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1. INTRODUCTION

It is a challenge to the world community of earth and geophysical
scientists to develop a better technology for sampling the earth's
crust. That thin mantle of soil has been managed for countless human
generations with the primary objective being the production of food
and fiber to meet the needs of the earth's inhabitants. In the past,
that management has been judged on annual measurements of crop produc-
tivity, and not on measurements taken below the soil surface that
could be used to signal the long term consequences of present-day
management of soil and water resources. We are indebted to the pio-
neering works of R. A. Fisher and subsequent efforts of others that
have and continue to afford conceptual frameworks to statistically
judge and compare the merits of different management schemes or treat-
ments, particularly those used for enhancing agricultural production.
The selection of a preferred cultivar, an optimal fertilizer appli-
cation, the best timing of an irrigation or the most effective s0il
fumigant has been accomplished in the agricultural sciemces by analy-
sis of variance procedures advocated by Fisher. Such "aggie" sta-
tistical procedures are invaluable, and it is not our intent to de-
emphasize their importance now or in the future. Our intent here is
to expand that conceptual framework to include a consideration “of
statistical analyses normally not included in the agricultural
sciences. Such an expansion is fully justified when we wish to ex-
amine the changing quality of soils as well as that of water moving
over and through them as a result of different management schemes. We
believe more attention shculd be given to developing techniques to
better monitor the soil environment, and at the same time we recognize
that such development should, concomitantly, potentially enhance the
efficiency of crop production.

Our objective of this presentation is teo provide a qualitative
review of statistical concepts not usually covered in "aggie" sta-
tistics, and to provide an opinion of the questions we believe future
research shall answer in light of the kinds of efforts reported at the
1982 meeting of the European Geophysical Society. Our intentions
preclude the identification of analytical prescriptions or algorithms
to carry out various statistical procedures. We also shall not at-
tempt to be rigorous in the identification of the fundamental under-
lying assumptions of each concept. The concepts have been known and
used in other scientific disciplines for a relatively long time. If
our presentation is successful, we would urge the reader to refer to
the list of references to learn and fully appreciate the fundamentals
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of each concept, and not to rely on our qualitative descripticns and
examples.

2.  SPATIAL AND TEMPORAL DEPENDENCE

Our reference to "aggie" statistics highlights the fact that most
statistical analyses advocated in the agricultural sciences implicitly
disregard the spatial coordinate at which an eobservation is made. For
the most part, emphasis is given to the identification of an average
value and its potential dispersion for a seil attribute within a given
parcel of land, a regression of one attribute versus ome or more other
attributes relative to their magnitudes (not their coordinate posi-
tions on the landscape), and a difference between two mean values of a
soil attribute that may exist for two parcels of land chosen more or
less arbitrarily without regard to their spatial coordinate system.
In fact, it is gemerally considered necessary or advantageous in
"aggie" statistics to assume that observations are spatially indepen-
dent of each other, and hence, a set of cbservations are reduced io
their mean value and a measure of its uncertainty expressed in terms
of an assumed probability demsity distribution estimated by a set of
cbservations without regard to their spatial positions. We refer the
reader to standard texts for such anazlyses.

Intuitively, we do not expect field observations of soil properties
to be necessarily spatially independent. We would expect measurenents
made close together to yield nearly equal values, and measurements
made some distance apart to yield values more correlated to each
other. We would also expect a spatially repetitious behavior of soil
observations as a result of cyclic tillage traffic and cropping pat-
terns in cultivated fields, sequences of low and high topographical
positions giving rise to cyclic locations of greater and lesser de-
grees of leaching, and sequences of s0il mapping units not randomly
located within a landscape owing to soil formation processes that are

linked spatially to the coordinates of the soil surface. Becausz of

the above expectations, it would appear advantageous to sample a field
in a manner that would allow the detection of cyclic irregularities in
relation to the size of the parce! of land being measured. Such
expectations raise questions regarding the "proper' size of an obser-
vation, the "proper" distance between observations, the "proper"
location of each observation and the "proper" number of observations.
These questions are all relevant to the geostatistical concept which
defines the size of the domain characterized by a single observation
within a field soil, This differs markedly from the "aggie" statis-
tical concept that defines for a given level of probability the accu-
racy and precision of an estimate of an average value within a field
s0il from a set of observations.

