: -

S | P af*+a*f
P=1<P ='{;&j‘_‘}_‘ﬁﬁj i-[af*—a*fl
P, . ao*—f8f°

Note that from quantum mechanics the polarisation components cannot be measured at once in a single
measurcment, bul they can be determined in independent experiments.

We will here examine only the CDAD. To do so we have first (0 calculate the CDAD observed in both
spin channels independently and than we have to add the results.

For the spin-up componeni we have after subtracting the direct part neglecting terms with frirj:

2= gy T(an - + 8- Sh) +aa. T(ay, - S0 + 85 - 55)
25 = a0 L} -Sh+ 85 S5) +ag, T(ag- St +Be - Sh)

and {or the spin down component:

= By T(Be - Sty + - $i) + foe T(B; - S+ ), S)
the= B (B - Shvay,-Sh) +Bay LB - Sy +ag - Siy)

We will analyse at this point only the CDAD from initial Sz and p12 states, that are easiest 10 handie,
because one has only twom; substates,

X1 Intensity and Spinpolarisation in Spindependent Scattering

We like 10 show some properties of the spindependent scattering. If we apply the scattering matrix (o
an wavefunction ‘¥g we find after the scattering event the wavefunction:

[a] ={a-ma)—i.g.nt}_ﬁ.g(g).(,-.,,”.,,y)]

_ws: §-¥o=3- i B +igen)~a gl (i-nm—ny)

The intensity and spinpolarisation of this wave are given by:

s = 1o]5u(@ + )P o 7}

($50(8) =S5O0 P + 7 + 5207 +5:OV F —5,(60)( P x 7)

s
P
506 (1+526YP + %)

5=
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I(,=I0LI2+E[$12 is the intensily and P is the spinpotarisation of the wave before scattering. We used the

G H.Fechcr Nov 1997

following 4-component vector for abbreviation:

Sol®) tﬁ2+|g12
2. V5| fgrrfe
5= S8 171 (g ~fg)
S3) 1A% =g’

This vector Is similar 10 the Stokes-vector describing the polarisation of photons. The component

$9(8)/S0(8) is usually cailed the Sherman-function.

X4

(13
(2}
(3
(41
(5
(6
7]
181
19]
[10]
(11}
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CDAD from Si 2p, Si(001)
normal incidence; Ekin = 250eV

RCP light

LCP light

Fig. 1. The oﬁgiﬁal:Si(?ﬁ) photnélecff&h“’c\fﬂf hrpatteriis
from the Si(001) surface excited by cwor g:cw?h’éh'éity'!.ight.
These patterns were obtained.after theinormalization by the
tcansmittance efficiency of the detector*(a}iﬁ.isilﬁﬂ eV, and
the rotating direction of the light is ccvfi(b)_'Ek;:‘I.SD.eV, cw,
(e} E,=2%0 eV, ccw, and (d) E, =250V, cw. The small ;
crosses indicate, the calculated positions of the forward |
focusing pesks by the nearest-neighbour atoms in {118,

{113}, [112], and (101} directions.

D aimon et al.

.Daimon et al. Jpn.J.ApplPhys. 32(1993)1480 :
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XI Examples and remarks on Photoelectren Diffraction
XI.1 Examples for real orbitals
XI.L.1 Example scattering in emission from s- initial states

We will show now som examples how the scattering at surface atoms leads to a CDAD even in the
case of s-emission, although one has no m-dependence of the phases, We restrict ourselves on symmet-

ric nearest neighbour sites meaning ®=0" and rj=r for all j neighbouring atoms and examine the geome-

try with p=nr/2.
XL1.1.1  s-state CDAD from On-Top site adsorption or a free Diatomic

This is the simpiest possibility to include the scatiering. The adsorbed atom is located a1 a distance r in
z-direction above the substrate. The emission from the substrate atom (3'=0; ¢'=rn/2; 8=0) is called
T-orientation, and that from the adsorbate (' =%; ¢'=n/2; 0=n-9) -orientation. An oriented diatomic
mclecule may be described by the same equations. The amplitudes of the primary wave are that of the
p-waves:

sin(3) cos(p)
Zo =1 sin(8)sin(g) exp{ia')R,,
cos(3)

Inserting the position vector to the primary wave the amplitudes of the scattered waves are:

0
0 expl{id}R,
m,g)—l expilkrll —cos(8)i + 7(8}}

&)

for the up-crientation or for the down orientation:

0
| 0
[ =

| ol explid}R,
_ﬂ.ff_r:_L exp i{kr(1 - cos(n ~ 8)] + p(r - )}

L]

In the geometry of measurements that is observation in the plane witp=m/2 we have

$o = ((eyr +iey) sin(9) + &, cos(9) ] exp{id} R,
¢! = c,mrg}lexpi{kr{l—cos(S)]+q(9)+é}RP

$ = —EIM expi{kril —cos(m -~ )] +n(m - S)+3}R,
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and from this the CDAI} is given by:

i
%"}4{% = =2 sin(S,)-Iﬂg)l sin(9) sin{kr{1 = cos($)] +#(3))
o S

1
?‘If% = 2sin(94)m£—;“§)—lsin(9)sin{kr[l+cos{9)}+q(n—8)}
o Nph

that shows that a CDAD occurs for a free oriented molecule evea if the initial state is assuned 0 be
spherical {e.g.: s core-level of one of the atoms). Moreover the CDAD depends for heteronuclear
molecules on the orientation of the axis and not only on the alignment.

The cross sections for unpolarised light are given by:

213 F 2
c—ROl_ = sin’(8) +sinz(9g)[cosz(8)+ 2 oS costhrll —cos(9)] + ) + M]
afips
' 2
- I;gl = sin’(8)+sin2(8.,)[cosz(9)-m”;ﬂlcos(i}) costkrll +cos($)] + 1} +'4&'j°—"]
o PA

The dependence on the emission angle is much more complicated than in the case of lepap. Moreover
the contribution from scauering to the observed intensity may be much smaller than that from the direct
emission. Therefore it is much easier (0 extract the information about the adsorbate structure from lcpan

than from .
a) a strongly simplified estimation of On-TopCDAD

We will simplify the CDAD-equations by seuting If(#)=L/k. (=0 10 cbtain simply a spherical wave
cutgoing from the scattering centre and funthermore we expand the Sine of the phases for small values
of ks, then we have;

Iepap = siN(8,)cRE5[sin(28) - 2sin(3)]
Iipan = Sin(9,)c,R2,[sin(28) + 25in(3)]

The differences betweenT- and L-orientationis clearly shown.

b) The sign of CDAD in ls-emission from an oriented CO molecule.

We will estimate the sign of the CDAD for emission from the |s-orbitals of CO molecules for near
normal emission. For comparison with adsorbed molecules we assume the molecular axis pointing from
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C to O to be oriented along the pesitive z-axis. [n this case the =-functions for emission from the -
s-states of the C- or the O-aiom are given by (inelastic and thermal effects are neglected):

0
Ecaas = o () sin( &) Repexplide,}
COS(9)+iQ(_cho expilkreoll —cos{)] +na(9)}
0
EO—U = ‘ | Sin(ﬂ) Rop exp{iéo‘,,}
cos(®) — L= BN o lkreol 1 +eos(9)] + el - )}

and the correspanding CDAD is given by:
)c,!fo(S)|R’Q,

Iikis = -2sm(3y oo sin(9) sin{kreal L= cos(3)) + no(3)}

ealfcln—9IRY,

a-1s
! rco

et sin{9)sintkreoll +cost®)] + qeoln— 93}

2sin{84

It

For near normal emission (9=0} we find sin{})=0, cos(8)=1 and moreover in the geometry used in the

experiments it was sin{dq=130")>0 leading 10:

JEl(3=0) = —5 - |foi  sindyal}

COAD

]‘(').Bh’D(S:[)) = S'If(-(n)i’sin{2~k-r(-o+rjc(ff)}

For kinetic energies of around 1(eV we tind for the scattering parameters [Fink]: Tho((H=1.82.
ne(m=-1.1,  keo=1.2  and MaeotnCim=13  leading 1o sinMo(®}=0.73>0 and

sin(2krco+ncln)=0.97>0. Both phase-factors are positive. From these values it is seen that the C-1s-
CDAD for free oriented molecules has to be negative for positive observation angles 9>0 in the case of
near normal emission.

¢) more diatomics

The case of a diatomic molecule and a single atcm in an On-Top site adsorption place are very similar.
From this point of view we will examine two other susface dimers. One aligned along the x-axis and
another aligned along the Z-axis.

