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Lecture

“Dynamical theory of X-ray Diffraction
by perfect crystals”

by Hélio Tolentino



Dynamical Theory of X-ray Diffraction
by Perfect Crystals

deals with the propagation of waves in a periodic structure in a
self-consistent way; couples the incident and difiracted waves

successive slages of accounting for the physical phenomena

geometrical theory

directions under which difracted rays appear.

kinematical theory

combined effect of wavelels in directions other than those of
maximum cooperation is taken into account; diffracted amplitudes are

negligible compared to incident amplitude.

no attenuation ->  @nergy is noOt conserved
good for thin cryslals & imperfect crystals

dynamical theory

lind conditions for a wave field exist and travel through the perfect
crystal; connact fields inside the crystal to those outside.

> solving Maxwell equations in a Perfect Perlodic system

-

historical

1912/13 Eriadrich. Knipping and Laue discovered X-ray ditfraction

Annalen der Physik, 41, 971 (1913)

1913 Bragg relation ni=2dsin @
Proc. Camb.Phil.Soc.,17, 43 (1913)

1914 Darwin : interaction of each atom in the structure with the

incident wava, neglecting its interaction with the scattered
waves. Good for structural crystaliography; had for
diffracted intensities

Phil.Mag., 27, 315 (1914) (1); 27, 675 (1914) (1)

1916/17 Ewald : the crystal is formed by a tridimensional array of point

resonators (oscifating dipoles) responsible for scattering
of the electromagnetic field.

Annalen der Physik, 49, 1 and 117 (1916}, 54, 519 (1917)

1931 Laue : consider a rontinuum electron density distribution,

described by a dielectric constant - periodic and complex,
similar 10 Bethe's devellopment lor electron diffraction

Ergeb. exakt.Naturwiss., 10,133 (1931)
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X-ray Diffraction

o scattering from electrons in an atom
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o periodic structure - perfect crystal(a, b, €)
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p(r) : F(C)—’*-\"]’”E F. e
h

h  mustbe a "eciprocal lattice vector : h=hg' +kb'+l¢c’
oensurethat  p(r)=plr+uva+vh+we)

24X h-!_‘

Fn: F}.—_yp(g)e, T dS
call®

within the assumption that the atoms behave as rigid spheres with respect
10 their charges densities and are not vibrating thermally

Fh: E\:Z‘{“Q/

n

the structure factor is the ‘sum’ of the scatiering factor of each atom in the
~ unit cell. T is the vector fixing the center of each atom.

~ Mw

fn: — .F“ L, Debye-Waller factor

T
. . e T 1
Siemdes: Ha=lTg H(b%)‘) 4 s)

Bathrwou and Thipwov ("GL)
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S=k-ko=h or S.a=hetc.

Laue conditions

two useful propertiesof h: i) his perpendicular to hkl plans
i | h[=1/dw

by
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I AM..L

the positions of the nodes in the reciprocal lattice give the periodicily of p{r},
hence of the crystal

Ewald's construction
reciprocal lattice

° l;-‘;-' 21| 5O =l sin®

° e ™ * Lswe= L1
A dine
® ® ® ®
Bracg's law
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the periodic, complex, dielectric constant :

connection to the Fourier series describing
electron densities

o E & H small enough - > linear relations
4T P="Xg P=g+4TpP =(1+X)E =€ E
4T M = A H A x ©

X(l:) carries all the physical information about the crystal

()= % X, exe 2mih.r)

3
L= ;‘,‘5"(“’°"P("-“‘ he)dy

o sinusoidal field on a collection of free electrons W X = @ &
* T=- :w} =
[
P= a,o(c)g_—.-u—:’-;( 2) (ee)g z,j((r)_-;_c- wP@

o bound electrons "WAK =

b‘l . b

-

which accounts for the bounded slectrons ana absorption
f = f+f+1f"
-~ Hn Z.TTA b - o
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o asic equations for possible wave-fiel
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-> equation is satisfied for Dm not vanishingly small only if km2~ K2 118 Interesting 1o use Ewalds construction 1o better undarsiand the
dynamicai parameters.

geometrical approach

i.e, if elastic Bragg ditfraction is nearly satisfied.

two spheres of radii K centered at O and H
one-wave case (0)

X if only Do is non-negligible, i.e. far from the Bragg condition . (l .
T

.- K t 2 . ‘ .

g‘——%—f——-_'D.:_’X,D- b &.(l—'l’.)-K:O ‘E(K:-_- ~N .

'= —_— = 44 ?_<3. ' *
i-7. e B
refraction (n" < 1)
two-wave case (0,h) to match outside 1o inside field
continuity of the tangencial componen
Bragg condition nearly satislied for one set of plans
P oE o E
-— P - - x . La
Kt s k-k(1+%) .
T T =0 P i o .
P % & - &;. 'P = D—’—-._'.“‘ - .
h KL D‘ Dh mze' 1T- - 1a0 toH

-> spheres of radii k, centered around O and H

O CEWER S R

. T - . e
2K § = gz_ &7‘ €05, = E—%‘-ﬁi( what happens when we are near a Bragg condition ?

[ T
LK83,= R £ Du _ 28. _ K.
Do KA 26,



field equations near a Bragg condition (two-wave case)
(ke - €)= (et @) (hom ) = 2 (R 2D
< 2 4 ~ 40“

2
§.§,= X Xe K

= k- k
kh-k

It

€.
Sh Dy, 28. kX
Do KW{ 23;‘

l

the secular equation is transformed into a hyperbola ("two branches")

"dispersion surface”

the dispersion surface contains full information about the
waves which can propagate in the crystal

LS

diameter $1S2: T @
] the amplitude ratio is proportional to the distance of the tie-points
to the assymptotes.
] propagation diraction is the normal to the dispersion surface at the
corresponding tie-point.
[ ] S'o ~ {; - & [T &

L “ o (B y oy

§ox - otaf- L KMF, k.
A3

boundary conditions at the crystal entrance

the tangencial component of the wave-veclors
has to be conserved

plane wave

Laue case

PO : incoming wave-vector Ko

generates two wave-fields inside the crystal
the propagation direction is normal to the dispersion surface

As Ko changes by few seconds of arc
the wave fields change their propagation direction angle

by the very large angle 26

Sy



Borrmann fan .

incldent wave :

suHiciently wide spatially to be considered as an aimost plane wave,
but sufficiently narrow to be traced as bundles of rays.

there will be wave-fields propagating in all directions between the incident
and the diffracted direction

fi.

Pendellosung effects
the two-wave field exciled will overlap through their propagation

O-type fields are coherent ; P';O and P';0 differ by P',P',

the amplitude oscillates atong the normal 1o the entrance surface with a
period (1//'1P2) as the wave-fields propagate into the crystal.

2%

symmetrical Laue geometry and at exactly the Bragg condition we have the

Pendell jod D= -un® ~ 1O pawn
ndellosung period 55 vl (ox ~1opw)

atdepth A/2 "O" zere
= O,A,. O in MAXiMuM
oat A2, FLAX M

at 0,6, 2ERO

H-type fields : initial phase difference 1Y

Ewald analogy AL LR LR LLELL LN s

coupled pendula

L. I—

Pendeliosuny fringes are very sensitive to crystal distortion

L



Borrmann effect
' | : Ie Y verwwol
U I ot <<t
l I “w!-us'
9‘ Pot. i
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some mechanism keeps the energy away from the absorbing atoms

DYNAMICAL THEORY predicts that a STANDING WAVE pattem shouild
exist inside the crystal

tie-point on branch 1 : nodes are on the lattice plans
branch1 > branch2 patterns are shifted by 1T

z> type 1 fields will be less absorbed than type 2 flelds

absorbing atoms

only branch 1 wave-fields with propagation direction aiong the plans survive

Borrmann effect :

{when nodes becomes points of zero Intensity)

- g

Bragg case

Py points out of the crystal and it is not a physical solution (for thick crystals})

total reflection

Darwin width

2. = 217
s 20

the center is not on the Laue point

the shift is just the [efraction correction

Ke.

Y L6
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rocking curves and integrated refiectivity

ideal case S,
1oVl
Bragg ! :
Qb Laus ——
\;

5 2

infinitely thick, non-absorbing,; symmetncal peomelry
Bragg thg =T TI"XL.

= 5«»\29
1 Rictimesy
T - A=t
th' S«.MZ; 4.0 . A A /. P ‘.:ha
. A
Lave: Rupe= U'Xkl/sahz.e} w() W(A)njj.wﬁlu
D 4@'109 “-p‘(‘ hen Jo &) Banel *u;nt...
Lax MO Ty 0.5
s Yoors
integrated 4 Lave
reflectivity .

1.4
1.0

DYNAMICAL THEORY

o the total wave-field inside the crystal is considered as a
single entity

energy is swapped back and forth between them

e it is necessary whenever diffraction by perfect crystals is
involved

impose corrections to the kinematicat theory (extinction)
@ the process is coherent

e interesting effects :

Bragg total reflection

Borrmann effect

anomalous transmission

polarization
Pendellosung oscilations

very accurate values of structure factors have been obtained
Standing waves

® more general presentation :
asymmelry
multiple diffraction
extreme situations {6 = 0 or w/2)

backdiffraction
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field equations in the two wave case
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Laue case: b/lb} =1
p A,B

relation between entrance points and tie-points
b=+1 symmetric
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eftective absorption
(e*kr)

one of the most interesting aspect of dynamical theory

Fol) = pe[L 2 1P € (1-4)% ]

Me normal linear absorption coetficient

p= b3 A the angle between the normal to the
o dispersion surface and lattice plans
-l
P < c: limits of the dispersion surface
te F'&:'.' (exactly true for centrosymmetric crystals)
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physical interpretation

in terms of the positional dependence of the eleciric tield

.Y'L‘=Q= P:O Cana A F'_l.\gF-_i

> IDI= 212t (L 2 Peor[tnhr))

phara 2T hor = 2r X plans of equal intensity
A iy’ paraleli to |
Borrmann G P=1 nodes are ZERO intensity

effect g P=cos 20 nodes are NOT ZERO intensity

Bragg case

¢ Bragg selects two tie points
on the same branch
but,

Qnly one Is excited
(Kohler, Ann.Physik 18, 265(1933))

o reglon which produces
no Intersection
with the dispersion surface
0 propagating sotutions inside

¢ 'Q:::B‘i i D: = Du;

D, |22
o thick crystal : internal flow Is eventually attenuated . N
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primary extinction
Bragg case with no absorption and Fk = F';

So’:"lz'_ kipln e [th (Y'LL"L)&]

within the region
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standing waves

wave fields Inside the crystal
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standing wave technique

o generation of a standing wave field by the interference of the incident
and reflected beams.

o structutal information is obtained by measuring the fluorescence yield
from foreign atoms, which depands on the position of such atoms
relative to the choses diffraction planes
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PHYSICAL REVIEW LETTERS

X-Ray Stinding Waves ai Cryatal Surfaces
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Simple X-Ray Standing-Ware Technlque and Its Application fo the Investipation
of the Culd1) (V3% JI)R30"-C) Structure

D Wodrell, B L. Seymour, €. 1. McConville, C. 1 Riley, M 1> Crappes, and N I Prince
Physics Depuriment, Unliersity of Warwicl, Coremry (VETAL. Englond
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Robert G Junes
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(Received 10 Ocicher 1955}

FIG. ). Relatise Cw 2p-derived Auger-clectron yield {short
dashed tines) from Cu(111) ss the photon energy by scanncd
through the (111} Bragg reMection for incidence angles of 0°
{notmal incidence), 10°, and 20° compared with theorsiical
absorplion profiler st 1he stomic planes incorporsting random
angular standard deviations of 0.01° (long dashed lines) and
0.1% (solid Vines). For D* incidence the 1wo theoretics) lines
are indistinguishable.

Relcitve Energy (eV)

FIG 2 Relative Co 2p-derived and CI 1s-derived Avper-
eleciron yields from Cull|1HYI= JIIRIOT-C1 53 the photon
eneigy it scanned through the (111 ° oz refleciion sl normal
incidence  Also sthown sre (heoretical 1hsorprion curves for ab-
sorplion on the Cu slom plancs and 11 17,18, and 108 A
sboae the last Cu slom plane of a porleet subsirate In these
theoretical curves only B0% of the Cv o C1 sbsorbers nre as-

sumed 1o be coherently posilioned relative to Ihe substrate lan.
tice.
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Additional material to the lecture

“Dynamical Theory of X-ray Diffraction
by Perfect Crystals”

by Hélio Tolentino
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NEUTRON
AND SYNCHROTRON RADIATION
FOR CONDENSED
MATTER STUDIES

HERCULES

FUNDAMENTALS OF NEUTRON ANL A-RAY LHFFRALCIIUN
KINEMATICAL APPROXIMATION, DYNAMICAL THEORY.

M. SCHLENKER

Both in the HERCULES course and in this volume, this should be the
transition from scattering by single atoms (Chap. 1) to scattering by assemblies of
many atoms. We will focus on elastic scattering by crystals. Actually, many of the
resuits we will derive here were already encountered in Chap. IlI and V in the
description of optical devices for synchrotron radiation and neutron beam
conditioning based on total reflection, and especiaily on Bragg diffraction by
crystals.

