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1. Introduction

In the development of the long-distance transmission technologies made
possible by the invention of the erbium fiber amplifier. there have been
twao very different philosophics on how best to deal with the effects of fiber
nonlinearity. The first one adtentpts, by various mcans. such as the use of
special dispersion maps. and by holding signal intensities 1o the lowest
possible level, to make nonlinear penalties acceptably small. The result is
the non-return-to-zero (NRZ) transmission mode reported in Chapters 8,
9, and 10 of Volume HIA. The second philosophy, by contrast. embraces
the fiber’s nonlinearity and attempts to extract the maximum possible bene-
fits from it. It is this second approach. based on the uniquely stable and
nondispersive pulse known as the seliton, that is the proper subject of
this chapter.

Soliton transmission makes positive usc of the fiber's nonlinearity in a
number of ways: First, as is well known, the soliton owes its existence to
the fiber nonlinearity. That is, as we shall detail shortly, for the soliton, the
effects of the nonlinearity more or less continuously cancel the usual pulse-
broadening effect of chromatic dispersion. Second. it makes use of the fact
that solitons can regenerate themselves, from the nonlinear effect, while
traversing a transmission line containing narrow band optical filters, even
when the peaks of such guiding filters gradually shift frequency with distance
along the line. That amenability to passive regeneration. again unique to
solitons, enables a great reduction of the error-producing effects of noise
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and a further stabilization of the transmission. Third, it makes use of the
nearly perfect transparency of solitons to one another in the cotlisions that
occur between pulses of different channels in wavelength-division multi-
plexing (WDM). Fourth, the interaction between the guiding filters and
the fiber nonlinearity engenders a powerful, automatic regulation of the
relative signal strengths among the various channels in WDM. Fifth, with
solitons, the fiber nonlinearity effectively counteracts the dispersive effects,
or polarization mode dispersion, of the residual birefringence of the fiber.

Thus, it should come as no surprise that solitons are the undisputed
long-distance champions for both single-channel (Fig. 12.1) and WDM
transmission (Fig. 12.2), or that certain modes, such as single-channel rates
greater than 10 Gb/s or massive WDM at a per-channel rate of 10 Gb/s,
are their exclusive domains.

Beyond this leadership in sheer performance, however, soliton transmis-
sion has certain other properties that make it highly attractive. For example,
in contrast to NRZ, which tends to require lumped dispersion compensation
specific to each distance and each wavelength, the continuous dispersion
compensation of soliton transmission renders the data immediately read-
able and/or injectable at any node of a network. The extreme return-to-
zero (RZ) format of the soliton transmission further enhances this compati-
bility with networking, because it enables all-optical manipulation of the
data, with attendant high speed, simplicity, convenience, and low cost.

Finally, as we shall attempt to show, the basic physics of solition transmis-
sion is straightforward, highly predictable, and easy to understand. One
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Fig. 12.1 Achieved error-free distances in a single channel, for soliton transmission
neina hidino freanencv onidine filtere and for the non-return-to-zero (NRZ) mode.

12. Solitens in High Bit-Rate, Long-Distar.ce Transmission 315

0 5 10 15 20 25 30 35 40 45 50
I R A T R T 1T

souTtoNs S
2

NRZ

10 Gbit/s / chan.

SOLITONS to 50 7 -~

}

100 Gbit/s

5 Gbit/s / chan.
z
b
N

U PO PO M N | [ 1
0 5 10 15 20 25 30 35 40 45 50

DISTANCE (Mm)

Fig. 122 Achieved error-free distances in massive wavelength-division multiplex-
ing (WDM), for solitons and for NRZ. The vertical width of each band 1s directly
proportional to the total achieved capacity in gigabits per second.

consequence of this understanding and ease of analysis is that optimum
system designs can be quickly established, and their performance reliably
predicted, with a minimum of time-consuming numerical simulation. In this
age of rapidly shifting expectations and demands, that is no small advantage.

2. Pulse Propagation and Solitons in Optical Fibers:
A Tutorial

2.1 APOLOGIA

This section constitutes a brief tutorial on the theory of pulse propagation
in optical fibers. In it, we discuss the fundamental dispersive and nonlinear
properties of fiber, and from these we derive the fundamental propagation
equation (the nonlinear Schrédinger equation). We then discuss not only
the origin and fundamental properties of the soliton, but also other closely
related issues such as soliton units and path-average solitons. Because the
material in this section is fundamental to all that follows, a careful reading
is urged, unless one is already thoroughly familiar with the concepts.
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2.2 DISPERSION RELATIONS AND RELATED VELOCITIES

If weak monochromatic light at some angular frequency w enters a fiber,
the wavelength A, of the resulting lightwave in the fiber is determined
by the refractive index of the fiber and to a lesser extent by its guiding
properties. The phase ¢ of the lightwave has the form ¢z, 1) = kz — wr,
where the wave number & is equal 10 27/Ag,,, and z is the distance along
the fiber. Central to the problem of lightwave propagation in the fiber is
the dependence of the wave number on the frequency. This is the dispersion
relation & = k(w}. For plane waves in vacuum, it is simply & = w/c. For
plane waves in an isotropic transparent medium, it is & = nw/c, where # is
the retractive ndex at frequency w. For a single-mode transmission line
consisting of a liber core and cladding. we can also use the same form,
k = nw/e, with the caveat that n now has an elfective value intermediate
between the values for core and cladding, depending on the transverse
mode shape.

An observer moving with velocity v = dz/dt will observe the phase ¢
to change with time according to

WED oy (1)

If we require the phase to be constant in Eq. (2.1), the needed velocity is
v = w/k. This is the velocity with which any point of constant phase on the
wave (ravels down the fiber. It is called the phase velocity v, and its value
is Just ¢/n. If we add a second wave at a slightly different frequency, the
combined wave will be modulated, with greater amplitude where the two
frequency components are in phase and add, and lesser where they are out
of phase and subtract. To follow the modulation envelope. our observer
must travel at a velocity such that the rate of change of the phase difference
between the two waves 13 zero. From Eq. (2.1) we thus require kjv —
w; = kv - s, where the indices | and 2 refer to the two waves. The re-
quired velocity is v = (@; — w:)/(k, — k:). The group velocity v (w) is this
velocity in the limit of a small-frequency difference. It satisfies

v (w) = % (2.2)

The phase and group velocities usually differ, hence one will generally
observe the phase moving with respect to the envelope of a modulated
wave. Finally, consider a pulse having a continuous band of frequency
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components. Such a pulse is most highly peaked if all of its frequency
components have the same phase at some common time and place. The
pulse envelope will tend to move with its average group velocity, but if the
group velocity varies with frequency —ie.. there is some group velocity
dispersion — then the pulse will spread as it propagates, becoming chirped
as its various frequency components separate in time. We shall see this
behavior in more detail later.

In dealing with lightwave propagation in fibers. it is natural to observe
the wave as a function of time at various locations along the fiber. To
record the progress of a pulse. we therefore plot power versus ¢ for a
succession of values of = Tn arder to keep the pulse in sight. one's time
window must be moved as 2 is varied. However, we can casily manage this
movement. A pulsc traveling with the group velocity v, will appear to be
stationary in a retarded time frame ¢ such that ¢ = ¢+ — v.'z, This is a
standard trick used to simplify the analysis.

2.3 FIBER NONLINEARITY
The induced polarization in 4 nonlinear dielectric takes the form
P = E()[X“)' E + X'Jj:EE + X(”' EEE + - ~].

where P and E are the polarization and electric field vectors, respectively,
and the susceptibilities y'*' are nth rank tensors. Because the glass of optical
fibers is isotropic, one has simply ' = #° — 1. where n is the index of
refraction, while y'?’ = (). The effects of ' of interest here are nonlinear
refraction and four-wave mixing. Raman scattering becomes important
for shorter pulses than we consider here; third harmonic generation is
negligibly small.

In silica glass fibers, because of their isotropy. and because of the rela-
tively small value of x'*. the index can be written with great accuracy as

n(w, [E[Y) = n{w) + n.[Ef (2.3)
where n, is related to y'¥ by
3
= 2
n; 8'1 Xliil . (2'4)

where x{). is a scalar component of x*¥, appropriate to whatever polariza-
tion state the light may have at the moment.

Even the highest quality transmission fibers are mildly birefringent, how-
ever, so that the polarization states of the light tend to chanoe cionificantly
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on a scale of no more than a few meters. In contrast, the nonlinear effects
of interest in long-distance transmission tend to require many kilometers
of path for their development. Thus, in general, with optical fibers we are
usually interested only in n; as suitably averaged over all possible polariza-
tion states. In silica glass fibers, if we write the nonlinear index as m/,
where I is the intensity in W/em”, then the lastest measurements of n, yield
such a polarization-averaged value of about 2.6 x 10 '* em*/W.