2.1 Spatial autocorrelation

A measure of the strength of the linear association between pairs
of observations is useful in defining the separation distance between
observations beyond which there is no correlation between pairs of
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values. The autocorrelation coefficient, r_, a function.of th; sepa-
ration distance h, is a measure of that strength and is defined as

¢ (h) = autocovar[G(x),G(x + h)] Ioh)
a \Jvar[G(x)\Jvar[G(x + h)]

for a set of soil water content observations G taken along a transect
in the x-direction*. For example, when observations are ta#ep 1 unit
apart, r_ (1) is the wvalue of the linear regression cpeff1c1ent for
h =1 (1§§ 1) when values of G(x+1) are plotted against Yalues of
G(x). In other words, nearest neighbors are plotted agalnst' gach
other. Similarly, when h = 2, r_(2) is the value of the coef§1C1ent
when values of 6 are plotted against other values observed a distance
of 2 units away. Fig. 1 shows two examples. For example A,‘the
autocorrelation coefficient decreases abruptly from 1 to zero within a
lag of 1 (the smallest distance between observations). The wvalue
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Fig. 1. Idealized autocorrelograms for average soil water content G
cbserved at 1-m intervals along transects within fields A
and B.

of r for example B appreoaches zero for lags in excess of 10. For
examgle A, one concludes that the observations are spatially indepen-
dent - that is, one cannot estimate the value of an observation from
that of its nearest neighbor. Interpreting the results for example B
where ¥, decreases rather graduvally as h increases, one concludes that

# Throughout this presentation, concepts expressed in one direction
can be generalized to n directions.



96

the observations are spatially dependent. In other words, within a
distance of about 10, it is possible to estimate from one neighbor the
expected values of other neighbors. Soil scientists are beginning to
use this concept to express the spatial dependence of field-measured
soil properties and crop vields.

The functional relation r (h) has been expressed with several em-
pirical formulae. One of thé most commonly used expressions is

ra(h) = exp(-h/A) {2)

where A is selected in erder that the sum of the measured deviations
of r from the above expression is zero. Notice that the value of A is
equal to that distance h between measured values for which their
correlation coefficient is 1/e. A is called the autocorrelation
length or the scale of observation. A rather liberal interpretation
of the significance of A is that it represents the distance across ihe
landscape characterized by a single observation within the field. In
general, there are several ways of defining autocorrelation lengths.
Important to our discussion here is that when sampling the field from
which curve B (Fig. 1) was obtained, observations made at sampling
intervals less than 10 wnits are somewhat unnecessary because they are
related to each other. On the other hand, sampling the field trom
which curve A was obtained at sampling intervals greater than 1 unit
dees not allow meaningful interpolation between neighboring observa-
tions. It should be obvious that the functional relation between r

and h depends upon the size of the sample, and that in general, thd
greater the sample size, the greater the value of the autocorrelation
length A. For any particular study, the investigator should consider
the minimum distance between sampling locations (h = 1) im relation to
the objectives of the experiment and the potential utility of the
values of A for each kind of observation.

2.2 Spatial cross-correlation

Instead of measuring only one kind of observation across a field,
let us assume that two kinds are made: s0il water content, G, as de-
scribed above as well as the temperature, ¥, of a grain crop uni-
formily covering the field. The spatial cross-correlation coef-
ficient L is defined by

covar[F(x), G(x + h)]

(3)
\{varF(x)\/VarG(x + h)

where, in this ecase, F, the crop temperature and G, the soil water
content, are each measured along a transect at positions x. Let us
assume that as available soil water is depleted, evapotranspiralion
decreases and crop temperature, consequently, increases. For such a
condition, crop temperature is inversely related to available soil
water with the value of rc(O) < 0. Equation {3) reduces to the limear

rc(h) =

7

regression coefficient normally calculated using "aggie" statistics
when h = 0 (a walue of -0.8 for our example), Fig. 2 illustrates
the use of equation {3) for other values of h 2 0. In Fig. 2a, with
the two distributions F(x) and G(x} overlapped a distance h, a linear
regression analysis is calculated for the pairs [F(x), G6(x + h)]. The
results of such calculations of r . are plotted in Fig. 2b for two
hypothetical transects (one in field A and one in field B) having
identical values of r (0) = -0.8, For field A, if the value of h is
increased only slightiy from 0, r rapidly approaches zero. On the

Crop temperature (a)

F(°C)

Distance (m) !r

G(crnslcma)

Overlap, h {(m)

Fig. 2. Idealized cross-correlogram for crop temperature F(%) and
s0il water content G(x} along transects within fields A
and B.

other hand, the results from field B show that crop temperatures mea-
sured at much greater distances from where the average so0il water
content observations were made remain significantly correlated. The
general utility of such cross-correlation should be obvious. The area
under each curve in Fig. 2b or the range of h over which the value
of r. remains near unity is an indication of the spatial distance
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over which a linear relation exists between F and G. It allows the
investigator to consider the spacing and size of one set of obser-
vation (F) with those of anmother (G), particularly when one set is
difficult to obtain or relatively expensive. A related example would
be the optimum choice of the size and spacing of observation pixels
from overflight or satellite vehicles compared with size and spacing
of those of ground observations.

