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1. Introduction.

Vater is present in almost every seil orofile, but
the amount varies with time and derth as a result of supply
and demand by its environment. If the supply of water at the
s0il surface (e.q. rainfall, irrication, dew, flood) during
a certain period exceeds the extraction of water from a given
s0il profile (e.g. evaporation from scil surface, water uptake

by plant roots, deep percolation), the excess supply during

that period is stored in the soil profile, If the excess supply

surpasses the storace capacity of the soil, water discharges

to lower regions (i.e. drainace))}. The supply at the scil surface

can also be smaller than the sum of transpiration and evaporation.

In that case, the topsoil dries out, while upward transport of
water from the subsoil (capillary rise) may take place.

2, Flow of water in saturated soil.

A major division in tvpes of flow of water in soil
is that between saturated flow and unsaturated flow. The
reason is that the hvdraulic conductivity of saturated soils

is constant in time and, in a uniform scil, also in position.

In analyzing the subsurface mevement of water, the
azttal tortuous paths of the water molecules as thev flow
throuch pores, cracks and crevices of the soil are taken as

srmath paths if the water molecules roved richt throuch the

s:1id particles. The resultino smcoth lines of travel of

the water molecules are called streamlines.

Figure 1 shows a system cof linear, parallel streamlines

below a water table in a vertical cross section of an aquifer
parallel to the direction of flow. Since the streamlines are
straight and parallel, the flow of water does not chance with
Adistance. This is called uniform flow, in contrast with non-
uniform flow, where the flow changes with distance and strearr
lines may curve, diverge or converce (as for example, in flow
of groundwater to wells, flow of groundwater to or from streams
and other two-dimensional, three-dimensional or axisymmetric

rlow systems).

Vertical cross section of groundwater flow with
linear, parallel streamlines.

The one-dimensional flow in ficure 1 is alsc assumed
to be steady, meaning that the flow does not chance with time.,
i f the flow changes with time (as for example, in connection
wlith a rising or a falling groundwater table), the flow is

~alled nonsteady or transient.



If viezumeters are placed at two points on a streamline
(points | and 2 in fiqure 1), the velocity of the groundwater

in that streamline can be calculated with the equation:

(h, + 2.} - (h, + z.)
v = K 1 1 - 2 2 (1)

where: = Darcy velocity of water or flux density (length/time)
pressure head at point 1 (lenath)

elevation at point 1 {length)

%

= pressure head at point 2 (length)

[

v
h
z
h
z elevation head at point 2 (length)

L = distance of flow between points 1 and 2 as measured

along streamline {length}
K = hydraulic conductivity of soil or aquifer material

(lencath/time)

Equation (1) or modification thereof are called
Darcy's equation, after the French hydrelogist Henri Darcy (1856),
who discovered that velocity was proportional to hydraulie
gradient in the course of his classic investigation of seepage
throuch sand filters in the city of Dijon (France). The Darcy
velocity is not the real macroscopic velocity of the water, but
the velocity as if the water were moving therough the entire cross-
sectional area normal to the flow, solids as well as pores,
The pressure head h at a given point in the flow system is the
height to which water will rise in a piezometer inserted down
to that point. The elevation head of a given peint is the
vertical distance of that point above an arbitrary, horizental
reference plane. The sum of pressure head and elevation head
at a given point in the flow system is called the total head H.
Thus, h1 +z; in egquation (1) is the total head Hl at point 1,
and h2 + z, is the total head H, at point 2. The distance L
between points 1 and 2 must be measured alonc the streamline
on which the points are located. The ratio (H1 - Hz)/L is
called the hydraulic gradient of the flow,

Laray's law basically states that v is directly

portionel to hydraulic gradient (equation (1)}, The

e

factor ~f proportionality K is a property of the soil or

ruck izaterial, and it is called the hydraulic conductivity.
inhus, K is the Darcy wvelccity at unit gradient. Since the

v aulic cradient is dimensionless, K has the same dimension
s v, or length divided by time. A convenient unit for K is
reters per Jday. The value of K depends on the size and number
«f pores in the soil. Orders of mwagnitude for K of granular

materials are:

clay scils 0.01 - 0.2 m/day
deep clay beds 1078 - 1072 m/day
lecam soils 0.1 - 1 m/day
fine sand 1 - 5 m/day
medium sand " 20 m/da
cocarse sand 20 - 100 m/day
aravel 100 - 1000 m/day

The hydraulic conductivity of sandstone is considerably
less than that of unconsolidated sand with the same grain sizes,
due to cementation and hicher densitv of the sandstone. K values
of other consolidated materials depend entirely on the secondary
porosity of the rock (fractures, weathering, solution channels
in carbonate rock etc...}. General ranees of K for consolidated

materials are:

sandstone 0.001 - 1 m/day
rarbonate rock with secondary porosity 0.01 - 1 m/day
shale 10_7 m/day
denge, solid rock < 10-5 m/day
fractured or weathered rock (aquifers) 0.001 - 10 m/day
fractured or weathered rock (core samples) almost 0 - 300 m/day
volecanic rock almost O - 1000 m/day

Since v in equation (1) is the velocity as if the water
were movine through the entire porous material, solids as well as
pries, the volume rate of flow through a given cross-sectional
aree perpendicular to the flow is simply calculated as:



Nn=v .A (2}

where: ) = volure rate of flow (lengtﬁ?time)

<
1]

Darcv velocity (length/time)

area normal to flow direction (lengtﬁa

i
It

For example, if the Darcy velocity in an aguifer
is 0.1 m/day and the aguifer normal to the flow direction is
10 m thick and 1000 r wide, the flow in the acquifer is
1000 n3/day.

The hydraulic conductivity, acain, is the ratio of
the fiux to the hydraulic gradient, or the slorme of the flux

versus gradient curve (ficure 2).

¥ith the dimensions of flux being LT_l

, those of
hvdraulic conductivity depend on the dirensions assigned to the
driving force (the potential cradient). The simplest way to
exnress the potential gradient is bv use of lenagth, or head,
units. The hydraulic heat cradient H/L, beinag the ratio of a

lencth, is dimensicnless. Accordinoly, the dimensions of

hwdraulic conductivity are the same as the dirensions of flux,

namely LT—I.

Sandy soul

Flux v

Clayey soil

Fydras © gomioet AR

linear depo of Titx umon hvdraulic oradient,
ctivity bein- the =«

unit cradicno: .,

6.

In a saturated soil of stable structure, as well as in
rigid porous medium such as sandstone, for instance, the hydraulic
conductivity is characteristically constant. TIts order of

magnitude is about 1072 - 1072 cm/sec in a sandy soil and

1074 - 1077 en/sec in a clayey soil.

To appreciate the practical sicnificance of these
values in more familiar terms, consider the hypothetical case
of an unlined (earth-bottom} reserveir or pond in which one
wishes to retain water acainst losses caused by downward seepage.
Is the seepage into and through the underlyinc soil is by gravity
alone {i.e. no pressure or suction gradients in the soil), we
can assupe it will take place at a rate approximately eqgual to
the hydraulic conductivity. A coarse sandy soil might have a
K value of say 10_2 cm/sec and would therefore lose water at the
enormous rate of nearly 10 m/dav. A fine loan soil with a
K value of 10—4 cm/sec would lose "only" about 10 cm/day.
Finallv, and in contrast, a bed of clay with a conductivity of
10_6 cm/sec would allow the seepage of no more than 1 mm/day,
nuch less than the expectable rate of evaporation. So, the
retention of water in earthen dams and reservoirs and the
prevention of seepace from unlined canals can be creatly aided
by a bed of clay, particularly if the clav is dispersed to
further reduce its hvdraulic conductivity.

In manv soils, the hydraulic conductivity does not
in fact remain constant. Because of various chemical, physical
and biclocical processes, the hydraulic conductivity may change
as water permeates and flows in a soil. Changes occurring in the
composition of the exchangeable-ion corplex, as when the water
entering the soil has a different corowesition or concentration
of solutes than the oricinal soil solution, can g¢reatly chancae
the hvdraulic conductivitv. In ceneral, the conductivity decreases
with decreasing concentration of electreolytic sclutes, due to
swellinc and dispersion vhenomena, which are also affected by
the species of cations present. Detachrent and micration of
clav particles durinc nrolonced flow may result in the clogcing

of pores. The interactions of solutes with the scil matrix, and



their effect on hydraulic conductivity are perticularly

important in saline and sodic scils.

In practice, 1t is extremely difficult toc saturate
a soil with water without trappino some air. Entrapped air
bubbles may block pore passages. Temperature changes may
cause the flowing water to dissoclve or to release gas, and
will alse cause a change in the volume of the gas phase, thus

affecting conductivity,

The hydraulic conductivity K is not an exclusive
property of the soil alone, since it depends upon the attributes
of the soil and of the fluid together. The soil characteristics
which affect K are the total porositv, the distribution of pore
size, and tortuosity - in short, the pore geometry of the soil.
The fluid attributes which affect conductivity are fluid density
and viscosity.

The hydraulic conductivity of saturated soils varies
greatly. In irrigation and drainace studies, permeability is the
dominant variable, some soil be ing as much as 100,00 times as

permeable as others.

Knowledge of soil permeabilities is essential to progress
in studies of water conveyance and water application efficiencies,
and in the design of drainage systems for the reclamation of

saline and alkali soils,

Permeabilities are influenced by the size and shape of
pore spaces through which water flows and the specific weight
and viscosity of the soil water. For cordinary irrigation appli-
caticns, it is impractical to measure all of the factors that
influence permeability, but it is practical and very essential
to measure permeability of soils in the lahoratory and in the
field.

Two of the many types of egquipment for measuring per-

meabliity are the constant-hnewd 2nd variable head permeamsters.

With a constant head maintained by either continuous
inflow or frequent additions of water, steady flow through the
soil is obtained. Figure 3 illustrates two constant-head per-
meameters, one for laboratory tests and the other for fleld

studies.

Darcy's law for flow of water in soils is applied for
computing permeability after measuring volume of flow Iin unit
time t, soil cross-sectional area A at right angles to flow,
loss of hydraulic head hL and flow length L.

measuring

Groduete for E

Waler faed ling waler aoded
| S——

Ltll Ovartiow - ' _

Groduale Forous Jisk

fzr) -laboratar () ~Fiald
¥

Figure 3 : Constant-head permeameters.

In field studies on undisturbed soil, loss of head
and flow length sometimes cannot be measured accurately at rea-
sonable cost. If the surface soil consists of a thin layer of
low permeability soil overlying a layer of highly permeable
soil, then the loss of hydraulic head may be considered as the
distance from water surface to the highly permeable soil and the
flow length, as equal to the thickness of the top layer of soil,
as indicated in figure 3,
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Laboratory measurements of hydraulic conductivity are
conducted on soil samples, contained in cylinders of known di-
mensions. A constant water level can be maintained in the con-
tainer through an overflow system, and measurements can be made
under a constant or falling head. A constant head can be created

by means of an overflow system. The induced steady flow can he
measured in a burette,

Accoxding to Darcy's law, K can be expressed as :

Q. L

K="= (3)
where :
K = hydraulic conductivity L.t Yy,
Q = steady flow wi.rh,
aAh = gonstant head loss (L},
L ‘ = length of the sample (L),
‘A = ¢ross sectional area of the sample (Lz).

Example : The sample is 5.1 cm iong and has a cross-sectional
area of 19.6 cmz. The constant head loss maintained is 1.0 cm
and the constant discharge rate is 190 cm3/day.

According to Eq. ( 3) we have :

_ 190 x 5.1 _
K = 156 1.0 - 49 cm/day

The variable head permeameter or falling-head permea-—
meter is adapted to the measurement of permeability of fine-
textured compact soils of low permeability.

The principle is illustrated in figure 4.

10,

wp—-—t—sample

-

sieve wilh -
\"“"_‘gﬂun ' L

Measuring hydraulie conductivity
under a falling head.

(Ead
"

Fiqure

A soil sample is taken in a tube 6.2 cm in diameter
and 3C cm long. After the water level above the sample reaches -
equilibrium and the soil is saturated, the water on top of the
sample is removed and the consequent differenee in head camses
an ypward flow through the sample. As a result the initial head
loss and the flow are reduced. Measurements of the rate at
which the head loss is reduced are used to calculate the hydrau-
lic conductivity.

Al L h(tl)
K = 1n (4)
Az(t2 tl) h(t2)
where 1
K = hydraulic conductivity ({(cm/day),
L = length of the sample {cm),
h{tl), hit,) = head at time t, and tsy respectievely (cm),
tzﬂtl = time interwval {days)},
Bycky = cross-sectional area of observation tube and soil sample

regpectively (cmz).

Example : A soil sample i1s taken below the groundwater table in

1 zinc tube 6.2 cm in diameter and 30 cm long. After some soil

is removed from the top and the bottom, a soil sample of 25 cm
remzins. The hydraulic conductivity is determined by the falling-
nead method as illustrated in figure 4 (A1 = B, = A).
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A time tl = 0 hours h(tl) measures 1.5 cm

A time t2 = 7 hours h(tz) measures 0.9 cm

K is calculated by equation (4 ) as :

25

K==

2.3 log (2*3)= 43 cn/day = 0.43 m/day

Ligquid water flow occurs in response‘to a hydraulic
potential gradient and not necessarily in response to a water
content gradient. Thus, when potential is plotted as a function
of depth, it results in a smooth curve even across the boundary
between layers (see filgure 5A). When water content is plotted
as a function of depth, there is normallv a sharp discontinuity

in the curve at the boundary between layers (see fig SB).

Water content, 8, —e=

Sail depth, 2 —e=

Figure 5. If water is flowine¢ through two different soils that
e are in contact, the matrix potential curve is conti-

nuous across the boundary (A). The water content curve,

however, has a discontinuity at the boundary (B}.

In this chapter two different tvpes of steady state
flow will be considered:

1. steady downward flow
2, steady upward flow

Non-steady, saturated flow, in which 8 is constant but

a varies in time, occurs in drainage nrocesses. This type of flow

is usually treated separatelv and it will not be considered here.

1Z.
Steady downward ficw in homogencus_sgil.

The flux densitv eguation for the flow of water in
saturated so0il, with the hvdraulic potential exmressed on
waight basis, was given in 2,1,

_ . SE  _ §h _ 3z
9=-K5 =-K ity )

In a homogeneous,water-saturated scil K is constant
with position and in time. For steady flow g is constant in
time and for a constant available cross-section, such as in the
g0il ¢olumn in figqure 6, the flux is also constant with heicht,
From equation (5} it fcllows then that 3H/3s is also constant
with height, or that H varies linearly with height,

1l
Lif - see

== \

vate aierss
are

v

L.

L
8

3
heady ¢ m ]

Filgure 6. Steady saturated flow by inundation.