The direct wave is the same as before, 10 calculate the scaitering part we need the scattering angles.
We take two geometries. the emitting atom is placed in the ongin.
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l) x-aligned atom (<) with the scattering atom at the positive =s+x (§=n/2, tp,:O) or the ncgauve :
&=—x (Oj=nr2, gi=n) sicke of the origin. For this case the Z-function is given by (upper sign corresponds
to +x orientation): -

sin(9) cos{w) = lﬁf.—;)l expi{kr{1 - tsin(8)cos(p)l +n()}
sin(3) sin{p)
cos(3)

exp{id}R,

cos(6) = £sin(B)cos(p)

ii) y-aligned atom with the scauering atom at the poéir.ive ﬁ+y (=12, pi=1/2), or the negative ﬁ—y
(%=n/2, @i=—n/2} side of the origin. Here the =-function is given by (upper sign corresponds o +y
orientation):

sin(3) cos(p)
== 1 sin(8) sin(p) £ 'ﬂ,ﬁ‘—' exp ke[l ~ £sin(D)sin(p)] +(6)) [ expLid}R,
cos(3)

cos{f) = tsin(3) sin{g)

The CDAD is described by the imaginary parts of the Xy o yz products of the Z-function cOmponents.
The first scales with the Cosine of the angle of pheton incidence, whereas the second scales with the
Sine. In the case of the z-orienation, as given at the deginning, there is no xy combination. and there-
fore CDAD vanishes at normal photon incidence. Mow, for x- and y-orientation we have a
non-vanishing imaginary part of the xy rype. This means. that there is a non vanishing CDAD at
normal incidence from the atoms in the surface plane.

If we are taking the signal in the yz-plane at g=x/2 we find for the imaginary parts in question in the
case of x-orientation:

380 Ll
—R%l—:tsm(S) ,3

sin{kr + 7($)}

and in the ¢ase of y-orientation (here the upper sign corresponds oy-orientationat pegative y axis):

3K :r) cos(S)Mi?S—)‘ sin{ir{ 1 £5in(&)] +n(§ £ 8))
Now, for the y-orientationthe CDAD does not vanish in normal emission.
From the examination of surface dimers we found two interesting things:
1. CDAD is possible at normal photon incidence
2 CDAD is possible in normal electron emission.
A remaining thing is, to show for real surfaces consisting of more atoms, (hat the different contribu-

tions from scattering at the neighbouring atoms do not cancel out.
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X1.2 Influences arising from multiple scattering (s-state, diatomic molecule)

In the case of a diatomic molecule the influence of multiple scattering can be determined very easy As

example we use CO. We start with the electron emitted from the C-atom with the amplitude w59, ¢)
and scattered at the oxygen atom with a probability as given above. This scattered wave is scatiered
again at the carbon atom and so on. The amplitude of the wave in the double scattering event is given
by:

[of
\y:(lok.u) = |fo(8)l explilir(1 ~cos(9)) +qo(9)]}fﬂ2(_';lﬁ +
oW 2
o lfetr - Bl explilkr{1 +cos(8)) +nc(m— 3]} -
-‘|fo(ﬂ)|exp{i{lkr+qo(n)]}ﬂi%ilﬂ

or expressed as multiple of the single scattering amplitude given above:
¥ | -l | exp(—y-r
R _ felm - Rllfo{n) . . (=7-r)
Ve, 1+ o9 exp{il2kr(l + cos{8)) +r;c{n—9)+r]o(r:)—r,'o(9)]}'p—,-—
c

) = Ifo{ ) exp{ilkr(1 - cos(8}) +fro(3)])'exp(_+'r)

Here and in the following we use r=rcp for abbreviation. Starting with this doubie scattered wave Lhat
is the wave scartered one time at each of the both atoms we find for tha-th scattered wave:

n exp{—2nyr}
W = WEe - Folm)I"lfcm)l” - explil2nkr + (o) + ne(mp)} SEm
The complete scattered wave is given by a summation over an infinite number of scattering events:

ex p( 2nyr}

WE= W E [folm)l " fe(ml™ - explilZnkr +nlnolm) + ne(n)]}

T WwC 1
Z o= {

3,
L ~lfo(milfetml « Sxpi ey rz"”} explil2kr + no(m)+ ne(m}}

and expressed as multiple of the single scattering amplitude we have:

ifc(n - S)llfatml ; N ~ exp(=y -1
¥ 1+ TS explil2kr(1 + cos(3)) + el — 8)+ nolz) - No($)]} F

wE
53 1-lfa(mllfctm)l - "{ 2r)

=i explil2kr + o) + e}

\FC

S _ expl=y-7)
Y50, ) r

Ifo(3 explilir(1 — cos()} +1a(]}

The multiple scantering amplitudes are comptex numbers and can be recalcutated 1o have the same
appearance as the single scauering amplitudes:f=Iflexp{ia}.
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We will again estimate the reflected wave for near normal emission Neglecting the inelastic proc;ssws
(y=0) we find:

WE(9 =0, Ex, = 100eV) = ¥, (0) - 1.1exp{0.08- i}

showing that the influence of muitiple scattering is small in this case. Moreover the sign of the CDAD
for near normal emission is not effected.

Starting with emission from the oxygen atom we find that the double scattering amplitudes differ but
that the multipe scattering parts are the same as in the case of emission from the carbon atom:

a
LPIR
x

' exp(=y-r)
o5 " ifelr = Bl explilkr(1 +cos(3)) +'7€(”'9)]}“x_p’r_£”+...

. +Ifot®)lexplilkr(1 - cos(B)) +no(H} ..
e Ifetmbexplil2kr + Prata) }ﬂ%ﬂ

P
expi-2yr}

i

wy=

1 =lfo(mlifeiml - exp{i[ri+ng(n:}+qc(n)]}

The examples given above may be steongly oversimplified but they show the influence of Lhe surface 10
the PIPE in principle. For systems of physical reality the cross sections have 10 be calcutated numeri-
cally taking into account more complete final state wave functions, that will be part of future wark.

X13 Further Remarks on Scattering

Refraction, Reflection, Temperature effects etc.

X1.3.1 Incommensurate Adsorbates

A problem occurs in using e cluster formalism 1o describe the scauering effects in emission from
surfaces, that are incommensurate adsorbate struckures. In the description of commensurable adsorbate
structures one has only a restricted number of possibilities how to arrange the adsorbate atoms with
respect 1o the subsuate. 1f we have an incommensurate cverlayer than the ratio of the lattice constants
of adscrbate and substrate rag/rsup is 2 real number and we have o take an infinite number of clusters
10 describe the problem. To estimate the influence of photoelectron diffraction on the dichroisma in this
case, we divide the scattering part of the amplitude into two parts, oné describing the wave scattered at
adsorbate atoms (A). and the other describing the wave scattered at the subsirate atoms (S):

nA nS
‘P=‘¥u+§ Sﬁ\yﬁ +§ S}s\{"ﬁ
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Here ¥o, Wia, and Wjs are the direct amplitude and the amplitudes of the emitted efectron at the j-th .

adsorbate ofF substrate atom, respectively, and S are the scartering matrices at the adsorbate and **

substrate atoms. If we neglect spin dependent scattering these are simply given by:
S I
S;=fo; . Ij= r; Exp{— 2%, ]

Here we have included the damping part to the scaitering function S for abbreviation and the complex
scattering amplitude (8) includes the scattering phasestift as well as the phaseshift depending on the
path of the electrons from the emitter to the scatierer. 1f we like 10 include spin dependent scattering
than we use the 2x2 scattering matrix like it was given in the previous chapter including the spintlip
amplimde. The intensity of the scattered wave can be found from the square absolute of the amplitude:

o e = (Wl + 2Re(Wo XS5 ¥+ L Subu LAY
FIRe(Wo L SEV/)+ L S5 s Lsyvs
¥29e(Z Sa 0 555

If we have nSD possible orientations of the substrate with respect 10 the adsorbate (or vice versa), than
we find the toial intensity by averaging over all possibie clusters.

1 1
T = —a= Y0 e =i 2T

T gD =T 8D~ '

inserting the equation with the scatiening part divided in adsorbate and substrate we find that the direct
and adsorbate part are unchanged and we have 1o average galy the pants including scattering from the
substrate:

Lo ﬁ T e = Wl + 2Re(Wo TS0+ L S TSP
vk 2900 D855 03 +  Sus s Tsiws)

w5

ks ST a0 X Sis¥is))

As mentioned above, nSD becomes infinite for an incomumensurate adsorbate layer. In the following we
concentrate on the emission from an adsurbate atom. [n this case we have 10 average over ail possible
arientations of the emitting adsorbate atom with respect 10 1he unit cell of the substrate lattice, meaning
that the discrete summation in the equation above has (o be replaced by an integration;

Do = To+1a+1s
Isa [{2Re(Wo X 5350+ L Sis¥ys L S5s¥s £ 20T S ¥ T Si¥3s) 1T
Sty =T~ 7J¥(Ts=70)

For a further analysis we neglect all terms containing products of the form S$i5; being of the order of

double scattering events. The substrate part is then described by the first termu the direct amplitude
does not depend on the integration variable, therefore we can perform the integration before calculating
the real part, and we find the approximated substrate part 1o be given hy:

e e [ D575 0075 7N )
SWIC
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The integration has to take place on one Wigner-Seitz cell of the substrate surface. 7y is the vector
describing all locations of the emiting adsorbate atom within the boundary of this cell, and as) is the
vector pointing from the emitting adsorbate atom (being located in the middle of the cell} to the
substrate atomns. Note: We have to average on all possible substrate clusters that cannot be described
by a translation within the surface unit cell. That is the case if we have to take into account different
stacking order of the substrate layer, for example when we are dealing with {111)fec or (0001)hep
surfaces.

