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POWDER DIFFRACTION I*

During World War [ scientists in two different parts of the world indipendently discovered
that there existed a characteristic x-ray diffraction effect from a fine -grained crystalline aggregate.
This discovery was made by DEBYE and SCHERRER in Gerimany and almost simultaneously by
HULL in the United States.

Although much information is lost or degraded by using an aggregate in place of a single
crystal, this method of investigating crystaﬂs has proved to be exceedingly useful in those cases
where single crystals are not available, are difficult to obtain or one wishes to examine a crystaliine
material which is not in the form of discrete single crystal, for example, a metal.

There are many applications of the powder method, but two of these are of primary
importance. Fundamentally, the powder method provides a way of investigating, within limits, the
crystallography of the crystal in the powder. Secondanly, since the powder diffraction diagram
producéd by a crystalline substance is a characteristic of that substance, the powder method can be

used as a means of identification of crystals.

Each crystal may be envisaged as a reciprocal lattice. Since an ideal polycrystalline material
or powder is an ensemble of a very large number of randomly oriented crystallites the reciprocal
lattices associated with them are randomly oriented also. The origins of all these lattices, however,
lie at the point where the direct beam leaves the sphere of reflection.

Consider the reciprocal-iattice point A4/ at the end of
/ the vector oy in Fig 1. If there is an infinite number
of crystals in the powder, there must be an infinite

et number of such points A4/, all lying at a vector distance
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directed in space, the reciprocal-lattice points /k/ must
% _l1e on a sphere centered at the origin. This is obviously
Fig.1.} - true of any reciprocal-lattice point #kI. The sum total of
all reciprocal-lattice points, therefore, comprises a set
of concentric spheres of radii oy, centered at an origin which lies on the sphere of reflection. These
reciprocal-lattice spheres, therefore, intersect the sphere of reflection in small circles. Since a
diffracted beam develops whenever a reciprocal-lattice point intersects the sphere of reflection, the
diffracted beams form cones emanating from the center of the sphere of reflection, as illustrated in

Fig.2 for one such cone.
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The priciples involved in the production of a powder diagram can be appreciated by
considering the simplified experimental arrangement shown in Fig.3. An X-ray beam is defined by
the pinhole system, just described. A photographic film is then placed normal to the x-ray beam.
The powder sample is introduced into the path of the X-ray beam. As the beam travels through the
powder sample, it meets thousands of powder grains, each a tiny crystal in a different orientation.
Among these grains many are so oriented that a particular set of planes (k) makes the appropriate
glancing angle 0 (for the plane) with the x-ray beam. Such grains are in position to reflect X-Tays.
The reflection occurs in a direction making and angle 26 with the direct x-ray beam. The locus of

directions making an angle 20 with a given direction is a cone of half opening angle 26. For each
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We remember that in a space lattice each Miller index triplet is represented by a series of parallet

solution of the Bragg equation

there exists such a cone.

equispaced planes containing all the lattice points. In actual crystals these planes are the loci of the
atomic or molecular units of the crystal pattern. dyy , the interplanar spacing, is the perpendicular
distance between successive planes of a series.

A simple way to record the diffraction pattern of a polycrystalline material is by placing a
film perpendicular to the incident X-ray beam. The diffraction cones will, in this case, give rise to a

series of concentric rings each satisfying the Bragg law (Fig 4).




Fig.5.1"

Alternatively, a narrow strip of film can be placed on the cylinder centred at the sample. In

this case, the cones will generate concentric arcs, which are segments of the rings, on the strip

(Fig.5).

1GO
90—
s0—

|
‘:05_
50—
G-
30—

A final possibility is to
reduce the strip to a line,
that is simply to record
the position and the inten-
isity of the diffracted ra-
diation on any plane that
contains the incident X-
ray beam. In this last case
one only measures, the

radius of the cone and the

diffracted intensity at a single

position. If the sample can be considered perfectly isotropic this single measurement is sufficient to

completely characterize the diffraction pattern. The parameters reported are 20, that is the angle

made by any vector with origin in A (see Fig.2) and lying on the diffration cone surface and the



incident X-ray beam, and the relative intensity of the radiation along any direction on the cone

(Fig.7).

Let us consider, now, a diffracting object in which the relative positions of the atoms are
fixed. We assume that the object rotates in such a manner that all possible orientations with respect
to the incident beam are equally probable. We also assume that this motion is sufficiently rapid so
that one observes only the average diffracted intensity. This is equivalent to observing the
diffraction by a collection of identical objects with random orientations and positions. We shall call
such an object a perfect powder.