The lower end of the soil column in figure 6 is
sunported by a screen such that water can flow out freely under
acutospheric pressure. This means that at that heicht h = 0.

If the reference level for the gravitational potential is chosen
&t the hotteom of the soil column, then there also z = ¢, And
thute 1 =h + 2 =0 at the bottom of the column.
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At the free water surface above the soil column, 2.4.2, Steady downward flow in layered soil.
z=0.9mand h =0, thus H=h + 2 = 0.9 m. The water in
the laver from z = 0.8 m to z = 0.9 m can be assumed hydro- For saturated flow of water in a scil profile or scil
static. This means that in this layer H is constant. Thus column with layers of different hydraulic conductivity, the flux
at the soil surface H = 0.9 m, z = 0.8 m and thus h = 0.1 m. density is the same in all the layers.

Sinece within the soil H, and also h, vary linearly with height, .
The whole column is andremains saturated. Thus,
their values are now determined as indicated in figure 6. R : :
38/3t = 0. Then, according to the continuity egquation without

The system described above and depicted in fiqure 6 production term:
is used to measure the saturated hydraulic conductivity of
packed soil columns, as well as of undisturbed soil cores taken %% = - %ﬂ =0
5 \

from the field tc the laboratorv.

This means that the flux density is constant with
height. The hydraulic conductivity and its variation with

PROBLEM 1

depth do not enter into the continuity equation and thus have

Calculate the saturated hydraulic conductivity K no effect on this result.
of the soll in figure 6 if the discharge of water at the bottom
of the column is 1.62 ¢m® per minute and the internal cross-— Because the flux density is everywhere the same,
section of the cylinder is 20 sz_ the gradient of H is inversely proportional to the values of K
in the different layers, From this H and h can be calculated.
ANSUWER £ tm
10
[ ! G
The flux density 1s downwards, so it is negative. b o
The discharqge is: .
1.62 om® _ 1,62 ¥ 10°° m® o ot
1 min 60 s Cenn b,
2 -4 2 \ . ) 04t
The cross section area is 20 em = 20 x 10 m . O
Hence: - -6 1 \\) N o
d' . 2 - - - - /4‘:' 1
q = - lzgfelzrse=_ 1.62 x 10 _4“‘- 2=-1.35x105msl ST
60 x 20 x 10 ~ s m o i
bt od ' —_—

] '3 b oL (17 [ [
al sy ba

nragy 1=

3H _dH _ 0.9 m _ 1.125 -
3s dz 0.8 m . nm
Figure 7. Steady saturated flow throuch two soil lavers with
' P ] different K values.
Then according to Darcy's law:

L35 -5 -1 This will be illustrated for the soil column in figure 6 after
- J 1. ®x 10 1 - - : . . :
K = an7Az = T3S ms = 1,2 x 10 5 m s 1 \ the bottom ©.2 m is reolaced by a laver of which K is one sixth
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of that in the overlying soil (figure 7). With the subscripts
referring to scil 1 and soil 2:

q, = =K, {(dH/dz}; = K, (dH/dz), = q, (6)
or:

e S T

1 0.6 2 0.2 m

AH is the difference of H between the upper and lower boundaries
of a layer. With Kl =6 K2, one finds AHl = 1/2 AHz. Because
H = 0.9 m at the upper surface of the so¢il column and H = 0 at
the lower surface, AH; + AH, = 0.9 m. It easily follows that
AHl = 0.3 m and AH2 = 0.6 m. The cradients of H in the two
layers can now be calculated and the values of h can be found
from the eguation h = H - z,

At z =0, H= 0. Since AHZ =0.,6m H=0,6 mat z = 0.2 m.
With this the diagram can be drawn.

PROBLEM ?

Calculate the flux density, when the hydraulic conduc-
tivity of soil 1 is that as in problem 1.

ANSWNETR

The flux densitv in scil 1 is:

dH - . - . - -
- K(EE) = = 1,2 x 10 5 X 9.23 m s 1o 6.0 x 10 5 m s 1

q

A situation similar to that in figure 7 may occur in the field.
Excessive implement traffic may compact the soil, while the top
layer is kept loose by plowing. In this way less permeable

layers may develop, which hinder, either temporarily or permanently,

the downward flow of soil water. When the water stagnates at
the interface between the layers and develops a positive hydro-

static pressure, as in figure 7 this causes a so-called@ perched

16,

water table. Since this is detrimental to normal root arowth,
deep tillage and subsoiling are often applied to break up the
compacted layers.

PROBLEM 3

Assume that the situation in figqure 7 represents a
flooded rice field. Calculate in mm and m3 per hectare the
daily supplv required to maintain a constant water depth at
the surface.

The flux density is - 6.0 x 10-6 m s-l =
- 6.0 x 1078 x 3600 x 24 m 4"} = 0.518 m d"!. Therefore

the daily support should be 518 mm or 5180 m3 per hectare.

PROBLEM 4

Suppose an effort is made to intercept the water

lost to the subscil by installing closely spaced tile drains
at the boundary between layers 1 and 2. (The water discharged
by the drainage system could be pumped to a neighbouring field
for re-use).
a. Draw a new potential diagram
b. Calculate the discharge through layers 1 and 2
c. Is the drainage system effective in reducing the percolation

losses through layer 27

a. The drainage system provides atmospheric pressure, hence
h=0at z = 0.2 m. The potential diagram will now be as
follows:



20011

\\ - a4

N

/L

grasel ‘ M
taa)

headn i m

b, From the diagram and the hydraulic conductivities, it follows:

4, = - 1.2 x 10_5 X %i% m 5_1 =
q, =- 0.2 x 107° x %4% ms ! =

5 -1

-1.4x10 " ms

6 =1

- 20x%x10 " ms

c. The absolute value of the flux density through the second

" layer has been reduced from 6.0 x 10
1

6 1

ms © to

-6 -
2.0 x 10 m s . CQConseguently, the percolation losses

have been reduced from 518 mm d 1 to

the latter figure is still very high,
is effective for recycling purposes.

173 mm 4”1, Thoush

the drainage system

Quite a different situation arises when the less
permeable layer is on top. This may be caused by loss of soil
structure due to puddling or crust formation due to the impact

of raindrops. It may alsc be due to the treading by animals

or compacticn by heavy machinerv.

18.

PROBLEM 5

The soil profile of a rice field consists of an upper
tayer of 0.10 m and a lower layer of 0.70 m. Beicw these layers
is coarse gravel. The saturated hydraulic conductivity of the
lower layer is 3.5 times that of the puddled layer. The water
i1evel in the field is maintained at 0.1 m above the scil surface,
a. Make a schematic drawing of the system and a potential

diggram
b. Calculate the flux density to the gravel layer is the lower
layer is the same soil as used in figure 6

ANSUWER

a. Application of equtaion 6 to this problem gives:

éﬂl = EZ Azy = 3.5 x 2= - 5.5
8H, = %, Ez"2 ‘ 0.7 :

At z =0.8m, H=h + 2z = (0.1 + 0.8) m = 0.9 m
At 2z =0, H=20
Thus AHl + AH2 = AHI+ 2 AHJ = 0.9 m

Then AHl = 0.3 m and AH2 =0.6m

With this the potential diagram is determined.

N
wavel ;f -a1 [ ¥ a o8

"
heads | m )
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b. The flux density in layer 2 is: At the bottem of vessel V, h =-O;B'm~ If; the o
imverence level for z is chosen at the same place, H = Q.8 m "~
a k AHZ 1.2 x 10—5 x 0.6 - s—l 1.03 10—5 n 3—1 at z = 0, The resistance of the connection pipe between the
= - __—— W = - —-— = = - X H
’ 2 ) ' 0.7 vesgsel and the bottom of the soil column can be assumed so small,

that the hvdraulic head loss there is negligible-and thus
4= 0.8 mat z = 0.1 m at the bottom of the soil column. At
the flow is mostly influenced by the layer with the lowest # =0.6m h=0 and thus H = 0,6 m. As before, H is constant

Figure 7 and answer 5 indicate that in stratified scils

hydrautic copductivipy. ' in the water layer above the soil column. Thus, at z = 0,5 m,
H=0.6mand h = 0.1 m, With this the potential diagram is

_____ ' determined.

Upward flow of water may occur in a soil profile PROQOBLE M‘ [

due to transpiration by vegetation and/or evaporation from
the soil surface. If the ter is s lied b ndwater
’ wa uep ¢ by groundwa ! The cross-section of the soil column in figqure 8 is
this upward flow will lower the groundwater table, unless the
groundwater is replenished by water from elsewhere. A typical
example is seepage from irrigation canals or irrigated fields

to the groundwater in neighbouring fields. If the seepage

. 3
100 cm2 and the discharge measured at A is 180 cm™ per hour.
Caiculate the saturated hydraulic conductivity of the soil column.

ANS WER
balances the evapotranspiration, the groundwater level remains ~  S-5.2.=5.=.0
stable. 1In the laboratory such a situation can be simulated
by a svstem as depicted in ficure 8§, The flux density is:
-6 3 - -
q = 180 x 10 " m —— = 5 % 10 6 ns 1
J lll e 3600 s x 100 x 10 " m
;‘ - aa
Across the soll column:
A - 0.2m _ _ o5 ot
%z 0.4 m .
' -6 -1
_ AH _ 5 x 10 m s - 0—5 -1
ThuS,k"-"q/ﬁ*-"—-—E‘g——“—M“ 1 x1 m s

C FIY 08
Peads im.

Figure 8. Simulation of steady saturated upward flow of water.



3. Flow of water in unsaturated soil.

3.1, Introduction.

Most of the processes involving soil water interactions
in the field, and particularly the flow of water in the rcoting

zone of most crop plants, occur while the soil is in an unsaturated

condition. Unsaturated flow processes are in general complicated
and difficult to describe gquantitatively, since they often entail
changes in the state and content of soil water during flow. Such
changes involve complex relations amonc the variable soil wetness,
suction and conductivity, whose interrelations may be further
complicated by hysteresis. The formulation and solution of
unsaturated flow problems very often require the use of indirect
methods of analysis, based on approxXimations or numerical techni-
ques. For this reason the development of rigorous theoretical
and experimental methods for treating these problems was rather
late in coming. In recent decades, however, unsaturated flow

has become one of the most important and active topics of research
in soil physics, and this research has resulted in significant
theoretical and practical advances.

In soil physics, soils of which the pore volume is
only partially filled with water are called unsaturated.

3.2. Comparison of unsaturated versus saturated flow

We will see, that soil-water flow is caused by a
driving force resulting from an effective potential gradient,
that flow takes place in the direction of decreasing potential,
and that the rate of flow (flux) is proportional to the poten-—
ﬁial gradient and is affected by the geometric properties of
the pore channels through which flow takes place. These prin-
ciples apply in unsaturated a&s well as in saturated secils.

The moving force in a saturated soil is the gradient
of a pusitive pressure potential. On the other hand, water in
an unsaturated soil is subject to a subatmospheric pressure,
or suction, and the gradient of this suction likewise consti-
tutes a moving force. The matric suctien Is due; as we have

pointed out, to the physical affinity of the water

22,
to the soil-particle surfaces and

capillary pores. Water tends to be drawn from a zone where the
hydration envelopes surrounding the particles are thicker, to
where they are thinner, and from a zone where the capillary
menisci are less curved to where they are more highly curved.
In other words, water tends to flow from where suction is low
to where it is high. When suction is uniform all along a hori-
zontal column, that column is at eguilibrium and there is no
moving force. Not so when a suction gradient exists. In that
case, water will flow in the pores which remain water-filled
at the existing suction, and will creep aleng the hydration
films over the particle surfaces, in a tendency to equilibrate
the potential.

The moving force is greatest at the "wetting front"”
zone of water entry into an originally dry soil. In this zone,
the suction gradiert can be many bars per centimeter of soil.
Such a gradient constitutes a moving force thousands of times
greater than the gravitational force. Such strong forces are
sometimes required (for a given flux) in view of the extremely
low hydraulic conductivity which a relatively dry soil may
exhibit.

The most important difference between unsaturated and
saturated flow is in the hydraulic conductivity. When the soil
is saturated, all of the pores are filled and conducting, so
that conductivity is maximal. When the soil becomes unsaturated,
some of the pores become airfilled and the conductive portion
of the scil's cross—~sectional area decreases correspondingly.
Furthermore, as suction develops, the first pores to empty are
the largest ones, which are the most conductive, thus leaving
water to flow only in the smaller pores. The empty pores must
be circumvented, so that, with desaturation, the tortuosity
increases. In coarse-textured soils, water sometimes remains
almost entirely in capillary wedges at the contact points of
the particles, thus forming separate and discontinuous pockets
of water. In aggregated soils,toco, the large interaggegate spaces
which confer high conductivity at saturation become (when
emptied) barriers to liquid flow from one aggregate to its

neighbors.
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For these reasons, the transition from saturation to
unsaturation generally entails a steep drop in hydraulic con-
ductivity, which may decrease by several orders of magnitude
(sometimes down to 1/100,000 of tis value at saturation) as
suction increases from zeto to one bar. At still higher suctions,
or lower water contents, the conductivity may be so low that very
steep suction gradients, or very long times, are required from
any appreciable flow to occur.

At saturation, the most conductive scils are those in
which large and continuous pores constitute more of the overall
pore volume, while the least conductive are the soils in which
the pore volume consists of numerous micropeores. Thus, as is
well known, a sandy soil conducts water more rapidly than a
clayey soil. However, the very opposite may be true when the
soils are unsaturated. In a soil with large pores, these pores
quickly empty and become nonconductive as suction develops,

thus steeply decreasing the initially high conductivity.

In a soil with small pores, on the other hand, many of the pores
remain full and conductive even at appreciable suctiocn, so that
the hydraulic conductivity does not decrease as steeply and may
actually be greater than that of a soil with large pores subjected
to the same suction.

) Since in the field the so0il is unsaturated most of the
time, it often happens that flow is more appreciable and per-~
sists lorger in clayey than in sandy soils. For this reason,
the occurrence of a layer of sand in a fine-textured profile,
far from enhancing flow, may actually impede unsaturated water
movement until water accumulates above the sand and suction de-
creases sufficiently for water tc enter the large pores of the
sand. This simple principle is all too often misunderstood.

3.3. Relation of conductivity to suction and wetness 24.

Let us consider an unsaturated scoil in which water is
flowing under suction. Such flow is illustrated schematically
in the model of figure 9. In this model, the potential difference
between the inflow and ocutflow ends is maintained not by diffe-
rent heads of positive hydrostatic pressure, but by different

imposed sucticns.