2.3 Spectral analysis

In the paragraphs above, the interpretation of the correlation co-
efficients r and r_of equations (1) and (3) were restricted to
values of h for observations compared more or less in near vicinity to
each other (i. e., for h much, much less than the width of the field
being sampled). An opportunity to discern repetitious irregularities
or cyclic patterns in soil or plant communities across a field exists
with a spectral analysis that utilizes the function r (h). We ilius-
trate by assuming our measured distribution of average soil water
content across a field G(x) was taken where a crop had previously been
grown along furrows 1 m apart. As a result of both plant extraction
of soil water and infiltration occurring in I=m cyclic patterns across
the field, measured values of G will reflect local variations as well
as a tendency toward a sinusoidal behavior having a 1-m period. A
spectral analysis identifies this periodicity and can be calculated by

8(f) = 2 S r, (h)cos(2nfh) dh (8
0

where f is the frequency equal to 1/p where p is the peried. Fig. 3
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Fig. 3. Spectrogram S5{f) for a transect of soil water content ob-

servations taken normal to the direction of furrows.
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illustrates the shape of the function S(f) where it can be seen that
most of the variance about the mean value of G(x) is accounted for by
observations of soil water content that reflect oscillations of wet
and dry soil occurring, on the average, every 1 meter. Depending upon
the kinds of repetitious features and processes that may be operating
in a field, S(f) may have a number of relative maxima that identifies
their specific spatial occurrences. In other words, a spectral anal-
ysis is useful in partitioning the total variance of a set of obser-
vations among differeat frequencies and then assessing which of those
frequencies has any significance for the field problem being studied.
1f we extend the above example to conditions illustrated in Fig. 4,
we see two additional periodicities - those greater water conteats
occurring every 2 meters owing to tractor tire compaction, and those
occurring approximately every 10 meters associated with pre-plant
border irrigation or some other kinds of previous traffic pattern. In
this example, most of the total variance is accounted for by varia-
tions from the mean value occurring at periods of 1, 2 and 10 m. Had
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Fig. 4. Schematic diagram of furrows, tracter compaction and

pre-plant irrigation causing cyclic variations of soil
water content, and idealized spectrogram.
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plant extraction, infiltration, compaction and pre-plant border irri-
gation had no influence on the spatial variations of average soil
water content, S(f) would have manifested no relative maxima.

2.4 Cospectral analysis
In a manner similar to the usage of r_(h) in spectral analysis,
r {h) is used to partition the total covariance for twoc sets of obser-
vitions across a field. A cospectral analysis is made by

Co(f) = 2 S r. (k) cos(2nfh)dh (5)
0

where T (h) = [r (h < 0) + ¢ _(h > 0)]/2. Let us extend further our
illustration givéﬁ in Fig. i by assuming that a grain crop is grow-
ing in the field whose soil water centent has cyclic distributions of
soil water owing to furrows, compaction and pre-plant border irri-
gation. We have the distribution of crop temperatures F(x) and the
distribution of soil water contents G(x) from which we calculate the
cross-correlation coefficient r _(h) from equation (3). Having cal-
culated the average value £, an integrating equation (5), we obtain
Co(f) depicted in Fig. 5. It is not surprising that three relative
minima occur at periods of 1, 2 and 10 m. The area beneath the ab-
scissa has a negative value and represents the total covariance bet-
ween crop temperature and soil water content. A linear regression
between F(x) and G(x) using "aggie" statistics would be negative
indicating statistically that crop temperature is inversely related to
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Fig. 5. Cospectrogram of crop temperatures F(x) and soil water

content G(x) along a transect normal to the furrows shown
schematically in Fig. 4a.

101

average soil water content. In this example, had pairs of obser-~
vations of F and G been made in a spatially random manner across the
field, the "aggie" linear regression correlation coefficient would
have been approximately equal to r_(0) but such random samplings would
not have identified the periodiciE& within both sets of observations.