This Chapter contains three parts. Section V1.1 is devoted lo standard aspects
of diffraction. We will introduce the reciprocal latlice, 1 concept central lo
diffraction physics as well as to solid state physics at large. The reflectivities will
be discussed in the kinematical approximation, for which, to begin with, we usc a
restrictive definition, that of very thin crystals where the diffracted amplitude is
negligible compared to the incident amplitude. These resuits are elementary,
largely familiar to whoever had an exposure to crystallography, and very heavily
used in structural crystallography. We will also note that much of the
fundamentals, e.g. the simple, Fourier-transform, relationship between the
diffracted intensity distribution and the pair-correlation function, is common Lo
all parts of elastic scattering, and also used in diffuse scattering and small angle
scattering.

Section VI.2 covers the dynamical treatment of diffraction by perfect, large
crystals. It should be clear to every user of synchrolron radiation that perfect,
large cryslals actually exist, and that, as shown in Chap. [II, most optical elements
are based on diffraction by such perfect silicon crystals, and must be described by
dynamical theory. It is therefore not just an academic curiosity.

Section V1.3 will return to the kinematical limit. We will see that
kinematical behavior is also encountered in crystals that are not very small,
provided they are very imperfect. This section will also briefly outline the
difficult description of diffraction by crystals of intermediate (im)perfection, i.e.
extinction.

Chap. VII and VIII will be devoted to the actual methods of diffraction work
for structural investigations, i.e. the determination of the average microscopic
structure, Chap. IX to the overall investigation of defects (diffuse scattering) and
Chap. X to the study of large-scale inhomogencities (small-angle scaltering).
Chap. XVIl will show how the features of dynamical diffraction by perfect or
almost perfect crystals can be used lo image individual defects and domains.



148 M. SCHLENKER

VL1 General features of neutron and X-ray diffraction in the
kinematical approximation

VI.1.1. Diffracted amplitude in the kinematical approximation.

Consider a plane, monochromatic wave, with amplitude yj and wave-
vector kg , impinging on a small specimen. The simplifying assumption leading
to the kinematical approximation is that the magnitude of the incident wave
amplitude is the same at all points in the specimen, with only the phase
changing from point to point. This implies that the scattered amplitude be small
enough that, at the cost of disregarding the conservation of energy, we can
neglect it. It also involves neglecting absorption.

But then the treatment made in Chap. I for a "single” object (Born
approximation) can be used: there will be, at large distances from the specimen, a
scattered wave expressed, in the neutron case, by

2nm e2niks

Wscatt (D= - Vigz 1 Yo (equ. 1.104 in Chap. I)

This is a spherical wave (nearly 2 plane wave since r Is large), with
amplitude proportional to the Fourier transform of the potential over the region

of interest.

In this chapter, unlike in Chap. I, the Fourier transform is distinguished by
the tilda as well as by the fact that the variable is a reciprocal length. K =k - ko,
where k is a vector along 1, the vector from the origin O, chosen inside the
specimen, to observation point P and its magnitude is here defined in the

crystallographers' convention, viz. |k =1/A], with A the wavelength in vacuum.
The potential (actually the potential energy} is the Fermi pseudo-potential.

Similarly, for X-rays, the diffracted amplitude is proportional to the Fourier
transform P(K) of the electron density p(r). The fact that only electrons are
effective is simply due to the fact that, in comparison with the other charges
present in materials, viz. nuclei, they are lighter, and therefore have
accelerations at least 2.103 times bigger than the nuclei. However X-rays are
electromagnetic waves and thus vectorial, not scalar. Since the scattered electric
field must be perpendicular to the wave-vector, only the projection of the
incident wave's electric field along the normal to the scattered direction is
effective in producing scattering. This was briefly discussed at the end of 13.1. It
can be handled easily by introducing, in the expression for the scattered
amplitude, a polarization coefficient Cj multiplying p(K). For the two principal
polarization states of the incident beam, o (E perpendicular to the scattering
plane, defined as the plane containing ko and k) and = (E in the scattering plane),
it takes the values Cq = 1 and Cg = c0s 28, where 20 is, in this Chapter, the

scattering angle.

P
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VE1.2. Geometry: the reciprocal lattice

Every microscopic quantity In a crystal has s
patial periodicity, and
gescribed by the convolution of a "pattern” function defll;zd with{n ::r‘\e “periodn o
y the Poisson distribution, a periodic repetition of Dirac distributions.

In the one-dimensional case
fperiodic {x)=fgone period {x} * P[a](x) if a is the period, with
Pla)) = Y. 8(x-na) the Poisson distribution.

Since the Fourier transform of P, istributi i
T e e of P(a)(x) is also a Poisson distribution, with period

FT [P(3)(x)} = P[4#)(k) = const.. ), 8(k-h.a*) with h an integer.
atlh
The Fourier transform in this one-dimensional case i
e is non-zero only wh
;he t?rave-number is a multiple of a*. This is a familiar result: any pye:od?:
unction can be expanded into a Fourjer series, instead of a Fourier integral.

So the Fourler transform of f,aori
] periodic is a set of Dirac distributions, with
amplitude of each determined by the Fourler transform of the‘;attg:

fone period: FTlfperiodicO! = T() = FTlfone period(™)} . P(a%(k) (fig. VL1).

I I I Ip[a]I(x) I 4 FT{fbne-period)
j\fpn:-mzr?odl i: / \
' fpne-perioth[.;(x) PPEL o ?l-'-() -~
An N ANN R T T,
0 1/a k

Fig. VL. —— A periodic function of one variable (a one-dimensional model of a crystal) as the
convolution of a Poisson distribution Ppa1(x} by the function over one period, f iod (x) . Its
Fouricr transform (FT) is the product of the FT of f gne period (x) by the FT Fl,.',’(ﬁ £¥ the Poisson
distribution, and is therefore non-zero only for k=pa*=p/a, with p an integer.

On carrying this over to three dimensions, the period is replaced by three

vectors, the basis vectors a,b,c of the lattice. We have to build a three-
dimensional Fourier series, breaking up V(r) intc a series of plane waves,

Vir) = Z VKeiz"K-f with wave-vectors K which have to ensure that

all K

V(r + ua + vb + we)=V{r), hence that K.r = K.(r + ua + vb + wc) if u,v,w are

-

e

e W
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This is satisfied if K = ha* + kb* +lc* where a*, b*, ¢*, the basis vectors of the
reciprocal lattice, satisfy the two cof\ditions:

ata=b*b=.=landa*b=a%c=..=0

It is easy to check that these conditions are satisfied with

a* = (bxc)/ V¢ ; b* = (cxa)/V etc., where x means the cross product, and V¢ = a.(bxc)
is the volume of the unit cell.

Two useful properties of reciprocal lattice vectors h = ha* + kb* +lc* {with
hX,] integers) are that h is perpendicular to the lattice planes with Miller indices
(hkl) of direct space, and that its modulus {ht is the reciprocal of the distance
between successive (hkl} lattice planes: thi=1/dpK-

One of the conditions for non-zero scattered intensity from a periodic
distribution of potential in space, with the periodicity characterized by the direct-
space lattice, is therefore that K = k-kg equal a reciprocal-lattice vector h.

Another way of getting the same result is to note that, whenever a given
array of scatterers is repeated periodically (on a lattice), the contributions to
diffraction with a change in wave-vector K will only add (interfere
constructively) if K.a = h with h integer etc. This condition {Laue’s condition) can
also be retrieved easily by drawing wave-fronts, and calculating the phase shifts
between the contribution of different scattering arrays.

Thus the positions of the nodes of the reciprocal lattice give the periodicity
of V(r), or p(r), hence of the crystal. But they do not tell what the unit cell
contains.

Bragg scattering is coherent elastic scattering by a crystal. The word "elastic”
contains another condition: there can be no change in the magnitude of the
wave-vector in vacuum, hence k = 1/ = kg

As a result, the condition for Bragg scattering from a crystal can be fully

expressed geometrically in Ewald's construction. Draw the reciprocal lattice.
Pick one node as the origin of reciprocal space, O. Mark the wave-vector of the
incident wave, in direction and magnitude, with its end at O, and call its origin P.
Draw a sphere with center P, radius k = 1/ . Of course this sphere, called Ewald's
sphere, goes through O the origin. The diffracted beam’s wave-vector (we
approximate the diffracted wave by a plane wave), drawn with its origin at P,
must have its end on the sphere to ensure k = ko, and it must satisfy k = kg + h.
This means that its end must be on a node of the reciprocal lattice (fig. V1.2a).
S Thus there will BOTRENHED BINTVANRERRIA sphere goes through the
origin and another reciprocal-lattice node. In this case one says that reflection h is
excited, usually spelling out the indices hkl explicitly, or that the incident beam is
Bragg-reflected (or Bragg-diffracted) by the lattice planes (hkl}.

Bragg's law follows immediately from the above construction: 2ksing = Inl,
so that, since |h | = 1/dnh), we get 2dp sind = A

Note that we write 20 for the scattering angle. The angle 8 satisfying the
Bragg-diffraction condition is often noted B, and is called the Bragg angle.
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. The reason for using the word “reflection” is clear from the direct-space
situation (f.lg..VI.Zb): since h is perpendicular to the planes (hkl) of the (direct)
lattice, the incident and diffracted beams have equal glancing angles (angles with

=
Q
=

Fig. VL.2 a. —— Ewald's construction, in reciprocal space, as the condition for diffraction h to be
excited. The incident wave-vector is ko, the diffracted wave has wave-vector k at large distance
from the specimen, with k=kg {elastic scattering) and k=kg+h. Note that this figure actuall

corresponds to simultaneous excitation of more than one diffraction. ’

Fig. V1.2 b. — The Bragg reflection or diffraction process seen in direct space.

t.he planes) 8 with the “reflecting” planes. This is reminiscent of the behavior of
light on a surface. The difference is that, in diffraction by a periodic structure
reflectlfm only occurs for special wavelengths at given angle, or at special angle;
for a given wavelength. Physically, one more picture may be useful. The crystal
can be considered as the superposition of many plane-wave (Fourier)
components of whatever microscopic quantity is of interest. Measuring Bra
diffraction h means sensing the Fourier component with wave-vector h. B8
Naturally, if more than one node other than the origin lies on the Ewald
sphere, more than one diffracted beam is produced. This is multipl
simultaneous, diffraction. ple o

The fact that the crystal is finite impli i

I plies that the Fourier transform of the

po?entlal shou!d' not be re'presented by Dirac peaks (infinitely sharp geometrical

Fom{s). Describing thg direct space potential involves multiplication by a box

Fl;r:lc:i::n, thenc‘; the recf:procal space distribution will involve convolution by the

r transform i i i i i

ransfor o thc‘e box function, i.e. a sinc function (defined as

" ) in one dimension (fig. VI.3). A reciprocal-space volume,

co:;espor.u?ling. to a three-dimensional sinc function, will thus appear at each
node position instead of the unphysical point. It is broad if the crystal is small.

sinc(u) =



\
o
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Fig. VI.3. —- A finite crystal in one dimension as a periodic function truncated through

multiplication by a box function, and its Fourier transform, with sinc functions replacing the Dirac
distributions.

V1.1.3. Weight of reciprocal lattice nodes: the structure factor
Consider first the neutron case, with nuclear scattering only, and no nuclear
spin.

It is convenient to consider that the weight of each node, say h, is just the
Fourier coefficient of V corresponding to this wave-vector, i.e. the amplitude Vi
of the plane-wave component with wave-vector h of the Fermi pseudo-potential.

It is customary to write the Fourier series decomposition as

Vi) = 2 Vh ei2nh.r
allh

in which case Vp = X V(r) e"i2rh.r g3r, But the pseudo-potential in the
€ unifcell

unit cell, containing nuclei i, with scattering length bj, at rest at positions rj, is

2nh2
m

Y. bi.d(r-rj), by a straightforward extension of equ. 1.98 of
i in unit cell

Chap. I, and therefore

2nfi2
Vh = mv,

Vir)=

oy k2 .
2 bj.8(r-rj)e i2th.T 43¢ = d z bj.e-2mih.r;
i

mV
€ unitcell
unit cell

Another way of writing this is Vi, = (2rnth2/mV,) .Fp, defining the structure
factor corresponding to node h of the reciprocal lattice {or, we will shortly see

why, to Bragg reflection h)as Fp = Z bi.e‘hih-'i [neutrons].
unit cell
Note that the structure factor, in the neutron diffractionists’ usage, is a
length.
X-rays are sensitive, via Thomson scattering, to electron density. The

il iaa—matmm af tha nracantabinn in
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Chap. I {equ. L53) as for the neulron case, by a scattering amplitude -ry.§(K),
with p(K) the Fourier transform of the electron density in the crystal.
ro = 2.8.10715 m is the classical electron radius.

Since the electron density p(r) is periodic too, the relevant quantity is the
Fourier component pp, and it is customary to write a structure factor F, = pp, .Ve.

The standard expression, which would be valid if the atoms were at rest, is

Fp = Zf.u(h).e'z"ih-fi [X-rays], where f, (h) is the atomic scattering factor
unit cell
or form factor for atom i, at position rj. As discussed in Chap. |, this is usually

. sin@ 1
taken as f;,(h), and tabulated as a function of e 2dng

In the X-ray diffractionists’ usage the structure factor is a number, the ratio
of the amplitude diffracted by one unit cell to that diffracted by one free electron
placed at the origin. Comparison between neutron and X-ray situations is easy to

perform by transcribing F? (for neutrons) into ro.FX (for X-rays).