Porous plate. * ax Poroun plate

:qntq‘nnl
Tevel
TRERIVQIr

volumateric contoings

Figure @ : A model illustrating unsaturated flow
(under a suction gradient) in a hori-
zontal column.
In general, as the suction varies along the sample,
so will the wetness and the conductivity. If the suction heads
at both ends of the sample are maintained constant, the flow
processes will be steady and the suction gradient will increase
as the conductivity decreases with the increase in suction along
the axis of the sample. This phenomenon is illustrated in figurelo.

Distance

FigurelC : The variation of wetness 0, matric
potential hm, and conductivity XK
along a hypothetical column of unsa-
turated scil conducting a steady flow
of water.



S$ince the gradient along the ceclumn is not constant,
as it is in uniform saturated systems, it is not possible,
strictly speaking, to divide the flux by the overall ratio of
the head drop to the distance (aH/Ax) to obtain the conductivity.
Rather, it is necessary to divide the flux of the exact gradient
at each point to evaluate the exact conductivity and its varia-
tion with suction. In the following treatment, however, we shall
assume that the column of figure 9 is sufficiently short to allow
us to evaluate at least an average cenductivity for the sample

as a whole (i.e. X = g. Ax/4H).

The average negative head, or suction, acting in the
column is :
-H =h = -

We assume that the suction everywhere exceeds the air-

entry value so that the soil is unsaturated throughout.

Let us now make successive and sytematic measurements
of flux versus suction gradient for different values of average
suction. The results of such a series of measurements are shown
schematically in figure 11 As in the case of saturated flow,
we find that the flux is proportional to the gradient. However,
the slope of the flux versus gradient line, being the hydraulic
conductivity, varies with the average suction. Th a saturated
soll, by way of contrast, the hydraulic conductivity is generally
independant of the magnitude of the water potential, or pressure.

Flun (q)

Suetion gradieat AHABX

Figurell : The hydraulic conductivity, being the
slope of the flux vs. gradient rela-
tion depends upon the average suction
in an unsaturated soil.

Ks,

//Scnar 53!

=
~

Clayey soil

Hydroune conductivily

Suchron

Figurel2 : Dependance of conductivity on suction
in soils of different texture.

Figure }2 shows the general trend of the dependence
of conductivity on suction in soils of different texture. It
is seen that, although the saturated conductivity of the sandy
soil Ksl is typically greater than that of the clayey seil Ks,,
the unsaturated conductivity of the former decreases more steeply

with increasing suction and eventually becomes lower.

No fundamentally based equation of general validity
is available for the relation of conductivity to suction or to
wetness, and existing knowledge does not allow the reliable pre-
diction of unsaturated conductivity from bkasic soil properties.
Various empirical equations have been proposed, however, in-

cluding the following

k= 2 (1)
h

K = ——E——ﬁ {2)
b+h

K

K = ] (3
1 + (h/hc)

K=a.a" (4)

K = KS.WSm (5)
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=
It

the hydraulic conductivity at any degree of saturation

{or unsaturation),

the saturated conductivity of the same soil,
; b and m = empirical censtants {different in each eguation),

= the matric suction head,

K

a

h

6} = the volumetric water content,
W = the degree of saturation,

n

= the sucgtion head at which K = 1/2 Ks‘

Of these various eguations, the most' commonly employed

are the first twe (of which the first is the simplest, but cannot

be used in the suction range approaching zero). In all cf the

equations, the most important parameter is the exponential con-
stant, since it controls the steepness with which conductivity
decreases with increasing suction or with decreasing water con-
tent. The m-value of the first two equations is about two or

less for clayey soils, and may be four or more for sandy soils.
For each soil, the equation of best fit, and the values of the

parameters, must be determined experimentally.

The relation of conductivity to suction depends upon
hysteresis, and is thus different in a wetting than in a drying
soll. The reason is that, at a given suction, a drying soil
contains more water than a wetting one. The relation of conduc-
tivity to water content, however, appears to be affected by
hysteresis. to a much lesser degree. The value of the expcnent
for the relation of K to 0 (equation 4) can be as high as 10 or

more.

3.4, Hydraulic_conductivity.

The hydraulic conductivity of unsaturated seils is
smaller than that of saturated soils, because only the pores
which still contain water can contribute to the flow of water.
Since the hydraulic conductivity of a pore 1is proportional to

28

he sgaure of its radius, the largest water—-filled pores
aeatyibute most to thaf flow. When a saturated soil starts
becoming unsaturated, the largest pores are emptied first.

s & result, the unsaturated hydraulic conductivity decreases

viry fast with water content.

It has been found experimentally that Darcy's law
is azlso valid for unsaturated soils. Thus, the flux density
for the flow of water in unsaturated soil is:

- - sSH 8
q = - K(&) =2 (8)
where now the hydraulic conductivity K(8) vary over manv orders of

rmagnitude with 9.

Figure 13 shows the hydraulic conductivity K of a
medium fine sand and a loam as function of the volume fraction
of water, 8. For instance, when in the sand 0§ decreases from

€ = 0,34 to 6 = 0.07, K changes from about K = 1 m d-l to

K =10 mal.

The relationship between K and 6 is not linear,
put in many soils log K is approximately propertional to &,
as indicated in figure 13 by the semi-logarithmic scale.
Cenerally, the K-6 relationship is not influenced by hysteresis,
in contrast with the K—hm relationship. Therefeore, the K-8
relationship is used most of the time,

The hydraulic conductiwity of loam (figure 13B)
ie lower than that of sand {figure 13A) for the same 6.

At the same water content the water-filled pores of
juam are smaller than those of sand. Thus the contact area
per volure between the solid phase and the water is the largest

wr loam. This results in a higher resistance to flow, or a
lower hydraulic conductivity.
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o —— o g 3.5. Steady unsaturated flow of water.
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" i 1 3.5.1, Steady upward flow.
ok —- N ?m
£ i
F ro i To study steady, upward flow of water in unsaturated
|4 -h,

soll, we will first consider a situation as in figure 14, The
water in the soil column is in static equilibrium with the simu-
lated groundwater table, because a plastic cover prevents evapo-

wal
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~
-~
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~
~
-~ ‘
-
-
aadoal

T TrTYrT
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et caora;

L // / ; Figure 13A. Soil water charac- ration from the soil surface. Thus the water content profile
. . ====m===== teristic hp-
':——~~-f— --/‘ﬁr f+ " hydraulic conductivity kTee(f___))' shown is the same as the soil water characteristic of the soil
F ! P T and hydraulic' diffusivity D-8 for the particular range of h_. Such an equilibrium situation
P : : e } for medium fine sand. ; n
/ ; P may occur in a field with a constant, shallow water table during
i ‘t*"“"*;%“——+v e periods of fog, when the air is saturated with water vapour.
S 4 | :
I‘ R !
ao L “ “a L - I om plastic eover LR rim
by ar 0z ) s o q oe Y
A “ ¥r9s
13 13 d
Sim?als
BN Y koyemd
T :'° ol acd Ly
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] neaay (o
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E Figure 13B. Soil wat h -
] e mmm—mme terist?cerh;-gr?c y, Figuff_ii. Static eguilibrium with a groundwater table,
1 hydraulic conductivity k-8 (----) sEETEEETE
and hydraulic diffusivity r-g9
i (= m e -) for loam. il i
] The scil is saturated below z = 0.3 m. Since at
] z = 0.3 m, hm = = 0.3 m, the air-entry value is - 0.3 m.
=7 ou I1f the plastic cover on top of the soil column in
figure 14 is removed, evaporation will start (figure 15). If
9 the evaporation rate is constant and the groundwater table is
= R maintained at its original level, steady upward flow will be
g egstablished. This means that 8 does not vary in time and thus,
1 X : 1 according toc the continuity equation:
{] . i . } :
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q=-K §z = <constant and uniform
For the flow to be directed upwards, it must decrease

with height, making dH/dz negative and g positive, Thus h, and

with it 8, must decrease. Since K decreases fast with 6 (figure 13}

it decreases fast with height. To maintain the same flux at all

heights, a certain rate of decrease of K with height must be

compensated by the same rate of increase with height of the

absolute value of dH/dz. Thus the H curve in the potential

diagram must be increasingly flatter towards the soil surface,

as indicated in figqure 15.

(RN

I3 J

ar

Y] o 0 as
Teads (m ) '

Figure 15. Steady upward flow of water, constant evaporation
from a stable groundwater table.

The above situation is often found in the field during periods
of drought, when a rather sharp transition from a dry upper
layer to a moist lower zone is developed due to the sharp
decrease of K with decreasing water content. The formation

of such a sharp transition is the result of a self-accelerating
'mechanism, which can be explained as follows. When evaporation
starts, 0 as well as h and H decrease near the surface. But,
because K decreases too, the new H gradient is too small to
maintain the upward flow needed to satisfy the evaporative
demand. Hence, & decreases still further, causing a further

decrease in H, but again not sufficient to off-set the accompanying

decrease in K etc... This process continues until the surface
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layer has become so dry that practically all flow of water ceases.
The formation of this dry surface layer is of practical importance
because it protects the soil against large evaporation losses.
This so-called scil nmulch is the principle upon which dry-land

farming is practised.

The exact values of h and H in the steady situation
represented in figure 15 are difficult to calculate, and then
only when the k-¢ and hm-e relationships are known accurately.
The gradients in the lower, water-saturated part of the profile
can be calculated easily, provided the saturated K, the evaporatiocon
rate and the air-entry value are known. '

PRC¢CBLEM ?

Is the relationship of H and h with z curvilinear
in the water-saturated part of the profile in figure 157

ANSWER

In the water-saturated part of the profile, K is
constant with height. 1In steady saturated water transport,
the flux density is also constant with height. This implies
that dH/dz is constant with height or that H changes linearly
with height, and not curvilinear, The same is true for h.

PROBILEM &

Estimate the evaporation rate in fiqure 15, assuming

a steady state situation, a saturated K value of 0.05 m cl-1
and h = - 0.22 m at z = 0.2 m.
ANSWER

Since q is constant with height, the evaporation
rate at the surface is the same as the flux density in the
saturated zone. If h = - 0.22mat z = 0.2 m, then H= - 0.02 m
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3.5.¢. Steady downward fleow.

at. that height, and thus:
Figure 16 shows the potential diagram for a field

1 - 0.02
The water at the surface is

= - K = - 0.05 md = -
: d= " .20 5 o d situation similar to ficure 6.
applied by sprinklers and the groundwater table is stabilized
PROBLEM ? by tile drains. The sprinkling rate is such that, without

run-off, the layer of water on the scil surface remains constant.,

a. Determine the height of the saturated zone for the situation

in problem 8 v
L. Does this height remain constant if the evaporation rate e \
changes? ) . [ d
. ! .
' B [ - ///
A.N.S.UER | ! i/ A
. ' L
ouT ‘!
a. In the saturated zcone is h ‘ I ////
‘ L-/ ;,
-1 . :
dH 3.00 -
dz ~ = = ————E—ELQ:T = =0.1mm 3
-0.05 md - ol
dh _ dH _ dz _ _ -1 drouns mare” ; 5 , e -
Then d? - EE daz 0.1 -1l1.0=-1.dmm N table e » 2t oo as ] s ‘:'
or h=-1.12 +C .
Figure 16. Steady downward flow of water at a high sprinkling

————————— rate {flocded soil}.

S8ince h =0 at z =0, C =0

At the top of the saturated zone, h is egual to the air-entry PROBLEM I o
value, or h = - 30 m (see text). Thus the height of the
saturated zone is 1
Calculate the flux density in fiqure 16 if K = 10 cm 4
z = :%%T = E%;% % 0.27 m and the water layer is 10 cm deep,
ANSWER

b. No. The larger the evaporation rate, the larger the absclute
value of the hydraulic potential gradient, and thus also the
h-gradient, the smaller the height over whi ir- - -

g ' g ich the air-entry qx_kgﬂ=_o_1mdlxl-'-%_-0.llmd
value will be reached, and thus the smaller the saturated !

Zone




PROBLEM 11

Calculate the sprinkling rate in the steady state
situation of figure 16 if the depth of the water layer at the
surface is negligible.

ANSWER

In this situation h = O at the scil surface and in
the whole profile, because h = 0 alsoc at 2z = ¢. This means
that H = z and dH/dz = 1 m m 1. The sprinkling rate then equals
the value of the hydraulilec conductivity, 10 ¢m d-l.

If the sprinkling rate is decreased to another constant
values, a new steady state situation arises, when the downward
flux density still eguals the sprinkling rate, This new situation
is accompanied by a decrease in the H gradient, i.e. both H and h
at the soil surface decrease. 1If the sprinkling rate falls below
a certain critical value, the air-entry value of the scil will be
exceeded and an unsaturated zone will develbp in the top of the
goil profile. Since K decreases with 8 in the unsaturated zone
and g is constant, the H gradient must increase with height, as
shown in figure 17. Consequently, the h gradient must also increase
with height, which means that the h curve becomes steeper towards
the soil surface.

a8y

-4 -t 67 a L] LD 2 ob
. neads

Figure 17, Steady downward flow of water at a low sprinkling
B rate.,
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PROBLEM 12

Under what conditions are H and h linear functions of =z

chroughout the profile?

ANSUWER

H and h are linear functions of z only when dH/dz =
constant, i.e. when k is constant throughout the profile.
Because the soil is saturated at the groundwater table, it should

bz saturated throughout the profile.

PROBLEN 13

Assuming that the air-entry value is not exceeded,
draw the diagram for the steady state situation with a
-1
sprinkling rate of 8 emd ~.

A NS WER

A flux density of 8 cm al correspends to
du/dz = -~ g/k = 0.8 m m !
flence, at the soil surface, H = 0,8 mand h = - 0.2 m.

T
. o
\ L ‘j n (] C% Il
\ \‘: [
lj-!\' . i
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. \;{ A
N
Fos, \; o 0 01 Py p o’n 0

hrads [ m )
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PROBLEMN 14 The air-entry value is h =-0.4 m. This value is reached

at 2z = 0.44 m. Thus the soil is saturated below z = 0.44 m.
Above z = 0,44 m the gradient dH/dz increases with height,

What is the highest possible H gradient that can be

attained in a steady state downward flow as shown in figure 17. but cannot exceed the value for which dh/dz = 0. With these
considerations the potential diagram can be drawn.
ANSUWER
In the unsaturated zone, where h is decreasing with kiriff of

height, k is also decreasing with height, Therefore, dH/dz )
must increase with height to satisfy the condition for steady - o
state: g = - K g% = constant )
. 264
Consequently, dh/dz must also increase with height, !

i.e. become less negative. Now suppose dh/dz would become ook T pee
positive at a certain height. Then both h and k would increase

with height. To keep the flux constant, dH/dz would have to

e

decrease with height, and thus alsc dh/dz. This is in conflict O

with the supposition made above. Thus, we can conclude that ﬁi- . H +

the highest possible value of dh/dz is zerc. 1In this situation N o * ~ s " e (n

h has reached the constant wvalue at which K has the same value

as the imposed flux density, which then flows through the soil

under the gravitational potential cgradient of 1 m m_l. b, bBAbove z = 0.44 m the solil is ursaturated and 6 as well as K
vary. Since K is not given in the unsaturated zone, we only

PROBILEM 15 can guess the most probable shapes of the H-and h-profiles.