We can proceed in the same way to estimate te influence of the substrate on CDAD and LDAD in the
case of incommensurate adsorbate structures. We start with the y expressions given in the previous
chapter. Again the adsorbate part remains unchanged and the remaining terms have to be integrated to
describe the influence of the substrate:

Xova =830 20 EanS(04) + S0 2 Eu5* (B)
Hrea =S LEpS(0p)+E0 2 05 )

tms =S J 2T =TI P -7 dn +¢u | L6 (a7 057 s-7 )ar)
XS = f;uIZf(? ?)S(r,s-r)dr,*-cmjzc(r,g—r)S(r}g—r)dn

a) initial s-state

For an initiai s-state we find that the adsorbate induced part of the dichroism is given by:

z}: 7 = sin(9) sin(p) T costpa)S(0p) + sin(3) cos(p) T sin(pa)S* (6)
P
=sin(8) ¥ sin(p — ) Im{ (8,1}
=5in(9) T cos(g - ¢, ) RedS58,4)}
AviA : .
R - cos(8) L sin(pu)S*(Gn)

G =sin(B)cos(p — @i}

The equation in the second and third line are given for CDAD or LDAD, respectively.

X1.3.2 Temperature Effects

Temperature effects in electron scattering are described by Pendry in his work on LEETH].

Two possibilities 10 include temperature effects in scartering are described by Pendry. The first is
introducing a Debye-Waller factor associating thermal fluctuations with the scattering factor:

fow=expl-w,;} = W;

1 Pendry ‘LEED'
97

w, depends on the momentum transfer and compressibility of the solid. The later is measured hy the S

Debye-temperature Tp. It can be is approximated by the formuta:

o AT 3 2EnT
a 2m,~k,Tf, 2

m
P
Maz'm, kBT}}

The mass m, of the atom is written in multiples of the proton to electron mass ratio. And the kinetic
energy is measured with respect (o the Zero of the Muffin-Tin Potential.

Another way is to describe the temperature dependent damping of the scattering amplitudes by
temperature dependent phases.

The temperature dependent phases can be found from the Zero Ketvin phases solving the following
equation:

exp{id(T}} sin(dT) =§ itexp{~2ia}jo(~2ia) explidy } sin(Sr )ALy

4r(2L+ D)+ 1)

Ao an(2L+ D+ 1)
L= 2+

v =
B (L0, ) = @+ 1

YoVt - d2
7

@ is approximated by w,. The integrals can be found from Gaunt’'s coefficients and jo is the Bessel-
function of first kind with complex argument.
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X1 Rotation and Magnetic effects

Magnetic effects occur if the orientation of the initial siate is changed. Orientation means that the .

occupation probability n(m) differs at least for two states with different signs of their magnetic
¢quantum number: n(m)#n(—m}, whereas alignment means that the occupation numbers differ for two

states with different magnetic quanturn aumbers: n(mJea(mz)but are equal for the opposite sign:

n(mjy=n(-m;). Rotations, mirror-operations, and magnetic effects can be introduced to the equations

above by applying the Wigner D-functions to the initial state. Untid now, we had assumed that the

surface normal is the natural axis of alignment namely the z-axis. In the case of magnetic measure-
—

ments the dirsction of the applied magnetisation M is miost often in plane with the surface that are the

x- and y-axes and defines a new quantisation axis z' for the inifial states. This new x'y’z’-frame has 10

be transformed by a rotation ¢r mirror operation into the original xyz-frame, 1o describe thie photoemis-
sion in the same frame where the photon polarisation and electron momentum is defined.

XIL1 The equivalence of MCDAD and CMDAD

Before using the rotation and mirror operations, we wilt show that magnetic dichroism in the angular
distribution MDAD is a special case of CDAD for oriented states. This follows directly from the
properties of the spherical harmonics and the dipole operaior.

We describe first the dipole operator for circularly polarised photons travelling along the z-axis. We
find for the polarisation and position vector:

I j —(Yu-Tia)
_§>CP=% *i 7= % {Yn+Ye) or
“lo R T

where the upper sign siands for RCP. The dat product results in Lhe dipole operator D¢y for circularly
polarised light:

?'?:QC},:*E[(YU‘Ylwl)i()’u*'YH”"

or if we spiit the position from the angular dependent part:

—2¥n RCP
2Y1a LCP

We neglect the spin. because the dipole operator does niot interact directly with the spin. We assume
furthermore that we have an oriented initial state described by a single spherical harmonic Yim (0.
m<>0). The orbital angular momentum has to be higher than 0. because s states can neither be oriented
nor aligned. The projection of the orbital angular momentum may not be 0, because these states are
only aligned along the z-axis.
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or LCP, respectively:

.
'_ﬁ%" = (¥Yiml Vi1 Yiimer 2001 Yrotmes (k)

HY i i1 | Y i tmey 20011 Yeim(£)

Ll o (Y Y] Piime o Yivimet 3]

HY o V1o b i amet 20 Yicmer ()

Where we used the index + to assign that we used +Z 10 define the orientadon. pi«) are complex radial
matrix elements. TheCDAD is given by the difference of the square absolute of the matrix elements:

Teonn = Trep = Tucp = \Macel? = 1M icpl® = MpcpMycp = MrceMice

Now we change the orientation of the initial state to be parallel to -z. In that case we have simply to
replace the projection quantum number m by -m. The matrix element foRCP is than given by:

Micp e {Yiml Vil Yirsmeiy Yo YHI—(M-[)UEZ
+< Yieml Y111 ¥ oy dtimety )pr-n Yijtm-13 (k)

Now we make use of the properties of the spherical harmonics and their conjugaie complex:
Y1, = (—1)™ ¥|_n to calculate the conjugate of the matrix element and find:

Maze = A¥mlY 1ol Yiam-12000 Yitmt (K)
HYml Vi Yictme1 201, Yictmea £F)

Making use that Y. describes LCP, it follows for the difference of the inensities by switching the
orientaton that:

. PRITPRT : 2
I3p = T5ep = |Mbcpl® = IMzepl® = (Micpl —IMicel” = Itpan

This shows clearly that there is no difference berween switching the helicity at fixed orientation and
switching the orientation at fixed helicity in the case of initial states with oriented orbital angular
momentum.

Nevertheless, we have 1o show finally that we did not calculate for a trivial case meaning we have 1o
show that Lenap does not vanish, We will show this for 1=1, m=1, because the equations for the general
case are 100 long to be derived here:

Mpcr A
— 8= = (Y[]IYnIYn)PZ Yaa(k)

-BrrJ-;_'
Mice

Snﬁ

= (YulYialYeip: Yo(k)

+<Y|11Y1-11Yoo)poYoo(£)
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Obviously from the dipole selection rule, we cannct have an § partial wave in the final state for RCP '

but for LCP.

In the case of an true orientation we are bot only interested in the differential but also in the total cross-
section and whether there is a circular dichroism. The equations for the total cross-section and the CD
are given by:

o =flMiidn
Icp =11coandQd

Inserting the matrix elements leads to:

Ico = [(MacpMacp— MicrMicp)dSd

I - .12
;SAC?I;; = jl (Ylml n | Yirimea )Pm Yirma (k) + (Ybnl Yn I Yicime >pt-1 Yiotmel (k)|
5 .