A node with zero associated weight (zero structure factor) is said to be
absent, or not to exist. It does not give rise to diffraction. Systematic absences of
nodes, hence of reflections, can be related to the choice of a non-primitive unit
cell, or to the presence of non-symmorphic symmetry elements. They are most
valuable in determining the space group, an essential part of the structural
information.

Even in an idealized description, we must take into account the fact that
atoms are not at rest, and have a displacement from the average position rj. Let
p(r-rj) represent the electron density in an atom at rest, with its center at position
1i, and let p(r;) be the probability density that the center of the atom is at rj. Then
the electron density of the displaced atom will, on the average, be

Par(D) = Ip(r—ri).p(ri)drl. This is the convolution, p(r)*p(r), of the electron density
by the probability density describing the displacement. In the Fourier transform,
this will lead to multiplying the scattering length or atomic scattering factor of
each atom i by a factor e-Wi (the temperature factor, or the square root of the
Debye-Waller factor). Wj involves the mean square displacement <u?> of the
atom around its equilibrium position. In the harmonic, isotropic approximation,

in2
sin<Q
Wi = 8n2 Y <u2>, This leads to a significant decrease in scattered intensity

when the sample temperature is high, for light atoms, and for high-order
reflections (small dpy ). The final expressions for the structure factors are

Fp = 2 bj.e-2%ih.f.e-W;  [neutrons}| and

unit cell

Fy, = Zfa"i(h).e'm{ih.l‘i.e-wi [X'TBYS]

unit cell

e

L2
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Thus the information about the distribution of potential, or of atoms,
within the unit cell is contained®in the structure factors associated with the

various nodes of the reciprocal lattice .

V1.1.4. Integrated reflectivities

Standard structural crystallography never involves the use of plane waves.
The incident beam is always slightly divergent and includes a finite range of
wavelengths. Thus the situation we discussed was over-simplified, and we must
include the effect of rotating the incident beam, or adding components with a
range of directions of the wave-vectors, or, equivalently, rotating the crystal.

The nodes of the reciprocal lattice will then move through reciprocal space,
and some of them will go through the Ewald sphere. We have seen that they are
little volumes instead of geometrical points, hence there will be diffracted
amplitude over a range of crystal rotation, broad if the crystal is very small. The
curve of diffracted intensity vs crystal rotation angle  is called the rocking curve.

The information that is of value when the beam is not paraliel is the area
under the rocking-curve. However this will be in any case proportional to the
incident beam intensity 15 and to the measuring time at each point of the curve,
or the reciprocal of the scanning angular velocity. The relevant quantity is
therefore the total number of counts Npk for the reflection, scaled by I/’
where @' is the angular velocity. This is called the integrated reflectivity Rpy) or
Rp-

As derived e.g. in Schwartz & Cohen (1987), the simplest case,
corresponding directly to the above discussion (rotating crystal), yields the
following expression after integration over the reciprocal-space volume around a
node: with v the volume of the crystal, 8 the Bragg angle,

I Fp!2 1
Ripy = A3 ——5———— v for the neutron case (Fj, is a lengfh)
hikd ch sin 20 vior (Fp ]
| Fpi? 14cos?28 1
Rp =23 .rp2. Vlclz ct;s inzo’ v for the X-ray case (Fy is a number);

The 1/(sin 20) term, called the Lorentz factor L, is related to the time the
reciprocal lattice volume around a node takes to go through the Ewald sphere
during the scan, hence it depends only on the geometry used. Expressions for L
corresponding to all usual single-crystal diffraction methods are given e.g. in
International Tables for Crystallography. °

The factor (1+c0s228)/2 in the X-ray expression is called the polarization
factor P. The form written here assumes that the incident beam is unpolarized.
Then half of the incident intensity corresporids to o- polarization, for which
Ce=1, and half to n-polarization, with the polarization coefficient for the
amplitude Cy=cos 26. The two intensities add because they are incoherent. Other
forms apply to synchrotron radiation, which is naturally polarized, or to setups
involving a monochromator.

The product (LP) is often termed the "Lorentz-polarization™ factor. For a
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Rpk| = constant . (LP) . | Fpq 12

with LP easily obtained from the experimental setting. Integrated reflectivities
give the relative values of the moduli squared of the structure factors.

VL1.5. The pair-correlation function, the Patterson function, and Friedel's law.

If X-ray or neutron detectors could measure complex amplitudes, including
the phase, crystallography would not be a part of science. It would be possible to
obtain full crystal structures just by Fourier transforming the distribution of
scaltered amplitudes. The fact that only intensities are measured, and that the
phase of each reflection is not available from measurement, means that a simple
Fourier transformation of the experimental data does not directly yield the
electron density.

It does, however, provide something useful. The Fourier transform of the
product of two functions is the convolution of their Fourier transforms. In the X-
ray case, with anomalous scattering neglected, the scattered intensity Iscap is
proportional to p(K).p*(K)= p(K).p{-K). Hence by Fourier-transforming the
scattered intensity, expressed as a function of wave-vector K, we obtain a function
ofr: :

p(r)*pl-r) = jp(u).p(u+r)d3u, i.e., to within a factor involving the volume,
all space
the density-density correlation function or pair-correlation function, or Patterson

function, P(r). This function only takes on non-zero vatues if there is appreciable
density both at u and at u+r, i.e. at points separated by .

This basic result is used again and again, not only in diffraction by crystals, but
also in small-angle scattering and in diffuse scattering.

_ We note that, under the assumption of no anomalous scattering, p-K) =
P (K) and Iscatt (K) = Iscart (-K) . This is known as Friedel's law. It means that,
neglecting anomalous scattering, the diffraction pattern shows centrosymmetry
whether the crystal is centrosymmetric or not. The symmetry of the diffraction
pattern is therefore described by the Laue class (the point group with
centrosymmetry added if it is not there).

The phase problem has been fought vigorously, and quite successfully, for
many years. A good review on the "direct’ methods is given by Hauptman
(1991). The use of simultaneous, or multiple, reflections makes it possible to
measure the relative phases of different reflections. This will be briefly discussed
in VL2.

V1.1.6. X-ray and/or/vs neutron diffraction?

Neutron and X-ray scattering are both similar and, through their
differences, complementary. One of the keys to desigring good experiments is
understanding these aspects. It may be a good investment to spend some time
browsing through tables of values in the International Tables for Crystallography
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Since wavelengths are similar for X-rays and neutrons, so are the Bragg
angles, hence the scattering geometry ahd the formal description. The orders of
magnitude of the scattering lengths for atoms are the same, with slightly smaller
values for neutrons, at least for small scattering vectors (low index reflections).

Absorption was dismissed in a cursory way in VL1.1. Except when the
Borrmann effect sets in {very perfect crystals, see V1.2.2.6), its treatment is easy in
principle: the intensity is affected by a factor e’ht where p is the linear absorption
coefficient and t the path length. In crystals with a complicated shape, however,
this is not straightforward even for a computer. In most cases, absorption of
neutrons is very small, but absorption of X-rays is not. Lead is an extreme
example: it is heavily absorbing for X-rays (hence its use in shielding), but
practically not at all for neutrons. Only a few elements, or more exactly isotopes,
have strong absorption cross-sections for neutrons: e.g. lithium, boron,
cadmium, gadolinium, uranium. There is obviously no direct relation with
atomic weight, whereas the relation is simple in the X-ray case.

The neutron cross-sections for nuclear scattering are associated with the
strong force. They are not directly related with the atomic number as is the case
for X-rays. Structural work takes advantage of the fact that light nuclei can have a
strong contribution to neutron diffraction for determining the position of light
atoms, notably deuterium, in crystal structures that also involve heavy elements.
Neighbors in the periodic table are almost undistinguishable with X-rays, but
they can have quite different scattering lengths for neutrons. This can be used to
see such effects as ordering in Ni-Fe alloys. In this case, however, nature does not
help much on its own, since the scattering lengths for natural Ni and Fe are
again almost the same, and isotopically enriched Ni is required.

On the other hand, anomalous scattering, for which synchrotron radiation
is beautifully suited, offers similar possibilities, with the added attractive feature
of avoiding any extra work on the chemistry of the sample: it is "just” a matter of
scanning in wavelength across well-chosen absorption edges.

As discussed in Chap. 1, there is also a magnetic coniribution, p, of the same
order of magnitude as b, to the scattering amplitude of neutrons by atoms that
have an electronic magnetic moment. The scattering length for magnetic
scattering of neutrons involves a form factor that goes down with increasing
sinB/ A, just as for X-ray scattering, and for the same reason (the finite extent of
the spatial distribution of the clectrons). Magnetic X-ray scattering has developed
100 in the last few years. But the cross-sections are very small, it is still a tour de
force to elucidate magnetic structures using X-rays, and neutrons remain the
standard way of determining magnetic structures. Efficient use of the capabilities
of both techniques often involves determining the underlying crystallographic
structure with X-rays before going to a neutron source for the magnetic structure.

Since most elements contain various isotopes, with different neutron
scattering lengths, a chemically pure sample behaves in neutron scattering as if it
were made up of different species. This results in diffuse elastic scattering.
Similarly, there is a term in the scattering amplitude related to the nuclear spin
of the scatterer. Unless the nuclear spins are ordered {(very difficult to achieve)
and the neutrons polarized, this will also entail incoherent elastic neutron
scattering. These incoherent elastic scattering effects, giving rise to background

Also, it is important to remember, as discussed in a striking manner in
Chap. V, that even a normal laboratory X-ray generator produces X-ray beams
with a much higher intensity than the neutron beams from a nuclear reactor,
albelt in a small wavelength range. The ratio is huge when it comes to
synchrotron radiation.

VI1.1.7. Beyond the kinematical approximation.

The standard expressions we have seen in this section are constantly used by
structural crystallographers to refate the measured integrated intensities of Bragg
reflections to the moduli squared of the structure factors of the various Bragg
reflections. The kinematical approximation on which they are based looks wrong
to a physicist, as it does not even take into account the conservation of energy, or
of partictes. Indeed neglecting the diffracted amplitude is not tenable when the
crystal is perfect and not very small. This is why the next section is devoted to the
dynamical theory. The kinematical approximation is nevertheless highly
successful, and one of our challenges will be to understand why. We will return
to this point in V1.3, after dealing with the dynamical theory of diffraction.
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V1.2. Dynamical theory of diffraction

The dynamical theory of diffraction by a perfect crystal deals in a self-
consistent way with the propagation of waves in a periodic structure. One of the
key ideas is the fact that, if an incident wave can produce a diffracted one (Bragg's
law or equivalent conditions satisfied), then the diffracted wave can be re-
diffracted back into the incident wave direction. Thus the key concept is that of
wave-fields, in which incident and diffracted wave are coupled.

Unlike the kinematical approximation, this theory of course satisfies the
condition of conservation of energy or of particles.

We will go through the formal treatment, emphasizing the use of a
particularly handy tool for understanding the behavior of wave-fields, the
dispersion surface. More detailed expositions can be found in the references.

This treatment is really identical to that of energy bands in the weak
potential approximation in solid state physics.

V1.2.1. Propagation of a single wave, far from a Bragg reflection: refractive index

Whenever the characteristic Bragg-reflection effect of periodicity (in
particular in crystals) does not come in, e.g. in visible-light optics, the use of a
refractive index n is very handy. It is defined so that the wave-vector in vacuum,
¥ and the wave-vector in the material k' are related by k' = nk. In this
description, simple transmission, the phase effects related to the positions of the
scattering centers play no part at all. Accordingly, the refractive index is only
related to mean values, such as the average density of scatterers or the average
potential energy, and the fact that the material is crystallized or not (amorphous
ot liquid) makes no difference.

Useful expressions, as shown in 14, are:

ror2po
2n

(2.8.10-15 m), and po is the mean electron density. For crystals po is no other than
Z niZi/ V¢, where nj is the number of atoms of type i, with atomic number Zj,
i

per unit cell of volume V. But Zj is also fai(0), the atomic scattering factor of
atom i in the forward direction, or for scattering angle 0. We can write this, using
the structure factor for X-rays (a number) associated with the 000 reciprocal lattice

* for X-rays:n=1 - where ro is the classical electron radius

X
node F 035

1
IRy S I P R
n= ot v, Ve 172
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3 nibj
“ for neutrons: n = 1- A2 —

, the straightforward carry-over of the X-ray

case, with bj, the (nuclear} scattering length being the equivalent of the atomic
scattering factor times the classical electron radius, as usual. Hence

n =1-A2F5/(2nV¢) = 1 - x0/2 again. Numerically, n is very close to 1, but slightly
smaller both in the X-ray case and in most neutron cases (those where b > 0).

This is enough to describe all the refraction, and possibly total reflection,
effects at the boundary.

It has two importaat consequences. With n<l, total external reflection is
possible at an interface between vacuum and a material. this is the basis for
neutron guide-tubes (discussed in 2.7}, and for X-ray mirrors. Also we will have
to describe a wave in a material by a wave-vector slightly smaller {(in these usual
cases) than in vacuum.

VI.2.2. One Bragg reflection in a perfect single crystal

VI1.2.2.1. Geometrical approach

As discussed in VL1, a crystal is described by a periodic distribution in space
of electron density p(r} (the relevant quantity for X-ray diffraction), or Fermi
pseudo-potential V(r) (for neutrons). Hence p(r) can be written as a Fourier
series, or, equivalently, as a plane wave expansion:

p(r) = Z Ph ei-2r.h.r
h

where_the sum is over all reciprocal-latlice vectors h = ha* +kb* +lc*. The p;, are
very simply rele.xted to the structure factors characterizing each reciprocal lattice
nOfle h (we designate a node by the vector which points from the origin to this
point),

P = Fy/ V¢, where V¢ is the unit-cell volume.