2.4 FUNDAMENTAL PROPAGATION EQUATION
2.4.1 Derivation

We now consider lightwave propagation in a fiber that has both group
velocity dispersion and index nonlinearity. Let the lightwave in the line be
represented by a scalar function U(z, r) proportional to the complex field
amplitude, such that the power P in the line is given by

P =PJUR (2.5)

The proportionality constant 7, can be considered as a power unit. For
frequencies near some central frequency w,,, the generic dispersion relation
k = nw/c can be expanded to the approximate form

k= ky+ k(o= w) + (0= w) + kP, (2.6)

where we have used Eq. (2.3). This equation has the form of a Taylor series
expansion of k(w, P) in the neighborhood of (w,. (). It adequately describes
the propagation of menochromatic waves U = wexp(ikz — iwt) in the line
so long as the frequency does not stray too far from wy. It leads directly
to the nonlinear Schrodinger (NLS) equation. For solitons in fibers, the
last two terms of Eq. (2.6) are of comparable importance; k; is positive, k"
is negative, and succeeding higher order terms (e.g., k"[w — wo]’, kife -
wo}P, etc.) can be neglected or adequately treated as perturbations. For
the moment, we assume that the line has no loss or gain — i.e., that the
constants k. k', k", and k; are all real.
The expression for the reciprocal group velocity, namely,

ak L "
vgl = a =k + k"(w — ), (2.7)

identifies k' as the reciprocal group velocity at frequency wp and k" as its
freanency disnersinn constant. The dispersion narameter D used widely to
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describe fibers is the wavelength derivative of v;'. and so is related to k"
or the refractive index by
2nc Adn

— k" = —— —.
A” ¢ dA-

D = :_/\ (vi') = — (2.7a)
The term kP in Eq. (2.6} represents the primary nonlinear effect, self-
phase modulation, resulting from the intensity dependence of the refractive
index of the fiber. Note from Eq. (2.7) that the dependence of the group
velocity on power is among the higher order terms not included in Eq. (2.6).

If we now remove the central frequency and wave number from {/
by defining

w(z, 1y = Ueltw Rod) (2.8)
so that when {/ is written out explicitly, «(z, f) becomes
u(z, 1) = ne'l'c ks ool (2.8a)

then the wave equation for « that is necessary and sufficient to reproduce
exactly our initial dispersion relation (Eq. [2.6]) is
au L, du 1L 0t

Sy L Y

az a2 -

nlu. (2.9

This can be shown by inserting Eq. (2.8a) in Eq. (2.9).

The standard form of the propagation equation is generated from Eq.
(2.9) by transforming to the retarded time frame (this eliminates the &'
term) and by choosing unit values of time and distance such that £" = —1
and k; = 1 when measured in those units, and the power unit already
mentioned. The appropriate new variables are

= — k'),
(2.10)
2 =z,
where the unit values r., z., and P, satisfy the relations
3z, = —k" = N¥DI(2mc)
(2.11)

z.Po= Uk,

The resuiting propagation equation (after we drop the primes on z and 1)
1s the NLS equation

. ou

o _ 1%
Az 2 art

9 )
2t u)?ae. (2.12)



380 L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev

Clearly, the first term on the right-hand side of Eq. {2.12) is the dispersive
term. whereas the second term i1s the nonlinear one.

As its name suggests, Eq. (2.12) has a form similar to the wetl-known
Schrodinger equation of quantum mechanics. Here, of course, it is based
instead on Maxwell's classical field equations.

There is an important arbitrariness left in the definitions of the three
unit values z,. t.. and P,. because there are only two relations (Eq. [2.11))
that they must satisfy. One umnit value may be chosen freely, and thus
different real-world fields can be represented by the same soiution of Eq.
(2.12), and vice versa. In particular, if one solution of Eq. (2.12) is u(r, z),
then different scalings of the same real-world field give other solutions of
the form An{A7. A7y where A is the ratio of the values of 1. This scal-
ing transformation of the solutions of Eq. (2.12) can be veritied by direct
substitution.

Broadband gain and/or loss can be accommodated by adding a third
term, —(a/2)u, Lo the right side of Eq. (2.12), where « 1s the coefficient of
energy gain per I, (negative values of o represent loss). In that case, Eq.
(2.12) becomes

i i
L

]
az 2 ar

+ e

‘u - i, (2.12a)

2.4.2 Soliton Units

Equation (2.12) is often referred to as a dimensionless form of the NLS
equation. It 1s more useful to think of it as having specific dimensions, with
z. for example, being a distance always measured in units of 7. rather than
in meters or kilometers or any other standard unit. Thus, z = 2 means a
distance of 2 times z,. Similarly, ¢, and P. become the units of time and
power, respectively. Because here we are primarily interested in solitons,
it is convenient Lo tie these three units {which so far are very general in
meaning) to the specific requirements of solitons. The canonical single-
soliton solution of the NLS equation, Eq. (2.12), is

u(z, 1) = sech(r)exp(iz/2). (2.13)

This soliton has a full width at half maximum (FWHM) power of Ar = 2
cosh '\/2=17627....Inorderforthisformto represent some soliton whose
FWHM power is 7 {in picoseconds. for example), we need simply to take

(2.14)
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The unit distance, z,. is a characteristic length for effects of the dispersive
term and is given by

Lot

B 1 2mc T

(17627 .. A D’

(2.15)

where ¢ and A are the light velocity and wavelength in vacuum, respectively,
and where D is the dispersion constant, as already described (in Section
2.4). (D is often expressed us picoseconds of change in trausit time, per
nanometer change in wavelength, per kilometer of fiber length. Also, note
that 12 > 0 corresponds to anomalous dispersion.} When [J is expressed
in those units, 7in picoscconds. and for A~ 1557 nm (corresponding to
the longer wavelength erbium amplifier gain peak). Eq. (2.15) becomes

zo== .25 7D, (2.15a)

where z. 1s in kilometers. Note that for the pulse widths (7 ~ 15-50 ps)
and dispersion parameters ([2 ~ 0.3~ ps/nm-km) most desirable for long-
distance soliton transmission, Z, is hundreds of kilometers. Finally, the unit
of power, P s just the soliton peak power, and is given by the Tormuta

Augr A (1.7627 . ) A A D
p.o= L0 o . L
2

{2.16)

H-¢ T

where A4 1s the effective area of the fiber core. and where >, the nonlinear
coefficient, has the polarization-averaged value already cited (see Section
2.3). Thus, for A, ~ 50 um” and A = 1557 nm, one has P, = 0.476/z,,

where P, is 1o watts, and z. is in kilometers. Note that for a z, of hundreds
of kilometers, the peak soliton power is just a few milliwatts.

2.4.3 Pulse Meotion in the Retarded Time Frame

Another important transformation of the solutions of Eq. (2.12) is that
produced by a carrier frequency shift. Because the inverse group velocity
dispersion constant has the value — 1 in the soliton unit system, a frequency
shift produces an inverse group velocity shift ol equal magnitude. Thus,
for the same solution u(r, z} as mentioned previously, one finds yet other
solutions, frequency shifted by Q (in units of r.'), of the form

ult + Qz, z)e "), (2.17)

Thic trancfarmatinn alen annlioc ta ama calitinn ~f BEa £ 1)
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2.4.4 A Useful Property of Fourier Transforms

Shortly, we shall have need of the following simple relation between the
Fourier transforms of u(r) and those of its time derivatives. Let «(z) and
f{w) be Fourier transforms of each other, i1.e.,

1

u(ty = o

We are using the tilde symbol to imply a function of frequency. Successive
time differentiations of Eq. (2.18) show that au(1)/dr and —iwii(w) are also
Fourier transforms of each other, as are %uff)/or* and —e?d(w), and so on.

me@r%m. (2.18)

2.4.5 Action of the Dispersive Term in the NLS Equation

To obtain the action of the dispersive term alone, we temporarily turn off
the nonlinear term, so that Eq. {2.12) becomes
au i&zu

= (2.19)

az 2 a7

The problem is most casily solved in the frequency domain. The Foutier
transform of this last equation vields
i i,
— = s ol (2.20)
dz 2

and its solution is
alz. w) = @0, w)e 7 (2.21)

From the form of this general solution, it should be clear that the dispersive
term merely rearranges the phase relations among existing frequency com-
ponents; it adds no new ones. To find how the dispersion affects a pulse,
we must transform back to the time domain. An example that has an
instructive analytic solution is the Gaussian pulse. Taking u(0, 1) = e 7,
we have {0, w} = ¢ w2 and upon turning the crank we get

1 ( —12 .
wiz. 1) = ex = (1 - lZ)). (2.22)
0= s P \aa )
In the near field (z < 1), the field gets some chirp but the pulse shape does
not change (see Fig. 12.3). In the far field (z? » 1), the field approaches
what can he chown tn he a oeneral relation for an initiallv narrow pulse
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Fig. 12.3 Dispersive broadening of a Gaussian pulse with distance.

1 2

u(z = 1,1y = v (0. w = —r/z)exp(r’ ;—) (2.224)
iz 2

which shows how dispersion fans the field out into a spectrum of 1ts various

frequency components. As depicted in Fig.o 12,3, the intensity envelope

|uf? o exp( /(1 + z7)). Thus the pulse width grows as

T = Tl]\/ l + Zz. (223)

where 7, is the initial, minimum pulse width, We see that the change in 7
is only to second order in z at the origin. This may also be seen directly
from the differential equation, where we note that if u{r) has a constant
phase, then an/az is everywhere in quadrature with .