” ~ b2 -
—[ (Yiml Yio1 | Yiermet 001 Fretm-1 G0 + Vil Vio( | Yicimot 2001 Vimimet (k)| dk
On the other hand we can take the general equation derived for the CDAD and apply it to the case of
photons travelling along the z-axis. This leads t0:
Iep =2c, | 3EE5)d00

Ttie &-functions we need are:

=5 = {glls Lmt Llm) Yot =g(+ L= LLm)Y it 3
Hgl=Lm+ L Lm) ¥ —gl-lm=1.1m)¥ry e
_f_"m = {g+ L+ LLm)Yi ey +80+ Lom= LLm)Yi oy b0

g~ Lom+ LLm)Yiy e + U= Lom = LMY ey }oEn
1481 sich eventuell vereinfachen, wenn man Produkt und Imagindrteil davon austechnet, probieren und
in 5a verwenden

In the case of an Yy; state we have for example:

exgy ()
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Te other question is, what happens if we have an aligned state. This case was already shown before
111 We will use first ap; o<1 State as an example:

+
MRCP

'SJTE

M7 .
—LE o (¥l Vil You dpa Ve (R

Snﬁ

reneral case of z-alignedstates (Yio):

= (Yool Yarl Yo dpaYar ()

Mbcp = Yol 1 lYi)pm Yrn 3
HYol YuliYioie pic Vi (K)

Micp= YolViadYmopu Faa (&)
HYol ¥t Yo 200 Y (R)

(.2 Magnetic dichroism described by Rotations

applying a rotation about the Euler angles @=(ax,B.9) (o the spherical harmonics or the spinor spherical
armonics ias the resule

1
D) Ym0} = Vi (9,9 = X Yin(@)Dr (0 f7)

Il
Dla), (9.9)= QL (3.0 = X Q80D (a.By)
==

The rotational D-functions using Wigner d-functions are given by:

D! . =exp(-ima)-d,, . (5 exp(—im'y)

Where m’ is the projection off or j on the rotated z’-axis . The rotation follows the scheme:
a) rotation about the initial 2-axis througha (OSo<2x)
b) rotation about the newy'-axis through P (0€<n)
¢} rotation about the new z'-axis through -y {0<y<2m)
or equivalently:
a’) rotation about the initial z-axis throughy (0Sy<2n)
b') rotation about the initial y-axis throughfi (0<psn)
¢'} rotation about the initial z-axis througha (0Sa<Zn)
ar:
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a”"} rotation about the initial z-axis througho+n/2
b} rotation aboul the new x™-axis through B
c") rotation about the newz'-axis through y—m/2

In all cases (e,B,y) give the relative arientation of the final frame $°(x",y",z") with respect to the initial
co-ordinates S(x.y.z).

Note that we need the inverse of the rofation to transform x'y'z’ back to xyz. If the Euler angles
w=(e,B,y) describe the Z’-system with respect 10 the criginal frame than it is transformed into Z by the

inverse rotation through L_u'l=(—7,—[i,—a)=(n—7,ﬁ,rz—cz}. The rotation operator Diw’1)) wansforms the

co-ordinates with the magnelisation s quantisation axis z” back ta the xyz-coordinates as defined in the
previous chapters.

We will distinguish special cases of rotation that depend whether the x*-z’ or the y'-z'-planes are
corresponding to the surface:

a) For the x’-z’-piane in the surface and the z'-axis of the atomic frame coincidences with the x-axis of
the laberatory frame. If the quantisation axis due to the magnetisation is parallel 1o the x-axis we have

we(0,m2,572) and @ =72, 172, 7).this is called ll-orientation.

b) For the y*-z’-plane in the surface and the z'-axis of the atemi¢ frame coincidences with the y-axis of
the laboratory frame. For this l-orientation the magnetisation is parallel 10 the y-axis with

Q=(n2,m2,m and @' =(0,7/2, 172,

Switching the sign of the magnelisation is due [0 a mirror operation at the y-z or x-z-plane depending
whether the initial magnetisation has paraliel or perpeadicular orientation. Reflections with respect to
the meridian planes result in:

ML Y(Bop) =i - (=) Yia( 3. )
M Yim(9,9) = (-1)"Y1-a(8. )

and reflection with respect (o the equatorial ptane resuits in:

(ﬁx-yY.'m(S.w) = (-1} Y

Examples 0f rotational matrices for real states withl=1:

=1 m'
D, 1 0 -1
1 -2 +iN2 +ir2
m 0 2 o infz2
-1 +1/2 +irN2 -2
103
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0=1 m' N
Dy 1 0 -1
1 -if2 -2 +if2
m 0 -inf2 0 -inN2
-1 «if2 +iN2 +i2

Example: We assume Y11 in [l-oriemtation, that is the z'-axis being aligned along the x-axis. Applying
the rotatdon we have in the laboratory system:

ﬁ(cgl)hl = %{Ym +%(Y11 + Yl—l)} = %“'Pz"‘l’y}

and a mirror operation leads finally to:
M"[ﬁ"(yll)] = xfl”[_?;{})mﬁ"‘f‘—_z(}’” + Y1-1)}] =%’{ Yo+ "JJ?‘{Y]_I + Y”)}

=DIG. Yy}

The lanier shows that the scyuence of rotation and mirror operations can be interchanged.

In most magnetic surface science experiments the magnetisation is in the x-y plane and we have 10
apply the rotation 10 this case. The angle it of the magnetisation is measured with respect to the x-axis,
so that M'=M,=Mcos(1) and MJ‘=M,=Msin(u). The magnetic field rotates the states by
W x=(L.V2,1/2) (x'2"-plane in surface). The set of Euler angles that converts the My-axis from the
x’-z’-plane back into the laboratory x-y-plane is given by the inverted rotation ug;,xz)'1={1n'2.n/2,n-u).
Applying this relation we find the rotational matrix as follows:
o id fm .
D;' = P I (l) L tnu) = e"(’"w?__”" "J . df"‘(%) . gimh

m'my 2

that reads for pis-states {€=1,j=1/2):

I e ween M s
rp=1E Ll;_i)up{_‘_n;n} (12+i)exp{‘_n;#}
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Further rotational matrices for the states with higher total angular momentum are givén in lhc
appendix. Applying the rotational matrix we find that the p'1 states with the z'-axis (of the x’2’-plane)

in the xy-plane are given by:

, (1+) . (1+i .

Pinvn™ —7 3 CXP{I%}PIQ.HQ ~3 ) CXP{—I%}pm.-m
, (1-i) H (=i .

Pin-in= 7 C"P{"f }Plfl.ﬂf! -( ) d “P{“f% }Pm.-wz

From the rotational matrix we find the scheme to build the rotated states in the perpendicular or paral-
1el orientation by inserting py =90° or W, respectively.

Dy m Dy m’
14 -1z Va -172
m % 2 M2 m 14 L(1+)Y2 | A(1+iM2
-12 2 N2 112 (-2 | o-(1-w2

meaning that if a magnetic field is applied either along the x- or the y-axis, than for the parallel and
perpendicular orientations of the magnetic field in the x-y laboratory co-ordinates the two magnetiscd

P’ 12.m-substates are described by:

MJ__.D'I'L M Dy
Priasiz=| i prsatpinanlVl Piasia= | ~lpinaatpiraal(1+)2
p-n=|  [paant Plﬂ.-lﬂ]f\iz Pin-n=| lpzsapaanll-iy2

The magnelic field removes the degeneracy of the mj-sublevels, so that they appear at ditferent
energies. If the sign of the magnetic field is reversed than the energetically order of the sublevels is
reversed, tov. The dichroic signal is then given by the difference of the imensities of the sublevels corte-

sponding to the same energy.
IMD - IM+ _ l\{

that becomes easy in the case of the pa 2-ievel system:
For a fixed polarisation and the magnetic field M parallel to the surface normal, or M} parallel to the
y-axis, or M; parallel 10 the x-axis we find using the=-functions:

1M 21 Eprain) P — | E(praan) I

M = 4 Rel & E(pran) E*(Prain)}
™D = 4 3m{ E(pir.12) E*(Pra.anh

[MID = 4 Rel E(przin) E*(Pra.n))
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Note that we have to handle the spin up and spin down intensities separately.

The easiest case is that of pure s-polarisation because we have to take into account only the compo-
nent £y.

Llpamn) =i E (V300 +Qpin) pla+ V20 0n- 2%}
Spacin) =i \[—{ {(ﬁngﬂ.-m +Q§rz.1rz) Pl -2 Qaa P?a}

or spin resolved:

£t (prann) = i+ Fa+ Vo) pla
ey pamady= i (V8 ¥n+Ya)-plo+ ¥ Yoo 22}

Et,ipinan)= —i-{j%(,/g Y2A1+Y10)'P§n+\/1;}’oo'.0?n}

by (pnan) = 0 %(Y2-1+Y21)-p§n

First we calculate the case for the magnetisation being parallel to the surface normal. To simplify the
equations we make use that Y*g‘m=(-l)h“{l,-m and find for the intensities of both substates excited by
linearty s-polarised light:

2ty puran)= ':E(E!Yzl\l (Yo Yoy + Yo Yoo ) - RE

gt ly(pm_,m): ﬁ(ﬁ“’n'z+|qu|2+me6_(}'n+Yz-z))-Rd

+%|Yoo|z-R3

+2E quYonnCOS{csd—(S;} -R.Ry
+‘/%.Ym-[Ynexp{l'(d'd—é,)}+Y;.zcxp{—i((54—6,)}]R;Rd

1, (puanl) = '115_(6| Yzzl2 +| Yool + Y206 (Y22 +¥22)) “R}
+%iYoo|1'R3
2E Yao Yoo - cos{(@a -8} - RiRa
& f—lz_j- Yoo {¥2 cxp{—i(csd—a;)} + Yizcxp{i(ad -3,)}R,Rq
g2 4y (piran) = ol = (FuYu+ Yz D) R
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Inserting reat orbitals and the angular dependence the equations simplify to be:

&1, paan) = l(sin2(29)[2 —cos(2¢)]) - RE

e LIMK )

———{,&‘%fi% sin*(9) +25in*(9) + £ ) - R
+-2*[3 cos?(9) - 11sin?(8)cosi2¢) - RS
+—é -R?