The simplest description of diffraction in V1.1 led to Ewald's construction.
We will henceforth use a slightly modified form. We draw two spheres with
equal radii 1/, centered at the origin of reciprocal space, O, and at the node H
corresponding to h: then the tie-point corresponding to the common origin of kg
and k;, must be on the intersection of these spheres, as shown on fig. V14.
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La

Fig. Vi4. — Modified form of Ewald's construction (see fig. V1.2 for the other form).

This is crude. The first improvement we must make is to take into account
the refractive index. Since the waves in the crystal have slightly smaller wave-
vector {except in the cases where b < 0 for neutrons), we should draw two spheres
each time, one for the waves in vacuum, the other for waves in the crystal

(fig. VL5).

Fig. VL.5. — a. Effect of refractive index. The smaller spheres are associated with propagation in
the crystal. The difference in radii is enormously exagerated.

b. An enlarged view of the vicinity of the interscetion of the spheres. Because of the magnification,
the spheres are replaced by their langents. Far cnough from the Bragg condition, an incident wave
wilh wave-vector FO in vacuum would generate in the crystat' a wave with wave-vector P'O, PP
being along the normal n to the crystal surface.

The intersection of the vacuum spheres is called the Laue point Ly, that of

the crystal spheres is the Lorentz point Ly Fig. V1.5b shows the neighborhood of
- = ¢ . 4 e Macnd hacanca n ie en clnse to 1: the SDhel'e is
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out in the next sub-section that the the possible wave-fields in the crystal will be
represented by points in the neighborhood of Ly .

We can already discuss the matching condition between the vacuum and
the crystal waves: as in ordinary optics, continuity of the tangential component
of the wave-vectors on the interface has to be assured. An incident wave in
vacuum with wave-vector kg, i.e. with origin P (its end must be O) will generate
in the crystal a wave with wave-vector represented by k'q, a vector with its end
still at O but with its origin at P, the intersection of the perpendicular drawn
from P to the interface. Fig. V1.5b shows the situation in reciprocal space. This is
just a way of describing refraction.

Yet another, major, change will come in when we have discussed the
propagation of waves near the Bragg condition in the crystal.

V1.2.2.2. Basic equations for possible wave-fields

We start out by discussing the wave-fields that satisfy the local conditions,
viz. Schrodinger's equation for neutrons, or Maxwell's equations for X-rays, in
the perfect crystal. The next step will be to discuss what wave-fields are excited by
a given incident wave. The neutron case is simpler to start with than the X-ray
case because we deal with a scalar wave, the De Broglie probability amplitude
describing the neutron or neutron beam. Also, for nuclear scattering, the
scatterers are point-like, hence, as discussed in Chap. I, the scattering length is
independent of momentum transfer K.

We want our solution for the neutron wave-funclion to satisfy
Schrisdinger's equation in the crystal, with the (Fermi pseudo-) potential

he
Vi) = 51; bi 5(r-1;).

h2

2rmV,

Hence Vp, = Fh

b: e-2rih.r,
Ei‘ ! ' 2nmv,

The solution we will try has the form suggested by Bloch's treatment of
waves in crystals:

$(r) = u(r) e2mk".I, with u(r) a periodic function which therefore can be expanded
into a Fourier series again:

u(r) = Zuh e2mih.r, yielding W(r) = Y un e2ni(k'+h).r,
h h

Let us look at the simplest situations. A single wave propagating in the
crystal would be 'P(r) = ug €2mK"T, and ug is just the amplitude of this single
wave, with wave-vector k' in the cr stal. If we take two components, we will
have ¥(r) = up e28ik"I 4 uy,, e2nilk +h).T; this just means that we have the
incident wave plus a Bragg-diffracted wave with wave-vector (k'+h,) and
amplitude uhy. In usual terms, reflection hy is excited. We know this will
happen when the geometrical conditions for this Bragg reflection are
approximately satisfied. This will be called a two-wave situation. It is easy, ir:

Y R [ S ]

s
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VIL.1.2, more than two nodes of the reciprocal lattice would have to be near the
Ewald sphere. In the present form, the tie-point would be near the intersection of
spheres centered at O and at more than one other reciprocal lattice node.

In geometrical terms, we are looking for
a) the locus of tie-points P' such that P'O = k', hence P'H necessarily k'+h, and

b) the ratio of amplitudes up/ug etc.
Now W(r) = u(r) e2xik"I gives us
A = - ¥ (k'+h)2 up, ellk'+h).T, whereas
h

VY = thnezﬂih".f Euh.ehi(k'+h').r = Z Evh'h'uh' ez;i(k'+h).r_
h" h' h h

Schrédinger's equation thus reads

{(h2/2m)k'+h)2 - E] up, = - Evh-h' uh'-
h [}

But E = (h2/2m) k2, where k is the wave-vector in vacuo, and this energy is
conserved since the scattering is assumed to be elastic. Hence

(K +h)2- k2 up =- Y 2m/h2) Vi tne = - @R/VQ) 3 Fop up
h' h'

Or, if we adopt the notation (A2/aV¢) Fh = xh = Vh/E,

{k'+h)2 - k2 A2
———up=-——9 FhpUn=-2 Xn-nUn
ey %

This is the fundamental equation of the dynamical theory of neutron
diffraction.

It really represents an infinity of equations. But it is simpler than it looks.
Note that the terms (A2/1V) Fiyn' = Xn.n a7 very small, typically =105,

Let us continue concentrating on the two-wave case, with only the origin O
and a specific node hj of the reciprocal lattice involved.

{(k'2-%2)/k2] ugp= - Z Xt Upe = - [XoUo + Xy Up, + wee)
h' ‘

{[(k'+h‘)2 -k2)/x2) Up, =~ Z Xpy-h U = = [Xp Yo *+ Xo Upy + )
h [ ]

This is consistent with the guess we made earlier: the second equation here
can only be satisfied with uy, not vanishingly small if (k'+h1)2 is very near k2,
hence if the tie-point is near the Laue and the Lorentz points, ie. if the
geometrical conditions for Bragg-reflection hj are nearly satisfied.

FUNDAMENTALS OF DIFFRACTION 163

If they are not, then only ug is non-negligible, we are back in the one-wave
case, but this gives us a condition on k'. It is easy to check that we recover exactly
the expression for the refractive index given in VI.2.2.1, viz. n = 1-x5/2.

If they are, we have two equations with two unknowns, the amplitudes ug
of the forward component and uh, of the Bragg-diffracted component of the total
wave-function in the crystal. We can have a non-trivial solution (non-zero
amplitudes) only if the determinant of the set of equations is zero, and then we
get the ratio of the amplitudes. We will now write, for convenience, k' = k'y
since it is a vector ending on O, and similarly (k' + h1) = k';,. We will also quit
using the subscript T which singles out the reciprocal-lattice node we are using.

Then (k'o2-n2k2)uy + xpk?u, =0
1 k2uo + &y2-nk2uy, =0,
which simplifies, since k'g and k', are both close to nk, into
{k'o-nk} ug + kx_pu,/2=10
(o k/2up + (K'p-nkuy, =0
whence the condition for existence: (k'g-nk)(k'y-nk} - xhx_hkz/tl = 0.

Setting (k'g-nk} = £, and (k'p-nk) = £, we thus have

tntnk? a1 2K2 u, 28 ki
Eobn= 4 = 4 an uC’7-—“(1-“:-2&"‘

V1.2.2.3. Geometrical description: the dispersion surface

The first pair of equations have a simple geometrical meaning: £, and &
are the distances from a tie-point I to the spheres with centers O and H and radii
nk which describe propagation in the crystal in the one-wave (no Bragg
diffraction) regime. The secular equation as transformed is the equation of a
hyperbola, with asymptotes corresponding to the straight lines to which our
approximation of fig. VL5 has reduced the spheres that represent wave-vectors in
the crystal but without Bragg diffraction (fig. VL6). This two-branched hyperbola
is called the dispersion surface. It contains full information about the waves that
can propagate in the crystal. The pair of coupled waves making up ¥ is called a
wave-field, Bloch wave, or Ewald wave.

Note that the figure is way out of scale: the distances to O and H should
really be huge. The diameter 5157 of the hyperbola is easily found to be

I2p 1k
h . The larger the structure factor, the larger is this diameter.

$152 =
1227 cos
The amplitude ratio is proportional to the distance of the tie-point to the
asymptotes: very near the H-sphere (fp small), the wave-function is almost
solely Bragg-diffracted type; near the O-sphere, it is almost solely forward wave,
and near the apices of the hyperbola it involves equal forward and Bragg-
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diffracted waves with equal amplitudes. Note how far this is from the
kinematical approximation. v

Fig. V1.6. — The dispersion surface as the locus of tie-points such as P representing possible wave-
ficlds. £ and &, are the distances from P "to the asymptoles, which are the tangents to the spheres
with radius n/ {n, the refractive index, is very close to 1). O and H are a kilometer or so away at
the scale used.

The geometrical condition (Bragg diffraction corresponding to just the
intersection of the two spheres, an unphysical result) has now matured into a
gentle transition from an almost one-wave to a fully two-wave situation in the
neighborhood of the Lorentz point L. Note that O- and H-waves play completely
equal parts in this description.

The propagation direction, or direction of the probability current density,
corresponding to a wave-field is the normal to the dispersion surface at the
corresponding tie-point. This can be taken directly from the general result on
constant-energy surfaces for (electron) states in solid state physics, as actually the
dispersion surface is such a constant-energy surface. Near the asymptotes,
propagation is along the one-wave directions, i.e. towards O and H. At the apices,
it is just mid-way between the incident and the diffracted direction, i.e. along the
lattice planes.

V1.2.2.4. Boundary condjtions at the crystal entrance face

We now ask what wave-fields will really propagate in the crystal when a
given incident plane wave hits the crystal surface. We have already locked at
this question: the tangential component of the wave-vectors has to be conserved.
The simplest case corresponds to an incoming plane wave.

Consider first the Laue (transmission) geometry (fig. V17), defined by the
fact that the inward normal to the crystal surface lies between the incident beam

and reflected beam directions. An incident wave represented by PO in vacuum
B ] PRI SR, idmm war ith hath
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surface, P'1 and £'2. One incident plane wave thus gives rise to two waves with
forward character (those with wave-vectors P'10 and P'20). From these, two
waves with diffracted-wave character will be generated in the crystal.

ko

=1

b)

Fig. VL.7. —~ a. Laue {(transmission) geometry. View in reciprocal space of the wave-fields,
represented by tie-points 1 and I, excited by an incident plane wave with wave-vector PO. Each
wave-field consists of two waves, e.g. with wave-vectors P10 and P'1H. The propagation
directions of the two wave-fields, along the normals to the dispersion surface at Py and P2, are
different.

b. View in direct space of the propagation of the two wave-fields excited by one incident plane
wave. Directions p'1 and p'2 correspond to tie-points I"1 and 2.

o0

Fig. V1.8. — Bragg (reflection} geometry, otherwise same as fig. VI.7. Both possible wave-fields,
assoclated to 'y and P*{, arc on the same branch of the dispersion surface. Only the one with
propagation direction into the crystal, P, is physlcally acceptable for a very thick crystal.

Note that as the incident wave changes its incidence angle over a very
emall ranoa {that corresnonding to the reallv curved part of the dispersion

o

s

LA
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propagation angle by the very large angle 20, where 8 is the Bragg angle, several
degrees. There is thus a huge angular amplification factor.

In Bragg (reflection) geometry (fig. V1.8), a simple conclusion appears for the
limiting case when the crystal is infinitely thick. The two possible tie-points are
on the same branch of the dispersion surface, and one of them would point out
of the crystal. This is unphysical if there is no boundary within finite distance,
hence only the wave-field corresponding to inward flow (tie-point P") will
really be excited. A challenging situation is that of fig. V1.9, where no real tie-
point is available since the normal to the entrance surface is between the two
branches. Then the incident wave is totally reflected. The angular range over

Fig. VL.9. — Bragg geometry. The total reflection range is R1R2.

which this happens is easy to find: in the symmetrical Bragg geometry, it is the

angle between R1O and R20. This is called the [Darwin width, e = 21y, | /sin26|.

Note that the incident wave that excites the center of this total reflection range is
not at the Laue point: the shift is just a refraction correction. Also the width of
the tota! reflection regime changes if the geometry is asymmetric, i.e. if the crystal
surface is no more parallel to the reflecting planes used. The angular width as
well as the breadth of the totally reflected beam are then altered.

An interesting situation arises if the incident wave is sufficiently wide
spatially that it can be considered as an almost plane wave, but sufficiently
narrow that it corresponds to bundles of rays which can be traced. Then the
different path directions associated with the excitation of regions of both sheets of
the dispersion surface with very different propagation directions can be directly
evidenced by the spatial positions, on the exit surface of the crystal, of the

diffracted beams.

A very narrow beam can be treated as a_coherent superposition of plane
waves with a continuous range of wave-vectors and of amplitudes. If this range
is larger than the Darwin width, it is convenient to approximate the incident
beam by a spherical wave, as the range covered is enough to excite effectively the

whole dispersion surface at once.
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VL10. — Spherical wave propagation. Wave-fields propagate throughout ABC, the Borrmann fan.

Then there will be wave-fields propagating in all directions between the incident
and the diffracted direction, over the Borrmann fan ABC (fig. V1.10).