The Debye formula for the intensity is
in(h
=Y Y, f, S0 @)

hr_,
Let us consider an object composed of atoms or of identical group of atoms with structure factor F.
We consider first in Eq.(2) the N terms related to a given atom, and we notice that each pair is

counted twice, the distance 1., being equal to r,,,, . We shall call 1, the interatomic distances in the

object. There are [N(N-1)]/2 of these. According to the Debye formula the interference function is

I 2 o sin(hr,)
Fhy=—5=1+=) —* 3
(=g =1+ 2 - (3)

The powder diagram depends only on the lengths of all the interatomic vectors, it does not
depend on their mutual orientations.

The Debye formula applies, in particular to a crystalline powder of identical particles. Let us
consider grains of a simple cubic crystal having the form of cubes measuring (n-/)a, a being the
lattice parameter of the unit cell. The scattering power is

6n%(n—1) sin(ha) L 12n(n - 1)? sin(hav'2)
! ha n’ hay2

F(hy=1+ 4)

This equation gives the intensity of the Debye-Scherrer powder diagram, taking into account the
shapes of the lines due to the size of the elementary crystal. It is not obvious from this equation that
the intensity is zero everywhere, except in the immediate neighbourhood of the lines corresponding
to the Bragg angles. A complex calculation shows, however, that this expression is equivalent to
that denived from the classical expression valids for a small crystal having the shape of a

parallelopipedon with edges Nja|, Naas, Nsa; parallel to the crystal axes a;asas:



I sin(m/ A)(s —s,)-N,a, sin?(n/A)s—8,)-N,a, sin’(n/ A} s—s,)-Nja,
Tt sin®(r/AXs—s,)-a, sin’(n/AXs—s,)-a, sin’(m/A)(s—sy)-a,
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where
s—s,; 2smnf
A A

y=(sin’Nx)/sin’x is a peak function essentially zero everywhere except in the immediate vicinity of

x=nm where it rises to high maxima and the peaks are, accordingly, higher and sharper when N
increases. Hence the intensity I will be essentially zero unless the three quotiens are simultaneously
close to their maximum values. For I to be a maximum, we must simultaneously satisfy the three
conditions
(m/A)Xs-so)ya;=h’n
(/A )s-soya,=K'n
(n/A)(s-sp)ar=1"n
where h’, k’, I” are three integers. Rearranged and written in the form below, these are called the 3
Laue equations:
(s-so)a;=h’n
(s-soya=k’n (6)
(s-sg)ya=l'n
Since a diffracted beam exists only if the 3 Laue equations are simultaneously satisfied, these three
equations together must be equivalent to the Bragg law.
In the powder method, a monochromatic beam falls upon a powder sample containing an enormous
number of very small crystal having completely random orientations. For any set of planes hkl with
spacing dw, there will be a few crystals whose planes hkl make the correct angle with the primary
beam to allow a Bragg reflection such that the corresponding powder pattern shows a sequence of
line profile charactenistic of the crystalline system investigated.
Experimentally a diffraction line profile is the result of the convolution of a number of
independent contributing shapes, some symmetric and some asymmetric, It can be represented as :
h(x) = J g(x")f(x — x")dx"+background = g(x)* f(x)+background
where x measures the angular deviation of any point from the theoretical scattering angle 26,, x’is
the variable of integration in the same x domain, g(x) is the instrumental profile function, f(x) is the
intrinsic diffraction profile function, and h(x) is the resulting observed profile function.
Recently powder profile refinement methods devoted

1} to deriving structural parameters such as atomic coordinates in the unit cell, thermal motion etc.



2) to extract physical information such as : phase identification , crystallite size, lattice disorder
have been developed. In order to describe the experimental profiles, symmetric analytical profile

functions such as: Gaussian, Lorentzian, pseudo-Voigt, Pearson VII etc. have been used

Eq. 5 can be used to show the effect on the diffraction pattem of various crystal
imperfections such as small crystallite size, strains, and faulting. Since it is the simplest kind of
imperfection we shall deal mostly with the effect of small crystallite size remembering that the
diffraction line becomes broader as the crystal size decreases.