-a% [3cost(8) - 1]-cosldy—d:} - RyRy

+5in2(3)[cos(2¢) cosds —85) ~ sin(2p) sin(d4 —6,) IR:Ry

EET by (pinan)

PV (gsint(9) + 3l3cos™(B) - R
+_é[3 cos}(B)— 11+ sin’ (Bcos(2p) - RS

_L‘z
3R

J-[3cos. (8= L] cos{{dy—o,)} - RuRa

+5in 2 $)cos(2¢) cosldq —8,) + sin(2p) sinida —d, VIR, R4

EEe ]
&—if%}[‘—”:'—”l = %sinz(ZS){Z —cos(2p)1 - R}

There are only two terms differing and we find for the magnetic dichroism:

D = — :1—“ L Z25in (@) sin{2e) sin(ds — 3R Ry

it vanishes in normal emission 0=0°) and in e x-2 (g=07) and y-2 (p=90") planes

For in-plane magnetisation we need the mixed produmf,m?;“_m (index for my) that give:

J (J6 Yoo + Yoo )Yz + Y2y ) - RS
*E(YZI 4 Vo) Yoo RyRaexplitda —6:)}

Sunclin Ty

Canliipnty =~ ,i.—;a (J6 Yo+ Fro) (Yo + ¥aa) - RS
- Tlﬁ (Yz: + Y2_| ) Yoo -R,Rdexp{—i(éd —(53))

resulting in:

Re(EE® 1) +Re(3" L) =tsin(28)sin(qp)-R,Rd-s'm(éd—é,)
Im(E 1) +3mié 1) =0
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and we have finally the magnetic dichroism for s-polarised light and in-plane magnetisation given by: whereas the term connected to sin{2c} stays in sign. Obviously we find for cirqularly polarised light a B

s = £2 45029 sinp) - R,Ry - Sinda —62) oo fagnetic dichrolsm in pomi) emission:
¢4 3
RCP
IMJ.DJ =0 MD. LCP —No ‘
! (8=07) 2 L p2
—m, - tcos(a) - {R}+2R,Racos(ds —8,) + 7RI}
3 Co

The dichroism "0 for the magnetic field paratlel to the photon polarisation vanishes. The dichro-
ism IM™4 for the magnetic field perpendicular 1o the photon polarisation can be observed in the Additionally, we find a circular magnetic dichroism given by:
yz-plane ((=90°) but not in the special case of normal emission 0=0°) or in the xz-plane (=0°).

For the case of p-polarisation we find for the magnetisation parallel to the surface normal (angle of CMD, kcp
incidencect is measured with respect 1o surface normal inx-z-plane): . ‘ I Ler _ i(-‘,l)z(;, -cos(e}RI-RE)
[MDs . 2 . . . : N . U .
Fm - =—sin‘(9) sin(2¢) 1t means that there is a difference in the total cross section if the sign of the magnetisation is switched
5 coR:Rasin(da =) at fixed phaton polarisation. This CMD is independent on the final state phases 8,,84. The meaning of
M0 R, Ra in absorption spectroscopy is discussed elsewnere.

= cosH{a) sin*(8) sin(2¢) - % sin(2a) sin(29) sin(@)

350 RRqsin(da —0,)

s . i . . o X3 References
Unpolarised light can be described by the incoherent superposition of linearly s- and p-polarised light.
From {he difference in the MDD signais we see Lhe evidence for a magnetic dichroism excited by unpolar- 11 B.T.Thole, G.v.d.Laan; Phys Rev. B4d (1991) 12424
ised light. o T ' o
2 G.v.d.Laan, B.T.Thole; Phys.Rev. B48 (1993) 210
= —sin’(4) sin*(3) sin(29) - % sin(2a) sin(28) sinp) . [3]  B.T.Thole, G.v.d.Laan: Phys.Rev. B49 (1994} 9613

4 D.Venus; Phys.Rev. B49 (1994) 8821

[MD,U
220 R Rasin(da ~d,)

The complete angular distributions for the magnetic dichroism excited by circularly or Sp-linearly (5] N.A.Cherepkov; Phys.Rev. B50 (1994) 13813

P"i"gﬁ?ﬁ“;gj; to complicated to be reproduced here. We give them ouly for spectroscopy in the (6]  T.Scheunemann.S.V.Haliiov, ] Henk, R Feder; Solid State Comm. 91 (1954) 487
y-z- =90°):
7N G.v.d.Laan, B.T.Thole; Phys.Rev, B52 (1995} 15355

RLP (8] N.A.Cherepkov, V.V .Kusnetzov, V.A. Verbitskii:J.Phys. B: At.Mol.Opt.Phys. 28 (1995} 1221

I _ costa)-sin?(8) + 5 sin(2a) - sin(29) JR, R sin(3e = d1)

Lo =7 4 costa)- {(Beos?(8) - DIRL+RRucos(da—3:)1+ [$RE - R3]}

—-L sin(20) - sin(29) - R,Ra sin{d¢ —Js)

The LMDAD excited by the S;-potarised photons is the same independent of the sign of polarisation.
If applying circularly polarised light of opposite helicity the term connected to cos(e) switches sign,
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{From Schreider, C. M., Hammond, M. 5., Schuster, P, erollada, A., Miranda, H.,
Kirschner, J., Phys. Aev. B, 44, 12066, 1991. With permission.)
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XIV.1 Spherical Harmonics and Real Orbitals

The spherical harmonics Yom(%,9) can be divided in © and ¢ depending parts using Legendre polyno-
miais Py (9%

Yim= N,,,P,,(S)—L—m {cos(my) +isin(mp)}

(—Tmh- 20+ 1) {-1)™ for m>0
ij-_— W .
' 1 for m<0
q 1= el
Puné =cos(oy = L ﬁﬁﬁ(gz 1y

From this definition we see that the conjugated spherical harmonics are given by:
Yy, = (=1 Y =expliZme} ¥in

and

Yiom = (=17 ¥ = (=)™ expli2me} Yim

XIV.1.1 Table of Spherical Harmonics and real arbitals

The spherical harmonics and some read orbitals with Tow{ up to 4 are given in the following tables:

i) 0=0, the s-orbital:

_ 1
Yoo = 7
5= Yoo =J—l—x“
i b=1:
fu = -+ /& sin(@Ncosip) +isin(p)}
Yo = j:i:cos(s\)
i = 1= sin(®){cos(@) - isinfp)}
the p-orbitals:

Px .—-'Jf-—;(Yn -Yi) :Esm(S)cost)
pu = Fr(Yu+hra) = [ sin®)sin(p)
p: =Yio = J-& cos(®)

1
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.:me_-&v—‘)[“ﬂﬂm“@‘\'