Even if K were known, calculation of these profiles is complex
~1i t of the problem.
a. Draw as logical as possible the potential diagram for because of the non-linear nature p

steady downward flow with a sprinkling rate of 1 cm d—l

b. Why is the phrase "as logical as possible” needed in a? Figure 18 presents a sunmary of the h-profiles for

the various cases of steady vertical flow of water discussed

in this section. The numbers next to the curves are the values

ANSWER
___________ of the flux density. Upward flux densities {(g > Q) represents
-1 -1 evaporation and downward flux densities (g < O) represents drainage.
a. Fromq=-1.0cnd and K = 10 cm d it foliows: tero flux density (g = 0) is the special case of hydrostatic
an _ _ g _ 0.1 -1 4 equilibrium.
EEE an

=85 1209 5xm?
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Figure 18. Summary of h~profiles for steady vertical flow of
===s=s=== water with a stable groundwater table,

3. 6. Non-steady unsaturated flow of water.

3.6.1. Introduction.

For steady state flow through a tube of unifoerm size
(figure 19), the flux density is the same through every cross
section of the tube. Consequently, water is not stored.

With non-steady or transient state flow, water is
stored (or in some situations it is coming from storage) in
the soil. Thus in transient state flow, the flux density
entering the tube in figure 19 would not equal the flux density
leaving the tube. The difference between that entering and that
exiting is the storage. That is, the sterage (which can be
expressed as a change in volume water content with time,aev/at)
can be determined from the difference between inflow and cutflow
(which can be expressed as the change in flux density along the
length of the tube 3Jw/éx) .

40,

Figure 19. A tube of cross-sectional area A and length As is

========= uniformly packed with a uniform soil. Water enters
at a flux density Jwin and leaves at a flux density
onut

3.6.2. Analysis of H-profiles.

In the field, water transport seldom is steady,
because precipitation, evaporation, irrigation, drainage etc..,
change continually. Transport processeswhich change with time,
are called non-steady. One can obtain insight into non-steady
water flow processes in the field, qualitatively, by obtaining
tensiometer data at different times and depths in the soil
profile. With tensiometers one obtains information on the matrie
head h, as well as the hydraulic head H = h + z. From the matric
head at different times one can derive whether the volume fraction
of water is increasing or decreaseing. From the gradient of H
one can deduce in which direction the water is moving, and
possibly predict values of 0 and directions of flow at future
dates.

Which is the direction of flow if dH/3z is positive,
negative of zero?

Since z is defined positive upward, a positive flux
density is directed upward and a negative flux density downward.
Alsc g = - k 3H/3z. Thus, when 3H/3z is pesitive, then g is
negative, and thus directed downward. Similarly, when 3H/3z
is negative, the flux density is directed upward. There is no
flow when 3H/3z = O.



Combination of equations:

o

1= (6 - 8,) ds and » = s £ % gives:
£20
- - - - /2 _
I= .{ (0 - 8,) ds = (e - 8, are!/? -
5=0 A=0
¢ 172 (6 - 8,) dx
=0

Introduction of the parameter:

s = j (6 - 8;) dx (56)

A=0
leads to:
1 = sgl/? (57)
and consequently,
- | -1/2 _ 1
i=3f i/2 st = 7% (58)

5 is called the sorptivity and is a measure for the capacity of a
soill to absorb water. It is the cumulative infiltration during
the first unit of time. Since

§ can be found by evaluating the area between the 8-axis, the
Bi line and the §-) curve. S can also be given by:

74.

Using the product rule d(i9) = idé + 0dXx and the
houndary conditions:
0 o= ﬁi for A + =
9 =9, for » =0

Q

%) ‘.w Bj_

(8 - 8,) ax = | dte - 8,) & - Ade =
AZ0 ASO €5
- B, 8, %

(8 - 9,0 [ - Adg = 0 - O - Ade = 7d8

A=0 g § 8

o} o i

Also, from figure 31 it is cbvious that

60 @
pX-{:! and (g - Bi) dx

Bi o

represents the same area.

Would you expect S to be constant for a given soil?
S is not constant for a given soil. The 8-i curve is the
solution of equation 11 subject to conditions 23 and 24.

Therefore, 5 depends on Bi, 8. and on the D-6 relationship of the

o}

so0il. While BO {saturation} and the D-6 relationship normally

do not vary for a given s0il, § will still depend on ei.

For initially dry soil (8, = 0) the sorptivity

- - i__ -
varies from about 5 x 10 5 m s 1/2 {~ 0.04 cm min 1/2) for

a heavy clay to about 2 x 10-3 m s‘_“l'/2 (Z 1.5 em min~

for a coarse sand.

PRACTICAL PROBLEM

a, Calculate the cumulative horizontal infiltration in an
initially dry, heavy clay soil during 14 hours
b. Do the same for a coarse sand



3

(9]

a. Using I = 8/%t, we find for heavy clay:

T=5x10"ms/? x /74 5 36667 s T 1.47 x 1072 m or 1.47 cm
b. For coarse sand:

3 “1/2 e

I=2x10°"ns % x /38 x 3600 5= 0.59 m of 59 cm

3.6.4.2, Vertical infiltration.

So far, the infiltration process was described only
for cases in which the gravitaticnal potential can be neglected,
During vertical infiltraticn, the influence of gravity becomes
more important as time progresses. Then equation 23, together
with the initial and boundary conditions of equations 24 and 25,
must be solved. A number of different techniques for solving
equation 23 are available, A solution obtained by one of these
techniques is:

172 2

s(8,t) = a t2/% % at + a.t +a,tt ... {59)

1 2 3
where ays 8, By, @, ... are still functions of 6. By means of
equation 59 the depth of a given value of & at time t can be

evaluated when a a, etc... are known. These coefficients can

1'
be evaluated by numerical methods usinc the relationships D-6

and K-8.

The cumulative infiltration obtained by the above
technique 1s given by:

1/2 3/2 2

I =5t + At + Bt +Ct°+ ..., (60}
The coefficients of eguation 60 are evaluated in the same way as

those of equation 59.
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The infiltration rate can be derived from squation 60
differentiating with respect to t {eguation 10):

V2 va+vasz et v 200 e ... (61)

i=1/2 st~
Equation 60 and 61 usuallv are truncated after the
.rst two terms, because for not too large t these series converge
ripidly. In that case equations 59 and 60 becomes respectively:

1/2

I = 5t + At (62)

and

I =172 st /2

+ A (63)
S again the sorptivity defined in equation 56. It is the dominant
parameter in the early stage of infiltration. As time progresses,
the first term becomes neglicible and the importance of A, which
tepresents the main part of the gravitational influence, increases.

PRACTTICAL PROBLEM

a. Make a graph of the cumulative infiltration I and the infil-
tration rate i as a function of time for vertical infiltration
during 4 hours in a fine sandy loam for which:

5 =7.0x 10_4 ™ 5_1/2
A=1.0x10°%ms?
B=1.0x10°nmns /2

Use eguations 60 and 61 (first three terms)
b, Give in the same figure the results when equations 62 and 63
are used

¢. Compare the results
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EigEEE_ZO. H- and h-profiles in a soil during steady evaporation

,,,,,,,,, {t,) and some times after it started raining (tl).

Figure 20 shows H-profiles at two different times.
Initially at toe there is steady evaporation for which dH/Sz
increases with height, since 6 and X decrease with height, If
then it starts to rain and water infiltrates into the soil
profile, the H-profile may after some time have changed to
that indicated by tl' From this profile one can tell in which
direction the water is moving, and whether 36/3t > O or
38/38t < O. Below height A there is still upward movement,
because 3H/9z < 0. Above height A, the transport is now
downward. At height A, there is no movement because 3H/5z = 0,

PROBLEM 1 &

Is there a2 water layer on top of the soil at time t_?
17

At the soil surface, h < 0, Thus, there can be
no free water at the soil surface.

42,

PROBLEM 17

Explain, by using the continuity equation, whether
at height A in figure 20 6 decreases, increases or remains

after tl.

ANSUWER

At some height hl
negative, because there 3H/%z 1s positive. At some height h2

above A the flux density q, is

below A the flux density is positive, because 3H/3z is negative.
Therefore, at height A,

q, - g
89 _ 4 1% e
3h l”“(hlg A and hy + A) (hl - hz) !

because (g, - q,] < 0 and (h1 - hz) > O

. L1 3
Thus h h o2 = - &4
us, at height A&, v 7 > Q
This means that 8 increases with time. Even without the above
proof, it is easy to see that the water content at A must increase

because water is moving towards A both from below and from above.

For height A it is easy to tell whether 8 will increase
or not, just by looking at the H-profile. For other heights it
is not so easy to predict the chances in €. Take for instance
heights B and C in figure 20. At both heights the flux density

is downward.

Since C is the inflection point of the H-profile
above heicht A, the H-gradient at B is smaller than at C.
However, © is greater at B than at C, as can be interpreted
from the h-profile. This means that K is greater at B than
at C. Therefore, without knowing the exact numerical values
of K and 2H/3z, it cannot be conclﬁdedwhichheiqht has the
greater flux density. This reasoning is true for every height
above C. Thus, it is not possible to conclude whether above C

6 will increase or decrease, or even remain constant.
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The same problem arises in the interval between
heights D and E, where D is the inflection point of the
H-profile below A, and E is the height where the H«profile.

becomes linear.

In contrast, between A and D, the absolute value
of 94/9z as well as X decrease with height, i.e. 3g/dz < 0.
Hence, 36/3t at every heicht in this interval is positive.
A similar reasoning can be given for the interval between
C and A. Also in this region 3g/%z is negative. Therefore,
38/3t will be positive for everv height between A and C.

PROBLEM 18

Subﬁdée'the Geather becomes fogay for an extended
period of time directly after the rain has stopped:
a. What will be the ultimate shape of the H-profile
b. Compare 6 at different heichts in this final stage with
those at time t1

ANSWER

a. Wwhen there is foq, there is no evaporation. But, downward

and upward water within the scil ovrofile will continue until

finally static equilibrium is attained. Since at static
equilibrium 3H/92 = 0, H is constant and zero throughout
the soil profile, because h = 0 at z = O.

b. At equilibrium, h is !inear with height and equal to - =z.

A little above C, H = C at time tl,

1
the water content also will remain the same at that height.

Above this point, h and 8 will decrease compared to their

values at tl. Below this point, both h and 9 will increase.

At point E and below, the soil is saturated at time tl'

Although there h will increase with time, because the flux
will vanish, the water content cannct increase any further,

and thus at that height h
as this final stage will be the same as h at time t., Therefore
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By the preceding reasoning one can acquire only a
goatitative understandine of the water flow processes in soil.
Since in unsaturated scil K varies with o, it is not'pdssible
to calculate g as a function of height directly from H~profiles
22 shown in figure 20. For this it is necessary to know, in

arfstition, K-8 and 8-h relationships. The procedure that then should.

ne nllowed to estimate 38/3t is outlined in figqure 21. 1In
this figure, the subscript 2 indicates height, s stands for a
smail increment in height and 8 is the average volume fraction

cf water.

Figure 21. Calculation scheme for analysing a 8-profile.

In order to estimate 36/9t at a height z in a soil
vrofile, we will describe in words the steps followed in
figure 21. By means of tensiometers, measure h at

By means of tensiometers, measure h at three
different heights, i.e, at z, 2 + s and z - 8. Add z to each
fi o obtain H. Estimate 3H/3z at the heights z + 1/2 s and
z - 1/2 s, assuming that H changes linearly with height in the

intervals from z to z + s and from z - s to z. By means of a
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45,
. ANSWETR
predetermined soil water characteristic curve, determine s  Fet-T-o--=-=
that corresponds to h at z, z + s and z - s. Assuming that 6
changes linearly with height, find 8 at the heights z + 1/2 s By reading the appropriate values from figure 13,
and z - 1/2 s. By means of a predetermined K-8 relatienship, the following scheme can be set up:
find the K-values at heights z + 1/2 s and z - 1/2 s, Now, depth z h H 8 ry K %% q %%
“m m m m . - - - -
9H mm 4 1 m m 1 mm d 1 d 1
= = K —
9z + 1/2 s z + 1/2 S(Bz)z + 1/2 s , and 0.3 0.2 -2.0 -1.8 0.09
N K (BH) .14 0.19 -1l 2.1
9 - 1/2 s z ~ 1/2 892’z - 1/2 s 0.4 0.1 -0.8 -0.,7 0.19 0.105
Finally, a good estimate of (ae/'at)z is: 0,24 4.20 -3 12.6
0.5 0.0 -0.4 -0.4 0,295 ’
(gg) - 4 4 1/2 s T 97 - 1/2 s
at' =z (Z+1/2$)"(Z-1/25) PROBLEM ? 0
The procedure outlined in fiqure 21 makes use of
average valies of 8, and not of hydraulic conductivity or a. Also estimate 36/3t at a depth of 0.4 m using average h values.
pressure head., This amounts to assuming that & changes linearly Do the same using average K values.
with height. This assumption is usually not far from reality b. Compare the values for K and ©98/3t obtained by the three
and introduces small errors in 36/3t. An alternative approach calculation schemes.
would be to average the K-values for each of the pertinent 8
values, This amounts to assuming that K changes linearly with 4, ANSUWER
which obviously introduces much more serious errors in 28/4t
because of the strong non-linear K-9 relationships. An inter- a. Using average h values the calculation scheme is:
mediate approach will be to use average h-values.
depth =z h H h 8 K %‘-zi- ] g—:
PROBLEM 19 m m m m m -1 -1 -1 1
mm d mm mm d d
In a medium fine sandy scil, for which the 8-h and 0.3 0.2 -2.0 -1.8
. . . . R -1.4 L1 . -11 0.88
K-8 relationships are given in figure 5 and 6, three tensiometers 1 © ©.08 !
0.4 0.1 -0.8 ~0.7 0.117

are installed at depths of 0.3, ©.4 and 0.5 m below the surface.
At a certain moment the tensiometers indicate h-values of - 2,0, -0.6 0.24 1.2 = 12.6
- 0.8 and - C.4 m respectively. Estimate 38/3t at a depth of
0.4 m using the scheme given in figure 21. Hysteresis may be