V1.2.2.5. PendellGsung effects

The interference effects between wave-fields are called Pendelldsung effects
for a reason which will appear in V1.2.2.7.

Consider first the plane-wave case. This implies that the incident beam is
broad (strictly, it should be infinitely broad), and the two wave-fields excited will
overlap throughout their propagation in the crystal (fig. VI.11). The O-type
contributions are coherent, and their wave-vectors are P'10 and P'20 (fig. VL.7),
which differ by P'1P'2 , a small difference in wave-vector. The resulting
probability current density therefore oscillates along P'qP'3, i.e. along the normal
to the entrance surface, with period 1/P'1'2 as the wave-fields propagate into
the crystal.

The special case of symmetrical Laue geometry, and of an incident wave
exactly at the Bragg setting, hence exciting $1 and 57, corresponds to the longest

period in direct space: this is called the |Pendellosung period, A = 1/515;[: at

depth A/2, there is no O component any more, while it is maximum at depth 0, A
etc.. Similarly for the H-type components, except that there is a phase difference
initially: the combined amplitude for the H components is zero at the entrance

surface, maximum at depth A/2, zero again for depth A etc. A rough order of
magnitude fo A is 10 pm.
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1 ‘\.. \ \

Fig. VI.11. —- Pendellésung in planc wave case. Interference occurs over the arca where wave-ficlds
overlap.

Thus the equal-H (or O) -intensity loci are planes parallel to the entrance
surface. If the exit surface is not parallel to the entrance surface, i.e. if the crystal
is wedge-shaped, the diffracted intensity will oscillate as a function of distance
from the edge.

In the narrow incident-beam case (spherical-wave approximation), only
those wave-fields that propagate along the same direction do overlap over a long
distance and can interfere. Thus interference occurs between wave-fields
represented by tie-poinis that are symmetrically located with respect to the
Lorentz point (fig. VI.12a), and there will be different periods (1/P1P'4) for
different propagation directions. The equai-H-intensity loci can be shown to be
hyperbolas, with asymptotes along the incident and diffracted beam directions
{fig. VL.12b).

\\
A r
B c il
a) b}

Fig. VI.12. — Pendcllésung in spherical-wave case. a. View in reciprocal space: interference occurs
belween the wave-fields that have the same propagation direction, ¢.g. those represented by Iy

and 3.

b. View in direct space: cqual-intensity surfaces.
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The Pendelldsung fringes are very sensitive to crystal distortion. This has
been used in a variety of situations, e.g. to detect the effect of surface strains.

VI.2.2.6. The X-ray case, and the Borrmann effect

In the X-ray case, because the wave is vectorial, the two eigenpolarization
modes, correspond to different scattering amplitudes. We saw in V1.1 that it is
convenient to characterize them by a polarization coefficient Cj (Cg = 1 and
Cyx = cos 20) multiplyings Fy, or xp. and to deal with each polarization state
separately, adding the intensities at the end. There are thus two hyperbolas (each
with two branches) for the dispersion surface. The Darwin width is smaller, and
the Pendellésung period longer, for x-polarization than for a-polarization. There
are therefore now four wave-fields for one unpolarized plane incident wave.

Also, absorption is no more negligible in most cases. This implies that xy, is
complex whatever the choice of origin, and so are the wave-vectors. The
presence of absorption makes anomalous transmission possible, and this is the
Borrmann effect. ‘

The two components of a wave-field are coherent, and their interference
gives rise to.a standing-wave pattern, with period 1/0H, i.e. the lattice plane
distance dy, of the excited Bragg reflection.

For the wave-fields with tie-point on branch 1 of the dispersion surface, the
nodes can be shown to be on the lattice planes. The pattern is shifted by x, hence
the antinodes are on the atomic planes, for the type 2 wave-fields.

Since absorption of X-rays involves the core electrons, and the intensity of
the X-ray wave at their location, it becomes clear that type 2 wave-fields, whose
intensity is consistently a maximum at the most active places in terms of
absorption, will be very highly absorbed, while type 1 wave-fields will be less
absorbed than without this modulation.

This is particularly true when the nodes become points of zero intensity.
The two components must then have equal amplitudes, i.e. the wave-fields are
represented by the apices of the hyperbola and propagate along the lattice planes
used for the Bragg reflection. Actually, zero-intensity nodes also require that the
electric field vectors be parallel, and this is only the case for o-polarization. In
thick crystals, where normal absorption would effectively kill transmission, the
extra absorption of type-2 wave-fields makes no difference, but the anomalously
high transmission of wave-field 1 provides a transmitted beam nevertheless.
More precisely two beams come out: a diffracted one and a forward-diffracted one
(fig- VI.13), both with o-polarization. This is one way of getting polarized X-rays.

A similar effect exists for neutrons when the crystal has appreciable

absorption. In either case, anomalous transmission is disrupted when the crystal
perfection is disturbed, e.g. through vibrations.

L

s
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%ﬁ

Fig. VI.13. -- Borrmann effect: only branch-1 wave-fields with propagation direction along the
reflecting plancs can survive in thick, absorbing crystal. They give rise to the forward-diffracted
and diffracted beams.

V12.2.7. Ewald's analogy to coupled-pendula situation

P.P. Ewald offered a very nice analogy, which in fact gave Pendelldsung its
name (German for Pendular Solution): consider two identical pendula,
somewhat coupled (through a spring on fig. VI.14), and damped as little as
possible. Call one of them O, and the other H. If O is given an initial deviation
and let go, it will oscillate, then lose amplitude, while H starts to move. After a
while O stays at rest and H oscillates, and then the oscillation energy is swapped
again.

VIS ISV T ITIIIIIIIII?

L2113

O O

Fig. VL.14. — Coupled pendula in Ewald’s analogy to Pendelldsung effect.

Time in the pendulum case corresponds to depth in the crystal diffraction
situation. Both pendula can also be started together. A given oscillation mode
will continue (it will be a stationary state) if both start with the same angle
(symmetrical mode) or with opposite angles (antisymmetrical mode). In the
latter case, the oscillation period will be different from that of either pendulum
on its own. In the former case it will be the same, since the spring is not used at
all. The situation corresponding to the symmetrical mode for the pendula is
when the dispersion surface goes through the Laue point L, i.e. branch 1 of the
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This analogy even shows which of the wave-fields can have decreased
absorption. Let the two pendula be coupled by a spring and a damper (eg. a
cylinder with a viscous liquid, and a piston with little holes moving through the
liquid): the damper would have no effect in the mode for which the wave
vectors would be unaffected by the coupling, i.e. for tie-point L;.

V1.2.2.8. Boundary conditions at the crystal exit surface.

The continuity condition again involves the tangential component of the
wave-vectors and the amplitudes for the O- and H-waves.

In the plane-wave neutron case, the two diffracted-type waves share their
combined amplitude, which depends on thickness (Pendellésung effect),
between two H-type, diffracted outgoing waves in vacuum. These have
practically the same wave-vectors, with their ends at H and their origins at the
intersections with the sphere with center H and radius 1/A representing
propagation in vacuum {a straight line in the region of interest) of the normals
drawn through P'| and P'3 to the exit surface. If the crystal is a flat plate (exit
surface parallel to entrance surface), there is only one outgoing H-type wave.
Similarly for the O-type, or forward-diffracted, wave(s). Note that the outgoing
waves, in vacuum, all have, to within minute deviations, the direction of the
incident and diffracted-wave directions corresponding to Bragg diffraction,
irrespective of the propagation direction in the crystal of their parent wave-field.

In the almost-plane wave case, the path directions in the crystal will have
separated if the crystal thickness is large enough, and the wave-fields will split
independently into their O- and H- components.

In the spherical-wave situation, the emerging beams, both in the diffracted
and in the forward-diffracted directions, will have the full width of the
Borrmann fan.

The X-ray case involves separate treatment of the two polarization states.

V1.2.2.9. Rocking-curves and integrated reflectivity for perfect cTystals.

A rocking-curve is the curve of diffracted intensity, scaled to incident
intensity, versus the deviation of the incident wave from exact Bragg angle, or,
more practical, versus crystal rotation angle w. Measuring it involves having a
detector that is large enough to accept the whole diffracted beam. It also implies
having a plane wave, which is not easy, and using a diffractometer with both the
mechanical stability and the angular sensitivity needed to achieve reproducibility
over a scale much smaller than an arc second. This is possible on very specially
designed instruments operating preferably on high-brilliance sources.

When some of the above conditions are not fulfilled, a convolution of the
rocking-curve with a usually broad instrumental function is obtained, and only
the area under the rocking-curve can be reliably determined. This is the
integrated reflectivity, or almost: we will call it R'hk}. Actually the incident beam
is measured by a number of photons or neutrons per unit time per unit area, and
the diffracted beam is a number of photons or neutrons per unit time. Thus the

LI TP —— R Ry R Y -1 .1 - e I i
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This is satisfied e.g. in the classical expression for the analogous situation in
the kinematical approximation (small crystal with volume v, rotating-crystal
method, neutron case): Ry = A3 | Frxi! 2.y /(V2sin 20)

Here, we idealize our problem with an incident plane wave (unrestricted),
and will have to take into account the area of the incident beam intercepted by
the crystal for comparison with the kinematical approximation.

Bragg case

The main feature of the Bragg case is apparent on the rocking-curve, as
calculated in the zero-absorption limit which befits most situations in neutron
diffraction, but not in the X-ray case (fig. VI.15 corresponds to an infinitely thick
crystal): there is a region, € (the Darwin width) wide in angle, for which there is
total reflection. On either side, reflection is partial, and the reflectivity decreases
steadily with increasing deviation from Bragg's angle.

1o} '/to

Bragg

05 Laue

Fig. V1.15. — Laue and Bragg rocking-curves, averaged over oscitlations, for perfect crystal, no
absorption.

Clearly the area under the curve is slightly larger than e: the correct value,

in the simple limit of an infinitely thick, non-absorbing crystal, and in

symmetrical geometry, is R'hkl = R.£/2 = nyn/sin26 , which is very small. If the
crystal is not infinitely thick, the reflectivity vs thickness curve, averaged over
the Pendelljsung oscillations, is expressed as

R‘hkl = n:xhtanh A / sin 208, with (ﬁg VI1.16)

Laue case

Here there is no total reflection, the reflectivity vs angle will strongly
depend on crystal thickness (Pendellésung), but, when averaged over these
oscillations, takes the form shown on fig. V1.15: the maximum reflectivity is 0.5.

Integration over the crystal rotation angle gives the curve shown on fig. V116,
which corresponds, in symmetrical geometry, to the expression
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2A
W(A) = (n/2) J Jolu)u, where Jo(u) is the Bessel function of rank 0 and A = xt/L.
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Fig. VI.16. — Integrated reflectivity R’y vs A in Bragg and Laue case.

The initial slope of W(A) is «, and the limiting value of W(A) for large A is
n/2
The maxima and minima, when considered at fixed wavelength as a function of

thickness, agree qualitatively with the discussion we made in the plane-wave
case for exact Bragg-angle incidence, because this is the dominant term.

Note that the limiting value for thick, non-absorbing crystals, in symmetrical.

Laue geometry, is myy,/(25in20). This is just half the value for the Bragg case.

V1.2.3 Applications of dynamical theory

Dynamical theory is necessary whenever diffraction by perfect crystals is
involved. Thus it is involved in the design of monochromators, especially for
synchrotron radiation, as described in Chap. IIL. It also made possible fascinating
developments in experimental physics. Thus the very small angular width of
rocking-curves for perfect crystals in non-dispersive, two-crystal settings has
made it possible to investigate effects leading to very small broadening, i.e. very
small-angle scattering. The fact that diffraction by a perfect crystal is a coherent
process has led to the birth and growth of X-ray and neutron interferometry,
where beams are split, then recombined, with applications ranging from basic
experiments in quantum physics to measurements of scattering lengths. It is also
involved in work on the surface diffraction techniques. In the area of structural
crystallography, very accurate values of structure factors have been obtained
from the Pendellosung effects using a variety of experimental setups. This is

e fiiiemmtalas cmciolatad LA v faur Aructale wvis thnaca that ran ha nhtained in



174 M. SCHLENKER

imperfect crystals involving short-range distortions too, by a careful application
of the best treatments of extinction, a problem which will be briefly discussed in
V1.3.

The dynamical theory of diffraction by slightly imperfect crystals is the basis
for X-ray topography (Chap. XVII).

V1.2.4. Omissions.

We have omitted several important points in this presentation, which was
intended to give the essentials. In particular, we have restricted the explicit
treatment to symmetrical geometries. It is easy to generalize this for moderate
asymmetries, but some of the approximations made are not always valid in
extreme cases. Also, the occurrence of multiple, or simultaneous, diffraction was
dismissed: it is not as essential for X-rays and neutrons as for electron diffraction,
but very promising developments for the direct measurement of the relative
phases of different reflections are based on that principle (see Chang 1984).

V1.3. The kinematical limit, and diffraction by crystals with
intermediate perfection (extinction)

The assumption we used in VL1 as the basis for the kinematical
approximation, viz. crystal so small that any scattered amplitude be negligible, is
valid whatever the crystal quality. We will show that indeed a perfect crystal
diffracts according to the kinematical approximation if it is very small. We will
also find that this condition is sufficient, but not necessary: the kinematical
approximation can also be valid for larger crystals, provided they are bad enough.
This is the key to its success in structural work, because in real crystals the
pericdicity is disturbed by various kinds of crystal defects. Indeed only rarely are
crystals very good when they are of interest to structural crystallographers, i.e.
when they have just been synthesized for the first time.