The first treatment of particle size broadening was due to Scherrer.
He showed that

L Kn
" B(20)-cos0

(7)
wherein 6 and A have their usual meanings, L is the mean dimension of the crystallites composing
the powder, B(26) is the full width in radians subtended by the half maximum intensity width of the
powder pattern peak, and K a constant approximately equal to unity and related to the crystalline
shape.
A more general treatment was proposed by Warren and Averbach (Fourier method) in which
some information about strains can be also provided. It can be summarized as follows:
the experimental broadened profile has to be deconvoluted from the instrumental and spectral
effects in order to obtain the corrected Fourier transforms A(L) (L is the variable in the direct
space). According to Warren and Averbach the coefficients A(L) (or the Fourier transforms) are the
products of size coefficients A(L) and distortion coefficients Ag(L):
A(L)=A(L)A«L) (&)
where A((L) is indipendent of the peak order ahd Ag(L) 1s dependent upon the order of the
diffraction peak. If at least two orders of reflections of the same plane family are known, by means
of the following expression:
A(L, V/dya )=InA(L)-2n’<e*(L)>LYdp’ (9)
where hkl are the Miller indices, <e¢*(L)> is the squared microstrain averaged over all distances L,
and duy 1s the interplanar spacing, it is possible to separate the crystalline size contribution from that

of lattice distortion.

For very small cluster containing few atoms it is preferable to calculate the pattern from the
Debye formula. If we consider a liquid, it has no structure with respect to a fixed origin since the

atoms are continually moving about. In an amorphous solid (glasses, glassy metals, resins,



unoriented solid polymers), the atoms have permanent neighbours but there is no repeating
structure, only local configurations. Although there is no sharp dividing line between crystalline and
so called amorphous materials, for clanty in this discussion we somewhat arbitrarily designate as
crystalline those materials characterized by three-dimensional periodicity over appreciable
distances, say, of the order of six or more unit translations. Conversely, matenials possesing only
one or two-dimensional, or lesser, degrees of order are refferred to as amorphous.

Fig. 8 is a two diméﬁsional illustration of the difference between the arrangement of atoms in a
hypothetical crystal A and glass B of the same chemical composition, A,O;.

However, atoms have well-defined sizes
and closest distances of approach, and
hence both liquids and amorphous solids
have definite structures relative to an
origin at the center of an average atom.
This type of structure 1s expressed by a
Radial Distribution Function (RDF)
47rp(r) such that 4nr*p(r)dr is the

average number of atom centers between

4 (8) distances r and r+dr from the center of

Fig,8,'3| an average atom,
Eq. (2) makes it possible to establish the correct atomic configuration by inverting the experimental
intensity function by means of the Fourier integral theorem as first suggested by Zernike and Prins,
and so to obtain the RDF of the specimen.

The application of the Fourier integral theorem is perfectly straightforward in the case of a

substance consisting of only one kind of atom. Then Eq.(2) becomes

in(hr
I=Nf"-2%"’“) (10)

if it is assumed that the environment of one atom is the same as that of any other atom.

Since in performing the summation of eq.(10) each atom in turn becomes the reference
atom, there are N terms due to the interaction of each atom with itself. The value of each of these
terms is unity, since in the limit as ry,— 0, (sinhfy, )/him,—> 1. So €q.(10) may be written

sin(hr,, )

I= Nf2(1+ZT'“) (i1

mn
if it be understood that the summation excludes the origin atom. The distribution of atoms about any
reference atom may now be regarded as a continuous function and the summation replaced by a

integral



sm(hr) —]

I—Nf2L1+I 4mp(r) (12)

Here p(r) is the number of atoms per unit volume at a distance r from the reference atom, and
4nr*p(r)dr, as reported above, is the number of atoms contained in a spherical shell of radius r and

thickness dr. Letting py be the average density of atoms in the sample, eq (12) may be rewritten as

1=Nf2{1+,[)m4nr2[p(r)—np ] sm}fhr)dr+J’ Amr sm}frhr)dr}

(13)

The integral of the last term of eq.(13) represents the scattering by a hypothetical object of the same
form as the specimen but of rigorously uniform electron density. This is the central scattering,
which occurs at such small angles as to be unresolvable from the direct beam. Hence, if attention is

limited to experimentally observable intensities, i(h), eq.(13) can be semplified to the form
sin(hr)
Nf? hr