neglected.
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Using average K values: ANSWDER
= 2H ELE)
depth =z h H £} K K - -_—
e§ m m m 9z 4 It The calculation scheme is as follows:
mm d_1 mm d—l m m_1 mm d 1 d-1
- JH 38
¢.3 0.2 =-2.0 =-1,8 0,09 0©.03 depth =z h H 8 8 K = q rry
m m m m - - - -
0.39 -1l 4.29 matnn! mmal a7t
0.4 0.1 -0.8 -0.7 0.19 0.75 0.57
0.0 0.8 0.0 0.8 0,50
20.4 -3 61,2
0.49 50 4.0 =200
0.5 C.0 -0.4 -0.4 0.295 40.0
: 0.1 0.7 -0.3 C.4 0.48 1.10
0.46 15 6.0 -90
b. The results in the previous problem show that the 8 values
. 0.2 0.6 ~0.8 -0.2 0.44 0.68
derived from the measured h values vary nearly linearly with 0. 42 5.5 4.0 —22
depth. We will, therefore, consider these results as standard ’ - )
inst which the other t leulati h b .3 o©0.5 ~-i.1 -0.6 0.4 0.10
culation schemes can be
against whic e other two calcu a 0.36 2.0 6.0 -12
evaluated.
0.4 0.4 -1.6 -1.2 0.32 0.24
A comparison of the results of the first two schemes shows 0.37 3.4 5.0 12
that using average values of h leads to an underestimation ) ' :
9 g 0.5 0.3 -1.0 -0.7 0.42 0.24
of K for the drier soil. The error in the final value of
0.445 9.0 -4.0 36
38/9t is about 10 %. The third scheme schows that using
K val leads t 1 £ 58/9t which is almost 0.6 0.2 -0.5 =-0.3 0.47 0.04
average values leads to a value o which is almos
; ¥ 0.475 20 -2,0 40
gix times too large. This illustrates the extreme non-
0.7 0.1 ~-Q.2 -0.1 0.48 0.10
linear character of unsaturated water transport.
©.49 50 -1.0 50
0.8 0.0 0.0 0.0 Q.50
PROBLEM 21
. . . 3.6.3. Infiltration theory.
In a loamy scil profile nine tensiometers are installed === @ZzO— — = — — — — = -~ =
at depths of 0, 0,1, 0.2 ... and 0,8 m below the soil surface.
Estimate 38/3t at depths O.1 ... and 0.7 m for the moment that A typical example of non-steady unsaturated flow
the tensiometers indicate h values of 0, - 0.3, - 0.8, - 1.1, of water is the infiltration of water into scils. When water
- 1.6, - 1.0, - 0.5, 0.2 and C m, respectively,. Use the 6-h is applied at the soil surface {e.g. under flcod irrigation or
and K-€ relationships in figure 13. Hysteresis may be neglected. inundation), it enters the soil profile and changes the water

content distribution with depth, alsc called water content
profile. After irrigation has continued for some time, the
following zones can usually be distinguished in the water content
profile {figure 22):
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Figure 22. Zones of water content profiles some time after
======m== start of irrigation,

The saturated zone is a thin zecne at the soil
surface. The transition zone is a zone of decreasing water
content between the saturated zone and the nearly saturated
transmission zone. Its lower end may reach from a few milli-
meters to a few centimeters below the surface. These two
upper zones are not always clearly distinguishable, especially
in the laboratory. They are caused by structural changes at
the soil surface and the entrapped air.

The transmission zone is the conveyance zone for the
infiltrating water. Wwhile all the other zones remain clearly
constant in thickness, this zone continues to elongate as long
as water is supplied at the soil surface. Its water content,
though slightly changing with depth, is rather constant and
close to saturation.

The wetting zone i1s the normally thin zone where the
water content changes from its initial value to the value of
the transmission zone.

The wetting front is the visible limit of water
penetraticon, where the gradient of the pressure head is very

large.

The cumulative infiltration, I, which is the volume
of water that has infiltrated into the soil divided by the surface

area, is

I = (8 - Bi) ds (3)
s=0
where s 1s the distance in the direction of flow {(here depth
in the soil profile), 8 is the volume fractionlof water at
distance s and Bi is the initial uniform value of &. The
cumulative infiltration is, of course, an increasing function
of time.

A column of soil with surface area A can be divided
into n slices, each with thickness As., The volume of water
absorbed by each slice is then A(9 - ei) As, where 6 is the

average volume fraction of water of the slice.

The volume of water absorbed by the whole ¢olumn
then equals:

o=AaAL (8 - 31) As
n

From As - O this can be written as the integral:

Q=A {8 - 91) ds
s=0
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The volume divided by the surface area is then:

J‘ (86 - 6,) ds
i

5=0

=
1

IO
1]

(whereas Bi has been assumed constant, it could alsoc vary with s,

without changing equation (9). The integral would only get another
value).

The driving forces for the water entering the soil
are the gradient of the pressure head between the wetting front
and the soil surface, and gravity. While the latter is constant,
the gradient of the pressure head decreases with time, because
of the advancing wetting front. As a result, the flux density
through the scil surface, also called the infiltraticn rate i,
decreases monotenically with time and approaches asymptotically

a constant value, as gravity becomes the main driving force
(figure 23).

[l
cate

cumuative ntillcat.on
TR FLTS

et 1

Figure 23. Cumulative infiltration I and infiltration rate i
========= as function of time.

The infiltration rate may be expressed as:

_dl

=%

Suppose at time t, the cumulative infiltration is T
and at time €t + At, I + AI, The mean flux density during the
time interval At is then the increase of the cumulative infil-

tration AI, divided by At, i.e. i—in.

52,
The flux density (= infiltration rate} at time t can
be found by letting t approach zero:
. AT [sh)
1= lim =) = =¢
At - O At dt

Integration of equation (10} cives the cumulative

infiitration as a function of time:

t
I ,:j idt (11}

Eguation 1l can be derived from equation (10} as

Toiiows: - equation (i) may be written as: dI = idt

- integration with boundary condition I = O for t = 0

t
gJives; I = idt

The cumulative infiltration as a function of time
may ke measured in the field, but such an experiment does not
give any information about the water content distribution or
the depth of the wetting front. To obtain the volume fraction
nT water as a function of depth and time, 90{(s,t), a general
flow =quation must be solved, using appropriate intial and

bourndary conditions.

3.6.4. General flow egquation.

3.6.4.1. Horizontal infiltration.

3.6.4.2.1. Flow equations

Darcy's law, through originally conceived for saturated
flow only was extended to unsaturated flow, with the provision
et the conductivity is now a function of the matric suction

head (i.e. K = K(h)):
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where VH is the hydraulic head gradient, which may include both
suction and gravitational components.

As pointed out in literature, this formulation fails
to take into account the hysteresis of soil-water characteristics.
In practice, the hysteresis problem can sometimes be evaded by
limiting the use of Eq.i-S in 3.3 to cases in which the suction(or
wetness) change is monotonic - that is, either increasing or
decreasing continuously. In progesses involving both wetting and

drying phases, Eq. Lin 3.3is difficult to apply,as the K(h) funectior
may be highly hysteretic.

The relation of conductivity to volumetric wetness E(2)
or the degree of saturation K(Ws) is affected by hysteresis to
a much lesser degree than is the K(h) function, at least in the
media thus far examined.

Thus, Darcy's law for unsaturated scil can also be
written as :

q=- K(e).VH (13}

which, however, still leaves us with the problem of dealing with
the hysteresis between h and 0.

To obtain the general flow equation and account for transient as
well as steady flow processes, we must introduce the continuity

equation :

59 _ _ 3¥
3t Py (14)
where :
v = flux {(cm/sec),
<] = yelumetric moisture content (cm3/cm3),
t = time (sec),
x = distance {(cm).
Thus :
30 _ 2 2H
7t~ 3% Koy %) (15)

Remembering that the hydraulic head H is, in general,
the sum of the pressure head or its negative, the suction head,

h, and the gravitational head (or elevation) =z,
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we can write :

@2 o dh “n
at ~ Bx “T(8} (8) 3x

The two dependent variables of this equation, © and
h are connected by a "formal" relationship :

() cE ('} (18)

1

in which C(e) is termed the differential capacdity of the medium.

Introducing {13) into (17) gives :

30 k 8 38 9z

3
= ==+ k ==
T " 3 ¢ ax T K(e) 3%
() ©
This equation can further be simplified by the intro-
duction of the soil water diffusivity D, {alsc a function of
the water content 9, defined as :

{19}

k dh 2 _ -1
Do) ”-'%’:l)“ ko) @ {on™-sek ) (20)

Equation {(19) then becomes :

(8) %) (21)

For horizontal £low, vertical flow upward, and vertical

flow downward, the valuve of 8z/8x is 0, 1 and -1 respectively.

For horizontal flow eq. (21) becomes :

89)

(8) (22)

3
5% (0

ar

S
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For vertical flow eqg. {21} bhecomes :

L 3

a8

8) ox
In these equations we see that the diffusivity D
is concentration-dependent (8).

The major advantage of the diffusion equation is that
concentration gradients are more tractable than potential
gradients. This fact in part explains recent popularity of the
diffusion equation as a mathematical description of the flow
procéss in unsaturated soils. As a result, several soil physi-
cists have actively sought solutions for the diffusion equation.

In defining D it is assumed that K, h and dh/de are
unique functions of ©&. This cannot be strictly true because K,
h and dh/de will depend not only on & but on how the sample has
been wetted -~its past wetting history. Other nonuniqueness
factors may be trapped air, variations with time of the air-
water-solid contact angle, heat released during wetting, and (on
vertical infiltration) pressure changes due to depth of over—

burden.

Thus we see the value of D at a given moisture content
for a drying soil may be different than that for a wetting soil
and that D may even be different for different initial moisture
contents of the same drying scil. This hysteresis in D and K
seems to parallel the hysteresis of moisture-tension curves.

A given tension on the scil water can result in two different
soil moisture contents, depending on whether it is wetting or

drying or even on its initial moisture content.

As we shall see in the next chapter , we can assume
that D is a unique function of ® and we can obtain soil moisture
curves which lie close to experimental ones. With unigqueness
assumed, prcbably the easiest interpretation of D is seen in
the equation :
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a
fo]

_ 3 a8
= 3% Prey* %

Lo~ 7
-~ t

(2)

which says that D is a measure of moisture flow (1) under a
moisture gradient (2).

The preceding paragraph indicates that D has physical
significance. Nevertheless, D must be used with care. For example,
in defining D as a factor of proportionality for flow under a
moisture gradient, it is tacitly assumed that the porous medium
must be homcgeneous. That such an assumption is necessary is
seen by considering quantities of moist sand and clay in contact
in a horizontal tube. The sand and clay could be at the same
moisture tension everywhere in the tube, but whould have dif-
ferent moisture contents. Yet, at the clay-sand interface, where
there would be a non zero moisture gradient, there would bhe zero
flow. We must not forget that it is basically the gradient 3/8x
that drives (or pulls) the water in a horizontal soil tube, not
36/3x, and that the reason we introduce 368/3x and D(e) into the
theory is to help solve problems.

3.6.4.1,2, Measurement of diffusivity D {laboratory).

(8)
In the derivation of equations (22)and (23) we assumed
that D is a2 unique function of the moisture content 6 of the soil.
Equations (22) and (23) have been solved by many authors. Most
of the techniques used in solving equations (22} and {23) require
values of D for various moisture contents or at least the func-
tional relationship between the diffusivity D and the moisture
content 0 of the soil.

D(e} is calculated from a moisture distributicn curve
plotted from data obtained from the addition of water to hori-
zontal so0il columns.



Equation {22) is applied tc the horizontal advance
of moisture into a horizontal homogeneous long tube of so0il

to obtain the relation between D(@) and the moisture content &,

The test soils were initially either air-dry or partially moist.

We rewrite the differential equation (22) as

96 _ 3 50
3t ax LPe)

where O is the moisture content in cm3.cm_3, at a horizontal
distance x from an input end, where water at zero head with
respect to the level of the tube is applied as fast as the
soil will abscrb it. Neither the gravitational constant g
nor a vertical coordinate z enter in the problem because the
soll tube is of small diameter and is horizontal. There are
certain other basic physical points that we should remember

about equation (22) before solving it mathematically for the
diffyusivity D.

Equation (22) stems from :

a. Darcy's law.
b. Equation of continuity.
c¢. the head expression.

d. the diffusivity definition.

The diffusivity in turn is depending cn the moisture content 0
being a unique function of the tensicn head h.

The equation of continuity involves differentiations
and hence implies that as we pass from volume element to volume
element in the s0il tube, the moisture
movement conditions shourld vary smocothly. Thus the pore size
distribution of the so0il particles from volume element to

volume element should accordingly also be the same. By volume
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element we mean a segment of the soil Ax cm long and cross
scction egual to the inside of the tube, where Ax is say

10 to 100 times the diameter of an average size soll particle
or pore. If these conditions are not met, we should not expect
equation (22) to be valid. We assume that the conditions are

met and we proceed.

With ¢i and @s being moisture contents, we recognize
the initial condition and boundary condition for the moisture
flow in the horizontal tube to be :

{1) 0(x,t) = 90i for x >0, t =0 (24)
(2) olx,t) ps for x =0, t > 0O (25)

Condition {1) says that initially our secil column has, for all
values of x » 0, a constant moisture content gi. Condition (2)
implies that we are to. apply water at the input end x = O at
time t = 0, and at all times t > O; and that we are to apply
the water in such a way as to maintain the soil in a very

thin layer at the input end of the column, at the constant
meisture content 9 = @s, for all t = 0. 0s is taken as the

saturation moisture content.

Equation (22) is a nonlinear partial differential
equation and cannot be solved by usual methods.

The Beoltzmann transformation is used to obtain
equation {22) in the form of an ordinary differential equation.

To make the transformaticn we let O be given by :

g = £(}) {(26)

where )} is a function of x and t, defined by :

L= x £"1/2 (27
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Equaticn {27) is called the Boltzmann transformation.

In view of equaticn {27), we see that conditions (24) and {25)
may be written as

(1) & = 0i for A = = {hoo) (28)

(2 © o for A

Il
ju
w
1l

(o]

(29)

We shall need a third condition. Since the derivation of equation

(22) has depended ¢n the assumptions that O must vary smcothly
{be continuous and differentiable} with x and t, we see from
equations (2g) and (27) that © must also vary smoothly with A

Therefore the conditions {28) and (29) imply the further
ceondition

(3) do/dx = 0 for © = 01 (30}

To help clarify conditions (2§), (29) and (30), we present a
figure (Figure24}.