For the above example it is advantageous for our discussion to
recognize an alternative situation where soil compaction occurs with
relatively higher soil water contents, For this situation, it is pos-
sible that root growth is impeded, or because of ever-present root-rot
microorganisms thriving in a wet, compacted soil environment, the crop
roots are diseased. In either case, the crop temperature would be
directly related to soil water content in zones of compacted soil, and
inversely related in other locations in the field. For such a situ-
ation, equation (5) would give rise to a cospectral analysis illus-
trated in Fig. 6. Even though the total area is zero, the relative
minima and a maximum show inverse correlations between F and G at
spatial periods of 1 and 10 m, and a direct correlation at a period of
2 m. Had pairs of F and G been taken randomly across the field, a
routine linear regression would have provided no enlighteament of the
processes occurring inasmuch as its value would have been near zero.

0.1 1.0
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0.5
Frequency, f{I/m)

Cospectrum, Co
(o]
8
1

Fig. 6. Cospectrogram of crop temperatures F(x) and soil water
content G(x) along transect normal to the furrows shown in

Fig. 4a when compaction decreases evapotranspiration.

2.5 Cospectral phase angles and coherence

The above examples of cospectral analysis compared two sets of
observations whose periodicities were spatially equal for the same
locations across the field. Soil attributes or processes that are
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correlated for a2 particular spatial frequency may wanifest this corre-
lation at any phase angle of not necessarily zero. We illustrate this
possibility in Fig. 7 where observations of crop temperature, T(x),
and soil salinity, SS(x), have a periodicity of 1 m. We assume that
crop temperatures are directly related to soil salinity and that soil
salinity levels are smaller in the bottom of the furrows 1 m apart.
For such conditions, each set of observations yields a relative max-
imum in its spectral analysis at a frequency of 1 as shown in the
figure. However, because the sun's radiation is not received from a
vertical direction, the maximum temperature of the crop will occur at
a distance ¢ from where the highest soil salinity is observed. The
phase angle ¢ illustrated in Fig. 7 is given by

b = gagtan” [Q(£)/Co(f)] 6)

where Q(f) is the quadrature spectrum calculated in an equation simi-
lar to that of equation (5) where the cosine term has been replaced by
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Fig. 7. Schematic diagram of observations of crop temperature T(x)

and soil salinity SS8(x) along a transect normal to furrows
with the sun radiation being received from one side.
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a sine term. Having calculated r_(h) for the two distributions T(x)
and 55(x), Q(f) can also be calcufated from equation (5) if r_(h) is
replaced by r (h) where xr (h) = [r (h > 0) - r_(h < 0)]/2. the co-
herence of the cospectral aralysis is given by

2 2
_ Q°(f) + Co"(f)

where S.. and S_. are calculated from equation (4) for T and SS, res-
pectivei&. Thé™ coherence, whose wvalues range between 0 and 1, is
analogous to the r“-value in ordinary regression analysis of "aggie"
statistics. It provides a measure of the certainty at which the phase
angle is identified.

Spectral and cospectral analyses are potentially powerful tools for
managing and increasing our knowledge of land resocurces. With them,
we can spatially link observations of different physical, chemical,
and biological phenomena. We can identify the existence and per-
sistence of cyclic patterns across the landscape. In some cases, the
cyclic behavior of soil attributes may be of more or equal importance
than the average behavior. From a spectral analysis, some insights
may be gained relative to the distances over which a meaningful
average should be calculated. It should also be recognized that the
selection of a particular size of a sensor should be based upon a
knowledge of the potential periodicities to be manifested by such
observations. And, with spectral analyses, it is possible to filter
out trends across a field to examine more closely local variations, or
vice versa. It should also be recognized that all of the above dis-
cussion from the beginning of this presentation could have had the
time variable substituted for that of the distance variable. .

2.6 Semivariograms and kriging
The spatial dependence of neighboring observations may also be ex-
pressed by the semivariogram y(h) estimated by

1 N 2
y(h) = TN(EY ;;% [G(Ki) - G(xi + h)] (8)

where N(h) is the number of experimental pairs of observations [G(x.},
G(x. + h)] separated by a vector distance h. The shape of the semi-
variogram gives an indication of the spatial dependence of the soil
physical properties. If for all values of h greater than zero Y
remains essentially constant, it indicates that the observations are
spatially independent. If for all values of h greater than zero, y
increases and appreaches a constant value, it indicates that the
observations are spatially dependent within a spatial area that cac be
characterized as a single domain. On the other hand, if as h in-
creases, Yy continues to increase, it indicates the area being sampled
continually changes and is not comprised of a single domein. The
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semivariogram describes the "variance structure" of a field, and is to
geostatistics as the Probability density distribution is to Maggie"
statistics.

as used in the context of soit morphology and classification.