By means of the Fourier integral theorem, this expression can be trasformed to

1 =,I:41tr2[p(r)—p0] dr

r[p(r) po Jhl(h)sm(hr)dh

2 o
4rrp(r) = dnr’p, +— [ hi(hsin(he )db
bi
where

ith) = Nfz -

The case of the presence of more than one kind of atom will be treated in section II.
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POWDER DIFFRACION II

In these last years, dedicated powder diffractometers are in operation at many synchrotron
sources. In contrast o conventional radiation source, the main properties of synchrotron radiation
are
1) the extremely good instrumental resolution over extended angular ranges (for example, full
widths at half maximum of <0.01° out to a d-spacing of 1A at a wavelength of 0.7A),

2) excellent peak-to-background discrimination, |

3) peak shapes which are very well described by the commonly-used pseudo-Voigt function
(including a simple and reliable asymmetry correction for axial divergence at lower angles),

4) high brigthness (large amount of flux in a well collimated beam)

5) an intense continuous wavelength distribution spectrum, from which monochromatized X-
radiation can be selected and the consequent possibility of using anomalous scattering as a general
probe of cation distribution for elements with Z>35.

As an example Fig.1 shows the variation in instrument-only contributions to the peak full-
width-at half-maximum (FWHM) as a function of diffraction angle for a number of modern neutron

and X-ray diffractometers.
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Fig.1 Variation in the instrumental-only peak FWHM as a function of diffraction angle (20) for several
neutron and X-ray diffractometers. The curves represent the following instruments: long — HRPD(CW
neutron) at Lucas Heights; -~ D2B(CW neutron) at the TLL; short --- SEPD(TOF neutron) at the ANL; -~
conventional (X-ray) Bragg-Brentano with (lower) and without (upper) diffracted-beam Soller slits; —
synchrotron (X-ray) Bragg-Brentano at CHESS.!"

In this part, some of the most important aspects will be treated in relation to their
applications in Material Science. In particular, beside some general considerations on the
application of the broadening analysis and kinetics of crystallization, the Rietveld method, thin

films analysis, anomalous scattering and their relative applications will be briefly reported.



RIETVELD METHOD'!!

In the mid-sixties, it became apparent to various diffractionists that much more informaticn
could be obtained from a powder pattern if the full power of computers could be applied to full-
pattern analysis. The recognized point was that in a step-scanned pattern, for example, there was
some information attached to each intensity at each step in the pattern, even if it were the negative
information that there was no Bragg-reflection intensity there or the partial and the scrambled
information that the intensity at a step was the sum of contributions from the details of several
Bragg reflections. It was Rietveld who first worked out computer-based analytical procedures to
make use of the full information content of the powder pattern.

In the Rietveld method the least-squares refinements are carried out until the best fit is
obtained between the entire observed powder diffraction pattern taken as a whole and the entire
calculated pattern based on the simultanecously refined models for the crystal structure(s),
diffraction optics effects, instrumental factors, and other specimen characteristics (e.g. lattice
parameters) as may be desired and can be modelled.

A powder diffraction pattern of a crystalline material may be thought of as a collection of
individual reflection profiles, each of which has a peak height, a peak position, a breadth, tails
which decay gradually with distance from the peak position, and an integrated area which is
proportional to the Bragg intensity, Ix , where K stands for the Miller indices, &, &, [ Ik is
proportional to the square of the absolute value of the structure factor, Fx . In all powder
diffraction patterns but those so simple that the Rietveld method is not needed in the first place,
these profiles are not all resolved but partially overlap one another to a subtantial degree.

If y; 1s the numerical intensity value recorded at each of equal increments (steps), / , in the

pattern the quantity minimized in the least-squares refinement is the residual, S,
S, = 2w, (y,~vs)

where
wi=lly;; yrobserved intensity at the /th step ; y.~calculated intensity at the /th step, and the sum
is overall data points.

It 1s a crucial feature of the Rietveld method that no effort is made in advance to allocate
observed intensity to particular Bragg reflections nor to resolve overlapped reflections.
Consequently, a reasonably good starting model is needed. The method is a structure refinement

method.



