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1. Introduction

Starting from a suggestion of Szdke [1] and Barton [2], a new surface structure determination
approach, called either photoelectron or Auger electron holography depending on the
process under consideration, to get three-dimensional images of the close vicinity of a given
near-surface atom emitter, has recently been developed. The idea goes back to Gabor’s
discovery of holography [3]. He realized that, by recording on a photographic plate the
interference pattern (hologram) of a known reference wave with an unknown object wave
and then illuminating with an appropriate decoding wave the so obtained hologram one
can obtain the image of the object.

In the case of a photoelectron or of an Auger electron, the reference wave is assumed
to be the direct wave emitted by the excited atom a. The object wave is then the superposition
of the waves emitted coherently by the atoms surrounding a as a consequence of the process
of single double ... multiple scattering experienced by the emitted electron. By taking the
detector to be a spherical photographic film, the decoding wave referred to above is then
chosen to be the spherical wave, converging on the film, obtained from the asymptotic
reference wave via the operation of time reversal [1, 2]. This wave is transmitted through

1) POB 586, Strada Costiera 11, 1-34100 Trieste, ftaly.
%) Supported in part by the Istituto Nazionale Fisica Nucleare.



600 L. FonDa

the film and in this process it collects the information contained in the hologram. The
images of the atoms of the object are then obtained by means of computer reconstruction
using a mathematical method similar to the one employed in optical holography.

In this way, one therefore realizes the inverse process of recovering the structure of the
object from the knowledge of the hologram.

The advantage of this holographic method lies in the knowledge of the reference wave,
a point which is not shared by structure determination approaches using an external beam
of particles, such as e.g. X-ray and neutron diffractions, where the reference wave is lost
and the experimentalist is therefore faced with the so-called “phase problem™.

In Section 2, the theory of electron emission holography is expounded in full detail. In
Sections 3 and 4, the weak points of the theory, such as the appearance of twin images, of
“ghost atoms”, and of some other artificial byproducts of the method, are discussed and
ways to eliminate them are reviewed.

Applications of this holographic technique have appeared in the literature. For a complete
list of references, the reader is referred to the review papers by Chambers {4] and Fadley [5].

2. Photoelectron and Auger Electron Holography

Let us first consider the way the hologram is obtained. We place a spherical photographic
film around our object. The centre of the sphere is at the origin 0 of the reference frame
placed at the centre of the atom emitter a. The radius of the sphere is R. Each point of the
film is characterized by the polar angles defining the vector R.

The interference pattern is encoded on this photographic film. It is obtained by evaluating
the component of the emitted electron vector probability current density in the direction
perpendicular to the sphere surface (for simplicity, we neglect the refraction of the electron
wave at the surface of the sample subject to measurement),

I(R) = ji(R)- R/R. (2.1)
If the detector is in the far field (R large with respect to the dimensions of the object), this

probability is just proportional to the modulus square of the emitted electron wave function
w(R) evaluated at the position R,

I(R) o2 hp(R)? . (2.2)

On the sphere surface the wave function w(R) can be expressed in terms of the scattering

rnatrix
. m(2m)t= et R

‘R mncz—*’—-——T_i. 23

Y{R)g, z B R r {(2.3)
I;_; Is the T-matrix for the process evaluated on the energy shell. In the standard
single-particle approach, it is given by

Tioi = k)AL, . (2.4)
where the PhotoElectron state vector |4P") and the Auger |AZP5") are defined by (see [6],
Sections 2 and 6)

|48 = OLHIL) fw (2.5a)

|,32

{ra | A?lufcr> = J.d3rl war) —— ;1 () Wia(ra) — wialry) i (ra)] . (2.5b)

2 = ryl
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In the case of photoemission, the initial state vector is the product of the incoming free
photon state vector |1;) (the subscript i symbolizes the initial photon momentum and the
polarization) times the vector |p.> which represents the initial single-electron normalized
bound state relative to the core level ¢. The final state is given by the product of the
normalized photon vacuum |0) times the single-electron scattering state lpf~(k)), satisfying
an incoming wave boundary condition, describing the emitted electron, with asymptotic
momentum hk = AkR/R, in interaction with the ionized atom emitter a and with its
neighbours in the condensed material. For simplicity, in this paper we shall forget about
the spin of the emitted electron. To the first order in the radiation field, the interaction
Hamiltonian is given by: H, = —(efmc} A - p, where m and p are the electron mass and
momentum operator, respectively, and A(r) is the quantized photon field in the Coulomb
gauge V- A(r) = 0.