vy 0=4:
i} b=2: S Yo = &JF[35c0s%(8) —30c0s*(8) +3)
(T Yisr = —i%./_%- sin{)(7 6053(9) —3cos{3){cos(p) £ isin(p)}
Ynn =7 z,.ISSLn (9){cos(2p)} +isin(2¢)} Yipr = i sinz(S)[';' cos2(9) - 1) {cos(2p) + isin(2p)}
Y = 52—,. sin(29){cos{p) + i sin(p)} Yoy = —+3 2 sin’(9) COS{S){LOS (3p) + isin{3g)}
R 2
Yo = ‘JTUCOS (8)-1] Yise = & *%*f; sin*(8){cos(4p) = i sin{dg))
Y = iJ;I, sin(29){cos(p) — i sin(p)}
Vg = 138 sin?(8){cos(2p) —isin(2¢)} the g-orbitals:
the d-orbitals: ' . g = Yaa
e d-orbitals: gﬂ,:j_z——(}’” +VYaot) . grﬂ:—‘%—(Yﬂ ~¥aa)
do = %(Yzz -Ya2) =% LB 5in(9)sin2e) ] ;
de  =3b(rn 1) =3F sin28)costp) gy =t ¥in) o gue = Vi)
de =5+ ¥a) =L,/§ sin(29) sin(p) st ey
VTR : == -
dxl_y: = (Y}2+Y1 1) ,_J'- SH‘I?'{S)COS ‘7@) Bz 5 11 -3 Lo f 4 3
de: =Y2° =-“L‘/;[3C051(9)_” gn:=‘l‘%'(Y44+Y4_;) : gx!,:%;(}'u—hﬁx)
iv) (=3
Vio = '}EIS cos?(3) -3} -cos(D) X1v.2 The final states for initial state real orbitais
_ Lz . -
Prew = - +I ‘/_ [5cos?(9) = LTsin(B)cos(p) £ sin(p)) Here we give the possible final states for real orbilals as injtial states
Vi = 34 L cos(9)sin*($){cos(2p) £ isin(2¢)}
Y1 = — 4% I-,T— sin’ ($){cos(3p) £ isin(3¢)} initial state q final state
the f-orbitals: 0-1 0+1
S -
) fo=Yu Ex P
f,zz = “'f“"lf_(Yn +Y;5) N fzr = %(Yn - Y]q) N £y ) Dy
. £z " Pz
Jiiyne = ﬁ(Yu + Y2} 5 for = "7-—;_(}’32 - Y12}
For = r‘%—(}’,3 +¥i4) L fay= —j_i—(y,, —¥3) jaitial staie q final state
¢1 0+1
P € 5 dg . dxl-yl
&y i xy
£y iz
113
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Pz Ex B
Ey -
€2 5
Py Ex '
£y $ da . du2y2
£z ) dyz
initial state q final state
61 b+1
dxy Ex Py fry2 . byaz
Ey Px 2y - frz2
Ez - Teyz
Uez £y Pz for, fx2ymz
Ey - fuyz
| € P fra2
de2 £y Px frz2
Ey Py fya2
=1 pz fa3
dyz Ey B fryz
Ey Pz fa3 . fx2y2n
£ Py fyz2
- Orz.y2 Ex Px fazy - fxz2
& Py fryz s fy2
£ - fozyz
initial state q final state
-1 B+1
fray £x thay2 Exdy « B2y
£y Gry Zay3 . Bxyz2
Ex - Exdyz
114
Ry

- [ —
PRV ee-Cyoe

" -.....,

fuyz Ex Oy Buy2z By
Ey Gz Bxdyz - a2
£z Oy Bryz2

fra2 Ex G2, drzy2 £14 . Ex2-y2122
€y duy Sxyz2
€ Oxz 8xz3

fa [ dyz gx23
£y dyz Byr3
Ez du B4

fyaz Ex Oy Bayzz
Ey 2. dray2 €24, Bx2yiz2
[ duz By

fr2-y23z £y Gz udyz . Eaz3

Ey dyz Buyiz .« Byo)
E; 2 2y

fry2 Eyx Gy Bxly » Bxy22
Ey dazy2 Exyd . Bix2.y2iz2
£ * Baylz

Xiva The Gaunt-coefficients for real orbitals

The transition matrix is caiculated from:

x [2n
. . (2(1+1)+1)3(21+1) ES A ES I
£ ly&wﬁy.,n,.dw]sm(sms ,[ { o 00 " 0%l m

- (_1)&1—! I

115
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[

or Clebsch-Gordan C:"’"’ to solve the integrals, resuliling in the Gaunt cocfﬁciemc""(f‘, m', [, m)—: :

wmy Jamy
x [2n
% . : 2 3 (1)1 &1,0 A1
J}:T ]r; { .! Y Y;‘gh,..dw] sin{8)db = JT“ ¥ ax o 2D Cl’.Ol.l.U - Cmﬂﬂ
= cm-CY

= Z et Lm+film) =gz Lm+flm)
f=4am=0,zl

The modified Gaunt-coefficients g(f+1,m+B.0,m) ase tabulated below. The first C-G coefficient Cf'&_n
vanishes for 0+ 1+{'=odd. that is the selection rule 0'=0«1 or Al==+1. The second vanishes for m'#m+B
including the selection ruleAm=m'-m=P=0,=1

The non-Zero Gaunt-coefficients ¥ as tabulated by Condon and Shortley and the modified coefficients
g for initial s- and p-states are given by:

m—=tm | fdrmotmy | c'dm—tm) | gl@m —im) gtlm—l'm")
(00.1£1) (3 -1N3 12 ~142
(00,10 143 13 12 142

(1£1,242) V25 V245 Y35 —3s

(1£1,2+1) NS (S ¥INI0 V310
(1%£1,20) 115 -115 1710 -1410
(10.2£2) 0 0 0 0
(10,2+1) LS —1s V310 —AN10
(10,20 2415 w15 N2 J2rs

Note: The arrows

n

and

e
(11 7,0 Yot oo Yindlo
Lo

indicate the transition from
Klm 0 m=¢- ™™ (0 m' dm), k=lall=1 and;

initiat  to  final

glm,I'm"y = EC’(!m. I'm')

XIiv.4 The G-funcUonsfor (=1 spherical harmonics

state, [t is wused that

]sin(S}dS - 3%11 cKmI'm') = E cMim, I'm’)

Three spherical harmorics are contributing 10 the spin orbit resoived p12 and pas; initial states. namely
Y. Yi1, and Y. The G functions connected to these three spherical harmonics are given in the

experimental geometry by (for abbreviation the functions are divided b;me and we use rs==R¢/R4):

116
¥

a) for Yio:
G 1/2c08%(Dq) 0
125009 | 4 {3 cos(d)- 12 (3 cos(d)- 1) cosBe-8s) ra+ 157}
-1/dsin{2@y) 0
G, % 9 sin(20)
Gis 1/2c08(g) 0
-1/2sin(hg) 12 sin{2%) {3 cos(DY-13-cos(by-ds) 1]
Geie 1/2cos({®q) 0
-1/ Zsin{ty) 12 sint 23 sin(da-8) 1
b) for Yy,:
Gr 1/2c08"(Dq} 2 1142 cos(Bg-Bs) ts+0s )
1/2sin(Dy) 9/2 sin(20)
-1/45in(2Dq) 6 sin(20) sinldg-0;) 75
G. & 9 13 sin(8Y-1)- 2 (3 sin{0)-1) cost8e-8e) ret 1s”
Gus 1/2cos(dq} 12 sin{®)° sin(&g-85) 15
-1/2sin(<g) 6 5in(20) {(3 sin(®)’-1)-cos(by-8) 15}
Gexe 1/2c08(®g) 8 (3 in(®¥-1)-(3 cos)-1) costBe-8s) re-ls” )
-172sin(dr) -6 sin( 20) sin{84-8s) 16
c) for Yi.g:
G 172608 (®y) 2 (142 costBy-8s) re+1e’)
1/25i0%(Dy) 92 sin(2)
-1/4sin(2@) -6 stn 29) 5in¢8-8e) rs
S, i 2 (3 singdy- 1) 2 (3 sin(8¥- 1) os(8-8s) e 5"
Gas 1/2cos(®g) -12 sind®)? sin(Sg-8s) rs
-1/2sin(®q) 6 sin(29) {(3 sin(3)!-1)-cos(Ba-8s) 1s)
Gere 1/2c05(®yg) 4 (3 Sin(8)-1)-(3 cos(B)-1) cos(By-8s) 4757}
L 2sin(Dg) -6 sin(28) sincBy-8) s

117
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From the equations for Ger It is Seen that for truly oriented states the CDAD doa not vanish i zk v

and q are parallel (resp. antiparailel), that is for ©g=0, 3=0. How such a state can be prepared is
discussed in connection with magnetic effects.
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I.5 ‘The Spinor Spherical Harmonics

The tensor spherical harmonics for spin ¥4 particles as given byVarshalovichare:

(3. 9) =1 = B O V(390 4,

=cn il,*m,(s.'c:)lT)x»cj’:’_m“ GRS

R R

my and m, are the projection quantum numbers of the orbital angular momentum and the electron spin
and y are the basis spin functions. The Clebsch-Gordan coefficients d can be interpretex] as

Lmysm,
probability that the state If. s, my, me> contributes o the coupled state lj,m;>. More explicitly the wave
functions written as columa matrix are given by:

‘; m+ |
Qi 2+ 1) Vrannn

i jtm+l y
2(j+ 1) FUImp+112

jt+m
. 2} Y;—Ime, i
Ql-f—]fz

Fa]

[

j—-m
= Yruzmpin
Ly et )

If not otherwise denoted in the following m will be used for my. Each spherical harmonic can be written

as:
of _[ a:(f.m)Yim-1n ]
o b, m)Yimen
and the connected conjugate compiex spherical harmonic is given by:

01 (D™ by Yiman
e 0 1y 1 = i+,
Qn=(=1) ”"[ -1 o}Q =1 M[ W

{2 filr -m; einfligen

According to the orthonormaiity ( <AT>=1, <Tl>=0) of the hasis spin functions one needs 10 use
most oftenly the Hermitian conjugated spherical harmonics:

Q- =(ar Yinin: b1 Viman )

19
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The quadratic forms of the spherical harmonics describing the angular distribution of electroas are
given by:

Wim(s) EQH’ Ql _atz'iylm—lflrz“'b} '|Ybn+lﬂ[1

jom Spm =

= JJ"(S] = Tulm{(j‘f'h'l"' l)l Y‘.plfz_,”+1n|2+(j*‘m+ l)l Y,;.]Q,,P]rjlz}

= 51}{0+m)l Yj—l-'?.m-lﬂlz +U‘m)|YHnmm|2}

This shows that the angular distribution of electrons in spin-orbit split states is independent on the
orbital angular momentum € and the angle @, meaning it is of rotational symmetry (cylindrically
symmetric) with respect to the z-axis.