Typically, many Bragg reflections contribute to the intensity, y;, observed at any arbitrary

.- . 2
chosen point, i, in the pattern. The calculated intensities y; are determined from the lel values

calculated from the structural model by summing of the calculated contributions from neighbouring

(i.e. within a specified range) Bragg reflections plus the background:
2
Ve =52 Lu[Fi| 6(28,—200PcA +y,
. K

where

s 1s the scale factor,

K represents the Miller indices, Ak/, for a Bragg reflections,
Lk contains the Lorentz, polarization, and multiplicity factors,
¢ 1s the reflection profile function,

Pk is the preferred orientation function,

A is the absorption factor,

F is the structure factor for the Kth Bragg reflection, and

i 1s the background intensity at the ith step.
The usual refinable parameters are listed as follow:

For each phase present
xi i 5 Bi N;(x;, y and z; are position coordinates, B; is an isotropic thermal parameter, and N; is
the site-occupancy multiplier, all for the ith atom in the unit cell)
Scale factor (note quantitative phase analysis possibility)
Specimen-profile breadth parameters
Lattice parameters
Overall temperature factor (thermal parameter)
Individual isotropic or anisotropic thermal parameters
Preferred orientation

Crystalline size and microstrain (through profile parameters)



Global
20-Zero
Instrumental profile
Profile asymmetry
Background
Wavelength
Specimen displacement
Specimen transparency

Absorption.

As an example, in Fig.2 the final fitted profile of Lithium Dusilicate, using Pearson VII functions, is

reported

Fig.2
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In the presence of multiple phases, Rietveld analysis can provide very accurate estimates of

the relative and\or absolute abundances of the component phases according to:

S, (ZMV)

iS‘.(ZMV)
i=l

W =

P

where W is the relative weight fraction of phase p in a mixture of n phases, and S, Z, M and
V are, respectively, the Rijetveld scale factor, the number of formula units per unit cell, the

mass of the formula unit (in atomic mass units) and the unit cell volume (in A



THIN FIL.MB

X-ray diffraction methods are widely used for the characterization of thin films. The
increasing use of thin films with special tailored properties, for example for electronic devices, has
stimulated the need for improved characterization methods. The properties are determ'ined by the
thin-film material and its crystal structure. The microstructure is critically dependent on the various
parameters used in the deposition of the film, and their effect on the required properties can be
followed by x-ray diftraction. It is well known that thin films are usually not uniform, and indeed it
may be desiderable to purposely vary the microstructure as a function of the thickness to obtain the
desired properties. Methods that obtain diffraction patterns from different film depths are now
essential for complete structural characterization. The high intensity of a Synchrotron radiation is an
important factor in measuring the weak scattering from thin films.

REFLECTION GEOMETRY

In the microstructural analyses of thin films, special experimental techniques have to be employed

to obtain diffraction patterns with sufficient statistical accuracy in a reasonable counting time. Since
films and coatings are normally supported by a relatively thick substrate, one is forced to use the

reflection geometry, shown in Fig.3

Radiation Source

o Calimaior

Fig.3 Reflection geometry with parallel X-ray beam, defined by the incident beam siits S; and S,. In the
fixed incidence:28 scanning, the sample surface makes a fixed angle o with the direction of the incident
beam. The detector sees the same sample area at any angle of reflection . The scattering angle is defined as
20=a+P. In 6:26 scanning, the angle of incidence a=f and the sample surface continuously bisects the angle
26, so that p=9 P! '

In any case, the conventional x-ray methods, when used for thin films, the x-rav beam

usually penetrates the entire film making it impossible to follow structural variations as a function

of film depth.
The depth of x-ray penetration into the film depends on the angle of incidence a. When the

incident angle becomes < than a certain angle o, specific of the material, the depth is very small
(usually about 50-100A) The critical angle o for the total reflection is given by
o=(28)"*=1.6x10"pA



where o is in radians, p is the density in gec™ and A is

the wavelength in A. This ignores anomalous
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the penetration depth t’ is determined by the total
external reflection process and is given by
£ =A/[2n(ot’-a”)' ] (1)
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107 ! / For a>0, the penetration depth is dependent on the

- _b,;;{/-&’ linear absorption coefficient p:
t'=2a/py (2)

r Fig.4 shows the penetration depth in the iron oxide film

03 04 05 as a function of o and A as calculated by eqs.(1) and

(2).
Fig.4.1

Seemann-Bohlin Geometry

For many years, researchers have employed the Seemann-Bohlin geometry (see Fig.5) for the

measurements of the powder patterns of thin films.