In the case of Auger emission, the process is one in which an electron of the ionized
atom a makes 2 transition from the core level 1 (core level 2} to the empty core level ¢,
while an electron from the core leve! 2 (core level 1) is ejected from the atom a. This emitted
Auger electron, represented in (2.4) by the usual scattering state |p{™’(k)), propagates then
in the material and suffers multiple scatterings from the atoms surrounding the doubly
ionized atom a until, after having finally assumed the momentum hk, it reaches the detector.

The expression of the T-matrix in terms of all multiple scatterings is known from the
literature. We write here (3.37) of [6] (L is a combined orbital angular momentum index
L=1m,

o= Tbup, (2.6a)

L

T =2 )7 =0 Y (k)

L

x {aw+ T Y [, e R + gy (R,,)] ri*:L,,gL,L(R,,a)}. (2.6b)

p=a LplLg
q=a
Apart from the consideration of inelasticities and thermal vibrations, to be introduced with
proper attenuation factors [5]. (2.6) is, within the single-particle framework, the correct
T -matrix.

The matrix t§?, is the representative in angular momentum space of the scattering path
operator {7}. The integral equation defining this operator is given by (3.38) of [6],

TiﬁLp = [fzpaqpélaq[;p + Z LZ I?q[quLm(qu}] TT;:LF ’ {27)
m=q m
R,, = R, — R, is the bond vector pointing from atom p to atom g, tf = —e' sin 6f is the

[-th wave T-matrix for scattering of the electron from the atom p, the form factor .1, 1s
given by

{+) k. .
Wy = de;\—() YA0) (1 ALY, 23)
.

where 1p!,F(k, r) is the physical radial scattering wave function, satisfying an outgoing wave

boundary condition, belonging to the angular momentum /, for the emitted electron in the
field of the potential U, of the atom emitter a.
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The g-propagator (structure factor) is given by
Brpr (Rog) = —i ) 4mi* s =(Y Y, 1Y, > YL (R, hi kR, (2.9)
L
Using (2.3), (2.6), and (2.7), we can easily split the wave function, at the sphere surface, into
reference and object terms,

m(zn)lﬁ eikR

Y(R) = Yo (R) + Yoy (R) = ~ el );, [T5 + T A%, (2.10a)
T = 2r) 7 (=) Y k), (2.10b)
yibj — (27[)*3//2 Z z (__1-):., YL,,(k) eiijaG ffrr_':’,r.,(l _ 5;?3) gLPL(Rpa) ] (2'10(:}

pg LpLg

Note that the object wave contains also all waves which, after having undergone multiple
scattering, have atom a as the last scatterer {term g = a of (2.10¢)). These particular multiple-
scattering contributions are unknown and therefore, even though consisting of waves
eventually outgoing from the atom emitter, cannot be included in the reference wave. Thev
are at least of second order with respect to the latter wave.

To decode the information contained in the interference pattern appearing on the spherical
film, we imagine to illuminate the film with a converging spherical wave

e—ikr

Yaecodingl?) = ; r>R (2.10)
;

obtained, apart from a constant, from the asymptotic expression of the reference wave via
the operation of time reversal. This converging wave is transmitted through the film. We
suppose that the interference pattern /(R) is imprinted on a positive photographic film
which, by proper development, has the contrast value y = 2 {8]. As a consequence. the
transmittance is linearly related to the intensity [ (R} measured on the film and the transnitied
wave wr on the internal side of the surface of the sphere is therefore given by:

e—ikR
wr(R) = (1 + CI(R)) (2.12)
The transmitted wave satisfies the Helmholtz wave equation
(4 + k) prlr) = —4rC,8%(r) ; r<R {2.13)

subject to the (Dirichelet) boundary condition (2.12) on the surface of the sphere. yr(r) is
singular in the origin r = 0 (position of the atom emitter a). This can be understood from
the fact that, if there is no hologram (I = 0), w; must coincide with the decoding wave
(2.11) which satisfies (2.13) with C, = 1.

In order to find y; in a given point P, (of coordinate vector i) inside the sphere. we
consider the Green’s function K(r | r,) satisfying the Helmholtz equation,

(4 + kD K(r|rg) = —4n8(r — ry) (2.14)

with boundary condition to be specified in a moment.
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We multiply (2.13) by K(r| ro) and (2.14) by pr(r) and subtract member by member one

equation from the other. We integrate the so obtained expression on the whole volume of
the sphere. Using then the Green'’s theorem, we get

1
wrlrg) — CoK(0|ro} = 27; J. [K{r|ro) dipr(r) — wo(r) AK(r| ro)jdv

_ 1 j[%(,.)M_K(ruo)aw*(”] s, (15)