Lo o 97 0 39
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Figure 24 ; The curve of @ versus ) for all @i
versus x at t = 1.500 min. calculated
from eguation (21} using the data from
Table 1.
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Variation of water content 2 with distance x for a
horizontal soil column of a Hesperia Sandy Loam scil,
for a time t = 1500 minutes after water was applied
at the input end x = 0 (from Nielsen et al, 1962)

g x ] X ) x

{em} [em) {cm)
0.02 76.00 0.6 75.25 0.28 69.90
003 75.90 036 75.18 0.29 68.05
Q.04 75.85 0.17 75.08 0.30 66.05
G.05 75.756 0.18 74,90 0.3t 63.75
0.06 751 Q.19 74.75 0.32 61.10
0.07 75.67 0.20 74.65 0.33 658,15
0.08 75.63 0.2y 7445 0.34 54.80
0.09 75.58 0.22 74.15 0.35 51.20
0.10 75.50 0.23 73.80 0.36 47.10
0.1 1545 0.24 73.40 0.37 41.80
0.12 75.40 0.25 72.80 0.38 32.50
0.13 75.36 0.26 72.08 0.39 0
a.14 75.30 0.27 71.20

Figure 24 shows an experimentally obtained graph
ABC of O versus A for water moving into a tube of initially
air-dry soil where the mcisture content @ for graphing the
curve was neasured at a number of positions along the soil
tube at the instant t = 1,500 min. For the graph, we have ©
~. the vertical axis and we show two horizontal axes, x and x
related by the Boltzmann transformation A = x.(1500)_1/2

which gives x = 38.732, as shown.

The curve of © versus A {or versus x} is shown in
two ways, as ABC and ABD. The end portion BD is theoretical and
not observed experimentally. Theoretically, the curve should
2 ABD with the point D being at A = » or x = =, We see from
+he figure that for A - = we have 0 = 61 as in condition {28).
e also see that condition (29}, agrees with the figure.
Therefore, if we can integrate the differential eguation
of the shown O versus ) curve, our problem will be solved.
We proceed to obtain the differential eguation of the curve
and to integrate it.
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In view of (27} we may write (28) as :

6 = {3 (x,t]] (31)

If we place {31} in (22) we can find an expression
for D(B)' If we use the chain rule for the differentiation of
composite functions we find 56/3t as :

@3
@

8 _38 A {32)
3t Gx ¢ ot
and 308/0x as :
38 _ 38 @2 {33)
EX3 RN 3%
2 ae
and—ﬁ (D(O)-a-i) as :
28 88 38 34
slog) 303y 5 5 843
X TR T

The total derivatives in (32), (33) and (34) arise
because Q@ is a function of the single wvariable A. The variable
X is composed of x and t, which explains the use of partials
of A with respect to x or t, that is 2r and 3

We can simplify (32), (33) and (34) if we use (27},
ni. A = x.tﬂl/z, to find that 3X/3t and 33/3x can be written
as ’

) - 1
%A': 1/2"t3/2_'1/ZXt (35)
and : 3k ~142 (36)

on using (35 and (36) in (32) to {34} we have :

30 _ 38 (_1;\) (37)
T WMV ER
39 _ 98 -1/2 (38)
and =" .t
38 o8 -1/2
and 8 (D 53) 53(0 ) 4172 {39)
ax dA )

and placing (37), (38) and (39) in equation (22), we have :

dg -1/2
2 (- )‘)=dwﬁ't ) e (40)
v R Tdx T
Equation (40) is then simplified to :
de
yae 900 {41)

TE@ @

Oon multiplying (41) by d) and integrating both
sides from @ = 0i to 0 = 6x (Ox heing © at the distance x
along the column) we have :

SX ex
-3) e - ¢ (038 (42)

9 &3
o (43)
or de de
- —% S. A d8 :[D(Bx) (ﬁﬂﬂx -[D(e'i) (Tﬁ)] 8i
6.

1

4 de an _ .
where (ET)OX and {ET)Gi mean =y evaluated at 2 = @x and 91

respectively.
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The last term in (43) is
for 0 = Bi.

Therefore (43) becomes :

*

1 -
_'z Ade_D(

9
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zero by (30), nl. QT = 0

©

do
i) (44)
8.} dx 8,

Devision of (44) by (d@/dl)ex and rearranging

yields :

1 1
D(ex) =-—5§;-—-( -3 A de

(HX B,

Since the lower limit in
equation implies that, if we apply
data, we must integrate completely
infinitely long tail at point D in
A= oxatT2 o ey (712

g8 {45}

the integral is 9i, the

the equation to experimental
out to the end of the
figure24, that is, out to

), where we put X = », because X must

go to infinity for any finite value of t. Thus, the scil tube

should theoretically be infinitely

long. The Boltzmann

transformation is not valid for tubes of length x = L = finite.

Practically speaking, contribution

to the integral will be

negligible except at the early part of the tail BD, so a

finite length of tube can be used.

The right side of {45) can be evaluated from

experimental data by :

a) Plotting @ versus i (=x.t_1/2
the soil.

h) Measuring (d@/d)\)ex

c) Evaluating the intecral

e
i

) for the water as it enters

from the © versus A curve.

x
Ad@ by an approximate method.

WATER CONTENT - cm3 7 cm?

64.

Water content distributions, measured for a Columbia
silt loam, using the above method are agiven in figure 25,

58
S50
45 40
40 %
.35 =" 32+
2
30 5 .23% .
28 5 24
! B
20 3 .EOP
1% A Jsr
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fle o] PAAR:AMFTE-R -TIN:E -IHO-URE b4y L4°I NI Distance from fritted glass plate. « {cm)

o 2 4 6 a [L+] 12 4 18 8
DISTANCE FROM WATER SOURCE - Cm

Soil-water distribution curves for
Columbia silt loam for boundary conditions
(24) and (25).

Figure 25:

1/2

water contents monitored using gamma-ray attenuation. For a

Figure 26 shows plots of x versus t for various

given scil~water content, these plots should be straight lines

with their slopes being values of 2 ({Q}.
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\
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Figure 26 : Distance to the position in the soil
column from the water scurce (x = 0}
where the water content is the value
indicated on the curves as a function
of the sguare root of time.

The first step (a) is to plot a curve of O versus X
as we did in figure 24. Step (b} may be done by drawing
tangents by eye from the curve (Figure 25).

water content

or it can be done semianalytically from the raw data used in
getting the curve. The approximate method for step (c¢) consists
in dividing the area under the curve of O versus X into a
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finite number of strips and adding up the approximate areas.

of these strips. The strips are not vertical as we take them.
in elementary calculus but are horizontal as shawn in figure
26 where four strips of widths A@ and approximate lengths

Al' Aoy A3 and i, are used to approximate the integral.

o

Figure gg : Values of @ and A at different values of
% for t = constant.

Whether the strips are vertical or horizontal makes
no difference in obtaining the area if it is the whole area
under the curve.

The wetting froat is at X = X,. From the figure,
it is seen that the area under the curve up to the line
® = Bx may be approximated by :

eX
j‘ 1da=)0A6+A1AB+AZAB+)\3L\.B (46)

&y

In figure26 we do not need to take the AG@'s all equal.
In general the sum formula for the integral, instead of (4¢),
would ke :

X m
j 3 do = E A L 47y
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To obtain a werking formula to compute D versus 0

(o)
we may now put (47) in (4%5) and obtain

1 1,
D(e y T ( g (%) Lok B,

X HI}GX r=1 (48)

which implies that we might obtain graphically by a ruler and

the eye the slope (d9/d)) from the curve of O versus ) correspondinc

. 1/2 . .
to the point x{ = t / A} . However, a semianalytical procedure
may be preferred. In figure26, at O0x = Om = 04 we see from

the gecmetrie that we may write as an approximation

g8 ey e £1/2 40
dm=4 = ‘dx 8, g - Ay X5 - Xy
where in the last equality, because t is constant ( = 1, 500 min.
in our example) we may use eguation {27) (A = x.t-l/z) to
find
(de} - £1/2 4
MO %y Xy

If m is not equal to 4 but is any integer m, the last eguation

may be written as :

1/2 i/e

d6 AR t ABm t ABm N
)= {52) = — = s metm =1, 2, 3, 4.
IEA fx Am x0T *n-l m 49)
In (49) Axm iz negative because we measure Am(=xm.t_1/2) frem

right to left in figure .
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From the fivst and last memkers of {(49) we have

ai procimately s
a6 t_l,/2 Aﬁm .
(£ E .
‘o ox A% 50

In (48) we replace (dG/dl}Ox by the right of (50)

and obtain

m
1 1
D,. . = -z A, AB)
{8,) ~ {172 a8, R (51}

Axm

where D( is positive because Axm is negative, and where we

may cancgi)ﬂer and A2 if the AQ's are all equal. In (51)

it appears that D(Ox) is a function of x. Actually D(@x) is

. function of ©. The subscript x on Gx denctes the locaticn x
vhere ¢ was measured at a certain time t say t = ty- If some
other time t = t, had been chosen to determine values of e at
points x along the tube, the same curve of D(@) versus A
should be obtained. That is, the curves of 0 versus )\ for

time t, and t, should superpose.

1 2

The values of €@ can be cobtained by sectioning the
s0il column and weighing the soil in the sections (Figure 27).
Mostly a gamma-ray apparatus is used, both to check on the
uniformity of packing of the soils in the soil columns and to

measure the moisture content at points along the tube.
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Fritted glass plate
of low resistance

pOrous pinte
Lwater reservoir suction
A 2em

Sos column

[ Tsailt 7 woter

i

Atmogpheric pressure

)

Figure 27 : Sketch of apparatus for obtaining water
distribution curves. At time zero the soil
columnh is brought in contact with the
fritted glass plate and water enters the
soil. The weight pressure potential of the
water as it enters the s0il column is about
~2cm. The initial water ratio of the soil
in the column is uniform at ©i : the supply
tube keeps the water ratic of the soil at the
inflow boundary constant at saturation,

Os. At a particular time, the soil is cut
into sections at the dotted lines, and the
water ratlo of each section is determined.

The relation of diffusivity D to the moisture content
@ is shown in figure 28 . This relation is sometimes expressed

in the empirical eguaticn :
D = a.e 52}

This equation applies only teo sections cof the curve
showing a rise in diffusivity with moisture content. In the
very dry range, the diffusivity often indicates an opposite
trend, namely, a rise with decreasing soil moisture content.
This is apparently due to the contribution of wvapor movement,
In the very wet range, as the soil approaches complete
saturation, the diffusivity becomes indeterminate as it
tends to infinity (since C(O) tends to zero).
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Hydrogulic ditfusivity

volume wetnass &

Figure 28 : Relation of diffusivity to soil moisture
content.

Soil-water diffusivity is somewhat difficult to
visualize physically, but mathematically it is simply the
product of the hydraulic conductivity at a given water content
and the reciprocal of the slope of the scil-water characteristic
curve at that same water content.

_ dh
Hence, D,y = _k(B}'aﬁ {53)

When the soil water diffusivity function has been
determined, the unsaturated hydraulic conductivity can easily

be calculated from equation (53) :

de

kKigy = Doy &

34)

Resulting curves for k(O) and D(e) as functions of

¢ are given in figure 26.
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W 1G
005 015 025 035 04S

Figure 29. Experimental values of k¢g) and D(g) as functions
========= of & for a Columbia silt Joam.

Equations 42, 28, 29 and 30 can be solved analytically
if D is assumed constant. This solution is given in detail
in Appendix. The result is:

_ - )
5 = Bi + (90 Bi) erfc {575) (55)

where erfc stands for complementary error function. A plot
of this is given in figure 30.

[

Figure 3O. The complementary error function erfe {u} for u x O.
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For a chosen set of values of ei, Bo and D, eguation
(55) is plotted in figure 31. When this graph is compared with
figure 22, it is obvious that this solution, a gradually decreasing
volume fraction of water with distance, is far from reality.
The reason for this discrepancy is that D is not constant over the
range of 8, but varies with a factor of up to about 10° .

Equations 28, 29, 30 en 45 cannot be solved analytically
for variable D. However, various technigques can be used for
solving these equations by numerical methods. The result of such
calculations, for the same values of ei and ao but & realistic D-8,
is also plotted in figure 31. This figure shows, as expected, a
unique relationship between 8 and A. This implies that s/ t (= A)

is constant for a given 6.

\

b

} -

\ 0. conalpnt

‘ \\
S

@ RN

Figure 31, Solutions of equation 22 for D = constant and for
mmmm===== D of a soil (D increasing with increasing 8).

Which relationship can be expected between s and t for
the visible wetting front and for any other value of § between
8, and 8.?

i 8]

3ince the ratio s//t is constant for a given value of
%, the distance from the wetting surface to the visible wetting
front (er any other value of 8) increases propeortional with the
square root of time.



Combination of equations:

1= J' % - Gi) ds and A = s t
s=0

s = (6 - Bi) di (56)
=0
leads to:
1
1 =5t /2 {57)
and consequently,
. _ dI _ -1/2 I
i=3f= 1/2 st /2. 5T (58)

5 is called the sorptivity and is a measure for the capacity of a

soll to absorb water. It is the cumulative infiltration during

the first unit of time. Since
5 = j. {8 - Bi) dx ,
A=0

S can be found by evaluating the area between the 6~axis, the

ei line and the 8-~} curve, 8§ can also be given by:

-

i4.

Using the product rule d(33) = xde + odx and the

bonndary conditions:

2 o= ei for A + =
0 o= BO for A = 0O
o (m G,
1
5' (g - Bi) axy = A d{e - ei) r - ade =
A= A=0 eo
- 8, H N
]
(e—ei)x| - Ad9 = 0 - 0 - Ade = 1a8
=0 g § 8
0 ] T1

Also, from figure 31 it is obvicus that

60 @
Ade and (6 - 91) di

ei Q
represents the same area.

Would you expect § ta be constant for a given soil?
5 is not constant for a given soil. The 8-} curve is the
solution of egquation 11 subject to conditions 23 and 24.
Therefore, S5 depends on ei, Bo and on the D-9 relationship of the
gs0il. While 60 {saturation) and the D-¢ relationship normally

do not vary for a given soil, § will still depend on Bi.

For initially dry scil (8, = 0) the sorptiwvity
-5 ~1s2 i ~1/2
varies from about 5 x 10 m s {(~ 0.04 cm min ) for
a heavy clay to about 2 x 103 o 572 (2 1.5 em min”1/?
for a coarse sand.

PRACTICAL PROBLEM

a. Calculate the cumulative horizontal infiltration in an
initially dry, heavy clay soil during 14 hours
b, Do the same for a coarse sand
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ANSWIER

a. Using I = 8y/t, we find for heavy clay:

I=5x10"ms 2 x /AT w3600 s = 1.47 x 1072 mor 1.47 en

b. For ccarse sand:

I=2x1072ms /2 4 /28 53660 5~ 0.59 m of 59 cn

3.6,4.,2, Vertical infiltration.