VL3.1. The kinematical approximation as the limit of dynamical theory for a
thin perfect crystal.

The dynamical expression for R’y becomes, for symmetrical transmission
geometry, in the thin {crystal thickness t<<A) perfect crystal regime:

Ixn A lxp ) n2t A3 1Fp 12t
sin26  Asin20 V.2 cosd sin26

1

R'py=

The area of the beam, coming in at an angle 8 to the normal to the surface,
that covers an area S of the crystal is S.cos8. Hence Rpy) = A2 F, 1 2t5/(V 2 sin20).
Since tS = v is the volume of the sample seen by the beam, this is exactly the
kinematic expression.

Thus an ideally perfect crystal diffracts according to the kinematical
approximation if its thickness is small compared to A. This can be seen
graphically on fig. V1.16: kinematical behavior corresponds to the initial linear
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But A involves the structure factor of the reflection used as well as the
wavelength. For a given sample (thickness fixed) the condition for kinematical
behavior is that the structure factor be small {weak reflection), and/or the
wavelength be small (hot neutrons rather than cold ones; y-rays rather than
long-wavelength X-rays).

The physical meaning of the kinematical behavior of thin ideal crystals is
that there is so little material that a diffracted wave has no chance of being re-
diffracted into the incident direction, and that the amplitude diffracted out of the
incident beam is negligible. We are thus back to the situation postulated in
VL1l

VL3.2. The kinematical approximation as the bad crystal limit

The above argument can be extended, again neglec'ing absorption, to the
situation where a crystal is subdivided into small units which diffract
independently. This can be achieved if it consisis of subgrains with linear
dimensions << A (so that each satisfies the small crystal condition above) and
misorientation larger than € between them (so that they could not diffract
simultaneously the same part of a divergent monochromatic beam). Then the
situation corresponds to the assumption of VI1.1. as far as the integrated
reflectivity is concerned. Any one subgrain sees the same incident beam
intensity because no other subgrain upstream of it had the right orientation to
diffract out appreciable amplitude, and there is negligible probability that another
subgrain downstream should affect the diffracted beam from this subgrain. Thus
a bad enough crystal diffracts kinematically. Here again A and ¢ are involved,
hence this behavior depends on wavelength and on the structure factor of the
reflection used.

The kinematical limit can be approximated artificially for a given reflection
from a good large crystal by imposing a curvature or a gradient of the lattice
parameter such that the change in Bragg angle is about € for a path length A. This
has been used in monochromator technology as a way of obtaining high
reflectivity.

V1.3.3. Diffraction by imperfect crystals, extinction

The ideally perfect crystal case shows what the problem is, and why it is
called extinction. When plotted versus crystal thickness, the integrated
reflectivity starts out from 0, grows, and saturates. In the initial growth stage, the
behavior is, as we saw above, identical with the kinematical approximation. But
with larger thickness, the reflectivity is always less than predicted by the
kinematical approximation, whence the term extinction, coined in reference to
the kinematical limit.

The presence of extinction does not mean that the diffracted intensity is
zero, 1.e. that a reflection is absent. The absence of a reflection corresponds to the
presence of screw axes, of glide planes in the space group of the crystal, or to the
choice of a non-primitive unit cell. Unfortunately, these absences are called
extinctions too, but the context should make the distinction clear.

Traditionally, extinction is characterized by an extinction coefficient y
Aofined ac the ratin nf the rhearved inteerated intensitv over that given by the
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kinematical approximation. Thus, unfortunately again, strong (large) extinction
effects correspond to small y. The behavior of perfect crystals {dynamical
diffraction) then corresponds to very small values of y when the thickness is

large.

Almost perfect crystal

In this case, the reference should be the perfect crystal, for which the
behavior is well understood through the simplest form of dynamical theory, as
discussed in section VI.2. The effect of departures from perfection is then usually
to increase the diffracted intensity, hence to reduce extinction. This can be
apprehended simply by remembering that, in a perfect crystal, a monochromatic,
but non-parallel, beam would have only a tiny part, roughly the Darwin width g,
diffracted. Any region in the crystal where the distortion leads to a change in
Bragg condition of the order of € or larger will diffract a new part of the beam,
hence provide extra diffracted intensity. This ceases being true only in the
extreme limit of a thick absorbing crystal, where the Borrmann effect provides a
diffracted beam if the crystal is perfect, and where deviations from perfection
disrupt this anomalous transmission effect. In the ideally imperfect crystal, y = 1,
i.e. there is no extinction.

The almost perfect crystal situation includes two very different aspects.
Perfect crystals (mainly silicon) can be intentionally deformed elastically, or
submitted to a temperature gradient, or strained by a surface layer such as oxide,
and the distribution of diffracted intensity on the exit surface as well as the
rocking-curves or at least integrated reflectivities measured.

On the other hand, very good crystals usuatly include some defects, such as
dislocations, whose elastic behavior, at large enough distances from the core, is
well known. Each of these defects affects wave-field propagation. The
distribution of diffracted intensity across the diffracted beam, when recorded on a
photographic detector, provides an image {or topograph, see Chap. XVII), where
the defects are visible because of their effect on the wave-fields. Intricate effects,
leading in particular to beautiful images, are observed. They can be understood
in terms of the changes in wave-field propagation and interference due to the
long-range strain field around the defects. As a result, the characteristics of
individual defects, e.g. the direction, magnitude and sense of the Burgers® vector
of dislocations, can be fully determined.

Much effort has gone, with considerable success, into understanding,
qualitatively and analytically, these effects in comparatively simple
circumstances. The computer calculation of wave-field propagation in a distorted
crystal and the simulation of topographs are also well developed, using the
Takagi -Taupin equations. This is outside the scope of this section.

Statistically distorted crystals: the extinction problem

Seen from the point of view of structural crystallographers, extinction is a
nuisance because it destroys the simple relationship between measured
intensities and the moduli squared of the structure factors. Detecting extinction
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dependent, and a good way of detecting it is to measure the reflectivity at
different wavelengths. It is also worse for strong reflections, and structural
crystallographers sometimes go around the problem by just ignoring the
strongest reflections in their data sets. In practice, extinction is an important
problem for neutron rather than for X-ray diffractionists, because the weak
neutron fluxes available make it necessary to work under conditions yielding
higher integrated reflectivities, hence to go to higher values of t/A by using large
samples. The fight against extinction can involve cold-working the sample if it is
a metal, or even more brutal treatments like dropping it into liquid nitrogen.

The crystals used for structural work usually contain quite a high density of
crystal defects. It would therefore be usually impossible, as well as completely
devoid of interest to the users, to make an observation of the actual individual
defects. The defect distribution in a crystal must then be characterized by only few
parameters, and a statistical approach must be used for extinction correction.

The older literature on extinction is based on the concept of the mosaic
crystal and distinguishes primary and secondary extinction. Primary extinction
corresponds to mosaic blocks that are too large, and where individual blocks
already diffract less than in the kinematical approximation. Secondary extinction
is related to the misorientation distribution being too narrow (Zachariasen, 1945).
The accepted procedure is Becker and Coppens's treatment, which works very
well for moderate extinction and is incorporated in structure determination
computet packages. However, it cannot reproduce the behavior of perfect
crystals, characterized e.g. by Pendeliésung oscillations, as a limit, because 1t is
based on intensity transfer equations and does not take intc account the
possibility of interference.

It is now apparent that the mosaic model is unrealistic. The newer
treatments try to describe extinction as a whole, and some of them attempt to
cover the whole gamut of possibilities, from the ideally perfect crystal to the
ideally imperfect, kinematical one. Work is continuing in this difficult area,
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X-RAY OPTICS FOR SYNCHROTRON RADIATION
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I1L.1. Introduction

About 100 years ago in his original work C.W. Rontgen after having
discovered the X-rays was unable to detect any deflection of X-rays by lenses and
concluded that there should be no refraction of X-rays by matter or that at least
such effects should be very small. Later specular reflection of X-rays by surfaces
was observed and early in this century Max von Laue and coworkers discovered
X-ray diffraction by single crystals and developed the dynamica! diffraction theory
by perfect crystals. This was the beginning of X-ray optics, and the underlying
principles of this Bragg-optics are still valid today. They were at the origin of
much work carried out on X-ray monochromators used in conjunction with X-
ray tubes that have become standard equipment of todays X-ray instrumentation.
A review of these techniques can be found in the International Tables for
Crystallography (1968).

With the advent of synchrotron radiation sources and their specific
properties, in particular the energy tunability and the high brilliance of modern
high energy synchrotron storage ring facilities {ESRF, Grenoble, France; APS,
Chicago, USA; SPring 8, Harima, Japan), it became necessary to revise this optics
drastically. Mirrors play now a very important role and a new type of optical
element called layered synthetic microstructures or, briefly, multilayers were
added to the instrumentarium of state-of-the-art X-ray optics. Several reviews on
this topic show the transition from conventional to completely new schemes
{Matsushita and Hashizume, 1983; Caciuffo et al., 1987; Freund, 1989; Batterman
and Bilderback, 1991; Malgrange, 1992). They are all necessarily incomplete
because the field is very wide and in steady development. The limited space will
make this article even less complete so that, in addition to the above papers, the
interested reader is referred to more specialized recent work published regularly
in the proceedings of synchrotron radiation instrumentation conferences (SR},
the most recent ones appeared in Rev. Sci. Instrum. 63, 1992} or the relevant
volumes of SPIE proceedings.

1.2, Role of X-ray optics

An optical system is composed of a source emilting a beam and of optical
elements that transform this beam downstream till the sample under study and
to the following detector. When choosing the optical system of such a beamline it
is therefore important to consider the source characteristics as well as the kind of
detector to be used, too, The task of the optics is to transform the beam in such a
way as to match it ideally to the experiment. The intensity versus resolution
{energy, angle, space) optimization implied in this procedure has to take into
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acccount not only the reflection properties of mirrors, crystals and multilayers,
but also the consequences of the very high heat load produced by wigglers and
undulators inserted in the straight sections of electron storage rings and the
behaviour of optical devices under high X-ray power. A very clear demonstration
of such a complete oplimization was given recently by Wulff (1992).

The beam transformation is governed by Liouville's theorem that states that
the particle (photon) phase space density can never be increased if conservative
forces are applied to the system. ldeal optical elements would totally conserve
both emittance (phase space volume) and brilliance (phase space density). On the
other hand, there are always losses associated with the limited efficiency of
optical devices so that the ideal optics would be no optics at all. At least, the
number of elements should be minimized. Losses of beam quality and photon
quantity arise from fundamental limits (aberrations, diffraction effects at slits...}
and from technological limits (mirror surface roughness, slope errors, crystal
imperfections...) and materials problems are of major importance in the research
and development of X-ray optics. In addition to conservation of emittance and
brilliance the optics should produce a "clean” beam, i.e. free of background
radiation, harmonics, glitches (parasitic reflections) and other beam conta-
minations that can deteriorate the quality of an experiment.

In order to optimize the design of a beamline one has to know both the
detailed phase space properties of presenty available beam-defining devices and
of their combined effect on the X-ray beam. There are several kinds of graphic
schemes in real, reciprocat and phase space that can be used to estimate the global
beamline performance and to find out the best matching between the elements
(DuMond, 1937; Davis, 1990; Matsushita and Kaminaga, 1980; Suortti and Freund,
1989). This first approach is then completed by a more precise and quantitative
ray-tracing that approach veritable computer simulations of X-ray scattering
experiments (Lai et al. 1988, Sanchez det Rio, 1992).

The criteria for suitable X-ray optics materials and devices can be
summarized as follows:

i) Ability to reflect photons of a desired energy range at a suitable angle.

ii)  Resolution in space, angle and energy matched to the experiment.

jiii)  Energy tunability within a specified range.

iv) Maximum X-ray transmissivity inside the domains defined by i) and
ii) and the range chosen in iii), and very low transmissivity outside these
ranges.

v) Focusing possibilities should almost always be provided.

vi)  Excellent performance under severe radiation and heat load (materials
problems).

vii)  Availability in sufficient size and quality at a reasonable price.

viii} Ease in preparation and mounting (machinability, polishability).

ix)  High degree of flexibility.

x) Supports of high mechanical precision, stability and reproducibility.

It is clear that the fulfilment of all these requirements is a matter of a best
compromise, i.e. of an optimization in the space of dreams and reality:

For example, present ESRF specifications for more than 1 m long mirrors
are a microroughness of about 0.1 nm rms and a slope error of 1 prad, the latler
corresponding to the angular stability of an undulator beam. The same angular
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positioning precision and stability holds for single crystal monochromators
although in some cases this can be relaxed so that not only highly perfect crystals
but also mosaic or otherwise non-perfect crystals are sometimes suitable as
monochromators. Without giving details about the specific needs of the various
types of experiments it should be mentioned that the beam cross-section at the
sample ranges from 1 pm? or less (microprobe) up to 10 cm? (topography), the
angular resclution varies between 1 prad or even less (plane wave topography)
and 10 mrad {microprobe), and the relative energy resolution required is between
107 (phonon scattering) and 0.1 (microscopy). The energy (wavelength) range lo
be covered is from about 0.3 keV (40 i) up to a few hundred keV (a few
hundredth of an A). These very wide ranges need a wide range of optics that, in
addition, will be exposed to very intense beams: at the ESRF the first optical
element has to withstand an X-ray power of up to several kW at a power density
of up to 100 W/mm? (see Freund et al, 1990). Many materials are then
eliminated, stability becomes a major issue, many new engineering problems
arise, precise facilities for testing the performance of optical elements need to be
developed and new approaches have to be sought such as cryogenic cooling and
active and adaptive optics {Freund, 1992a). .