4 On on
where 8n is the normal to the surface directed into the interior of the sphere.
A natural choice for the Green's function would be [2,9): K(r | rg) = (exp ik lir — rol)/lr — rol-

In that case, however, from (2.15) we see that knowledge of wy and Cy»/Cn on the
whole surface should be required to solve our problem. Apart from the fact that on the
boundary we know only the values of w; (from (2.12)), this might lead to the following
mathematical contradiction: In practice the hologram can cover at most the 2r-hemisphere
hanging over the sample subject to measurement; if symmetry arguments are not available
in order to obtain mathematically the hologram on the “opaque” sides of the measuring
apparatus, one usually assumes the vanishing of the surface integral (2.15) just on those
opaque parts of the surface, which implies yr = Syy/On = O there; but this implies. by a
well-known theorem, that y; vanishes identically in the whole space.
I shall require that the Green’s function vanishes on the boundary surface.

K{R|ry) =0 (2.16)
so that (2.15) can be rewritten as
OK(r | ro)

ds. i2.17)
&n

r=R

I
prirg) = CoKOlrg) + — Jwr(R)
47

S

We see that only the knowledge of yr on the boundary is now required.

The integral on the right-hand side of (2.17) may extend now only on the portion § of the
surface on which the hologram is actually measured. On the “opaque™ parts of the surface
we can safely place yr = 0 without meeting contradictions of any sort.

We must now solve the Dirichlet boundary value problem posed by (2.14) and (2.16).
The solution in the whole space can be found only by means of computer calculations. In
fact, for the Helmholtz equation (2.14) an analytic solution satisfying (2.16) cannot be
written down. Fortunately, however, we need only to know &K/dn on the surface of the
sphere. In order to find it there explicitly, I shall make a variation of the well-known method
of images. This method has been invented for the case of a flat boundary [10]. Let us see
which changes are needed for our curved boundary.

Suppose I want to find the value of 3K /0n in a given point P, < §. I draw, through the
point P, the plane T tangent to the surface S. I perform then the space reflection with
respect to T and find the image of P, (see Fig. 1). Call this new point P§, whose position
vector is r%. Consider now the auxiliary Green’s function:

- e“\"'l eikr;-_
Kir|ry) = - (2.18}
r s :
where r; = r — ryand r, = r — % In the interior of the sphere, K satisfies the Helmholtz
equation (2.14) and it vanishes on the plane T (where#, = r,),in particularin the point P,
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0

Fig. 1. Definition of points and vectors relative to the construction of the derivative of the Green's
function with respect to the normal to the boundary surface

By construction, in any infinitesimal spherical neighbourhood of P,, the Green's functions
K and K differ by infinitesimal quantities and the same holds for their derivatives. We
obtain then

oK (r|ry)

on P =P,

1 ikry a 1 ikrz a
= [(ik - _)L L (ik _ _)e Q} . (2.19)
ry/ 1, On ry/ ry On_lpop,

The evaluation of the derivatives or,/0n and Or,/Cn in the point P, is straightforward under
the consideration that r, is a typical vector spanning the object. Since holography is a
short-range order probe (ro < 1.5 to 2.0 nm) we have that ry; € R and +§ = 2R. Indicating
by R the position vector of P,, we get

oK (r | ro)

p=p, an

@l 5—6|R_r°|=_R_(r°.R/R) = —1, (2.20a)
On P=P, dR |R - ,.Ol ro<R

- ek Y P,
9;_2 - _ O|R — rt _ R — (r} - R/R) - a1 (2.20b)
on |p=p, oR |[R — r§l  +4=2R
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We therefore obtain

1 cfkrl
_ -—z(ik _ _)
P=p, SV

where we have dropped a term of the order (kR)™! since kR » 1 (kR is 10® to 10% in
our case).

Using again the smallness of rq, on the right-hand side of (2.21) for |[R — ro} we can
substitute R in the denominator and R — (R - ro/R) in the exponent. We finally get

etk IR =ro|

= 2k . ro <R, (221

pop ERL IR — gl

0K (r|ro)
on

K(R kR .
OKRIrd _ )y -k, . <R, (
on R

1
I
I

=

where k = kR/R. Using (2.12) and (2.22), and writing dS = R’ dQ,, (2.17) finally reads

prlrg) = Ag + A, j dQ, I(k)e_ik'ma (2.23)
s

where Ag = CoK (0| ry) — (ik/2n) j dQ,e"®r A = —ikC/2n, and I(k) = [(R). A, con-
hY

stitutes an uninteresting background; as a function of ry it may peak only at the position
ro = 0 of the atom emitter a. Therefore we shall drop it in what follows.