So far, the infiltration process was described only
for cases in which the gravitational potential can be neglected.
During vertical infiltration, the influence of gravity becomes
nore important as time progresses. Then eguation 23, together
with the initial and boundary conditions of equations 24 and 25,
must be solved. A number of different techniques for solving
equation 23 are available. A solution obtained by one of these
techniques is:

se,t) = 2,687 s a e v a e 4 ae? L (59)
where ay: @y, 234 3, ... are still functions of 6. By means of
equation 5% the depth of a given value of § at time t can be
evaluated when al, a, etc... are known. These coefficients can
be evaluated by numerical methods usincg the relationships D-9
and K-@.

The cumulative infiltration obtained by the above
technique is given bv:

1/2 3/2 2

I = St + At + Bt +CtT o+ ... (60)
The coefficients of equation 60 are evaluated in the same way as

those of equation 59.
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The infiltration rate can be derived from equation 60
e differentiating with respect to t (equation 10):

Y2 avramzmet? i 2004 ... (61)

i = 1/2 st~
Egquation 60 and 61 usually are truncated after the
first two terms, because for not too large t these series converge
ronidly. In that case equations 59 and 60 becomes respectively:

172

I = 5t + At {62)

and

I =172 st”1/2

+ A {(63)
% again the sorptivity defined in equation 56. It is the dominant
parameter in the early stage of infiltration. As time progresses,
the first term becomes negligible and the importance of A, which

represents the main part of the gravitational influence, increases,

PRACTICAL PROBLEM

a. Make a graph of the cumulative infiltration I and the infil-
tration rate i as a function of time for vertical infiltration
during 4 hours in a fine sandy loam for which:

S =7.0x10%p 12
A=1.0x10%ms?!
B =1.0 x 10-9 m 5-3/2

Use ecgiations 60 and 61 (first three terms)
2. Give in the same figure the results when equations 62 and 63
are used

2. Compare the results



4, Determination of the Soil Hydraulic Characteristics in the Field.

4.1,

7.

a/b.

Fiem)y

e tauations 60 ang 61 .
w0 — — — fquatons 62 e 63

¢. Truncating equations 60 and 61 after the second
In this
case, the error is still small after 4 hours of infiltration.

term introduces an error which increases with time.

Introdyction

Knowledge of the pattern of water movement within the
soil profile is essential to the solution of problems involving
irrigation, drainage, water conservation, groundwater recharge
and pollution, as well as infiltration and runoff contrel. In
recent years, soil physicists have developped extensive
mathematical theories to describe soil water movement under
different sets of initial and boundary conditions.

Much of the theorv now available yet remains to be
verified experimentally and spplied in practice. However, if
the theoretically derived equations of soil physics are to be
applied for the description or predicticn of actual processes

in the field, we must have a way of measuring pertinent 501l

4.2.
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parameters on a realistic scale. The pertinent parameters are
the hydraulic characteristics of the soil, including the
functional relations of hydraulic conductivity or diffusivity
and of matric suction to the water content, as well as the
spatial and temporal variation of these in the field.

It is inherently unrealistic to try to meésure such
parameters in the laboratory on discrete and small samples
removed from their natural continuum, particularly when such
samples are fragmented or otherwise disturbed. Hence it is
necessary to devise and test practical methodd for measuring
bulk soil hydraulic characteristics on a macroscale in situ.

Knowledge of the hydraulic conductivity and soil-
water diffusivity at different moisture contents or suctions
is generally required before any of the mathematical theories
of water flow can be applied in the practice.

Since there is no reliable way to predict these
values from more fundamental soil properties, the hydraulic
conductivity K(e) and soil-water diffusivity D(e) must be

measured experimentally.

Measurements of hydraulic conductivity during internal
drainage in the field are usually based on monitoring the tran-
sient flux and potential gradient value within the profile as
functions cof depth and time.

The purpose of these metheds is to determine directly
on the field the hydraulic conductivity K and the soil-water
pressure h as a function of the sacil-water content © by tran-
sient analysis of the water content and water head profiles

during a drainage experiment.
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The main point is to determine simultaneously, and
at the same depth, the soil water flux and the gradient of
dH/dz.

On a given site the soil is first wet to a given depth

(v 150 cm). The drainage experiment begins when water disappears

from the soil surface, this instant being chosen as the time t =0.

The soill is than covered (plastic + mulch) in orger
to aveoid any flow of water (rainfall/evaporation)} through the
soil surface (z = 0). Changes of water contents and water pres-
sures are measured following a procedure which will be described
later using respectively a neutron probe and a series of tensio-
meters being installed at different depths in the profile from
z =0 to z = 200 cm.

If we consider a volume of soil of unit area of thick-
ness dz, the equation of continuity says that :

g8
|
[}
5

(64)

Q1
2

where dqg is the difference between the flux entering (ql) and
leaving (qz) the thin layer of soil dz during the small time
interval dt.

Edquation (64) can also be written :

3
ql—q2=—*f.f120dz (65)

This equation, as such, cannct be solved, since we
have two unknowns q; and qg-

If, however, we consider a slab of soil limited

+ upwards by the soil surface 2z = ¢, where in this experiment 9,
is imposed to be 0O,

+ downwards by any depth =z, 2, (where the soil is continuocusly

draining), the flux passing through z at any time t is simply

8o,

given by : 3 Zp
"%

3 4
9 = - 3¢ % 9 dz
__3_ d
a(z,t) = t e z

The integral &f 8 &z represents at any time the volume
of water {per unit surface of so0il) stored between O and depth

s

Z.

We will define S(z,t) = f: ® dz as the STORAGE of

water at time t and depth 2z, and we will determine the flux :

R
q 3t (66)

i.e. the =zlope of the curve S(z,t) at time t.

Note : if the soil drains 38/3t is negative, and g is positive.

If simultaneously we can determine the profile of
head H(z) at the same time from the tensiometer reading the
gradient of head dH/dz will simply be given by the slope of
this profile at this depth.

. dH

Considering Darcy's law q = - K(e}. Tz the ratio
q/— between the flux g and the head gradient measured simul-
tanecusly at the same time t and the same depth z will give the
value of the hydraulic conductivity K corresponding to the water

content 8, measured at this time at depth =z.



Remembering that the hydraulic head (H}) is in generai
the sum of the s0il water pressure head (i), or its negative

the suction head, and its gravitational head =z
H="h+ z

Considering the head H (z,t}) measured at time t and
depth z, the water pressure at this level is given by equation

H=h-2z or
h=H+ z
p.e. h = - 50 cm
z = 50 cm
H =- 50 - 50 = - 100 cm

The relation between the water content 0 and the soil wa-
ter pressure h,measured simultanecusly at the same time t and the

cf the

same depth z,will give one point on the suction curve h{e)
soil.

Using the technigque for the same depth at different times

one will oktain the curves K(e) (0)
a given depth.

In as much as soil-water diffusivity is the product of

hydraulic conductivity, and the reciprocal slope of the soil-water

characteristic, _de

-1 - Kle) . ah
C(e) = gy (em ey = TtaF * X(e) 0
the equation of Darcy's law can be modofied to approximate the
diffusivity 2
= 30 - dH

G IO =+ dz (K(Q) HZ)Z

If this equation is simplified by approximating the
integral with the product of the soil depth L and the rate of
change of the average soil-water content in the profile @ (with
the value of the hydraulic gradient retained) it becomes :

20 _ dH
LET = (K Hi)L

Assuming that an average soil-water characteristics

curve holds for the entire profile, %g . %% can be substituted
for %% and using the relation D = K .3h/3¢ , the equatiocn
becomes :

and h as a function of time for

82,

dogh _ dk | ah oM

L Fp-4t dz 3t ?z

_, shfat
@) = L 573z

Finally 3 0
{

Hence, the value of D can be calculated for each
depth L using only tensiometers. The value 3h/5t is merely the
time rate of change of the soil water pressure head b obtained

from tensiometer readings for depth L.

1. Eguipment

- 1 neutron probe, one measurement each 10 cm,

- series of 10 tensiometers installed, if possible, at depths z
10,20, 30, 40, %0, 60, 70, 80, 90, 100, 110 and 120 cm from
the solil surface, or according to layering of the soil.

It is reminded that if a tensiometer is installed ver-
tically at a depth z, and is equipped with a mercury manometer,
the free surface of the mercury being at a level y above the

swil surface :

a) the soil water pressure head h (cm water)

.

h = {(z + 7y} - 12,6 x (661

p.e. is y = 23.5 cm above scil surface, then h at 50 cm depth
will be {data after 1 day (x = 8.4 cm) and & days (x = 9.6}).

h

14 (50 + 23.5) - 12,6, 8.4 =- 32,34 cm water,

h - 47,46 cm water.

6d (50 + 23.5) - 12.6, 9.6

#
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b} the hydraulic head H {cm water)

H="h-2
Hld = = 32,34 - 50 = - 82,34 cm water,
Hsd = - 47,46 - 50 = - 97,46 cm water,

2. Meagurements

It is recommended to follow with the maximum care the
initial stage of drainage. During the first day at least to
persons should be on the field, one taking care cof neutron mea-

surements, the other taking care of tensiometer readings.

Concerning the neutron measurements, it is advisable
to monitor continously changes of water content in the profiles
during the first two hours of drainage. The recommended proce-—
dure is the following :

With the smallest counting time for a good accuracy, measure

for each depth increment (i.e. each 10 cm} the water content

at a given time starting from t = O with the prcbe being posi-
tioned at z = 10 ¢m, at the next counting time the probe will be
positioned at 20 c¢m, and so on to Z -

The series of measurements from z = 10 to z, being

defined as a cycle, immediately after the end of counting at z
the probe will be raised toc the standard shield, a standard

or

count will be taken, and a new cycle will be initiated.

} For each measurement being taken, the following infor-
mation should be recorded :

- measuring depth,
- time (from the initiation of drainage),

= number of counts and counting time or count/rate.
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After approuximately two hours of continuous measurements,
cycle of measurement will be made every 3C minutes for the fol-

lowing hours.

The interval between cycles will be progressively in-

creased as indicated in the following table.

Time t (hours) from the initiation of Interval {(hr) between

drainage ‘ cycles
0-2hr none (continuous monitoring})
2 -4 hr 0.5 hr
4 -6 hr 1 hr
& -12 hr 3 hr
12 ~48 hr 12 hr
2 days 24 hr

For the tensiometer readings : during the first period
following the initiation of drainage (0 <t < 2 hrs) tensiometers

should bhe recorded each 5 minutes.

Each time one should note (Table 1} :

~ tensiometer reference (from 1 to 10...),
- height of mercury,

- time of measurement.

For t » 2 hrs, the same procedure as the one defined
for neutron measurements will be used. It is recommended for

t » 2 days to take measurement each day, at the same hour.



85,

Table 1-2
EXPERIMENTAL SITE N° 86
Date: 4.4.Analysis of data
Neutron moisture meters:
- Height of access tube above soil surface: cm 1. The tables with the data will first be analyzed in order to
- standard radiation counting: ~ before measurement: cpm obtain the following informations :
- after measurement: cpm for each measuring depth a table giving (Table 2} :
- average (N_): cpm
g s P - the time of measurement t,

3

- Calibration curves: 1) vy, = a.x, + b 3 -
1 71 1 - the water content ¢ in cm™.cm 7,

2) = a.X. + b
Ya % 2 2 - the soil-water pressure head h,

! ' 1 - the hydraulic head H.

n) y, = ax, + bn f T
Tensiometer: 3. The data will be plotted on a graph in order to obtain at
vy = height of the mercury container above soil surface: cm given depths (each 10 cm for the neutron probe or each ten-
z = depth of tensiometer cup siometer depth) the change of water content or hydraulie head
¥ = height of the mercury in the manometer H with time.
Taking into account the exponential shape of the variation

Soil Tensiometer Neutron moisture meter for each variable (9 or/and h or H and depth) two time scales
Hepth should be used
(cm) X h H count rate|! count ratio} moisture

(cm Hg) (em) (cm) N N 100 content - one for the initiation of the drainage : 1 day full

(cpm} Ng (vol %)
scale,

- one for the second part of the drainage 3 weeks full
scale (500 hrs).

Smooth curves will be drawn (by hand) in order to have a best
fit between the measurement points.
One curve should be drawn for each depth.

3. Using the smooth curves one will determine by interpolation
the values of o and of H at all the measuring depths at the

\ following reference times : t = O, 0.25, 0.5, 1, 2, 5, 10,

25, 100, 200, 500 hrs.

Tables of interpolated data will be built in order to ohtain :

CR

— the water content profiles (0-z),
~ the hydraulic head profiles (H-z),

at the above mentioned reference times (Table 3).

moisture content (vol %}
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ponding

Time after| z=10cm | 2=20cm| z=30cm| z=40cm | z=50cm { z=60am | z=70cm | z=80cn

{hr}) ] Hi e Hi » H| @ Hle Hle Hle Hle

0

0.25

0.50

I

Z =

5

10 '

25

50

100

200

500

4. The water content profiles and hydraulic head at the refe-
rence times will be plotted :

Figure : 8 - z,

Figure : H- z.

5, The table of interpolated water content will be used to
compute S (z,t} using the trapeze rule : "the water content
measured” at a given z; will be affected to a layer of 10 cm
surrounding the measuring depth, with an exception for the
first depth of measurement (z = 10 cm) where 9 (z = 10} will
be assumed ito represent the mean water content from O to 15
cm.

The storage S will be calculated for the depths of 30, 60,
90 and 120 cm,
In consequence at a given time t the storage $§ between 0, and

the respectively depths, will be given in mm of water by the
formuia :

88.

= (L5 e+ (920) 1.0 + 0.5 930) x 100,
= (1.5 8yg * (920 +83q t040 +950) 1.0 + 0.5 960) x 100,
Sgp = (1.5 @yg + (8 +83y *84p +850 +8gg 879 +955) 1.0 + 0.5 eg4) x 100,

Sya0% (1.5 015 + (8,0 +030 +0gg +B5q +Bgg +0yq +0gg +ogg +019p *e110} 1.0
+ 0.5 8y,9) % 100,

6. A table will be built given the value of the storage S, at
the reference times, and at the depths 30, 60, 90 and 120
(Table 4).

Time after ponding S3g - S60 590

S
(hrs} 120

0

0.25

0.50

10

25
50

100
200

500
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7. The curves giving the change of the storage with time at
the given depths will be plotted.

At each reference time, and for each depth, the slope taken
by hand will give the wvalue of the flux

8. At the same depths (30, 60, S0 and 120) the slope of the
hydrauiic profiles will be measured at the same times.

9. Finally for each depth (30, 60, 90 and 120) a table will be

built, giving the following information {at the reference times)
{Table 5).