Focussing Circle

Fig.5 Focussing Seeman-Bohlin diffractometer. The iteaciimeter 7}
sample S remains fixed at constant angle of incidence Rasws R 1
o, while the detector slit moves along SD by the
amount Rsp=Rsin(20-a)/sinet to remain on the
focussing circle of radius Rpg=Rso=R/(2sinca), where soored
R is the radius of the diffractometer.™] X-Ray Baam '\ X-Ray Beam

Detector D

In the Seeman-Bohlin focusing geometry, the specimen is set at a fixed small angle (about 5°
minimum) and the detector is moved around the focusing circle by a special linkage. However
mechanical restriction prevents using smaller angle required for grazing incidence and any

departure from the strict focusing requirements causes large geometrical aberration in the pattern.



Parallel Beam reflection geometry

Because of the limitations of the Seeman Bohlin geometry, it might be advantageous to

adopt the parallel beam geometry with a fixed angle of incidence o (in Fig.6 65) as shown in Fig.6.

sC2
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Fig 6 Parallel beam X-ray optics used in 8:26 and o /@// ,\s
=-=ral eM .. c? Be \.
| N .

grazing incidence:20 scanning ™ = o™ (7
: 1 o7 s
sC1 5
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Since the specimen has a finite dimension, say 30 mm in width, one must limit the width of the

primary beam to 1 mm in order to reach a low incidence angle o = 2°. In this case, the detector is
always looking at the entire irradiated area, and one must install a set of Soller slits whose blades

are placed perpendicular to the diffraction plane so that the diffraction angle is well defined.

Grazing Incidence Scattering

As shown above, if one whishes to employ the effect of total reflection of the incident beam for the
analysis of angstrom thick layers, one must reduce the angle of incidence o to a value less than the
critical angle o, which is only a fraction of one degree. Thus, the method of grazing incidence
scattering (or diffraction) requires a very narrow x-ray beam because of the finite sample size and a
strong primary beam, available with synchrotron sources. In this technique, one can scan the
diffracted beam in the same way as presented in Fig.3, with the diffraction plane, containing the
incident and diffracted beams, perpendicular to the specimen surface (method 1), ie., using the

parallel beam geometry.

One can also scan the diffracted beam almost parallel to the speciem surface as shown in Fig.7, i.c.,
the incident beam lincia.nt Strikes the specimen at an angle o<, and the diffracted beam is detected
at a second grazing angle o The diffraction angle 20 is defined as the angle between the

projections of o; and a onto the specimen surface (method 2).

Fig.7 Schematic diagram showing grazing
incidence scattering X-ray diffraction.
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R !‘__m” As an example in Fig.8 are reported the grazing
' -\kfsmnn incidence diffraction profiles, a=0.25°,
\ A=1.75A, of unbroadened Si(111) powder and
\L broadened 6.5h annealed iron oxide film (111):
0 \b\"m peak intensities normalized. Outer profile fitted
* = "m"\" 1 ; with symmetrical Lorenz function.
20 22
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ANOMALOUS X-RAY SCATTERING?*!

Even if the usefulness of the anomalous X-ray scattering has also been confirmed in
structural investigation of polycrystalline samples (some examples will be reported during the
lecture), we focalize our attention in Amorphous Materials (in which the atomic arrangement is not
spatially periodic) containing more than two kinds of atoms in order to evaluate the partial radial
distribution function

The diffraction pattern from an amorphous sample (i.e. a glass) exhibits broad features,
indicating the lack of translational symmetry in its structure. The quantity obtained from a

conventional scattering experiment is the radial distribution function (RDF), which is a description

of the average environment of an atom, for example, in a glass. The RDF is defined as 47tr2p(r),
where p(r) is the radial density function and r is the radius; p(r) is the average number density of
atoms at a distance r from an average atom at the origin. The RDF, therefore, is the number of
atoms in a shell of unit thickness at a distance r. The number of neighbours coordinating a central
atom is obtained by integrating a peak in the RDF, and the average distance of these neighbours is
obtained from the peak position.

Even in one-component system, the interpretation of the RDF is difficult because the local
structure is spherically averaged. In a multicomponent system, the problem is even more complex
because the average environment portrayed by the RDF might bear little resemblance to the actual
environment of any given component.