Since all quantities on the right-hand side of (2.23) are known, the wave function y'¢(ry)
is therefore determined. In the literature, (2.23) is referred to as the Helmholiz-Kirchhoff
integral.

Now, also for y; we define reference and object terms,

VT = YTret T Probj - (2.24)
Using (2.2), (2.10a), and (2.23) we get

Preeclro) = A [ dQu I (R)P ™7, (2.23a)
5

Pronilre) = 4 [ AQupE;(R) Wrer(R) + woui(R) whe(R) + |wopi(R)FTe ™™ 7
S

(2.23b)
The function appearing in the integral (2.25b}:
1K) = R = e (R = 2 (R) W, (R) + 90 (R) wiie(R)
+ Wi (R) wop;(R) (2.26)

is termed anisotropy in the literature. It must be obtained experimentally via subtraction
of the reference wave flux. The reference flux is calculated theoretically. One must evaluate
carefully the matrix elements 4, given by (2.8). In the case of photoemission, the dipole
excitation of an initial /-wave subshell leads to the interfering { + | and ! — 1 final orbital
angular momentum channels. The case of Auger emission is much more complex: in practical
calculations it is often assumed that the initial state has an s-wave character [4, 5. 11].

39 physica (b} 1882
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Equation (2.25b) is the relevant integral to be evaluated in order to get the image
of our object. It transforms the two-dimensional hologram into a three-dimensional
image. The first two terms of the integral on the right-hand side of (2.25b) contain the
usual hologram of optical holography, while the third term represents the self-interference
or self-hologram.

From (2.10), the reference and object waves can be written as

¥,r(R) = ; Y (k) AL, (2.27a)
Woo(R) = 2, 2 Yy (k)™ ®e BT . (2.27b)
9 Ly

Using (2.25b) and (2.27), from a stationary-phase argument [2] we expect that y,p;(rg) will
yield peaks at

ro = +R.,, (2.28a)
ro =R, — R,. (2.28b)

This is certainly correct for s-waves (as in the optical case, where s-wave scattering
dominates), or in the case of s-wave emission combined with moderately angle dependent
scatterings from the neighbours. The latter condition is better realized at low energies
since electron scattering presents a high angular anisotropy and relevant phase shifts
as the energy increases. As a consequence, artifacts, such as shifts of the position of
the atoms and image asymmetry or broadening, appear in the Heimholtz-Kirchhoff
integral (2.25b). In Section 4 we shall discuss possible ways to cure these unpleasant
features.

In (2.28a), the minus sign is related to the peaks present in the first term of the
Helmholtz-Kirchhoff integral (2.25b) and it corresponds to the real images of the atoms of
the object; the plus sign corresponds to their twin images. For g = a one gets the image
(twin = real) of the atom emitter. The presence of both real and twin images is a problem
shared with optical holography.

The uncertainty principle of course limits the ultimate resolution with which the positions
of the atoms can be determined by this method [20, 4. 5]: Ar = 1/(kpa, — ki) where the
projections of A{k ., — kn;,) On the coordinate axes are the uncertainties on the measured
electron momenta.

If one centres the relevant part of the hologram along the z-axis and calls 8 the half
opening angle of the corresponding cone, the Heisenberg principle yields Ax = Ay
= n/(ksin ) = 7./(2sin 0) and Az = 2n/{k(1 — cos )] = 4./(1 — cos §) showing that the
resolution of the images of the atoms should improve for wider ¢ (with upper limit n/2)
and using higher energy electrons.”)

Equation (2.28b) corresponds to the third term of (2.25b) and yields peaks at the +
interdistances of all pairs of atoms, as an expression of the sell-hologram; for ¢ = p one
gets peaks at ro = 0, i.e. at the position of the atom emitter a, which after all 1s not too
bad, but, more importantly, for g & p peaks appear at positions where there are no atoms.
These ghost images, which actually appear to be 10 to 20% in size of the real and twin

%) For 0 = 607, at the electron energy ol 100 ¢V cne gets Ax = Ay = 0.071 om, Az = 0.25 nm. At
1000 eV: Ax = Ay = 0.022 nm, Az = 0.076 nm.
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images [12], would not be there if the holographic requirement [, > |wop;l were satisfied,
as it happens in the simpler optical case. In the photoelectron or Auger electron holography
this is not so since the electron—-atom interaction is in general stronger, particularly for
scattering in forward directions along a chain of atoms at high energies.

We shall see in Section 3 how one can eliminate the twin images and the noise due to
the self-hologram in the case of photoelectrons.

We end this section by pointing out that the holographic method has the potential of
getting information on near-surface atoms beyond nearest neighbours [4, 5}, something
which is not obtainable by the photoelectron or Auger electron diffraction approaches.