2.4.6 Action of the Nonlinear Term in the NLS Equation

To observe the action of the nonlinear term of Eq. (2.12) alone, we turn
off the dispersive term, so the equation becomes simply

e s
P il Pu. (2.24)

The problem is most naturally solved in the time domain, where the general
solution is

ulz. 0 = ulQ. Ne’0nie, (2.25)
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The nonlinear term modifies (1), but not the intensity envelope. Thus, it
adds only new frequency components. To get the spectral spreading, we
must transform back to the frequency domain. Once again, for example,
let u((. &) = ¢ 2 In that case. one has

JI(Z. m) = —1:._ J1 “((]‘ I)(,:‘ui".",n..r di
N2nd o
l J e e o duy (2.26)
- et do A
\/% x

For z # 1. this intcgral produces a multipeaked spectrum, where the num-
ber of peaks and the overall spectral width merease directly with o (see

Fig. 12.4). However, tor 7 <€ 1. the integral is approximately

l
V2

(- £ NN £ potear — 7 _i 7 3
J e 4 dze D)e di = a0, ) + NG a0, o). (2.27)

Note that once again the new component is in quadrature with the orniginal
puise, so the increase in net spectral width scales only as 7. Thus, the
imittal increase, here in bandwidth, is also only to second order in z. This
behavior is equally importani 1o the creation of the soliton as was the increase
in pulse width from the dispersive term.

Fig. 124 Spectral broadening of a Gaussian pulse at zero dispersion. The numbers

e O T L T P PO )
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2.5 THE SOLITON
2.5.1 Origin of the Soliton

We are now finally in a position 1o discuss the origin of the soliton. In
Section 1. we stated that the soliton is that pulse for which the noniinear
and dispersive terms of the NLS equation cance! each other’s effects. At
first, 1t may seem mysterious that the tendencies to spectral and temporal
broadening can cancel each other. As we have just taken pains to show,
however, whenever cne starts from a transform-limitcd pulse, such as
sech(n), there is no broadening of cither kind to first order in z {to be
thought of as dz). Instead. the first order cffects of both terms are just
complementary phasc shitts ddr). We have already seen how the nonlinear
term generates d(r) = [u{s)dz. For the dispersive effect. first we recognize
that if f(z, #) is real, then the general equation

— = If(z. hu (2.28)

At
0

simply generates the phase change déptr) = f{0, 1) 2 in the distance dz.
We then write the reduced NLS equation in the form

e i #u
Thus, the dispersive term generates
1 #u
dip = (2“ (,“2) dz. (2.30)

For u = sech(t), these terms are, respectively,
ddy, = sech’(t) dz and dda,, = |8 = sech’(n)] dz. (2.31)

Note that these differentials sum 1o a constant (see Fig. 12.5), which, when
integrated, simply vields a phase shift of z/2 common to the entire pulse.
In this way, we arrive at the simplest form for the soliton, already displayed
in Eq. (2.13).

It should also be noted that a common phase shift does nothing to change
the temporal or spectral shapes of a pulse. Thus, as already advertised,
the soliton remains completely nondispersive in both the temporal and
frequency domains. Nevertheless, the associated wave-number shift of
(2z.)7', or simply 4 in soliton units, is important in understanding the interac-

tinn nf tha calitinn with narturhing nanenlitnn field romnanantc
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1

0.5

Fig. 12.5 Dispersive and nonlinear phase shifts of a soliton pulse, and their sum.

2.5.2 Path-Average Solitons

For reasons of economy, the loss-canceling optical fiber amplifiers of a long
fiber transmission line are usually spaced apart by a distance, which we
shall call the amplificr span, or I.,,,. of several tens of kilometers. This
spacing results in a large perniodic variation in the signal intensity, as illus-
trated in Fig. 12.6. In addition, the dispersion parameter £ may vary signifi-
cantly within each amplifier span (again, see Fig. 12.6). Clearly. in that case,
the differential phase shifts of the dispersive and nonlinear terms (see Eq.

16.

D {ps/nm-km)
_*®

L i D =1.4ps/inm-km
0

2
]
E 1 ) Pc : T~ 1
! e | -
o . . I . 1 ! e
0 14 28 42 56

Distance (km)

Fig. 12.6 Sample of a transmission line used for numerical testing of the path-
average soliton concept. As in certain real-world experiments, the desired D is
obtained by combining short lengths of high D fiber with dispersion-shifted fiber
{for which D ~ 0), so there are large variations in D, periodic with the amplifier
spacing, as well as in the pulse power.
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Fig. 1.7 Solitens, for which z, ~ 440 km, at input and after traversing 15.000 km
of the transmission line of Fig. 12.6. Note that the defects (dispersive tails on the
pulse) are extremely small, The defects have also heen computed analytically.

[2.31]) do not cancel in every clement dz of the fiber. Nevertheless, if
the condition

< > I-:imp (232)

is satisfied, and if, furthermore. the path-average values, / and D of the
intensity and dispersion, respectively, are the same for every amplifier span,
then one can still have, at least in a practical sense, perfectly good solitons.
The reason is that when the inequality of Eq. (2.32) is well satisfied, as
already shown, neither the temporal nor the spectral shapes of the soliton
are significantly affected within each span. Thus, all that matters is that,
over each amplifier span, the path-average dispersive and nonlinear phase
shifts cancel (sum to a standard constant). Figure 12.7 illustrates how very
well this concept of path-average solitons* can work [1-5]. Through numeri-
cal simulation, it shows 7 = 50 ps solitions before and after traversal of
15,000 km of transmission line whose spans are those of Fig. 12.6. For this

* Although the name tends to be ohscure, the “guiding center solitons” of Ref. 5 are
essentially path-average solitons. The latter name is preferred, however, because it is more
accurately descriptive, is better known, and avoids confusion with the more apt use of the
word guiding in connection with jitter-reducing filters (see Section 4).
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case, 2./, = 16. The difference between the output and input solitions,
which can be seen only on the logarithmic plot, appears in the form of very
low-intensity tails on the pulse. This defect, usually known as dispersive
wave radiation, represents the nonsolition component of the pulse. When
it is as small as shown here, it is usually of no practical import. Even when
2/ Lomp is as small as 3 or 4, the path-average solition concept still works
fairly well.

There is another complementary, insightful way of understanding the
behavior of path-average solitons, wherein the periodic fluctuations of the
amplifier spans are seen as a perturbation to provide phase matching be-
tween the solitons on the one hand, and the linear, or dispersive, waves
on the other. As we have just seen in the foregoing, the dispersion relation
for solitons is just &,,;, = % {(in soliton units), whereas that for the linear

waves is k;, = —lw?. Clearly, the amplifier spans provide kp.,, = Z/Lapp-
The phase matching condition is
kperf = k.wf. - k.’m.' (233)

If, as illustrated in Fig. 12.8, k..., is so large that the phase matching occurs
only where the spectral density of the soliton is small, then the path-average

| {w) of soliton

Fig. 12.8 Dispersion relations, k{(w), for the soliton and for linear waves, and the
spectral density of the soliton. A perturbation of wave vector k.., phase matches
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solitons work well. On the other hand, if k., 15 small enough, then the
phase matching will be to a region of high spectral density. where a large
fraction of the soliton’s energy will drain away into dispersive (linear)
waves, and the path-average soliton will not work well. It is interesting
that, historically, the concept of path-average solitons and the associated
resonance condition for disaster (k,.,, = %) were first encountered in these
terms of phase matching [1].

2.5.3 Soliton Transmission in Dispersion-Tapered Fiber

With an ever-increasing bit rate, eventually the soliton pulse width and
hence z, become so short that it is no longer possible to satisfy the inequality
of Eq. {2.21) in a satisfactory way. Nevertheless, in principle at least, there
is still a way to have perfect soliton transmission with lumped amplifiers,
and that is to taper the fiber's dispersion parameter [2(z) to the same
exponential decay curve as that of the intensity itself. That is. D(z) should
be given by

D(z) = ey ] - Dge (2.34)
(‘-) 1 - exp(* aiqunp) ‘ o l '
so that Eq. (2.12a) becomes
, D a2 ) :
ﬂg_t; - 2%65!_‘2‘ + Jefue — (a2 (2.35)

Clearly, the phase shifts generated by the dispersive and nonlinear terms
of Eq. (2.12b) will cancel in each and every segment dz of the amplifier
span, so the solitons will be without perturbation. Itis also easily understood
that an N-step approximation to the ideal dispersion taper of Eq. (2.34)
can be tremendously heipful. even when N is as small as two or three.
Later, in Section 5, we shall show that tapered dispersion is perhaps of
even greater importance to avoid excessive growth of four-wave mixing
components.

2.5.4 More General Forms for the Soliton

Any single real-world soliton can be expressed in the simple form of Eq.
(2.13) by the appropriate choice of scale and frequency. Alternatively,
application to Eq. (2.13) of the scale and frequency transformations dis-

nnnnnn Ain CantinaneT A1 and? A2 racnartivaly wvialde tha mare aensaral form
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i = A sech(A(r + {1z))eite~, (2.36)
where
& = (A2 -~ QHz2.

The form given by Eq. (2.36) is necessary to the consideration of pertur-
bation or multisoliton problems, such as soliton—soliton collisions in
WDM, for example.