I1L.3. Optical elements for synchrotron X-rays

Table 1 lists the various devices presently used for X-ray beam conditioning
and the energy ranges for which they are most efficient. These ranges are
determined by fundamental and technological limitations. For instance, a single
crystal monechromator cannot reflect X-rays of wavelength longer than twice the
d-spacing of its laitice planes. Conversely, the improvement of multilayer
preparation techniques could allow their application to higher X-ray energies.

Devices for Beam Soft X-rays  X-rays  Hard X-rays Beam
Definition 033 keV  330keV  I0-300 keV  Parameters
“o4 &) (404 A) (04004 A)

Beam Shapers Pinholes, Diaphragms XXX xxX xxx W, Ax
Solier Stits X XXX XXX Y
Total Reflection  Mirrars 00X x00 ¥. Ax, (E, AE)
Guide Tubes X x ¥, (8%, E, AE)
Linear and Planar Gratings xxx xR x v, ax, E, AE
Microstructures  Fresnel Plates xx XX x y, ax, E, AE
Bragg Optics Multilayers o x e x w, Ax, E, AE
Sinﬁle Crystals x XXX XX x xxx v, Ax, E, AE, P
Combined Multilayer Gratings x x (N x(M vy, ax, E, AE
Systems Brage-Fresnel-Optics  x(?) x (7} x(?) w,Ax, E, AE, P

Table 1.- X-ray optical devices (presently exisling or under devclopment), the energy and
wavelength ranges where they are applied (R-reflection, T-transmission geometry). Use: xxx-
frequently, xx-moderately, x-occasionally, ? - maybe, and the beam parameters which they define
(to some extent): y-divergence, Ax-spatial resolution, E-encrgy, AE-energy spread, P-polarization.

The most ordinary device is a slit, which may be of quite simple
construction when used to eliminate stray radiation, but which becomes a huge
beam shaper consisting of up to one meter long water-cooled copper jaws used in
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grazing incidence to limit the size of powerful wiggler beams. At the other
extreme, it is not easy to fabricate vety narrow pinholes of submicron diameter,
for example, for microbeam experiments. Here the discussion will focus on the
following devices: mirrors, monochromators and multilayers. The latter, also
called layered synthetic microstructures, are sometimes referred to as "multilayer
mirtors”, sometimes as "multilayer monochromators’, and are thus situated
between single-layer mirrors and the three-dimensional lattices of single crystal
monochromators. If they have a gradient of the layer thickness perpendicular to
the surface they do not show distinct Bragg peaks but an increase of the total
reflection range (‘super-mirrors”). Because gratings are not very efficient at
medium and higher X-ray energies they will not be described here. The same
holds for Fresnel lenses. Fig. 111.1 shows the energy and wavelength dependence
on the glancing angle and the typical ranges covered by the three major kinds of
beam-defining devices. These "DuMond diagrams” are based on Snell's law for
mirrors and on Bragg's law for single crystals and multilayers. At a given
glancing angle, mirrors reflect X-rays of all energies smaller than the critical
energy characteristic of a given material (hatched area), whereas single crystals
and multilayers select sels of narrower or wider energy bands corresponding to
Bragg reflections and their harmonics (double curves, see insert). The
synchrotron beam divergence can be shown as a horizontal segment in this
diagram. It varies from about 30 prad {(undulators} to 300 prad (wigglers) and
depends on energy (Freund et al., 1990).
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Fig. 11l.1.- The relation between the angle of reflection and the X-ray wavctength and cnergy for
three major kinds of beam defining devices.

According to the experimental requirements, one or more of these optical
devices can be used in flat or focusing geometries. Theit combined effect on beam
transformation and thus their optimum sequence can also be determined with
the help of the DuMond or other graphic schemes. As an example, the successive
refllections of a beam by two crystals in the dispersive mode (same sens of beam
deflection) is shown to produce a beam whuse divergence is equal to the intrinsic
"Darwin” width, w, of the crystals and whose energy bandwidth AE/E = wcolog is
thus independent of the white beam divergence, v, (see the insert of Fig. L1}
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I111.4. X-ray mirrors

X-ray mirrors arc nowadays widely applied as high energy cut-off filters and
as focusing devices. They can reduce the power load on the more delicate single
crystal monochromator following downstream by typically a factor two. They
have the advantage that the heat and radiation is spread over a much bigger
surface than in the case of crystals because the reflection angle is very small,
usually of the order of some mrad. Specular reflection from real (non-ideal)
surfaces is based on a modified Fresnel theory that takes into account surface
roughness (“linish™) and slope errors ("figure”). Both can be measured by visible
light interferometry and the results are expressed in terms of a power spectral
density function involving a Fourier analysis of the surface height variation as a
function of spatial frequency. This is then used by a formalism calculating the X-
ray teflection properties for different energies {Takacs, 1986). The requirements
for ESRF mirrors were described by Freund et al. (1990).

Specular reflection is related to the index of refraction, n, given in the X-ray
regime by Parrat (1954):

n=1-5-ip ) (nL.n
where 5 = rgNp/2RA(Z + AD)A? (111.2)
and f=hp/dn. (111.3)

The decrement in the index of refraction, §, is small, of order 105 - 10¢. The
imaginary part of n is proportional to the linear absorption coefficient, n. The
classical electron radius ro = e2/me? is 2.82 x 101 cm, Ny is the Avogadro number,
p the density of the material, A the atomic weight and i the X-ray wavelength (=
12.4/E in A if the energy E is in keV). The term (Z + Af') is the real part of the
scaltering factor in forward direction consisting of the atomic number, Z, and of
the dispersion correction, Af. The critical angle of reflection is 6c = (28)'/2.
At angles below or equal to 8, X-rays are reflected whereas above they are absorbed
by the material. For low Z materials a good approximation is:

8c imrad] = 1.6 & (A) (p{g/cm™)1/2 SHEY

in the absence of absorption edges. Another practical expression for the critical
angle is good to within 10%:

0.E [keV] = 33 keV mrad for low-Z surfaces (111 5)
and 6.E [keV] = 77 keV mrad for high-Z surfaces. (111.6)

At ESRF mirrars are used up to an energy of 30 keV. With a beam height of
3.5 mm (wiggler source) and a platinum coated surface (8¢ = 2.6 mrad) the mirror
length becomes 1.4 m. This is a lypical number for modern synchrotron hard X-
ray mirrors. The mirror reflectivity r as a function of angle (energy) is a step
function the step occuring at the critical angle (energy). This means that for a
given angle X-rays of all energies up to a critical energy E are reflected whereas
higher energies are absorbed (filter effect). The step funclion is smeared by
absorption and can be described by:

r=[h-ql2h - /2) / th+ q(2th - 1)]1/2) (.7
where h=q2+(q2- 12+ (8)21/2 (111.8)
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and 9 = 9/8,. Because 8 is proportional to 1/E equations (II1.7) and {I11.8) can be
written in terms of energy by repliing & by 1/E" where E' = 1/Ec. A set of such
curves observed on a glass mirror coated with 50 nm of platinum are shown in
Fig. 111.2. The wiggles are due to multiple reflections inside the thin Pt layer

{Kiessig fringes).
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Fig. 111.2.- Reflectivity of a platinum coated glass mirror at different glancing angles. (After
Bilderback and Hubbard, 1982}

The most important application of mirrors is lo focus an X-ray beam onto
the sample. The efficiency of the focusing is determined by aberrations and by
mirror imperfections such as microroughness and slope errors. The best
conditions are obtained with an elliptical or parabolic shape of the mirror surface.
Because of easier preparalion they are often approximated by spheres or cylinders
with circular cross section. Then spherical aberration effects occur that increase
with decreasing angle and with increasing magnification. The relations between
the various parameters of the focusing geometry are:

Rm = 2pq/(p + q) sin@ (111.9)
for meridional (in-plane) focusing (radius Rm} and
Rs = 2 pq sin@/{(p + q) = Ry 5in29 (1IL.10)

for sagittal {out-of-plane) focusing (radius R;), where p and q are the source-to-
mirror and mirror-to-sample distances, respectively. Rpy is typically ~10 km
whereas Rg is ~10 cm.

For double focusing toroidal mirrors are used which can be manufactured by
grinding a cylinder of radius R, into a substrate which is subsequently bent to a
radius Rm. The bending corresponds to a deflection of typically 20 pm at the
centre which shows the high precision needed for mirror preparation techniques
and supports. Benders are very useful also for varying the radius of curvature
when changing the glancing angle, at least in meridional direction, and for
correcting deformation arising from gravitation and thermal load. High figure
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accuracy and small surface roughness are difficult to achieve at the same time,
The best results recently reported are slope errors of about 5 prad rms and a
roughness of 1 A rms for superpolished surfaces. This means that for q = 10 m the
focus will be broadened by about 0.1 mm which is about equal to the source size
of modern storage ring facilities. In all cases a best compromise has to be found
between aberrations, manufacturing tolerances and the precision of the supports.

When the mirror is used as the first optical element in the beamline,
problems related to radiation damage and thermal gradients are added to
manufacturing difficulties. High-power wigglers yield a total power of several
kW and power densilies up to a few 100 W/mm? perpendicular to the beam.
Gradients parailel and perpendicular to the surface create strains which deform
the surface and degrade the mirror performance even if they are cooled. A
substantial part of the radiation is absorbed by the mirror and gives rise to
radiation damage. Here materials problems become very important {see section
111.7) and only a few materials remain under consideration: Si, SiC, "Glidcop”(a
Cu-Al;03 alloy). For post-monochromator mirrors Zerodur and ULE (ultra-low
expansion) as well as fused quartz are commonly used that have excellent
mechanical properties (stiffness, hardness) and are easier to polish.

Adaptive mirror technology is currently being developed at the ESRF
(Susini, 1992) where the thermal deformation is counterbalanced by a mechanical
deformation of the mirror surface by means of piezo-clectric actuators attached to
the back of the mirror body. The surface shape is continuously surveyed in-situ
by an optical system connected to a servo-loop that maintains the surface
constantly in the desired shape even if the perturbations (heat load, etc.) change
with time. With this technique any kind of surface shape can be achieved, and
even manufacturing slope errors can be corrected to some extent.

I1L.5. Single crystal monochromators

Perfect single crystals are generally used to selecl a more or less narrow
monochromatic energy band out of wiggler or undulator radiation according to
Bragg's law:

2 dph sinBp = n (11

where dj is the lallice spacing of crystallographic planes belonging to the
reflection, h stands for the Miller indices and 8y, is the Bragg angle given by the
angle between the incident (or the reflected) beam and the lattice planes. The
integer n denotes the reflection order: dpp = dp/n and thus wavelengths 31, 31/,
X143, ..., X\1/n are reflected simultaneously as far as the reflections are not
forbidden by the crystalline structure. Crystals can be used in reflection ("Bragg
case") or in transmission geometry ("Laue case”), and the reflection can be
symmetric or asymmelric (see the insert in Fig. 1I1.3). In all cases except the
symmetric Laue case the reflection occurs at an angle different from that given in
Eq. (I11.11} because of refraction. This correction is quite small, of the order of the
width of the reflection curve, also called Darwin width. This width can be
considered as the result of the finite penctration depth of the X-rays into the
crystal, called the extinction depth, t¢, that is due to the fact that at each lattice
plane a small portion of the beam is reflected out of the incident beam. Usually,
this depth is much smaller than the abserption depth, t, {see Table II1.2). Thus a

e ™
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crystal can be compared to a grating and the Darwin widlh to the width of the
corresponding interference pattern. {r fact, the diffraction process inside a perfect
crystal is a little more complex. The dynamical theory describing it can be found
in textbooks, for instance in Zachariasen (1945), or in a condensed form by
Schlenker in this book {Ch. VI). Here I will give just a few results for the Bragg
case. Fig. 111.3 shows a set of diffraction palterns for g-polarization corresponding
10 four reflection orders from the (220) planes of a "thick" (t » to), perfect silicon
crystal where the first order wavelength is 1.54 A. From the shape of the curve it
is clear that there is a range of total reflection where the reflectivity is 1 {broken
line, without absorption), and then the intensity is decreasing according to A as
in the case of specular reflection by mirror surfaces (where A = 8-8p is the
deviation from the Bragg angle). Another similarity to the mirror case is the
smearing of the step function by absorption. The asymmetry is due to the fact that
the maximum of the standing wave amplitudes inside the crystal are located
between the atomic layers on the left side of the curve (-> minimum absorption)
and at the atomic layers on the right side (-> maximum absorption), respectively.
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Fig. Ili.3.- Intrinsic perfect crystal diffraction profiles (5 (2n,2n,01 for a lirst order wavclength of
154 A.

The variation of both peak width and position as a function of reflection
order is also seen in Tig. IIL.3. The reflection pattern r{A) corresponds to the
reflected intensity, normalized to the incident intensity of 2 monochromati¢ and
paralle] X-ray beam. Recorded as a function of the angle it is often called "rocking
curve" and has the following shape:

Ay =L-(L2- )72 (I11.12)

wiere L depends in a complicated way an the crystal structure factor, absorption,
polarization and other parameters.