Methods of the type discussed in this section can also be applied to core level
X-ray fluorescence [1, 13], to DLEED (diffuse low-energy electron diffraction) {14], and
to Kikuchi patterns {15]. Spin-polarized photoelectron holography has been treated in
(16, 17].

3. Elimination of Twin Images and Self-Hologram Effects
in Photoelectron Holography

We shall treat in this section a method devised to cope with unphysical artifacts such as
twin images and self-hologram effects in photoelectron holography.

The method suggested by Barton, Tong, and coworkers [18 to 23] introduces a Fourier
transform operation in energy on yr;(ro). In order to see this in detail. let us first apply
the plane wave approximation (PWA) to our formulas. This approximation is able to render
explicit the energy dependence of the propagators. It consists in fact in replacing. in the
g-propagator, the Hankel function h{ *'(kR) with its expression for large kR: (—i)'** ¢*#/kR.

For the g-propagator one then obtains

o eikRap
(gLPLq(qu))PWA = — T PP qYLp(qu) T YLq(qu) . (3.1)

pq

We finally get the PWA expression of the object part of the wave function

1 m_ etR . ikeR: PWA ettfos YRV
{Wong(R)Jowa = — ——5 — 2 ohip 2, e*Roa FRVA (keoi k) (—i) Y (R,,),
2nh R L p¥a pa
4q
(3.2)
where the multiple scattering amplitude F{ ¥ (k,; k,,) is defined by (see [6], Section 4),
FPWA M N 4?I dp—1 qp *
qp (qu' Apa) = - Z re qYLq(kxq) (TLqL,,)PWA YLp(kpa) . (33)

Lplq

In terms of the scattering factor (scattering amplitude} f, it satisfies the following
multiple-scattering matrix equation:

etk Ram

FE;VA U‘\Q’ kpﬁ) = 5‘I.pr(k-l‘p; kpu) + Z .f:;("‘:uq’ kqm) X (1 - 5qm) FPWIA(kqm: k

mnp pa)

nr am

(3.4)

39+
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with its perturbation expansion®)

ikRqp
FEWA K qs K pa) = Oopfpllns Kpa) + folkogs kg (1 — 8,,) folkyps )
ap
eu‘ﬂqm ikRmp
+ Z j;(k;q; kqm) (1 - 64‘"1) fm(kqm; kmp) — (1 - 5mp)
m qu Rmp
xfp(kmp;kpa) + ..., (3.5)

Let us now discuss the general structure, as far as the energy dependence of the propagators
is concerned, of the terms appearing under the sign of integration of the Helmholtz-Kirchhoff
integral (2.25b). For the first term, using (3.2) and (3.5), we can write

J dQ, e_ik'ro{w:bj(R) Weer (R)}pwa

b

. . g~ kRaa
_ J‘dgk e ikra {Z M;: e~ ik Rag R_ (1 — 5“)

S q ga
~ kR — kR pa
P S Yot SIS R S SO ¢ G )
qp qp .R pa
q.p qp pa
—ikRqp iR pon — ik Rymea
T S VST Y R 3 LA G ) Q) T }
qpin R qp. pm ma L
g.p.m qp pm Mma

(3.6)

As suggested in [18 to 23], we now take the following energy Fourier transform on the
Helmholtz-Kirchhoff integral (2.25b):

g ‘P‘Tobj{ro) = E‘; {WTobj("o)}PWA e wik) dk , (3.7)

w(k) is a proper weight function which can limit the integration interval. It could be a sum
of Dirac ¢-functions.

After application of the Fourier transform (3.7) to (3.6), we discover that, apart from
particular cases which we shall discuss in a while, we are able to get the suppression of all
but the first term on the right-hand side (which represents the single-scattering contributions
from the neighbours of the atom a (note that g + a)): For this term in fact, the peaks which
appear at the real positions of the atoms r, = R,, = R, — R, after integrating over angles,
get reinforced after the energy Fourier transform (3.7) is performed, as can be understoad
from the stationary phase argument applied to the phase factor exp [ik(ro — R,,)]. On the

4) Sk k) = [i(0,,,) 1s the scattering factor describing the electron as being shot from the atom
p, scattering from the atom g, and emerging in the direction x (f,,, 1s the corresponding polar angle
of scattering). For the differential cross section one has: do/dQ = (f(8)2. The scattering factor is
connected with the partial wave T-matrix as follows: f{f) = — (4n/k) SY¥E (k) 7Y (k). (Note that

L

formulae like (3.5) must be read from right to left in order to follow the correct time arrow of the process.)