Anomalous scattering experiments permit species-specific distribution functions to be
obtained, which give a more direct view of the amorphous structure (such structural information is
very similar to the results by EXAFS measurements),

When the X-ray energy is close to an absorption edge of an atom, the X-ray scattering factor

changes significantly through the anomalous scattering factors (ASF’s) f* and °. For example, the




scattering factor of Se is reduced from its maximum value by approximately 10 electrons at the K
absorption edge energy. Therefore, Se (atomic number Z=34) scatters more like Cr (Z=24).
Suppose scattering patterns are obtained from an Ag-Ge-Se glass at two X-ray energies close to the

Se K absorption edge. The scattering behaviour of Se is different at each energy, but the behaviour

of Ge and Ag is the same. The difference between the two patterns can be related to the distance
correlations involving Se atoms.

The result of this type of experiment is the difference distribution function (DDF) around

Se. The DDF is 4nr’ps(r), where ps(r) is the density of atoms at a distance r from a central Se
atom. ‘

The idea of obtaining structural information from the derivative of the scattered X-ray
intensity with respect to energy was first proposed by Shevchik!"® However, the differential

anomalous scattering (DAS) technique outlined above was first developed and applied

experimentally to amorphous GeSe and glassy GeSe, by Fuoss”” !,

Because the X-ray energy must be near an absorption edge, the DAS technique cannot be
applied to atoms whose atomic numbers are less than 24 (Cr). As the edge energy decreases, the
region of reciprocal space that is accesible to measurement becomes smaller, with the effect that the
resolution of the DDF in real space is degraded.

The potential of anomalous scattering experiments is not limited to obtaining DDF’s. It is
possible to obtain the partial distribution function (PDF), in which the intensities of both the central
atom and its neighbors are known. The aff PDF describes the distribution of B atoms around a
central o atom; it is equal to 47 pep(r), where Pap(r) 1s the number density of B atoms at a distance
r from an o atom at the origin. The total number a-B distances in the structure is constant, leading
to the condition

XaPop(r)=Xpppalr)
where X is the mole fraction. The RDF and the DDF’s are related to the PDF’s by

RDF = i‘,XWDDFq = i!XuIiPDFaB
a= a= -1
Keating demonstrated how M(M+1)/2 independent scattering experiments can be used to determine
the same number of indipendent PDF’s. In each experiment, the scattering factors of one or more of
the components must be altered in indipendent way. The energy dependence of the anomalous
scattering factors provides one means to accomplish this. If we consider a three components glass,
six scattering patterns must be collected, two in the vicinity of the K absorption edge of each

component.



The PDF’s are difficult to obtain because the independence that can be achieved by varying
the anomalous scattering factors is limited. In practice, the results are very sensitive to experimental
erTor.

Anomalous scattering factors

The X-ray scattering factor of an atom is the amplitude and phase of the wave scattered
coherently from the atom relative to the amplitude and phase of the wave scattered by an isolated,
or free, electron. In general, the atomic scattering factor f is complex and is written as

f=fo(h)+f (h,E)+if’(h,E)
which explicitly states the dependences on E, the X-ray energy, and h, the magnitude of the
scattering vector:
_ 4=sind
A

where 20 is the scattering angle, and A is the X-ray wavelength. The quantity f; is the scattering

factor when the X-ray energy is much greater than the largest ionization energy for the atom. At
such energy, all electrons in the atom scatter as if they where free. If the X-ray energy is
comparable to or less than the ionization energies of some of the electrons, the ASF’s f* and {” are
nonzero. The ASF’s correct the amplitude and phase of f; for the fact that these electrons do not
scatter as free electrons.

Values for fy have been calculated from theory for isolated atoms and ions.

The anomalous scattering factors can be calculated theoretically or determined

experimentally. The ASF’s determined theoretically (see Fig..9) are quite accurate when the X-ray

1o AR REARNAREA RAR SRR R RE R AR R AR SR R R
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energy is not close to an absorption edge. However, in the immediate vicinity of the edge, solid
state effects cause significant deviations from the isolated atom results. The ASF’s used in DAS
experiments, therefore, should be measured experimentally.

The method commonly employed for DAS experiments is to use the optical theorem to
calculate f” from a measurement of the absorption cross section as a function of energy; f 1s
calculated from f” via the Kramers-Kronig relation.

The optical theorem can be derived by relating the composite effect of the scattering by
individual atoms in a substance to the complex index of refraction characterizing the material as a
whole. The imaginary part of the index of refraction corresponds to the absorption of a wave as it
travels in the material and can be expressed in terms of the total absorption cross section . The
optical theorem relates f” to o:

mcoo( o)

o) = 4ne

where £ is in electrons, ¢ has units cmzlatOm; m and e are the mass and charge of an electron, ® the
X-ray angular frequency, and ¢ the speed of light; all units are cgs.