Semivariograms, when the spatial dependence of observations exists,
are useful to make interpretations between observed values and to
identify improved future sampling schenes. Owing to the fact that the
semivariogram gives the expected relation between pairs of observed
neighbors, it is obvious for interpolation that different weights
should be given to neighbor values depending upon their distance from
the one to be interpolated. Hence,

I

Glx,) = 2 B,6(x,) (9)

i=1

where G(x ) is the estimated value at location X , B. are the weights
associated with each of the values G measured af lo€ations x,, and n
is the number of locatiens. This interpolation method devefoped by

bum variance. And, because it allows the variance of the estimates to
be estimated, it ig extremely helpful for identifying improved sam-
pling schemes. Kriging is becoming more common in geophysical
studies, and in light of the Presentation of Webster apd Burgess, we
shall not illustrate its usage. We point out, however, that through
its usage for soil observations taken within and between furrows, or
within and between rows of crop plants it is possible to construct
contours of isovalues that are more meaningful thap simplistic values
of means calculated for the two positions - within the row and between
the row, frequently repeated in agronomic journals.

2.7 Cross-semivariograms and cokriging

In many field situations, one set of observations G(x.) may not be
sampled sufficiently to vield interpolated values at other locations
of acceptable accuracy. By considering the spatial correlation that
may exist between that varjable and another more frequently observed
variable H(xi), cokriging may improve the Precision of estimating the
former, Cokriging relies not only upon the semivariogram but alsc on
the cross-semivariogram estimated by

N(h)
¥ (h) = Z—N%h—) 1);1 [6Ge;) ~ 60x; + M) HGx) - Hix, + n)] (10)

where the pairs of values [G(x.}, G(x.+ Y, [H(x.), H(x.+h)] are
separated by the vector h. An in%erpola%eg value of'G at 18¢8tion X
is cokriged using °
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ooy mooe
6x)) = 2 BiH(x) + 3 B{6(x;) (11)
i=] i=1
where BH and Bq are the weights associated with observations H and G,
and n and m a the number of H and G used in the estimation.of G a&
location x_. Values of H and G are measured while values of Bi and B,
are calculated from values of the semivariogram and' cross?
semivariogram given in equations (10) and {8), respectively. Cok-
riging is attractive when one of the two sets of observations correl-
lated with each other is relatively inexpensive and abundant. We
believe it has the potential of more precisely delineating boundaries
between soil mapping units, especially when either or both G and H
above are each functions of several soil properties. Present-day and
future soil mapping units should be judged, in some degree, on the
behavior of their semivariograms and cross-semivariograms.

3. DETERMINISTIC VERSUS STOCHASTIC EQUATTONS

Differential equations derived and solved for the description of
soil processes have most often been based upen deterministic concepts
regarding both their wvariables and parameters. Their derivations
explicitly demanded that sufficient observations were available to
identify the expected value of each term with more than sufficient
precisicn deemed necessary for their accurate solution. Such equa-
tions, often used under strict laboratory conditions where observa-
tions of each term were reasonably precise and accurate, are now being
questioned when their solutions are extended to natural field con-
ditions. That questioning initially embraced both measurement error
and sampling error. But with the continual development of instruments
and methodology to assess soil properties in situ with greater accu-
racy, it is now recognized that the sampling error associated with
spatial and temporal variations of thosge properties must be considered
separately. That is, with any reascnably affordable present day
sampling scheme, the spatial and temporal variance of field 501l
properties are sufficient to render estimates of their means highly
unreliable, Hence, deterministic equations are giving way to mixed
deterministic - stochastic and stochastic equations with levels of
probability of their solution defined.

3.1 Scaling
Scaling is part of a more general methodology known as fractional

analysis which seeks to find partial solutions to physical problems
which cannot be solved explicitly. Their complete solutions are un-
attainable owing to either some lack of understanding or the mathe~
matical analysis is intractable. An example of such a problem is the
simultaneous transport of water, solutes, heat and gases within an
unsaturated field soil subjected to diurnal conditions. TFrom a theo-
retical viewpoint, scaling is a process which reduces through dimen-
sional or inspectional analysis the number of variables important in a
given problem to the smaliest number of wvariables which completely
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describe the system. This reduction greatly simplifies the descrip-
tion of the system as well as provides descriptions of a great number
of other systems having different values for common parameters. Hore
than 25 years ago, E. E. Miller and R. D. Miller introduced scaling
and the concept of similar media using inspectional analysis for
describing the retention and transport of water through unsaturated
soils. They and others have derived scale factors for soil water flow
properties that have shown utility for structureless soils comprised
of particles of different sizes having similar geometric shapes. Soil
scientists have yet to address the scaling of solute, gas or heat
movement through soils by dimensional or inspectionl analysis, and
further consideration of that for water movement appears justified.