In some cases it is necessary to caleulate for projection A of the spin parallet to the electron linear

momentum. Using Wigner rotation matrices and the helicity basis functions the spinor spherical
harmonics for this case are given by:

QL (8.9)= Ll vl L 0.8.0) 10,08,

- 4 n .U.J:-J T

I.5.1.1 The relativistic quantumnumber and the selection rules

The description of the initial states by li.m;> is ambiguous because for a given orbital angular momen-
tum and spin we can have either j={-s or j=0+s for the total angular momentum. Furthermore the selec-
tion rules Al=%1 and Aj=0.%1 cannot answer the questions whettier a final state with quantum number
0+AL. j+Ajexisis [tis convenient o define a relativistic angular momentum quantum number by:

E=(I-p(2j+1) k=0

It is seen that k<0 only for j={+1/2, therefore the description is unambiguous and we can find { and j
from k by:

k<O (=l =lk+ 11 =k = lk+1/2]
k>0 =ik =k jEjk =k~ 1/2

This relativistic quantum member can take ail values ~eeck<+= with k={) and the projection of the total -

angular momentum j takes the values;

LES R P
7 ST

To avoid half integer quantum numbers we usem=2*m, in addition:

m=%*(2n+1} n=01,...

il -1 <m<lklt+1

120
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The Spinor Spherical harmonics are then given by:

m
e = T - ’1_2k+1 Yijm-12
. =
2 ,‘l+—2km Yimetiz
+1

F H 1- ﬁn-l{-_l. Y—(.H-Il(m-”f:
2 {1+ EI"-:-—I Yketypmelyz

Qkﬂ,m =

(&3

im * Yy gm-1r2
e =
bim * Vi imetiz

iy |2kt l=m
{amJ_ 5 ey

bm 2k+i+m
202k+ 1)

Applying the selection rules as above to k and m we find:

Ak =2kt
Am=10,13

The k selection rule gives the correct answer, that ar maximum only three final states can be reached
from a given initial state. The exceptions still present are initial 512 and piyz states, where only two final
states can be reached. The transitions Ak=+1 or Ak=-1 lead to not exisung final states with k=0. In
these cases.

A table with the possible transitions and quantum numbers is given below .

initial state final state
¢ K gy K’ Ak
s12 -1 ma 1 2
ma -2 -1
pin 1 512 1 -2
thn 2 1
P -2 s -1 1
tina 2 4
dsa -3 -1
dsn 2 piz ! 1
M -2 -
121
L



G. H.Fecher, Nov

%

s

fsn 3 1 bl)  j=12ipia
-3 -2 1
dsn2 pr -f-]f e
fsn 3 6 Qv =puzna=
F R ¢1
fin -4 -1 ) :
-J% .Yy
fsn 3 hin 2 -1 a=pin-1n= JE
dsn -3 6 ‘ Jj -t
" em 4 1 Winin =|Yol* =%
f- -4 “d -3 1 .
" > b2)  j=¥2pin
2 4 8
-5 -1
Esn v Q E -Yie
3} - = =
Qi =pizan { 0 } 241 =P E T
Q:3=pmn-n= 0 ]a.nd E Yoo
L5.1 The Spinor Spherical Harmonics for s- to g- states Yia Qo =pip-n= F Yoo \
) Winan =170 * = 4 5in9 i
The Spinor Spherical Harmenics for s- 1o d- states are given explicitly by ! 8 Wizin =3 Li2ly ol + Y“| }= al_.(3 cos?9+ 1)
a) 0=0;
Y,
Qo =5wzan =( 30 ]= Yool 13 &) =2:d
0 .
Q- =fina= Yoo | = Yool ) cl)  j=32 din
= 2_ 1
Winie =Yl =5 o J -J3 aQ y N
243 =AW T i Fdwyan = T
b) b=i 1/%_ “Ya E ¥
Qys=d -3 ha mn d RERC
3 =din-an = 21 =dagn =
o R 2.3 # 2 E . Yl—l % . Yzo '::
Wyzga—- 9 W]fz‘]fz ='81;(3C0529+1)

c2) j=5/2; dsn

Y,
Qo348 =dsnasn =[ 02 ]
0

Q- s=dsn-sn= [ Yoz }
‘8

Wsnsn = 32n 12 5in

S

122
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= .I PR w25 ULy Ch‘_‘l

"

O d J5 v
32 Fdspaan =

‘Fs‘_ -Yn
t Y22
E}

B 'Ylﬁl

Q5= dspan =

PR

Winan = 5o sin*5[15cos?8 + L]
Qon=d 51
el =dszan = 5
g o 43
3 ¥
Qi =dsgan = J:]
T Yo

Wsnin = oxiScos' 9 - 2cos? 3+ 1]

where W, are the probability distribution functions that describe (he angular distribution of the
electrons {independent ol and ¢).

From Wiz 12=\Yoeol we see that the distribution of electrons in the piz- OF 5172- SIALES iS spherical
symmetric and moreover for all filled shells a sphericat symmetric charge distribution i3 obrained in
averaging over allm, substates for given total angular Tiomentum i

1.6 The Spinor Gaunt-coefTicients

The Spinor Gaunt-coefficients are defined by:

i
}Jj,(j.m,,j'.m;)—j{ [af j_ th,o:,nmd@]smw)ds
1}

aYim-
} ‘/TT; J‘j( arY;—m;_m Lomt;—172

b’Y;,n;urz ]th,d-o.tl dip sin{ 3)dS

bYimmin
—{a'a- g+ Lo+ B— V2 Lmj~ U2) +b'b- g% Lom;+ B+ U2 Limj+ 112)}

where the abbreviationsa=agj,m;} and b=by(j.m), and similar for the primed coefficients, are used.
The following Spinor Gaunt-coefficients for spinflip emission are observed from the equation above:
ays —p

124
1y

mnin Pz l P Din.12 I pin.an P332
f= i 0 -
S 16 B | e B Z
B= - 1 a -1
stz.1n - P Yue |13 16
blyp—s
B= -1 0 1
5112.-112 5124112 5112.-112 51724172 S112.-12 S172.+12
p12.-172 - - V216 - - 173
P21z -1/3 - - 27§ - -
Pin.an - - - - -1 -
Pz - - 13 - - 216
Pz, r12 V26 - - 113 - B
P32.+372 - —1H8 - - - -
b2yp —d
f= -1 i 1
duz.3n dinn digan dn cin diz.1n din.3n
Pn - 26 - 113 - oG
Pz 16 - 113 - N2i8 -
dsn.nn .10 dsn 3 din.an dsa2.0sn2
P2 ¥2/10 -5 Vs N0 N5
dsiz,1n2 din,.12 dsnvn2 din.n dsa.3n dinan
pian J6/10 ~2/15 s —2/30 ¥3i5 15
dsn,-3n dizan ds2.-in din.1n dsn.ain G2
Pnin VIS s V345 2130 N6/10 215
dsn..sn dsn.3n din,an dsn.an darzan
pinan s V2145 <210 ¥2/10 V3115
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Some final states

Injtial state 12,4122
for Am=1 Final states
for Am=-1

for Am=0

Initial state 12,92

for Am=1 Final states
for Am=-1

for Am=0}

Initial state pia.+12
for Am=1 Final states
for Am=-1

for Am={)

Initial state py. 12

for Am=1 Final states
for Am=-1

for Am=()