2.6 NUMERICAL SOLUTION OF THE NLS EQUATION: THE
SPLIT-STEP FOURIER METHOD

The NLS equation is generally difficult to solve analytically. Numerical
solution, however, can be remarkably efficient, when it is based on the
split-step Fourier method shown in Fig. 12.9. The method is based on the
fact that the effects of the dispersive term are most naturally dealt with in
the frequency domain, whereas those of the nonlinear term are best handled
in the time domain. Thus, each increment /1 in : is treated in two consecutive
steps. as follows:

Step It wu(z. 1y —— fi(z, w): Ao wle o = a(z + h w)
and
Step 20 Gz + A ©) — (2, 1) tpez. DM = u(z + k1),

That is, in Step 1. u(z, 1) is Fourier transformed to iz, w). and then, to
reflect the dispersive effects of the element i, @{z + h, o) is computed
from #(z, w) according to the analyric solution of Eq. (2.20). In Step 2,
a(z + h, w) is first Fourier transformed back to make a “‘new” version of
u(z, 1). Then. from that new u(z, f), u(z + h, 1) is computed according to
the analytic solution of Eq. (2.24), so that it now reflects the nonlinear
effect of the element h as well. On the basis of the ideas just discussed
with respect to path-average solitons, one can easily see that reasonable
accuracy can often be obtained with relatively large step sizes. Finally, note
that fiber loss, amplifier gain, filter response functions, and other linear

........ I 1 [

z z+h z+2h

Fig. 12.9 Scheme of the split-step Fourier method.
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frequency-dependent factors are most easily applied in the frequency
domain.

3. Spontaneous Emission and Other Noise Effects

3.1 GROWTH OF SPONTANEOUS EMISSION NOISE IN A
BROADBAND TRANSMISSION LINE

In long-distance fiber optic transmission systems, Hmits to the bit rate and
distance for error-free transmission are set mainly by the various effects
of noise fields in the line |6. 7]. Although we shall later show how the
proper use of narrow band filters can greatly reduce those noise fields and
their effects, it is nevertheless instructive to first consider a broadband
system in which the response of the transmission line is essentially flat over
the entire bandwidth of the soliton. The prototypical system (see Fig. 12.10)
consists of single-mode fiber segments of length Loy and loss coefficient o,
so that the power loss per segment is exp{ —« Lo ). connected by amplifiers
whose gain (; = explal.,,,) offscts this loss. The path-average signal is
thus maintained at the same high level. from the transmitier right through
to the receiver. Detector noise is overwhelmed, and the most important
noise is the accumulated, or “amplified,” spontanecus emission {(ASE)
created by the amplifiers. [n some cases, dispersive-wave radiation created
by path-average solitons (Section 2.5.2), and residual four-wave mixing
fields from soliton-soliton collisions in WDM. can also make a significant
contribution to the noise. Here, however, we shall concentrate on the
inevitable ASE noise.

In the system of Fig. 12.10, each amplifier contributes to its output an
additive Gaussian ASE noise field whose mean power per unit bandwidth is

Pomp{v) = (G — )n, kv, (3.1)

where n, = 1 is the excess spontaneous emission factor (close to unity if
the amplifier populations are highly inverted). and A v is the photon energy.

G
Trans._.Mm_D: WG —D Receiver

Fig. 12.10 Prototypical all-optical transmission line containing amplifiers of power
gain G interleaved with fiber spans of loss 1/G.
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One may note that P,.,(») has units of energy. In general, if P() is the
power per unit bandwidth of an effectively white-noise field, then it is also
the noise energy emitted (or received) in any time T (e.g., the bit period)
and in a corresponding bandwidth 8 = 1/7T. It is independent of one's
choice of time unit and is known as the equipartition energy. (Note that
we are invoking only classical transmission line theory — i.e., no mention
of discrete photons, ete. This is always adequate when the equipartition
noise energy is much greater than the photon energy, as it is in systems
that use in-line coherent amplifiers. A more sophisticated semiclassic theory
involving zero-point fields is conceptually better. but in the present context
LIS unnecessary.)

Because there is unity gain from the output of each amplificr in Fig.
12.10 10 the receiver, the accumulated ASE noise at the receiver is just the
value given by Eq. (3.1) multiplied by N, the total number of amplifiers in
the chain. To compare the noise with the soliton signal, we must use the
path-average value for the noise, just as we do for the solitons. The path-
average power is equal 1o the power at the output of an amplificr multiplied
by the average trom 0 to [, of exp(—az), which can be expressed as
(G — DY In (). I we also write N as aZ/in G, then the path-average
noise at system output takes the form

Pr(v) = aZhvn, F(G), (3.2)

where the overbar on P symbolizes the path average, Z is the system length,
and the function

_ 72
FG) = (i [%} (3.3)

(see Fig. 12.11) represents an important noise penalty incurred simply by
using long spans and high gain amplifiers [6). Systems designers, accustomed
to the economics of regenerated systems, would like to place amplifiers no
closer together than about 100 km. For systems of transoceanic length,
however, the more than 7-dB ASE noise penalty one must pay for such
large spacing is excessive, and smaller spacings are usually needed.

3.2 ENERGY ERRORS

There are two main sources of error that affect the soliton system; fluctua-
tions of the pulse energies and of their arrival times. At each amplifier, the

addition of the ASF nnice chaneec the enfrov rentral frennsncu mean
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Fig. 12.11  Penalty lunction, FiG), oy a function of amphifier gain.

time, and phase of the solitons in statistically random ways. The changes
in mean time and phase are of little importance in the present context. The
other two changes can be analvzed separately. We shall focus on the energy
fluctuations in this section and on the Trequency changes and the resultant
jitter in arrival times in the next

The energy fluctuations are similar to those that occur in a linear system.
The argument is as follows: The system is effectively linear over short
distances, so there is no difference in the way the noise field is injected
into the system. The only difference in the soliton system 1s that the energy
changes of first order in the noise field (the so-called signal-spontaneous
noise) are captured by the solitons, which then reshape themselves as they
propagate. This reshaping is done with no significant change in energy.
Thus, the energy fluctuations at the receiver at like those that would occur
if the system were linear and dispersion free.

To evaluate the errors incurred by the energy fluctuations, some model
detector must be chosen. For simplicity we shall assume that the detector
consists first of an optical filter of bandwidth By, followed by a photodetec-
tor, followed by an integrator, so that in effect the total energy that passes
the optical filter in each time slot T is measured. The detectors actually
used in most systems do not work this way, but the good ones give similar
results. Let m = KB,7T, where K = 1 or 2 is the number of polarization
states to which the receiver is sensitive. The sampling theorem says that
the detected optical field has approximately 2m independent degrees of
freedom (DOFs), and without loss of generality the soliton may be consid-

ered to occnnv ingt anes nf these The mean ASFE nanice enerov ner TR
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is one-half the equipartition energy, or Pax{1)/2. Thus, if we let S be the
ratio of the total energy in a bit period to the equipartition energy Px(uy).
then § becomes the sum of the squares of 2m independent Gaussian random
field variables, each with variance equal 1o one-half. All but one of these
have zero mean values. The exception has a mean value that is the square
root of the normalized unperturbed soliton energy. One can think of § as
the square of the radius to a point in a 2m-dimensional Euclidean space
whose coordinates are the real amplitudes of the normalized DOF field
components. On the basis of this picture, we get the following results. The
mean and variance of the distribution of § for a zero (soliton absent) are
both equal to m, and for a one (soliton present) are equal, respectively, to
S + m and 28, + m. where 8, is the ratio of the unperturbed soliton
energy to the noise equipartition energy. In the variances, the term
represents what is often called the spontanenus—spontaneous beat noise,
whereas the term 285, represents the signal-spontaneous beat noise.

It is standard practice to characterize error rates using the quantity Q,
which is related to the bit error rate (BER) through the complementary
error function

BER = ({erfe [/ ()] = [25(Q7 1 )] expl - Q72). (3.4)

The approximate form can be used when ¢ = 3. If the energy distributions
are assumed Gaussian and the optimum decision level is chosen, then the
value of Q is related to the means, w. and variances, o, of the distributions
of ones and zeros by QO = (u, — wa¥ (o + ). On this heuristic assumption
of Gaussian energy distributions, one gels error rates as a function of the
signal to equipartition noise ratio S, as shown by the dashed line in Fig. 12.12.

In more detail. the true probability distributions for § are given by [6]

-1

Prob(S) = h exp(~S5) (3.5)

for a zero, and

Prob(s) = 2s(s/s))" " exp[—(s° + D))l 1(255,)* (3.6)
. 77_—]:‘2(5./5|)m 172 exp[*(_s‘ — S])Z} N

for a one, where s and s, are, respectively, the square roots of § and §,,
whereas [,,_, signifies a modified Bessel function of the first kind. The
approximate asymptotic form is valid in the tail of the distribution needed

* We thank Curtis Menvuk for pointing out the e¢xact form.
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Fig. 12.12  Bit error rate (BER) for amplitude or energy errors, and the optimum
decision energy level, as functions of the signal-to-noise ratio, for m = 8. (5, is the
decision energy level.) Also shown is the error rate estimate using the Gaussian
approximation {dashed line).

for the calculation of crrors. Using these probability distributions, one
determines error rates by choosing a decision level S, that equates the
probability that § > $, for a zero with the probability that s < \/S, for a
one. The results of this computation are also plotted in Fig. 12.12. Note
that the more accurate computation of error rates gives fewer errors than
the Gaussian approximation does. For a larger value of m (larger optical
bandwidth). the difference would be smaller.

3.3 GORDON-HAUS EFFECT

The ASE noise also acts to produce random vanations of the solitons’
central frequencies. The fiber’s chromatic dispersion then converts these
variations in frequency to a jitter in puise arrival times, known as the
Gordon—Haus effect [8]. Such timing jitter can move some pulses out of
their proper time slots. Thus, the Gordon-Haus effect is a fundamental
and potentially serious cause of errors in soliton transmission.