3.2 Stochastic equations

More recently different kinds of scale factors, not necessarily
related to those mentioned above, have been identified through re-
gression analysis to aid in the quantitative description of field-
measured soil-water functions or parameters required for the solution
of deterministic equations. Such identification simplifies the de-
scription of the functions for a spatially variable field soil into
one or more stochastic scale factors. Hence, the precision for which
soil-water functions are known for a field can be ascertained from the
probability density function and the spatial wvariance of these scale
factors. Incorporating such scale factors with mathematical expres-
sions of their statistical and geostatistical variances into the usual
deterministic equaticns for soil water allows solutions and simu-
lations of scil water and related processes to be calculated within
prescribed levels of probability. The practicality of routinely using
stochastic scale factors would be enhanced considerably if they could
be adequately estimated through correlations of easily measured soil
properties such as soil texture, porosity, bulk density, etc. poten-
tially available for each soil mapping unit.

It is becoming clear that there is a need to analyze and simulate
the behavior of field soils and agronomic regimes using equations in
probabilistic viewpoints. It is also becoming obvious that a know-
ledge of the mean behavior of a field may be of less importance in
some cases than that of its statistical or spatial variance. In this
respect, solutions of deterministic equations calculated repeatedly
using Monte Carlo procedures to identify realizations of their soil
parameters are beneficial. Such repeated calculations theoretically
correspond to a series of repeated field-measured values., Analytic
solutions of deterministic equations containing random or regionalized
variables are also gaining recognition. Stochastic differential
equations beginning to be used in hydrology relating variations in the
saturated hydraulic conductivity to the dispersion of solutes need to
be explored for unsaturated sojils. There also is the possibility of
using transfer function models that treat the transformation of a soil
profile input into an output without a knowledge or modelling of the
mechanisms inside the profile. Such models have been used recently to
investigate the transfer of solutes added to the soil surface to
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greater depths in the soil profile. Physical, chemical and bio}ogical
reactions of the solutes within the profile were explicitly ignored
but implicitly included through estimated probabilities of the amount
and rate at which the solutes arrived at a greater soil depth.

4.  FUTURE RESEARCH .

A dearth of properly designed field-measured observations of 5911
water properties precludes an adequate assessment of their spatial
variance structure and the development of an efficient field tech-
nology to optimize the size and spacing of their measurement. Sém—
pling schemes based upon "aggie" statistics are relatively inexpensive
owing to fewer observations required compared with those based upon
geostatistical concepts. Each statistical analysis has advantages aFd
disadvantages. A particular sampling scheme should embrace the attri-
butes of both "aggie" statistics and geostatistics. Unfortunately,
present-day soil mapping units have been developed without sufficiegt
regard to quantitative evaluations of the spatial variances of soil
parameters. Future research needs to answer the question if present-
day mapping units manifest commensurate spatial variance structures
for each of their soil properties. Within each mapping unit, when
should sampling schemes be 1-, 2-, or 3-dimensicnal? Should obser-
vations be equally spaced or should they be clustered in some manner?
For 2-dimensional sampling schemes, are othogonal configurations more,
or less informative than triangular, pentagonal, and other configura-
tions? Is there a future for the turning bands concept in soil water
studies? Do spectral and cospectral analyses of soil water properties
offer opportunities for improved soil water management? Are there
particular frequencies associated with cultivation or with pedologic
processes that should be more amenable to cospectral analysis? What
is the future of kriging and cokriging in soil water studies? Does
cokriging offer any substantive advantage over simply taking wore
observations of that parameter of primary interest? How much better
an understanding of transport of solutes, heat and gases through field
soils can be gained through dimensiodal and inspectional analysis?
Are scaling factors correlated with soil properties and are they
linked within or between soil mapping units?

Of paramount importance is to identify criteria for choosing deter-
ministic rather than stochastic algorithms for ascertaining the be-
havior of water in field soils. The presentations that follow as well
as those we envision during the next decade will make substantive
contributions toward that identification.
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