Soil depth z = cm

h g dH/dz K

Time (t) @
hr( en? . em-3 cm mn/ hr o/ hr

¢

0.25

0.5

10

25

50

100
200

560

1 2 3 g 5

soil-water characterictic
curve or pf curve

90,
10. The K-values were plotted in function of © (cm3.cm—3)

and the equation is calculated

The suction gradient must be taken into account and
the hydraulic conductivity is cbtained from the ratio of flux
to the total hydraulic head gradient {gravitational plus matric}.
This can be done successively at gradually diminishing water
content during drainage, to obtain a series of k versus @ values
and thus establish the functional dependence of hydraulic con-
ductivity upon so0il moisture content for each:layer in the

profile.

To apply this method in the field, one must choose a
characteristic fallow plot that is large enough so that processes
at its center are unaffected by its boundaries. Within this plot,
at least one neutron access tube is installed. A series of ten-
siometers is installed near the access tube, at intervals not
exceeding 30 cm. Water is then ponded on the surface and the
plot is irrigated long enough seo that the entire profile becomes
as wet as it can be. In the case of uniform profile, this
will mean effective saturation. Tensiometer readings can indicate
when steady-state infiltration conditions have been achieved.
When the irrigation is deemed sufficient, the plot is covered by
a sheet of plastic so as to prevent any water flux across
the surface {evaporation or infiltration). 2s the internal
drainage process proceeds, periodic measurements are made of
water content and tension throughout the profile. These readings
must be taken freguently at first (at least daily) but can be
taken at greater time intervals as the internal drainage prccess

shows down.
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5. Determination of the infiltration rate.

The best method of measuring intake is to obtain
direct measurements by recording the water applied less the
water flowing from the field. When direct measurements are not

feasible, intake cylinders can be used with reasonable success.

The cylinders should be at least 25 ¢m in diameter,
made of smooth tough steel, strong encugh to drive, but thin
enough to enter the soil with a minimum of disturbance. Cylinders
should be about 30 cm long.

Since approximately five tests should be made in a
given location to obtain a representative sample it is well to
make five cylinders of somewhat different diameters so that all
five can be tested together and thereby be made less bulky for
handling.

Care should be taken to place the cylinders in an area
representative to the field to be evaluated. Cylinders should be
carefully driven into the soil to a depth of about 15 cm. The
soil profile should be examined, the moisture estimated or mea-

sured, and notes of soil cover and surface condition.

After water penetrates to the bottom of the cylinder,
it will begin to spread radially and the rate of intake will
change accordingly. When a principal restricting layer does not
lie within the depth of penetration of the cylinder, this radial
flow will cause considerable change in the intake rate. Buffer
ponds can be constructed by forming an earth dike around the
cylinder or by driving into the soil a larger diameter cylinder
concentric with the intake cylinder. The water levels in both
cylinders should be equal and approximately the depth to be
expected during the irrigaticn. When comparative results from
different locations are needed, the depth should be essentially
the same in all cylinders. Care should be taken not to puddle
the soil when water is added to the cylinder or the buffer pond.

g2,

The results obtained with cylinders are indicative of
the rates to be expected during irrigation provided the surface
condition is the same. Closer correspondence is obtained when
the soil surface is covered by the irrigation water. Considerable
departure usually occurs when the irrigaticn water is applied
by furrows cor sprinklers. Hence the c¢ylinders are generally
used to cbtain an index from which desgin values can be obtained

on the basis of local experience.

The ¢ylinder infiltrometer, used in irrigation studies
to determine the infiltraticon rate and cumulapive infiltration,
can be used at successive depths in a scil pit to study the
differences in the hydraulic conductivity of the various
layers. The principle of this method is the same as that of the
double tube method.

First one infiltrates water around the infiltrometer
till the soil is saturated. The infiltrometer is then filled
with water, and the rate at which the water level falls is mea-
sured. After some time the infiltration rate stabilizes and

approximates the hydraulic conductivity K (Figure 32).

Figure32 : tThe infiltremeter.
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Calculations

The infiltrometer rate of water in an unsaturated soil measured

by a cylinder infiltrometer may be expressed in terms of Darcy's

law as :
_ $ + z+ h
v =K, = (63)
where :
v = infiltration rate {(cm/sec),
KT = hydraulic conductivity of the transmission zone (cm/sec),
¢ = guction at the bottom of the transmission zone (cm},
z = depth of the transmission zone helow the infiltrometer
(cm) ,
h = height of water in the infiltrometer {cm).

The influence of ¢ and h relative to z diminishes as
the depth of the transmission zone and the moisture content of
" the soll increase. So the hydraulic gradient :

(Q + z + h
— )

tends towards 1 in the case of a deep uniform soil profile and

the inflltration rate becomes constant, attaining what is known

as the basic infiltration rate,

In that case we may Write :

v = Kq 69)

For wet, medium and heavy textures soils in which the
hydraulic conductivity of the transmissicn zone is approximately

the same as in the saturated zone, we get
V o K~ K (70}

When using the infiltrometer for hydraulic conductivity studies
- more specificaly for studies on the basic infiltration rate in
moist soils— the measurements should extend for ap reriod long

enough to permit a constant infiltration rate toc be obtained.

94.
This may take quite some time in dry clay soils, because a de-

crease in the infiltration rate may be caused by the decrease
in the hydraulic gradient as well as by a change in hydraulic
conductivity due to swelling. The value obtained in a layered
scil only applies to the depth of soil penetrated by the infil-
trometer, since lateral flow will occur below if the hydraulic
conductivity of the underlying layer is low. If it is possible
to determine the distance over which the lateral flow extends
in the underlying lavers by estimating the change in moisture
content, the infiltration rate in the underlying layer can be
calculated. This can be done by taking the ratic between the
surface of the infiltrometer and the surface ower which lateral
flow occurs in the underlying layer and multiplying it by the
infiltration rate in the infiltrometer. Figure 33 shows an
example of lateral flow below an infiltrometer installed at the
gsoil surface to a depth of 5 cm on a silty clay loam with a
ploughed layer of 20 to 40 cm. In the situation of the example,
the intake rate at a depth of 25 cm would be (37/77)2 times the
intake rate near to the bottom of the infiltrometer. At a depth
of 65 cm the ratio is (37/117)2.

Figure 32 : Lateral flow below infiltrometer.

biscussion

The cylinder infiltrometer is suitable for determining the intake
characteristics and hydraulic conductivities of irrigated soils.
The results of this method are not very accurate, but can be
regarded as a fair approximation of the K-value. The method is

practical and suitable for large-scale surveys.

6 . Appendix

Results of the K( determination in the field fcllowing

a)
the internal drainage method.
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: Soil water
depths for

V(oA

storage S (mm water) at the reference times and soil

plot 1, 1978,

;;ﬂgiﬁ;t?;r) 330 em 560 cm S90 cm 5120 em 5150 cm
0 115.5 212.6 303.9 389.4 467.5
0.25 111.8 2.‘11.2 296.7 381.9 459.7
0.50 107.4. 203.0 288.2 373.0 450.6
1 9%.9 189.2 273.6 358.1 435.3
2 91.3 174.C 237.1 340.8 417.6
5 81.3 157.2 238.1 320.6 396.5

10 75.0 146.6 225.1 306.9 382.2
25 65.1 127.2 199,4 279.8 354.6
50 57.2 113.2 178.8 256.2 329.0
100 53.5 104.4 163.9 237.3 307.2
200 51.3 99.9 134.8 223.2 290.1
500 45.4 87.9 136.3 198.5 260.2

g

SOIL WATER STORAGE S (mm wate:}

&

k 150 (cm)
¥ 120
\

T ————%0
Km
| 30
i 5 10 TIME (bl

50IL WATER STORAGE AS A FUNCTION _OF TIME AT

DIFFERENT DEPTHS ,

1978



PLOT 1

150 { em)

120

90

0

500

g 8

{injom WW) 5 3JOVH0LS NILYM 1I0S

TIME (hr)

200

100

SOIL. WATER STORAGE AS A FUNCTION OF TIME

DIFFERENT DEPTHS , 1978

Al

Calculation of hydraulic conductivity for piot 1, 1978.

“otl depth: 30 cm

Time (hr) o (ani/em’)  h (cw) g (m/hr)  dHdz K (mo/hr)

0 0.508 33.5

0.25 0.477 28.0 18.0 0.3 51.4

0.50 0.437 23.0 15.0 0.3 50.0

1 0.37 15.0 12.0 0.0  30.0

? 0.318 2.5 6.0 0.50  12.0

5 0.286 - 19.0 2.0 1.00 2.0
10 0.266 - 32.5 1.0 1.20 0.83
25 0.230 - 54.0 0.50 1.50 0.33
50 0.208 - 66.0 0.20 1.20 0.17
100 0.195 - 78.0 0.050 1.45 0.035
200 0.187 - 90.5 0.050 2.20 0.023
500 0.165 - 112.5 0.025 1.00 0.025




S0il depth: 60 cm

Calculation of hydraulic conductivity for plot 1, 1978.

109

Time (hr) 6 (cm/em®)  h (em)  q (wm/hr)  dH/dz K (mm/hr)
0 0.268 8.
0.25 0.266 41 35.0 0.3  116.7
0.50 0.265 35. 29.0 0.35 82.9
1 0.263 25. 22.0 0.3  62.9
2 0.258 7. 10.0 0.45 22.2
5 0.247 20, 3.0 030 10.0
10 0.236 38, 1.5 0.25 6.0
25 0.206 53. 0.90 0.35 2.6
50 0.184 66. 0.30 0.25 1.2
100 0.166 77. 0.10 0.05 2.0
200 0.156 82. 0.055
500 0.136 98. 0.050

/1o
Calculation of hydraulic conductivity for plot 1, 1978.
Soil depth: 30 cm
Time (hr) o (n/em’)  h(om)  q (m/hr)  dH/dz K (ma/hr)
0 0.295 67.0
0.25 0.294 62.0 37.0 0.50 74.0
0.50 0.293 57.0 33.0 0.50 66.0
1 0,291 47.0 23.0 0.40 57.5
2 0.289 28.0 13.0 0.40 32.5
5 0.285 0.5 4.0 0.30 13.3
10 0.283 15.0 1.5 0.20 7.5
25 0.274 30.0 1.0 0.35 2.9
50 0.259 45.0 0.65 0.40 1.6
100 0.237 58.0 0.25 0.475 0.56
200 0.215 67.0 0.075 0.35 0.21
500 0.193 86.0 0.050 0.65 0.077
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Caleculation of hydraulic conductivity for plot 1, 1978, Calculation of hydraulic conductivity for plot 1, 1978.
Soil depth: 120 cm. Soil depth: 150 cm
Time (hr) o (em/em®}  h{em)  q (m/hr)  dHdz K (ma/hr) Time (hr) e (an’/cn®)  h(cm)  q (m/hr)  dH/dz K (mo/hr)
0 0.268 83.0 0 0.256 104.0
0.25 0.267 77.5 40.0 - 0.40 100.0 0.25 0.255 98.0 34.0 0.30 113.3
0.50 0.266 72.5 32.0 - 0.40 80.0 0.50 0.254 92.5 30.0 0.30 100.0
1 0.265 62.5 23.0 - 0.45 51.1 1 0.253 8a.5 24.0 0.30 80.0
2 0.263 45,5 13.0 - 0.50 26.0 2 0.250 61.5 16.0 0.40 40.0
5 0.258 19,5 4.0 - 0.40 10.0 5 0.247 36.0 1.5 - 1.20 1.3
10 0.256 9.0 1.0 - 0.45 2.2 10 0.246 18,0 1.5 0.70 2.1
25 0.254 - 10.0 1.2 - 0.95 1.3 25 0.245 - 27.5 1.2 - 1.50 0.80
50 0.243 - 24.0 0.65 - 1.00 0.65 50 0.241 - 50.0 0.80 - 2.00 0.40
100 0.229 - 35.0 0.20 - 1.10 0.18 100 0.235 ~ 63.0 0.30 1.90 0.16
200 0.216 - 43.0 0.10 - 1.05 0.095 200 0.226 - 68.0 0.10 - 1.80 0.056
500 0.200 - 58.0 0.075 - 0.80 0.094 500 0.211 - 77.0 0.075 - 1.70 0.044
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" Equations describing the functional relationship between hydraulic

conductivity ¥ (mm.hr-1) and soil water content {em3.cm-3) for dif-
ferent plots at different depths (1978), 1@+2 K 8> versus B
B " r
Soil depth {cm) Plot n® K o=a.e™® Correlationcoefficient r T
L
30 1 K = 2.90.10" 4.e27-55¢ 0.95 * /
3 K=1.71.10 gegg;gg 0.93 £ L
5 K = 5.07.10°_b 42, 0.98 +
8 K = 1.34.10'15.e1é55§g@ 0.97 ~ %
13 k = 1.95,10- §,¢33.539 0.99 @ g y Y
Mean K = 3.69.10" 5,e34.99 0.89 < 1974 | x ®
'
60 1 K =8.43.107 § el 150 0.91 > & b4
3 K = 8.48.107 g.e3) 700 0.94 b +
5 K=09,15.10",7.e°; 0.89 2 /
-23-%192.770 - o
8 K = 1.06.10_°5.ea3"27 .93 2 x /-
13 K = 2.07.107 3.e55" 500 0.88 g /o
Mean K =1.31.10 “,e""" 0.53 v} :n
C y
90 1 K~ 1.16.107, 7655792 0.96 8 g0 xy
3 K = 2.83.10 55.e750° 0.97 T /
: 22180, 300 o s /o
5 K = 8.85.107°¢.e0";37 0.79 L /
8 K = 6.98.107,7.e,0: 0.97 — '
: - 63.830 3 l s
13 K = 2.75.107%].ef0%02 0.94 3 R
Hean K= 1.62.100 ".e”7" 0.72 C PR
. Y /
120 1 K = 8.95.10:15-‘9;87622@ 0.90 = e
3 k= 1.92.107 f.el3 20l 0.92 LI
5 K = 6.46.107 ¢.ep2-50° 0.97 -1 x o
8 K=4.82.10",% ¢: 0.94 12" | x / o
i -24-%193.579 /
13 K = 4.45.107 ;1" 00 0.95 L
Mean X = 4,883,107 2.e"" 0.65 /g oo
®
150 1 K = 7.40.107%1 1950 0.87 Y o
= -17"5150.93¢ ¥,
3 K = 2.48.107 0 .e0" 27 0.99
5 K= 1.59,10 70.e2%" 0.92 ®
= -10-%31.53¢
8 K = 8.31.107°c.ef 300 0.94
13 K =1.73.107 5.e27* o0 0.97
Mean K=4.45.10" ' " 0.71 1872 . , , ,
. -4 32,530 [ = = ®
A1l Al K =3.36.10" %e 0.58 8 = & ™ <
s = o (S =
s0il water content Blcm3, om™ 3
plot depth year
* 1 30 1978
x 3 38 1978
4+ 3 38 1978
o B8 32 1978
< 13 32 1978

Af -