The calculation of the jitter can be summarized as follows: Recail that
each DOF of the noise field produced by an amplifier has a mean path-
average energy of (3)P.,,(¥). The field of one such DOF shifts the frequency
of the soliton. From perturbation theory, one can deduce that the effective
noise-field component has the form 8u = fau,,tanh(r} (see Fig. 12.13), and
that it shifts the soliton’s freauencv bv an amount 8Q = 2a/3. Here. a is a
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Fig. 12.13 Noise component that modifies the frequency of a soliton, in relation
to the field envelope of the soliton. The two field components are in quadrature.

real random Gaussian variable whose variance (%)ﬁ,,,,,,,(u) is determined by
the DOF’s mean energy requirement. The soliton’s random frequency shift
therefore has a variance of

(80 amp = 4 Pompl(v). (3.7)

Because in soliton units (see Section 2.4.3) the inverse velocity shift is
numerically just —1 times the frequency shift, the net time shift of a given
pulse is

8t = - > 8Q,1z,. (3.8)

amps

where z,, is the distance from sth amplifier to the end. On the right side
of Eq. (3.8) we have the sum of N independent variables, each of which
has a Gaussian distribution. In such a case, the sum also has a Gaussian

distribution whose variance is the sum of the variances of the individual
terms. Thus, the variance of r is

P 3
(86 = (80 O 23 = Pump(¥) 2

: (3.9)
ol 3 3Ly,

where. for the second step in Eq. (3.9), Z represents the total system length,
and we have approximated the discrete sum over the (many) amplifiers by
an integral. Now substituting In G/« for L,,, and using the path average
form of Eq. (3.1}, we obtain

(8t = § an,, F(GYhvZ>. (3.10)

(From now on in this chapter, we shall write the variance in arrival times,

{513y as ? <o ~ then beromes the carresnondine standard deviation )
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Translated from soliton units into practical units (see Eqgs. [2.14] and {2.15],
Eq. (3.10) becomes

oy = 3600 n, F(G) @D A (3.11)

A,‘ﬂ T

where o,y is in picoseconds, n,, and F(G) are as defined previously, the
fiber loss factor e 1s in inverse kilometers, the effective fiber core area A4
is in square microns, the group delay dispersion D is in picoseconds per
nanometer per kilometer, 7 1is the soliton FWHM iniensity in picoseconds,
and Z is the total system length in megameters (1 Mm = 1000 km). (The
numerical constant in Eq. (3.11) 15 not dimensionless.) We can deduce from
Eq. (3.11) that «;, is proportionial to the energy of the solitons because
the latter is also proportional to /1,

To get a feeling for the size of the effect. consider the example Z = 9
Mm (trans-Pacific distance). 7 = 20 ps, 12 = 0.5 ps/nm-km, 4,5 = 50 um?,
a = 0.048 km™', n, = 1.4, and F = 1.19 (~3)-km amplifier spacing).
Equation {3.11) then yields ¢, = 11 ps.

The BER from the Gordon-Haus effect 15 the probability that a pulse
will arrive outside the acceptance window of the detection system. If the
window width is 2w and we assume that these errors affect only the ones,
then the BER has a () value of w/a (see Eq. |3.4]. For example, this implies
that for an error rate no greater than 1 X 10 ¥, 2w = 120,,,. Now. the upper
bound on 2w is just the bit peried, although practical considerations may
make the effective value of 2nw somewhat smaller. Note. therefore, that for
the previous example, where oy, = 11 ps, the quantity 12a,, corresponds
to a maximum allowable bit rate of about 7.5 Gh/s.

3.4 THE ACOUSTIC EFFECT

Traditionally, the Gordon—-Haus effect is considered to be the dominant
source of timing jirter. There is, however. another contribution, one arising
from an acoustic interaction among the pulses. Unlike the bit-rate-indepen-
dent Gordon-Haus jitter, the acoustic jitter increases with bit rate, and as
we shall soon see. it also increases as a higher power of the distance. Thus,
the acoustic jitter tends to become important for the combination of great
distance and high bit rate. In this section, we briefly review what is known
about the acoustic effect.

The acoustic effect appeared in the earliest long-distance soliton trans-
mission experiments [9] as an unpredicted “long-range™ interaction: one
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that enabled pairs of solitons separated by at least several nanoseconds
(and which were thus far beyond the reach of direct nonlinear interaction)
to significantly alter each other’s optical frequencies, and hence to displace
each other in time. Shortly thereafter. Dianov er af. [10] correctly identified
the source of the interaction as an acoustic wave, generated through electro-
striction as the soliton propagates down the fiber (see Fig. 12.14). Other
pulses, following in the wake of the soliton. experience effects of the index
change induced by the acoustic wave. In particular, they suffer a steady
acceleration, or rate of change of inverse group velocity with distance.
dv,'/dz, proportional to the local slope of the induced index change (again,
see Fig. 12.14). In a broadband transmission line. when this steady accelera-
tion is integrated over z, it yields dv, ' o« 2z and a sccond such integration
yields a time displacement & o« 2. It can be shown that the standard
deviation of the acoustic effect for a fiber with A4 = 50 um-” is approxi-
mately {11, 12}
Dl 72

o, = 86— VR — 099 =,
T 2

(3.12)

where o, 15 1 picosceonds. I s in picoseconds per nanometer per kilometer,
Tis in picoseconds, Kis in gigabits per second, and 7 1s in megameters.
Comparing Eq. (3.12) with the square root of Eq. (3.11). note the different
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Fig. 12.14 Solid curve: Relative index change due to the acoustic effect following
passage of a soliton at + = 0. Dorted curve: Relative force acting on the following
soliton at f: this curve is proportional to the time derivative of the relative index
curve. For these curves. the interacting solitons are assumed to have a common
state of polarization. The effect is only weakly dependent on their relative polariza-
tions. however.
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power dependencies on 13, r. R, and Z. most of which have alrcady been
discussed for both the Gordon-Haus and the acoustic effects. For the
acoustic jitter, the scaling of o, as D/ is easily understood. because it is
clearly in direct proportion to the soliton energy, or /7, and the extra factor
in D is required for the conversion of frequency shifts into timing shifts.

3.5 OPTIMIZATION OF THE SOLITON ENERGY FOR BEST
BER PERFORMANCE

It should be clear from the discussion in Sections 3.2 and 3.3 that energy
errors decrease, whereas errors from the Gordon—Haus jitter increase. with
increasing soliton pulse encergy W, Thus. there will be an optimum value
of W, for which the combined crror rates are a minimum. Because
W, o D/t one can hope to attain that optimum value of W, by adjusting
D and 1. There are, of course, certain limitations on the practical ranges
for both parameters. For example. lack of perfect uniformity of fiber pre-
forms and other factors tend to limit the smallest values of D that can
be produced reliably. To avond significant interaction between nearest-
neighbor soliton pulses. 7 can be no more than about 20 25% ol the bit
period. Nevertheless, £ 7can usually be adjusted over a considerable range.

The optimum value of W, can be most efficiently found from a diagram
[6] like that shown in Fig. 1215, where, for a fixed value of the transmission
distance, the rates for both energy and timing errors are plotted as a function
of the parameter 7). Proceeding from the far right. where W, 1s smallest,
note that at first, only encrgy errors are significant. but as W, increases,
those errors fall off exponentially. Eventually, timing errors become signifi-
cant and then dominate. Also note that aithough the energy errors are bit-
rate independent, the timing errors are not, because the allowable size of
the acceptance window in time is determined by the bit period. Note that
for transmission at 5 Gb/s, the optimum value of ¥ = 70 nm-km. If we
choose D = (.5 ps/nm-km. a value large enough to be reproducible, then
we have 7= 35 ps. a value short enough relative to the (200-ps) bit period
to allow for negligible pulse interactions.

The curves of Fig. 12.15 would seem to imply a maximum allowable bit
rate not much greater than 5 Gb/s for trans-Pacific soliton transmission
over a broadband transmission line (at least not for the specific choice of
parameters reflected there). As already noted in Section 1, and as will soon
be thoroughly explored in the foliowing section, the technique of passive
regeneration known as guiding fillers has enabled that limit to be surpassed
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Fig. 12.15 BYR. for encray and timing crrors, as a function of the parameter
D, for a transmission distance of 9 Mm (the trans-Pacilic distance). The other
assumed parameters are as follows: fiber loss rate. 0.21 dB/kem: /.

wnp = 30 km ",
= 1.5 A,y = 50 um m = % (see Section 32).

by a large factor. Thus. the theory in this section, and its predictions, are
largely of interest as background for the understanding of transmission
using filters. Nevertheless, for the record, we close this section by citing
the results of an experimental rest of single-channel transmission at 5 Gb/s
that was made a number of years ago [13]. Although made with guiding
filters. the flters were only of the weak. fixed tuned type, so the results
that would have been obtained without filters may reasonably be projected

from them. See Fig. 12.16.