The width of the rocking curve (Darwin width) for the symmetric case is
given by

ws = 2A2r,C |yl eeM) /(v 5in28y,) (JIL13)
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where 1, is the classical electron radius, C is the polarizalion factor (= 1 for o-
polarization and cos2eéyp for m-polarization), Fny is the real part of the structure
factor, eM is the Debye-Waller factor and vy is the volume of the crystallographic

unit cell. This equation can be wrilten as .
ws = £5lanfy (Il1.14)
with £ = 4(dp2roC 1 P leM) /v, (111.15)

The relalive wavelength resolution of a perfect crystal put in a white
incident beam of divergence y, {("white” means an energy bandwidth wider than
that accepted by the crystal) can be oblained by differentiating Bragg's law and
assuming Gaussian distribution functions when convoluting r(A) and I{y) as

AE/E (= A/h) = (w2 + w2172 cotBy, (11116}

By comparing Eqs. {I11.14) and (111.16) we see that € is the intrinsic crystal
energy resolution that is to first order independent of energy (Bragg case only!)
but varies with the square of the d-spacing and is proportional to the structure
factor that in turn depends on (sin8)/x = 1/2dp. The extinction thickness, i.e. the
penetration depth t. perpendicular to the lattice planes is given by

te = Vo/ (2dnroC | Fisr 1) (1117}
so that €5 = le/dn, = 2/aNp where Np, is the number of lattice planes participating
in the diffraction process. It is related to the Pendellésung length: A = nte (Ch. VI,

If the reflection is asymmetric meaning that the lattice planes make an angle
o with the crystal surface as shown in the insert in Fig. 111.3, the width becomes

wy = ox/b1/? (I11.18)
wy, = wy'bl/? (111.19)

for the incident and exit beams, respectively, where
b = [sin(8p - a))/[5in{p + al} (11.20)

is the asymmetry factor. The energy resolution and the extinction depth have io
be changed accordingly. Associated with the angular beam transformation is the
change in spatial cross section of the beam:

wh = Wo/b (fI.21)
so that WHWR = WWo (111.22)

which expresses Liouville’s theorem. The angular shift of the Bragg peak is given
for the symmetric Bragg case by

8¢ = WyFpr /(2C | iy leM) (111.23)

where Fgr is the real part of the structure factor in forward direction. For the
asymmelric case one obtains

&, =(1+1/b) &/2 (111.24)
drh={01+08:/2 (I1L.25)

for the incident and exit beams, respectively.
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Both the Darwin width and the shiit of the Bragg peak diverge for zero and
n/2 Bragg angles because the formulae given above correspond to approxi-
mations. Exact theories exist also for these exlreme cases and have been experi-
mentally verified. Table 2 gives some relevant quantities for two commonly used
materials, 5i and Ge, and for Be and diamond that have recently become of great
importance because of their low X-ray abserption and the very good thermal
properties of diamond (see section IIL.7).

Malerial dn roFhreM/ vy, Y € te ta
(hk1) (Al (10 Mem|  [prad] o8 um) (m]
Be (002) 1.7916 5.59 10.7 228 50 1200
Be (110) 1.1428 4.27 6.49 71 10.3 1874
cQa 2.0589 10.7 233 57.8 227 250

C Q20 1.2609 9.85 15.4 19.9 4.03 408

Si (111} 3.1355 1043 345 136 1.53 87
Si (220) 1.9201 1145 235 53.7 2.27 14.2
Ge (111) 3.2664 22.64 74.8 308 0.68 294
Ge (220) 2.0002 2698 57.2 137 093 4.79

Table 2.- Some crystal reflection data for Be, diamond, Si and Ce monochromalor crystals and an
X-ray wavelength of 1.54 A {E = 8.05 keV). For symbuls, sec text.

Si and Ge can be obtained as highly perfect crystals that define their lattice
spacing and orientation te within 108! This has been shown experimentally.
Diamond is less perfect but the deformaliens produced by growth defects can be as
small as 5 prad. On the other hand, Be is a so-called mosaic crystal where the
effect of defects is commonly described in terms of an angular distribution of
small perfect domains (mosaic blocks) inside the crystal that both give rise to a
broadening of the rocking curve. The best presently available Be crystals have a
mosaic spread of about 180 prad, their mosaic block size is about a pm. A general
problem with mosaic crystals is an often non-uniform mosaic distribution that
produces an uneven rocking curve. Therefore, they have to be characterized and
selected with care.

The use of two or more reflections from perfect crystals {Si is the most
common material), either inside a monolithic block (“channel-cut™} or with
independent crystals, provides a whole bunch of possibilities for beam condition-
ing, for example: .

-> elimination of higher harmonics by detuning two non- dispersive reflections,
-> high energy and angular resolution in the dispersive mode (see Fig. 1.3},

-> high energy and angular resclution by successive asymmetric reflections,

-> cutting the tails by multiple rellections inside a channel cut monolith,

-> high degree of linear polarization by multiple reflections.

For an energy of 8 keV the beam divergence is about 30 prad for undulator
sources and ten times higher for bending magnet and wiggler radiation. The best
compromise between intensily and energy resolution is often achieved if the
white beam divergence equals the rocking curve width of the crystal (see Eq.
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I11.16). Whereas perfect crystals fulfill this matching condition around 10 keV
using also asymmetric reflections, mosaic crystals like Be and annealed Si crystals
permit to gain in flux at higher energies if they are not to far from the sample
(Ireund, 1992). In addition, single crystals can produce or analyze circular
polarization. All these applications cannot be described in the framework of this
article. Useful information are given by Kohra et al. {1978), Materlik and
Kostroun (1978), Hart et al. {1984), Mills (1988), and Ishikawa et al. (1991).

Finally, curved crystals are suitable for focusing, both in meridional and in
sagittal direction. Whereas in the second case the energy resolution is not
affected, for focusing in the diffraction plane one obtains a specific energy-
direction correlation and focusing can be either menochromatic if the Rowland
condition is fulfilled (Johann and Johansson geometry) or dispersive if this is not
the case. The same formulae as for mirrors are valid (Egs. (111.9) and {111.10})
replacing simply @ by {8y * a). The rocking curves are broadened by the crystal
deformation and can be calculated from a modified dynamical theory
(Gronkowski and Malgrange, 1984). The lower limit of the focal spot size is set by
the extinction depth. Reciprocal and phase space diagrams are very useful to
show the angle-energy correlation (Suortti and Freund, 1989; Malsushila and
Kaminaga, 1980). Special crystal bending devices must be designed and
constructed that lake into account the very high precision of the deformation
required and anticlastic effects in elastically anisotropic materials.

I11.6. Multilayer monochromators

Layered synthetic microstructures are the youngest of all optical devices for
hard X-ray instrumentation. Originally, technologies for their fabrication were
developed for other purposes, mainly for thin film composite structures for
electronic devices. However, during the past two decades specific research and
development for VUV and X-ray optical applications increased very rapidly. A
convincing demonstration of present and potential applications to X-rays and
neulron scatlering and of the recent progress in fabrication processes was given in
a recent conference organized by SPIE in San Diego (SPIE proceedings Vols. 982,
983 and 984, 1988).

Bragg's law also holds for muitilayers and the lattice spacing dun has to be
replaced by the spacing d of a bilayer. For X-rays, layers of high and low Z should
alternate, but this is not the conly condition for oblaining good and stable
multilayer monochromators. There should be no interdiffusion between the
layers, the two materials must be chemically compatible and withstand the high
power of synchrotron X-ray beams. My aim here is not to go into detail and also
not to describe the advantages and disadvantages of the three major techniques
used for multilayer fabrication, which are evaporation, sputtering and molecular
beam epitaxy. For the present state-of-the-art, the Symposium Proceedings, Vol
103, of the Malerials Research Society can be consulled. The main problems
encountered are interface roughness and variations of layer thickness, which
both affect reflectivity and become very important when the d-spacing is
decreased which is necessary for monochromators for X-rays of higher energies.
At present, d-spacings of bilayers are in the order of 15 A, and 10 A or less are
envisaged.

e
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Fig 1114 shows an example of experimental reflection curves obtained at
fixed angle as a function of enengy (Bilderback et al., 1983). The multilayers
consisted of 260 bilayers of W and C spaced by 15 Alw=67A;1c =83 A)andof
30 bilayers of Mo and C spaced by 56 A (Mo = 26 A tc = 30 A). Although these
results are already several years old, they are still representative for the expected
hard X-ray efficiencies. These can be very close to the theoretical values for not
too many thick layers (Underwood et al., 1988) and by more than a factor two
smaller when a bigger number of thinner layers is required. The calculation of
the reflectivity and transmission of multilayers is very similar to Darwin's or
Ewald's treatments of diffraction by perfect crystals (Spiller, 1988).

The most attractive feature of multilayers is flexibility at their fabrication.
They can be grown on curved surfaces to produce focusing elements, their
thickness can be graded in-depth and/or laterally, and the constituting materials
can be varied over a wide range to achieve optimum performance for a given
application. Thus the range from a “"supermirror” where the angle of specular
reflection is increased by layer coatings of increasing thickness, until Bragg
reflectors with adjustable energy resolution is covered, and even higher-order
contamination can be avoided by a periodical change of the layer spacing. The
same focusing conditions as for mirrors apply. The reflection properties of curved
multilayers were recently described by Marshall (1986). Their performance was
experimentally demonsirated by Underwecod et al. (1988), where spherical
multilayers were arranged in Kirkpatrick-Baez geometry to build an X-ray
microprobe. A spatial resolution of ~1 um was achieved.
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Fig. I[L.4.- Typical reflectivity profile obtained with multilayers (Aficr Bitderback et al, 1983).

Recently, for very high spatial resolution below 1 um Bragg-Fresnel Optics
was proposed that works even for hard X-ray focusing. This technique is based on
a superposition of Bragg diflraction by a single crystal (Aristov et al., 1987; Bonse
et al., 1992) or a multilayer (Aristov et al, 1988) and dispersion by a Fresnel
struclure, either linear or planar, which is grooved into the surface of the Bragg
diffracting element. Thus a Bragg-Fresnel element is a multifunctional optical
device that permits us to monochromatize, disperse or focus X-ray beams. Its
main advaniage, however, is that the various possibilities of beam
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transformation arising from the specific properties of Fresnel structures now
become accessible also to the medium and higher energy X-ray range Because
specular reflection is replaced by Bragg diffraction, the glancing angles are much
bigger and efficiency is substantially increased.

111.7. Thermal problems

Probably the most severe problem that remains to be solved for the efficient
use of future high briiliance storage rings is the thermal load produced by very
intense photon beams. Already, at existing sources, in parlicular wigglers, there
are problems with cooling the first optical element(s) {beam shapers, crystals,
mirrors, windows). Total powers of several kW have to be remcved, but the
most important difficulty is to reduce the thermal gradients across the surface
illuminated by the X-ray beam. These gradients cause internal stresses that.
deteriorate optical surfaces and produce deformations degrading the spatial and
spectral resolution of optical devices. Several methods are used or envisaged to
solve the heat load problem : passive cooling by radiation and conduction, active
cooling by water or liquid nitrogen, filters based either on reflection or on
transmission {absorption), premonochromators (e.g. grazing incidence
multilayers) and special designs of monochromators. Their optimum application
depends on the type of experiment and on the energy range of interest, and also
on the source.

Suitable materials must have high radiation resistance, low thermal
expansion, a, high thermal conduclivity, «, low X-ray absorption, i, so that the
figure-of-merit can be defined as wau. Table 3 gives these properties [or three
important monochromator materials. It is seen that for all the thermal properties
are strongly improved at low temperatures. At room temperature the best
material is diamond but at 125 K the thermal expansion of 5i vanishes and the
thermal deformation was shown 1o be below 5 prad for & power density of 150
W/mm? (Freund, 1992a). The problem with diamond for very high resolution is
that a big size is not available and that there are some unevenly distributed
growth defects. As already mentioned Be crystals are mosaic crystals.

Material T Be T cTT Si T Ge T
Atomic number, Z 1 6 W
Atomic weight, A 9 12 28 73
Lattice constant, a {A) 2286 3567 5431  5.658
c(A) 3.583

Debye temperature, T at R.T., (K} 1188 1860 543 290
Lin. abs. coeff., i, at 8 keV (cm-1) 18 75 141 402
Conductivity, x, at RT. (Wem 1K-1) 193 23 15 0.64
Expansion, a, at RT. (10-5 K1) 77 1.18 24 56
Figure-of-merit, 100 x/ua  at 297 K 14 26.0 0.44 0.028

at77 K 1111 1200 20 0.66

Table 3.- Comparison of some properlics of germanium, silicon, diamond and beryllium.
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Cooled premonochromators have become the standard equipment in
multiple-crystal fixed-exit monochromators. The crystals are allached, either
from the side or from below, to cooled copper supports with good thermal contact
(indium foil, liquid melal layer). Another possibility is to drill holes in silicon or
to grind channels. The problem here is to make tight, reliable and solid
connections of the cooling system without deforming the crystals. Cooling by jets
appears to be very eflicient. Asymmetric reflection geometries (horizontal and/or
vertical) permit a decrease of the power density received by the monochromator
crystal. Significant engineering efforts are still needed to ensure all safety,
reliability, stability, precision and flexibility al the same time. For the present
state-of-the-art the interested reader is referred to Rev. Sci. Instr. 63, 1992 and SPIE
Proceedings N°® 1739/1740 (1992).
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