The Kramers-Kroning relation is

f'(w) =

T o dw

of‘(o
o

in which the integral is understood to be the Cauchy principal value.

RDF Analysis
Under the assumptions of the kinematic theory of X-ray diffraction, the coherently scattered

intensity 1n electron units (eu) from a collection of atoms is
) = S 6 fexptn 1) o
L]

where the summations over i and j are for all atoms in the sample, h is the scattering vector, r;; the
vector from atom i to atom j, and the asterisk denotes the complex coniugate. The scattering is
uniform with respect to sample orientation. Therefore, after taking the spherical average of the
experimental term, separating the indipendent scattering (i=j) terms, and grouping the distances
between two specific types of atoms together, the equation can be rewritten as

M

FOERNARSIDWES) z“‘“h” @
a=1 P=I

in which o and f refer to kinds of atoms in an M component system, i and j are now summations

over the o and B types respectively, and Ny, is the number of a atoms.



Next, the continuous partial density function p.g(r) is defined in terms of the discrete
interatomic distances present in the structure:
N N
Z iﬁ(r— L) (5)

1
N, = =

[+ 3

47tr2paﬂ(r)dr =

—.

Here, 5 is the delta function. At large radii pap(r) approaches the average density of b atoms pgo.

Equation (5) is introduced into eq.(4) as the average density pgo and the deviation from that density
Pop(T)-ppo. Warren showed that the contribution from the average density is only significant at small
scattering angles, where the intensity is not experimentally measured. The result, neglecting the

small angle scattering term, 1s

sm(hr)
= DN Jef + DN () ) T ©)
a= l l
Defining the partial structure factor as
1 f= .
S p(h) = - [ Anr(0,p (1)~ pyosin(hrye ' %

and utilizing Nopp=Npppa to group dependent density functions together, Eq (6), on a per-atom
basis now, becomes
Icu(h) (if2|> Z ZXaTa[i I{e[f fBbaB(h) (8)
=l p=a
where the brackets () denote the molar average, X is the molar fraction and T.p equals 2 when

a # B and 1 otherwise.

This is the basic equation for amorphous scattering. It breaks the observed scattering pattern
into the coherent independent scattering from individual atoms and the structure-dependent
scattering due to distance correlations between atoms. The latter is expressed as the weighted sum
of M(M+1)/2 independent partial structure factors.

The present development has assumed that L, is the intensity of the coherent scattering.
Experimentally, ., could contain Compton scttering as well. In that case, the Compton scattering

must be subtracted from L.

If only one scattering pattern is available, no basis exists for distinguishing the separate
contributions of the partial structure factors to the total pattern. Let us treat the pattern as if it
originated from a structure consisting of identical “average™ atoms. The scattering factor of these

fictitious atoms will be taken as {f!). By analogy with eq. (8), we write
L.(@)—- {2y = df’s () ©)

where, with reference to €q.(7), the total structure factor S is related to the real space structure by



S(h) = %-[Tdrm(p(r) — p,)sin(hr)dr (10)

In effect, egs. (9) and (10) define S(h) and p(r). From eq. (10), it is apparent that the two functions

are related by a Fourier sine transform. After obtaining S(h), from experimental data using eq.(9),
the reduced RDF, G(r), is calculated as

G(r) = 4nr(p(r) - p,) = %,[:hS(h)sin(hr)dh (11)

From G(r), the radial density function p(r) and the RDF 4xrr’p(r) can be obtained.

The reduced RDF of amulticomponent system describes the structure in terms of fictitious
atoms, which are defined by the average atomic scattering factor. The relationship of G(r) to the
Pap(r)’s, which describe the correlations of the actual atoms in the structure, becomes clear by
equating eq.(7) to eq.(8) and Fourier transforming. The results is

G(r) ~ Z ZX T, Zara~ Larp Gy (1) (12)
oz fpoa Zo)
in which Z.w=7+f", Z being the atomic number. The reduced PDF is defined as

2 [ .
Gop(1) = 4rr(p,p(r) — Pgo) = ;_LhSuﬂ(h)sm(hr)dh (13)

According to eq.(12), G(r) contains contributions from each Ggp(r), weighted according to the

composition and the scattering ability of the atoms involved.
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