4. Frequency Guiding Filters

4.1 INTRODUCTION

In mid- 1991, two groups independently suggested the idea that the Gordon—

Haus jitter and other noise effects could be significantly suppressed in
soliton transmission systems simply through a narrowine of the amnlifier
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Fig. 12.16 Experimentally measured BER for » single-channct rate of 5 Ghis, as
a [unction of transmission distance, and with a 2' “bit-long random sequence. Curve
labeled “with”: Weak. fixed-frequency guiding tilters used. Curve labeled “without™:
Scaled back projection with no filters. The other paramcters are as follows: fiber
loss rate, 0.21 dB/km: Loy = 28 km: D = 0.7 ps/fnm-km; ny =160 7 = 40 ps;

Acr = 3% um® At the receiver, the effective window width was about 170 ps.

gain bandwidth [14, 15]. In practice. this means the use of narrow band
filters, typically one per amplifier. Figure 12.17 shows appropriate filter
response curves in comparison with the spectrum of a 20-ps-wide soliton.
The fundamental idea is that any soliton whose central frequency has
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Fig. 12.17 Intensity response curves of a practical etalon guiding filter and a
Gaussian filter with the same peak curvature, campared with the spectrum of a
20-ps soliton. The etalon mirrors have R = 9%, and their 2.0-mm spacing creates
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strayed from the filter peak will be returned to the peak. in a characteristic
damping length delta (A), by virtue of the differential loss that the filters
induce across its spectrum. The resultant damping of the frequency jitter
leads in turn to a corresponding damping of the jitter in pulse arrival times.
For example. in Eq. (3.9) for the variance of the Gordon-Haus jitter, when
guiding filters are used. the quantities z3 in the sum are all replaced with
the common factor A2 Thus, the factor ZY/3 in the final expression is
replaced by the (potentially much smaller) factor Z x A%

The filters also cause a reduction in amplitude jitter. Consider, for exam-
ple, a pulse with greater than normal power: that pulse will be narrower
in time, have a greater bandwidth, and hence experience greater loss from
passage through the filter than the normal pulse. The opposite will occur
for a pulse of less than standard power. Thus. amplitude jitter also tends
to be dampened out. as is detailed later, in essentially the same characteristic
length A as is the frequency jitter.

Because the major benefit comes from the filter response in the neighbor-
hood of its peak, the etalon filter whose shallow response is shown in
Fig. 12.17 provides almost as much benelit as the Gaussian filter of the
simplest theory [14. 15). But the ctalon, with ats multiple peaks. has the
great fundamental advantage that it is compatible with extensive WDM.
The etalons also have the practical advantage that they are simple, are low
in cost, and can be casily made in a rugged and highly stable form.

It should be understood that linear pulses cannot traverse a long chain
of such filters: after a sufficient distance, their spectra will be greatly nar-
rowed, and the pulses correspondingly spread out in time. The solitons
survive because they can regenerate the lost frequency components, more
or less continuously. from the nonlinear term of the NLS equation. On the
other hand, the amplifiers must supply a certain excess gain to compensate
for the net loss that the solitons suffer from passage through the filters. As
a result, noise components at or near the filter peak grow exponentially
with distance. To keep the noise growth under control, the filters can be
made only so strong, so the maximum possible benefit from them is limited.
For example, Fig. 12.18 shows the standard deviation of timing jitler, as a
function of distance. for systems with the optimum strength filters (those
experimentally observed [13] to produce the best BER performance), and
for those with no filters. Note that at the trans-Pacific distance of 9 Mm,
the filters reduce the standard deviation of the jitter by a factor somewhat
less than two times.
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Fig. 12.18 Computed standard deviation. ey . of pure Gordon-Haus jitter as a
function of total path, for a broadband transmission line ("no hlters™) and for
one having optimum strength, tixed-frequency guiding ffters. The optimum filter
strength, determined experimentally, corresponds to one uncoated. 1.5-mm-thick
solid quariz etalon filter every 78 km. The other pertinent transmission line and
soliton parameters in the strength-determining experiment were as follows: ) =
0.7 psinm-km. n,;, = 1.4, and 7 = 40 ps. (The BER data of a Fig. 12,16 were abtained
in the same expriments [131)

4.2 SLIDING-FREQUENCY GUIDING FILTERS

There is a simple and elegant way [16] to overcome the noise growth, and
hence the limited performance. of a system of fixed-trequency filters. The
trick is to “slide.” i.e.. translate, the peak frequency of the hlters with
distance along the transmission line (see Fig. 12.19). As long as the sliding
is gradual enough, the solitons will follow, in accord with the same ““guiding”
principle that dampens the jitter. On the other hand. the noise, being

] :" {un+l(:)

m,(2)

Fig. 12.19 Transmission of sliding-frequency guiding filters versus z.
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essentially hnear, can follow only the horizontal path in Fig. 12.19. Thus,
the sliding creates a transmission line that is opaque to noise for all but a
small, final fraction of its length, yet remains transparent to solitons. In
consequence, the filters can be made many times stronger, and the jitter
reduced by a corresponding factor, with the final result that the maximum bit
rate can be increased at least several-fold over that possible without sliding,.

The sliding-frequency filters provide many other important benefits be-
yond the simple suppression of timing and amplitude jitter. Note, for exam-
ple, that they suppress all noiselike fields, whatever the source, such as
dispersive-wave radiation from imperfect input pulses or other perturba-
tions. They provide tight regulation of all the fundamental soliton proper-
ties, such as cnergy. pulse width, and optical lrequency. As i1s detailed
later, in WDM the filters suppress timing shifts and other defects from
soliton-soliton collisions, and they provide a powerful regulation of the
relative signal strengths among the channels in the face of wavelength-
dependent amplifier gain. Thus, in short, the sliding-frequency guiding
filters can be regarded as an effective form of passive, all-optical regenera-
tion, and one that is uniquely compatible with WDM.

Finally, it should be noted that the required set of hundreds of shiding-
frequency filters can be supplied more easily and at less cost than the
corresponding set of fixed-frequency filters. That is, unlike the fixed-
frequency mode, in which all filters must be carefully tuned to a commeon
standard, the sliding-frequency mode does not require any tuning. Rather,
only a statistically uniform distribution of frequencies is needed. Provided
the distribution is over at least one or more free spectral ranges, simple
ordering of the filters should be able to provide any reasonable desired
sliding rate.

4.3 ANALYTIC THEORY OF GUIDING FILTERS

In the mathematical representation of a transmission line with filters, in
general, only numerical solutions are possible when the exact response
functions of real filters are used. Nevertheless, analytic solutions are possible
when the filter response is approximated by a truncated series expansion
[16]. When expanded in a Taylor series, the logarithm of the filler response
function F takes the general form

In Flo — wr) = ililw — wr) = Hlo — o) — ifdo — o + 0, (41)

where wy is the filter peak frequency and the constants { are all real and
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that it provides serves only to translate the pulses in time. Although higher
order filter terms can have important effects, the most fundamental features
are revealed by analytic solutions to the simplified propagation equation
employing only the second-order term:

au |1 8% , 1 4 :
—_ - — 4 E + - _ _
3z i [2 praal ] 5 [a Y (r P (uf) ] u, (4.2)

where « is the gain required to overcome the loss imposed on the solitons
by the filters and 5 = 2{,. (Both continuously distributed quantities « and
7 are easily converted into lumped. periodic equivalents.) Without filter
sliding (dw/dz = w; = 0). and where. for convenience. we set w; = 0, the
exact stationary solution 1s

\/f—’ sech(s) exp(id)

4

(4.3)
where ¢ = Kz — vin cosh(n),
and the parameters (a. n, P, v, K} must satisfy
y—%}l(l +-83-:-)m - 1]—%’7%Tr‘+"' (4.4a)
a = (31 + 1) (4.4b)
P=(1+ ) — 12) (4.4c)
K= @®(0 — )+ (432 - ) (4.4d)

Note from Eq. (4.3) that the pulse’s frequency is chirped —i.e., dd/ar =
— v tanh(z). Because of this chirp. the root mean square (rms) bandwidth
is increased by the factor (1 + #)'~

Numerical simulation involving real filters shows that the principal fea-
tures (the chirp, extra bandwidth, and increased peak power) of the previous
solution are approximately preserved. The major differences lie in slight
asymmetries induced in «(¢) and in its spectrum by the third-crder filter
term, and in the fact that, through a complex chain of events, those asymmet-
ries cause the soliton mean frequency to come to rest somewhat above the
filter peak.

Numerical simulation has also shown that sliding (within certain limits
given subsequently) does not significantly alter this solution. Sliding does,
however, have the potential to alter the damping of amplitude and fre-
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we introduce the general unperturbed form for the soliton (Eq. [2.36])
into Eq. (4.2). We then obtain the following pair of coupled, first-order
perturbation equations:

1 dA

Ad. C @ ol wr)' + 3 A7 (4.5a)
g 2 .
T - w)A (4.5b)

According to Eq. (4.5b}), equilibrium at A = | and at constant w; requires
that d)/dz = w}. and hence that the lag AQ = (£} — o) of the soliton
mean frequency behind the filter frequencies is

Af) = - %Tw;. (4.6)
Equation (4.6), as written, correctly predicts the difference in lag frequen-
cies for up- versus down-sliding, AL}, — Af},. To acount for the offset in
AQ produced by the third-order filter term (mentioned previously for the
case of no sliding). one must add a positive constant (as determined empiri-
cally from numcrical simulation) to the night-hand side ol Eqg. (4.6). Equa-
tion (4.6) then correctly predicts A2 for all sliding rates. For etalon filters,
the offset in Af) has been estimated from the third-order filter term [17].
That is, it has been shown from perturbation theory that

A“umﬂ = %{3‘ 4.7)
where {5 1s computed as

1762 .. (L+ R) n
6 (I - R)F

4y = (4.7a)

where F is the free spectral range of the etalon filters. Combining Eqs.
(4.6}, (4.7), and {4.7a). one obtains

AQ = (1.762...(1 + R) l) _3 . (4.62)

s (- RytE) 290

Note that the two terms in Eq. (4.6a) tend to cancel for up-sliding (w; >
0), whereas they add for down-sliding. Because the damping of the filters
is best for the smallest [A{}| (see Eq. [4.8]}, up-sliding is definitely preferable
to down-sliding.*

* Note: In the original article on sliding-frequency guiding filters {Ref. 16), because of

an improper combination of sign conventions, the numerical simulations reported on there
incorrectly yielded the offset Sw < 0. As a further result of that error, the article incorrectly
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Equations (4.5a) and (4.5b), when linearized in small soliton frequency
and amplitude displacements § and a, respectively, yield two eigenvalues
(damping constants}).

yi=39(1 +V6A0) and ¥ =4n(l - VeAQ). (48)

with corresponding normal modes ¢, = 6 + \/’%a and x> = & — V3a. This
implies a monotonic decrease of damping for both frequency and amplitude
fluctuations with increasing |A€)|, and, through Eq. {4.6). the existence of
maximum allowable sliding rates for stability. The numerical simulations
we have done to date with real filters are at least qualitatively consistent
with these predictions.