A

181

Theoretical Aspects of Electron Emission Holography 609

contrary, the other, multiple-scattering, terms of (3.6) are in general suppressed, since the
peak resulting from the energy integration does not coincide with that obtained from the
angular integration.

As mentioned above, there are, however, particular cases where multiple scatterings
contribute.

Consider for example the second term of (3.6). The angular integral peaks again at
ro = R, = R, — R,. When its Fourier transform (3.7) is taken, the energy phase factor
exp [ik(ro — Ry, — R,.)] will give a contribution if the atom p is aligned with g and atom a so
that R,, + R,, = R,, (i.e. p lies in between a and g), since in this way the peaks resulting
from angular and energy integrations coincide. The contribution of this a pq chain will then
add up to the g-term of the first term of (3.6). Similar considerations hold for the other .
terms of (3.6) which contribute if chains a jk ... pg of aligned atoms are realized so
that R, + ... + Ry; + Rj, = R,

However, the contribution of these multiple scatterings is not harmful since it enhances
the single-scattering term corresponding to the end atom of the chain.

Another possibility, which we have already mentioned in Section 2, is the case g = a
which yields a peak at the position #, = 0. It represents the image (true = twin) of the atom
emitter, and it appears at least as a second-order effect.

Let us now consider the second term of the Helmholtz-Kirchhoff integral (2.25b),

J dQ, g~k {‘Pobj(R) w:::f(R)}PWA

S

ikRaq
= Jdgke—fk-ro {Z Mq c.‘kv.qu e— (1 — 5qn)
S q Rq:\
) eiqup ikRpa
+ Z qu e:k'an —(1 —_ 5qp) _— (l - 0.‘,;) + } . (38)
q.p qu RPﬂ

The angular integration yields the twin images of the atoms of the object, at the positions
ro = —R,, = R, — R,, space reflected of the positions of the true images. However, the
Fourier transform (3.7) of expression (3.8) suppresses all the terms since the energy phase
factors exp (ik(ro + Rg,)) (g + a) or exp (ik{ro + R, + ... + R};)) are always highly
oscillating whichever the positions of the atoms. At most, a little contribution to the
“background” bump at the position ry = 0 of the emitter is obtained.

The purpose of eliminating the twin images has therefore been achieved.

We come now to the discussion of the third (self-hologram) term of (2.25b). Its energy
Fourier transform is

+
J dk w(k) e're J dQ, g ~Hro {Ilpobj(R)!Z}PWA
0 5
+x
) ) ) eik(RP.—an)
= | dkw(k)etro Jde““""’ {Z Hye*®r=Ral (] -3,)( — 6,
o S P.g Rp:qun
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Fig. 2. After Fourier transform on the energy, in the self-hologram there still appear false atom (ghost)
images along forward scattering chains of at least three atoms

ik (an - an = Rna)

+ 3 [Hm. g (Rup = Rug)

n,p.g

1 — 8. )(1 — 8, (1 —8,) + cc.
R.R.R., ( pa) { ant ( )+CC]

ik{Rpnt+ Raa— qu = Rpma)

m,nA, p.gq anRnanmRma

x {1l — 8, (1 — 6, (1 — 3, (1 — Oma) + } (3.9}

Let us first consider the first, single-scattering, term on the right-hand side of (3.9). From
the stationary phase argument, the integration over angles would peak at rq = R,, — R,
while the integration over energies would peak at ro = R, — R, > 0. Only 1f these
two maxima coincide we get a sizeable contribution to the integral, and this means
R,, — R, =R, — R, >0 which is satisfied only if the vectors R, and R, are
parallel: the atoms p and g are aligned with atom a (and the atom p lies in between a
and g). Therefore, as shown in Fig. 2, we obtain a ghost image at the point x defined by
r,=R,—R,=R,— R,on the chain apq. If g = p we of course get a contribution to
the background at ry = 0.

Much the same can be said about the other, multiple-scattering, terms of (3.9). They all
give contributions for forward scattering along chains of atoms and an enhancement of the
background at ry = 0.

We see therefore that, by making a Fourier transform on the energy of the Helm-
holtz-Kirchhofl integral (2.25b), one is able to suppress the twin images and most
of the self-hologram. As far as the latter is concerned, the only contribution left is the
appearance of ghost images (i.e. false atoms) along forward scattering chains of at least
three atoms.

A very good point of this procedure is that, having practically cancelled the multiple-
scattering contributions, one is left only with the consideration of single scatterings (first
term on the right-hand side of (3.6)).