{nitial state paz 412
for Am=1 Final states
fot Am=-1

for Am=0

Iniial s1ate pan,.an

for Am=1 Final states
for Am=-1

for Am=0

Initial state pae. «32

for Am=1 Final states

for Am=-1

pan.esn
a1 and pia,.2

P+ and 412

pine1z and pinaan
Mn.-n

piz.anz and pin.2

g3
s12..42 and dyzan

Sinig and din, mn

s1n.+12 and dwz.nz
diz.3n

s1z.-1n and dyz,an

dsn.+z and dsn, v
Sy2,12 and dsp,.17 and daz,an

si2.1n and dsp 1z and din.v12

sinan and dsp vz and diz vin
dsn2.3n and dan.an

Siz2.-12 and dsp .12 and d3p, a2

dsiz,e52

s12,+12 and dsn.+12 and dz.e12
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b32)

for Am=0

Initial state p3n2,-32
for Am=1 Final states
for Am=-1

for Am=0

dsn.+n and dig 430

12,12 and dspy . and din,n
dsn.sn

dsn.anz and a3z
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1.7 The Properties of Spherical functions under Co- ordmale Transfomau&ﬁs

the inverse rotation is described bym-l,,=(m’2.rd2,rt—|,l) leading to:

. R oz

171 Transformation of Spherical Harmonics D 2™ gt (T it
w =€ mm\ 3 )" €

Here the properties of the spherical harmonics under co-ordinate transformations are given. In the

following it is atways used that r'=r. Applying these rotations we find fori=1 states:

a) Co-ordinate Inversion o
Pr¥im=VYimin -9 p-m)=(~1)' i D, 1 0 0| g | g [ gm0
1 L L B
b} General Rotations _ 1 i 1z [z ik 1 i
Applying a rotation about the Euler anglesw=(ct, v} to the spherical harmonics bas the result: 0 1+ 0 2 l I 1
r -1 4 12 Y ol 1 i
B@)Yim(3.0)= Y (8,91 = X ¥Yin(8. 9D (@.f.7) ol | 1 i
The rotational T-functions using Wigner d-functions are given by: and inveried
m’
i , = _F R dj \ . i’
D = eXpima) Cnn B expimy) — D",M:l) 1 0 -1 i
do= Fym JGrmt--mt G amt - m)!
(=1} - cosZ™ (B/2) - sip 2 - (B12) 1 ) A2 2} -
z.k' rm=0(j+m - (k—m—m')! ™ 0 12 0 an2 1
) -1 Vi 12 Va i
the sum has N+1 terms with N=min{j+m, j-m, j+m". j-m'} .The Wigner d-functions can be expressed —
alternatively using Jacobi-Polinomials JP(x): L e ! <
& _ Jlrmtom)t 12ym o . cos(BI2)™ - JPT T cos()) gtm -l 1 -1
wnlf) = G+mi-(j—mt! -sin(fr2) cos(fiz) s ‘ o E-90) 4 ] i
dan - fin For initial {=2 states we find:
Py =200 {(1-xe - (14 0P} :
R LT (I-x)e-{l+x)8 m
D, 2 1 0 -1 22 M -im0° ms0”
o + + ; u € € €
PSS Al AL IR _
TR n-i 2 Yo -2 Ay | -2 % gl 1 -l
1 14 14 0 -2 2 | e 1 -i
here we used the j,m’.m convention of Edmonds (Angular Momentum...) m
: . 0 | Navg| O 112 0 g |l 1 1
<) Rotational matrices
-1 5 112 0 v -1/2 e 1 i
Here we give the case where the state is aligned in the x-y plane and we have 10 apply the rofation 0
this case. The angle p is measured with respect o the x-axis. so that the set of Euler angles describing -2 Wi -1 Janls %] Y P 1 -1
this case is given by w,=(u,7/2,7/2) and we have: o2 A1 A [ i -1
D,n gt L dl (_) ""'"
and inverted:
this operation describes the X'y’ -plane in the surface. For p=0 il transfers; xe=2", yex', 2oy’ and o
for p=90° it ransfers: x &X', ye3z', 763y . D, 3 l ) I 0 \ 3 | 3 e'imﬂil
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 COTATIL iR

i #
2 % -2 | V3N | -2 % 1 ‘
o % % 0 112 ‘12 | W

0 g | O -112 0 38 1
-1 v -112 0 % 12 i
-2 Y -1 Vg 7 i -1

e.‘.m'(nﬁu) e‘-Zp -ei“ 1 _e-iu i2u

LYY 1 -1 1 -1 t

e-im'(u—qo') -1 -i 1 i -1

The rotational matrix for fgg of stales with higher angular momentum are too big to be reproduced
here, because the matrices are of the order (20+!)2. The corresponding Wigner d-functions can be found
in Varshallovich.

d)

e)

Special Rotations by

about x-axis
¥=n-9
9 =n-p
2 Ym(n-8,22-¢)=(=1)Yim
about y-axis
' =r-3
p=r-p
D V-G - = (1) Y
aboul z-axis
9'=9
pl=n+e
= Y3 m+ = (-1)"Yin
Mirror operations

reflection on equatorial planeBn=m'2 (x-y-plane)
Y =n0-9 o =¢
-+ Yin(m =3, } = (=13 Yion

or

Moy Yin(8,0) = (=1)*"Vim

G.H Fecher, Nov, 1997 .. " 7
P ey "1"01:‘-&11.] 1

reflection on meridian plancPm=o, Pm=m+¢o (Po=0 in x-z or Po=102 in y-z-plane)

9'=8 ¢'=2p0-¢
~ Y8200+ p) = (-1)" exp{i2mpo} Yin

or
MY Ym(8,9) =i (=1)"Y1_m(D.0)
ML Yimn(8.9) = (=1)"Vien(8. 0)
L.7.2 Trans(ormation of Spinor Spherical Harmonics
a) Co-ordinate Inversion

PO, =0l (n-%.n+p) = (-1)'Q,

b) General Rotation
Applying a rotation about the Euler anglesw={c.,B,) to the spinor spherical harmonics has the result:

AL ' YR £ n oAy n
Dio)t (8.0)= QL(8.0" = X Qu(3.0)Dpelaf7)

ms—;

The rotational D-functions using Wigner d-functions are given by:

D! =exp(-ima) - db, (B} - exp(=im'y)

(4] Special rotational matrices

The magr}gﬁsaﬂon is in the x-y plane, in most magnetic surface science experiments and we have 10
apply the rotation to this case. The angle  of the magnetisation is measured with respect to the x-axis,
50 that M'=M,=Mcus(u) and MJ‘=M,=Msin(p). The set of Euler angles is given by w=(1.w2,/2) it
describes the x'-y'-plane in the surface. For p=0 it transfers: x—z'. y—3x/, 2—»y" and for p=90° it
transfers; x——x', y—»z’, z—>y'.The inverse rotation needed to describe the magnetised states in the
X.y,Z-coordinates is given by: m",,:{nf?.an.n—u).To describe the magnetic field in the X-y-plane we
use the rotational matrix and its inverse as follows:

Dy = e (5)

D =™ T, (B} ey
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For initial j=1/2 states we find:

-
Dy 112 -1 L gimot | imn2
m 112 Wz | <INz | e™? 1 (1-i2
1R N2 | 2 ] e b2
SR (L2 (12
and the inverse:
oy
D', 12 42 A
m 12 1A | -z
-2 1n2 1z L2
e"m.("_”) - e'm i e"w
e ' 1
S| (N2 | (12

The magnetised p’-states are described for the parallel and perpendicular orientations of the magnetic
field in the x-y laboratory co-ordinates by:

M,.D', Mi. D
plnan=| -li pm.«m+pm,-mlf‘12 Pia.an= | =lprasintpizni(1+i¥2
pha-in= [Prz«iz+ Pvz.-lfz]/‘v’l Pinan=| presaa-hizoel1-)2

The D, operation converts the py state 1o -p’; as we have seen in the case of regt orbitals because the
x'z’ plane is in the surface. The alternative rotation and its inverse with the y'z’ plane in the surface
can be reached with: @, =(r2,w2,n) and & '\ =(0,n/2,72). In this case the magnetised states are
described by: ‘

Myy'z) - D' (y'z)

Piasns {(01-D) pra,ninz - (14)pin-1a2)2

Pn-1n= -0 pra,az + (+Dpra-—1n)2

for initial j=3/2 states we find:
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LR '—"'""

e
Dy 32 2 -172 -3z gimn | im0 1 2
32 1 -1 V3 -1 RN R
m % V3 -1 -1 Vi e | 1| a2
Y V3 i -1 3 &2 1| (2
32 1 41 V3 1 R 1| 1+iV2
™2 2 | i | (i |2
and the inverse:
m'
Dy 2 1 172 -3 RLEE
i t 3 Y3 AL 12
. 14 43 -1 1 3| (A2
-1/2 V3 ! -1 A |2
=32 1 Y3 3 ! 1+
e-im'("—l-l) ie;]urz | emf.’, ielll-’l ] e—dufl
i i i i i
w2 iz | e | sz s

The rotational matrix for ds; of states with figher angular momentum are 100 hig 10 be reproduced
here. because the matrices are of the order (2j+1?.
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