In principle. on the basis of the damping constants of Eqg. (4.8), one can
go on to write expressions for the variances in soliton cnergy and arrival
time. It is not at all clear. however. how accurate such expressions would
be in predicting the effects of strong. real filters. Nevertheless, because we
are primarily interested in the behavior for yz 1. where the energy
fluctuations have come to equilibrium with the noise. the energy variance
can be written as

BLLy NNy

S A — = 5. 4.9
b:uf Y [L_\,,j [l\le‘ ( }

where N is the spontaneous emission noise spectral density generated per
unit length of the transmission line. £, is the soliton pulse energy, and
the effective damping length, A, = 1/y, .is expected 10 increase monotoni-
cally with increasing |A{2l. Note that Eq. (4.9) implies that as far as the
noise growth of ones is concerned. the system is never effectively longer
than Ag. Because the characteristic damping lengths with shding-frequency
filters are typically about 600 km or less, this means a very large reduction
of amplitude jitter in transoceanic systems.

As far as the variance in timing jitter is concerned, we have already seen
that, for yz » 1. the factor Z/3 is replaced by ZA[. In other words, the
variance in timing jitter is subject to a reduction factor

—3—_1(91)2 (4.10)
mzy ~ \z)- |

where A, is also expected to increase monotonically with increasing [AQ)].
Although Ag and A, are in general different, nevertheless, for Gaussian
filters, both are expected to be approximately equal to 3/(2%) in the neigh-

Fly. 2} =
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For a transmission line using Fabry-Perot etalon filters with mirror
spacing d and reflectivity R, the parameters 7, w;, and «, in soliton units,
are computed from the corresponding real-world quantities as follows [18]:

= (*-l—ﬁiTRR—)_, ((—;) (—[31}7 {4.11a)
w; = 4n°f et (APD) (4.11b)
a = apt?lrc/(A1D). {4.11¢)
Here. /" and «y are just w;/27 and «, respectively, but as expressed in

“real” units (such as GHz/Mm, for example):t, = /1,763 {Eq. |2.14]); and
Ly is the filter spacing,

We can now illustrate the power of sliding-frequency filters through a
specific numerical example. Anticipating a bit from the next section, where
we discuss the optimum choice of filter paramelers. we choose the following
soliton and fiber parameters: 1) = 0.5 ps/nm-km., 7= 16 ps, so z, = 128 km.
The shding rate will be 13 GHz/Mm (note that this means that the total
shding will be just about | nm in the trans-Pacific distance), so by Eq.
(4.11b), w; = 0.095. For the filters, we choose R = 8% 2-mm air-gap etalons,
with L, = 50 km. By Eq. (4.11a), 5 = 0.52. Thus, we have o = ().185, and
by Eq. (4.11¢). ap = 1.4/Mm. For the damping constants of shallow etalons,
however, 7 has a certain functional dependence on 7 and must be degraded
to about 7., = 0.4 for the 16-ps pulses (o be used in this case.

The relative noise growth with sliding-frequency filters is easily simu-
lated. Figure 12.20 shows the results of such a simulation for the conditions
of our example. Note that the sliding keeps the peak spectral density
clamped to a value less than that which would be obtained at 10 Mm
without filtering. whereas without the sliding, the noise would potentially
grow by ', or about 1.2 million times, in the same distance! (Long before
that could happen, however, the amplifiers would saturate.) Also note the
spectral narrowness of the noise,

In Fig. 12.21. normalized standard deviations of the soliton energy (ones)
and of the noise energy in empty bit periods (zeros) are shown as functions
of distance [16]. These curves are obtained from Eq. (4.9), and the estimate
Ag = 600 km derived from 7,5 ~ 0.4 and Eq. (4.8), the data of Fig. 12.20,
and the analysis of Section 3.2. Note that with the filtering, both standard
deviations soon become clamped to small. indefinitely maintained values,
corresponding to immeasurablv small BERs.
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Fig. 1220 Noise spectral density. normalized to value at 10 Mm with no filter-
ing. as a function of frequenay and distance. for the conditions of our example
(one R = 8% 75-GiHy free spectial riunge (ESR) craon filter per S0 kg shiding
rate = 13 GH/Mm: o - 14NN

Finally. in Fig. 12.22. the standard deviation of the Gordon - Haus Jitter
is plotted versus distance. both tor when the sliding tilters are used and for
when there are no filters. Note the nearly W= reduction in o,y at 10 Mm,
and compare it with the same factor from Fig. 12,18,
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Fig. 12.21 Standard deviations of the soliton energy (ones) and of the noise in

empty bit periods (zeros) versus distance, both normalized to the soliton energy

itself, for the sliding-filter scheme of Fig. 12.20 (dotred curves), and with no filtering

save for asingle filter at z, passing only eight noise modes (solid crves). The assumed

fiber loss rate and effective core area are 0.21 dB/km and 50 um?. respectiveiy; the

amplifier spacing and the excess spontaneous emission factor are ~30 km and 1.4,
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Fig. 12.22 Standard deviation of the Gordon-Haus jitler, oy, as a function of
total path. Selid curve: With strong. sliding-frequency goiding filters. Dashed curve:
No filters. Conditions: 7 = 16 ps; ) = (.5 psinm-km: n,, = 14 F(G) = 11 filter
strength parameter 7 = 0.5 damping length A = 600 km.

4.4 EXPERIMENTAL CONFIRMATION
4.4.1 Measurement of Moise and Amplitude Jitter

Figures 12.23 and 12.24 refer to experimental transmission with sliding-
frequency guiding filters, where the parameters are at least similar, if not
identical, to those in the example cited in Scection 4.2, Figure 12.23 shows
the signal and noise levels during a 15-Mm-long transmission, where the
signal train was purposely made not quite long enough to fill the recirculat-
ing loop. Thus. once cach round-trip. for a period too brief (a few microsec-
onds) for the amplifier populations 1o change significantly, one sees only

t \ signal + noise
2
g
£ +
I
0-a Pt L
= 15 Mm +

Fig. 12.23 Noisc and signal levels during a transmission using strong, sliding-
frequency filters. The signal level is represented by the thick, upper line, whereas
the noise level is represented by the fine line immediately above the zero signal
level.
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Fig. 12.24 Observed amphitude jitter reduction with successive round-trips in a
transmission using sliding-frequency filters.

the noise. Note that. just as in the theoretical model (Fig. 12.20), the noise
grows for only a few megameters and then saturates at a steady, low value.

tn another carly experiment with shiding-frequency filters, the pulse
source was a mode-locked. erbium fiber ring laser. which had been pur-
posely maladjusted to produce a substantial amplitude jitter at a few tens
of kilohertz. Figure 12.24 shows the very rapid reduction in that amplitude
jitter with successive round-trips in the recirculating loop. The data shown
in this figure imply a damping length of about 400 km, which is consistent
with the filter strength paramcter of n == 0.6 and the known dispersion
length z. = 160 km (see Eq. [4.8]).

4.42 Measurement of Timing Jitter

The timing jitter in a transmission using sliding-frequency filters has been
measured accurately by observing the dependence of the BER on the
position, with respect to the expected pulse arrival times, of a nearly square
acceptance window in time [19]. The scheme. which involved time-division
demultiplexing, is shown in Fig. 12.25. The fundamental measurement is
of the time span (inferred from the precision phase shifter in Fig. 12.25),
for which the BER is 10 ' or less for each distance. The resultant spans,
or time-phase margins, are plotted in Fig. 12.26, as a function of distance,
for three cases: (1) a 2.5-Gb/s data stream (which, because it also passes
through the loop mirror, can be thought of as a 10-Gb/s data stream
for which only every fourth 2.5-Gb/s subchannel is occupied); (2) a true
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Fig. 12.25 Scheme for the pulse timing measurements. The main elements of the
clock recovery are the detector: the high-Q, 10-GHz resonator: and the divide-by-
4 chip. The wavelength-dependent couplers in the loop mirror (small rectangular
boxes) vach contain an interference filler that transmits at the signal wavelength
{(~1557 nm) and reflects the & = 1534 nm switching pulses.

10-Gb/s data stream with adjacent pulses orthogonally polarized; (3) a
10-Gb/s data stream with all pulses copolarized. Note that the error-free
distances (for which the phase margin first becomes zero) are 48, 35,
and 24 Mm. respectively.