4, Treatment of Angular Anisotropies

The angular anisotropies, arising both from the directly emitted (reference) wave and from
the scattered (object) waves, lead to aberrations which include shifts of the atom positions
and image distortions. As far as the scattered waves are concerned, while at low energy the
atomic scattering factor is rather isotropic, as the energy increases it becomes increasingly
anisotropic being very large in the forward direction.

In the literature, ways have been conceived to cope with this problem [19, 21, 24
to 28]. In these approaches the beauty of the holographic approach s a bit lost, as we
shall see.
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As a result of the considerations of Section 3, for the case of photoemission the image
wave field is given by

+ o

Provs(ro) = 4 [ dk w(k) e [ dey, x(k)ye
5

[=]

i

+®
A | dkwk)e™e | dQ, ph;(R) i (Rye™™ ™ (4.1)
Q 5

and we can stick to single scatterings only.
The case of Auger emission will be treated here on the same basis, being understood that
in the integral (4.1) one has w(k) = 8(k — k), where hk¢ is the final momentum of the
emitted Auger electron.
The single-scattering (SS) part of the wave function (2.10) reads

YB(R) = pelR) + wih(R)

.-..CikR
ak-a PHCL R ACRAESD VI (L P
L p¥a L
where 4 = —m/(2rh?) and the object scattered-wave function O, and its plane wave

approximation, is given by

kR pa
OLk; R,,) = LZ (—i)l"YL,,(k) 17 81,1 (Rpa) :w”A JpB¢pa) R (=)' Y (R,), (43)

pa

where 6, is the angle of scattering from the atom p defined by cos 0,, = k- R,./kR,,.
The presence of scattering phase shifts in (4.2) (see also (4.4) and (4.5) below) is responsible
for the shift in the positions of the images of the atoms.
In the case of dipole photoemission from an s-subshell, (4.2) is very simply given in the
PWA,

5SS i - e“‘ £ k E " R c‘-[“lpn“ —cosO¢pa) + @p(0rpall

dipole pa
Yo subshe R ipo A B —<{— + E ) ’
{ bh “( )}PWA l 1( ) R K p*a R R |fp(6fp )l

(4.4)

pa pa

where A = em(hw)?/(2(2n) h2k} is slowly energy dependent, £ and hw are the polarization

x

unit vector and the energy of the incoming photon, and .# ., (k} = [ rdrp{iL (k1) R, o).
o)

We have written explicitly the amplitude |f,| and the phase ¢, of the scattering factor Lo
In the case of Auger emission of an electron with final L = I, m angular momentum, in
the PWA (4.2) reads

(WD (R BT
. kR ef[kRpa(l —Cosarpa)+(0p(0fpa)]
=B, — Y.+ X | /o (O pa)l Y;_(Rpa)} ) (4.5)
R p+a R,pa

where B, = A(—i)f 1740,
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From the structure of (4.2) we see that, if we divide the experimental photoemission
anisotropy function x(k) by the angular part of the reference wave,

x(K)
Drcf(k) ,

Deoilk) = g (=" Y. (k) Moy, (4.6b)

1(R) = j(k) =

(4.6a)

we eliminate altogether the distortions caused by this angular asymmetry. Note that for a
dipole photoemission from an s-core level, {4.6) is tantamount to dividing by ¢ - k/k, while
for Auger s-wave emission the denominator D (k) is of course a constant. The operation
(4.6) can be considered as a redefinition of the boundary condition (2.12).

We need now to discuss how to cope with the anisotropies present in the object waves
of the integrand of (4.1). :

4.1 The SWEEP method

A first possible procedure is that proposed by Tong and collaborators [19, 21, 24]. To be
consistent with our procedures, we shall rephrase it a bit.

We [irst evaluate (4.1) using the experimental 7{k) corrected as in (4.6) for the angular
anisotropy of the reference wave. We then fix our attention on a particular bump p appearing
at the distance R from the atom a and representing a neighbour of a. Pre-existing knowledge
about the system in question, will avoid the risk that a self-hologram false atom of the type
discussed at the end of Section 3 is taken for a good atom. We now perform the following
operation on 7(k):

(k)
Dtk R0

Doh](k; R;a} = C_“\'R‘Pﬂ R;Ja Z Oi‘(k; R;a) ./t/;L P\:\:":A f..D(pra) Z (_i)l YL(R-'pa) ‘/1/":1“
L L

(4.7b)

7K) = ysweep(k) = (4.7a}

and carry out the integration (4.1). In the original papers, Tong et al. actually integrate
only over the forward, or backward, peak on a small angular window of half angle ~30°
centred along R, . Their formalism is then known as the SWEEP method {for small-window
energy extension process).

In (4.7), the outgoing scattered-wave function OL(k; R,), and the scattering factor Jo(6;).
are theoretical expressions evaluated for an atom p of a given chemical species. This second
step should have yielded an improved position R, The procedure is repeated by dividing
7{k) as shown in (4.7), where now R, is replaced by R} . By iteration one should converge
to a final value R,, for the position vector of the atom p. One must repeat the same
procedure also for the other bumps in order to complete the determination of the structure
around the atom a.

4.2 The SWIFT method

A second procedure, proposed by Saldin and coworkers [25 to 28], is an original variation
of the above approach. For coherence with the rest of our text, we discuss it within the
framework of (4.1), i.e. by including also the energy Fourier transform.



Theoretical Aspects of Electron Emission Holography 613
After having corrected the experimental (k) as in (4.6) for the angular anisotropy of the
reference wave, let us perform the following operation on j(k} [25 to 28]
1(k)
chj(k; Fo) ’
Dojlk; re) = e"Hory Y OLkiro) ML Pi\ S (Broa) ; (—' Yo (ro) Aop (4.8b)
L

T(k) = xswirr(k) = {(4.8a)

and then carry out the integration (4.1). .

Here the angle 8, is defined by: cos 8¢5, = k - ro/kry and the outgoing scattering-wave
function O%(k; ro) (or the scattering factor f(ro,)) is now a generalized scattering amplitude
evaluated at the position of the image point ry as if a hypotetical atom would be sitting
there. Since the transformation involves the scattering amplitude, the authors have named
it SWIFT, for scattered-wave-included Fourier transform. )

According to the calculations performed in {25 to 28], with this method an improvement
of the atom positions and image distortions is actually realized at the stationary-phase
points , = R,,. As in the case of the SWEEP method, due care has to be applied to spot
the existence of possible ghosts.

A good point of this procedure is that the entire interference pattern is inverted in only
one step. No prior knowledge of the forward scattering directions locating the atoms is
required. This method spoils, however, the simple structure of Fourier transform over the
angles possessed by the Helmholtz-Kirchhoff algorithm (2.25b) (and also by (4.1)). as
naturally obtained from the holographic approach.

Also operations (4.7) and (4.8), even within their artificiality, could be thought of as being
redefinitions of the boundary condition {2.12).

5. Conclusions

In this article we have reviewed the theory of electron emission holography. Its formulation
has been provided in Section 2 on a sound mathematical basis.

We have seen that, as in the optical case, one is faced with the presence of twin images.
Bestides, however, other artifacts appear in electron emission holography due to the fact
that, at variance with the optical case, here the object wave is not small with respect to the
reference wave and the scattering is in general not dominated by s-waves.

Sections 3 and 4 have been devoted to-the discussion of these artifacts and to a review
of the various correction procedures proposed in the literature for their elimination. In
doing so, we have also seen that the proposal by Barton, Tong, and collaborators of
performing an energy Fourier transform of the holography integral (2.23) is able to eliminate
most of the multiple-scattering contributions to the hologram.

Apart from the complications mentioned above, the holographic method has the merit
of being rather direct. One has to remember that in electron emission diffraction methods
the structure information is obtained only after a lengthy trial-and-error procedure of
comparing experimental spectra with those obtained by means of extensive multiple-
scattering calculations. Holography requires, however, an increased amount of experimental
data, and therefore of data acquisition times, with respect to the diffraction methods. But
this is at hand now at the new high brightness synchrotron radiation sources.

We have seen in Sectton 2 that, with the use of the simple Helmholtz-Kirchoff holography
integral (2.23), atoms can be located with an accuracy of a few hundredth nm at best. Taking
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also into account the fact that, by performing an energy Fourier transform, one can improve
this spatial resolution, we feel that, before the investigator involves himself with the more
sophisticated trial-and-error method mentioned above, electron emission holography
provides him with a quick tool to get within shooting range of a more accurate determination
of the positions of atoms at or near a surface.
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FIG. 4. A view in the plane perpendicular to the surface of
the holographic reconstruction of the data from Fig. 1. The
crosses mark positions of atoms in the ideal lattice. The -
elongated shape of the atom image is due to a reduction in
resolution paraliel to the clectron emission directiom.
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Fig. 10. Elimination of twin images as a result of the
application of energy FT holography. Panel A shows a
symmetry-averaged \(k) at & = 9.8 A~! (366 eV). Twin
images appear for : < 0. Panel B shows the result of
phase-summing on eight values of k in the interval 8.8-
10.2 A=, Panel C shows the same pattern without sym-
metry averazing. Panel D represents a model showing
the atoms in the positions as expected. (From Ref. 89.)
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