From the known properties of the error function, the difference belween
the effective width (here 82 ps) of the acceptance window and the measured
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Fig. 12.26 Time-phase margin versus disiance. Bullets: 2.5 Gb/s; squares: 10 Gb/s,
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time-phase margin at a 10°"" BER should be about 13 « of the Gaussian
distribution in pulse arrival times. From this fact, one can then obtain the
plots of o shown in Fig. 12.27. Note that in all three cases shown there,
the data makes a good fit to a curve of the form

SR p——
o= Neoy v oy + o, (4.12)

where @y, ogy, and oy, represent the standard deviations of the source
jitter (a constant), filler-damped Grodon-Haus jitter (varies as z?), and
Jitter whose o varies linearly with z, respectively.

10 Gbit/s, co-pol, =
L i

It

o (ps)

a (ps)

o (ps)
odnmammwo—nmwhmch-ww&mmﬂ

: a7 Tien .
1_;':[ [ S S W TR B R R
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Fig. 12.27 Standard deviation of jitter versus distance for {bottom to top)
2.5 Gib/s, 10 Gb/s with adjacent pulses orthogonally polarized, and 10 Gb/s with
adjacent pulses copolarized. Squares: Experimental points, as extrapolated from
the data of Fig. 12.25; solid curve: best fit to theoretical enrve of form o =
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The best-fit Gordon-Haus term (a¢;,;) is always about two times greater
than expected for the known parameters of the experiment, and for the
damping length of approximately 400 km as calculated, and as confirmed
by the independent measurement of the damping of amplitude jitter (Fig.
12.24). The frequency offset of the pulse spectra from the filter peaks is
very small and can thus at best account for only a small part of the discrep-
ancy. despite speculation to the contrary [20]. Thus, the only likely explana-
tion here is in terms of the noiselike fields of dispersive-wave radiation.
Among the perturbations that may be responsible for significant amounts
of such noise are the fiber’s birefringence (see Section 6) and the periodic
intensity associated with the use of lumped amplifiers (Section 2.5.2).

There are two contributions to the linear term: polarization jitter and
the acoustic effect (Section 3.4). (The polarization jitter arises from a noise-
induced spread in the polarization states of the solitons and the conversion
of that spread by the fiber’s birefringence into a timing jitter. This effect
discussed further in Section 6.) Because both contributions have essentially
Gaussian distributions, the effects add as oy, = Vap, + o2. For a filtered
transmission line, the factor Z7/2 in Eq. (3.12) is replaced with Z % A Thus
modified. Eq. (3.12) becomes:

7, = 86 % ZA VR - 099, (3.12a)
Using the bit-rate dependence of ¢, and the slopes of gy, from the two
lower plots of Fig. 1227, one can easily extract values for o, and a,. At
Z = 10 Mm, those values are as follows: o, = 080 ps. 0,05 = 0.50 ps,
and 0,0 = 1.21 ps. The experimental values lor o, are just 7% less than
predicted by Eq. (3.12a), a remarkable degree of agreement.

BER measurements have been made at 12.5 and 15 Gb/s, as well as at the
10 Gb/s already cited |19). Figure 12.28 summarizes those results. Finally, it
should be noted that by using sliding-frequency guiding filters, LeGuen et

al. [21] achieved error-frec transmission at 20 Gb/s over more than 14 Mm.

4.5 STABILITY RANGE

The range of soliton pulse energies for which the transmission with sliding-
frequency filters is stable and error free will henceforth be simply referred
to as the stability range. It is important for the stability range to be large
enough (at least several decibels) to allow for the aging of amplifier pump
lasers. and other factors that may tend to degrade the signal strength with
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Fig. 12.28 Mecasured BER as a function of distance. at 10, 12.5, and 15 Gbis. In
all cases. adjacent pulses were orthogonally polarized. and the data stream was a
repeated. 2'*-bit random word.

time, in real systems. Perhaps not surprisingly. the stability range is a
function of both the filter strength parameter (1) and the sliding rate (w; ).
The following is a brief summary of an experimental determination of that
dependence, and of the optimum values for those paramcters f1H].

The experiment was carnied out ina small recireulating loop with piezo-
driven ctajon sliding-frequencey lilters having lixed reflectivity (R = 9%)
and fixed mirror spacing (¢ = 1.5 mm). and where £, = 39 km. Because
of the fact that 5 is inversely proportional to D (see Eq. [4.11a]). the fiber’s
third-order dispersion (aD/aA = 0.7 ps/km’-nm) enabled 5 to be varied
simply through change of the signal wavelength itself. At the same time.,
the signal power at equilibrium. henee the soliton pulse energies, could be
controlled by means of the pump power supplied to the loop amplifiers.
Thus, the experiment consisted simply of measuring, for cach signal wave-
length, and for a fixed shiding rate, the maximum and minimum signal
power levels for which a transmission over 10 Mm was stable and error
free. The results are shown in Fig. 12.29. Note that although error-{ree
propagation ceases for 7 = 0.8, the stability range reaches a maximum of
nearly two to one for n = (4. Figure 12.30 shows the complementary
data — i.e.. the measured stability range as a function of sliding rate — for
fixed = 0.4. Note that in this case. too. there is an optimum rate of about
13 GHz/Mm. Essentially the same results as in Figs. 12.29 and 12.30 were
obtained for two other values of L, (26 and 50 km, respectively) and for
etalons having an FSR of 75 GHz (as opposed to 100 GHz).

The existence of E, is easily predicted from the analysis of Section
4.3. That is, for stability, neither of the damping constants can be negative,
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Fig. 12.29 Fiber dispersion 1 (solid line), filter strength parameter i (dodted lined,
and experimentally determined allowable soliton pulse energy limits £, and £
(filled squares and open circles, respectively), as functions of the signal wavelength
A, for a fixed sliding rate of 13 GHz/Mm.

so from Eq. (4.8). one has [AQ}| = 1°\/6. From Eq. (4.6) or {(4.6a), one then
gets a maximum allowed sliding rate, w;. in soliton units. Finally, from Eq.
(4.11b}, one sees that, for fixed real sliding rate f' and for fixed D, wy
increases as the third power of the pulse width, and hence inversely as the
third power of the pulse energy. Perhaps less abstractly, one can easily see
that as the pulse energy is lowered, the rate at which the nonlinear term
can alter the soliton’s frequency will eventually become so low that it can
no longer keep up with the filter sliding.

The existence of the upper limit, E,,,,, may be somewhat less obvious,
but it has to do with the fact that eventually, as its energy is raised, the
soliton’s bandwidth. hence its loss from the filters, becomes too great. In
this example. numerical simulation was helpful in elucidating the precise
failure mechanism. Figure 12.3] shows the simulated pulse intensity evolu-
tion at n = 0.4 for different values of ag. Note that for ax below some
critical value (here, =1.45/Mm), there is no stable solution, and the pulse
disappears after some distance of propagation; this corresponds to the lower
energy limit already discussed. Above this lower limit, there is a range
of ailowable values of ag (between 1.5/Mm and 3.5/Mm in Fig. 12.31).
Nevertheless, one can see nondecaying oscillations in the pulse intensity
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Fig. 1230 Lxperimentally determined allowible soliton pulse energy limits E,,,
and Eq, (fifled squares and open circles, respectively). and their ratio (asterisks),
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Fig. 12.31 Soliton peak intensities as a function of distance, as determined by
numerical simulation, for filter strength 7 = 0.4 and for various of excess gain. The

number next to ¢ach curve represents the excess gain parameter, ag, in units of
Mm~!,
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evolution for the higher values of a,. These oscillations are due to a
nonsoliton component, not completely removed by the siiding, and gener-
ated by the perturbing effects of the filtering and sliding themselves. If the
excess gain is further increased, this nonsoliton component evolves into a
second soliton. Clearly. this process determines the upper limit of the excess
gain and of the soliton energy.

4.6 FILTERING IN TIME

Another form of optical regeneration for solitons involves the use of inten-
sity modulators periodically placed along the transmission line and timed
to open only during the middle of each bit period. The mean position in
time of a pulse that is either early or late is thus guided back to the center
of its bit period in a manner that is analogous to the guiding in the frequency
domain provided by the etalon filters. Note. for example. that like frequency
filtering, this “filtering in time™ requires ¢xcess gain to overcome the loss
imposed by the modulators, even 1o those arriving exactly on time. Unlike
frequency filtering. howcver, filtering in time is not stable by itself: rather,
it must always be accompanied by a proportional amount of frequency
filtering. The principal advantage of filtering in time 1s that it corrects timing
jitter directly, rather than indirectly as the frequency filtering does. When
combined with filtering in the frequency domain, it can offer error-free
transmission over an indefinitely long distance, at least in principle [22,23].

Unfortunately, however, filtering in time shares several of the most
fundamental disadvantages of electronic regencration. First, it is incompati-
ble with WDM. (To do WDM., at each regenerator the N channels must
be demultiplexed. separately regenerated, and then remultiplexed, in a
process that is at once extremely expensive and an engineering nightmare.)
Second, each regenerator requires a quantity of active, failure-prone hard-
ware, including clock recovery. adjustable delay lines, and modulator drive,
in addition to the modulator itself. (Compare this with the extremely simple,
inexpensive, stable. and strictly passive etalon filters of the pure frequency
filtering.) At present, there are serious technical difficulties as well, such
as the fact that nonchirping intensity modulators, whose insertion loss is
polarization independent. simply do not exist. Combine all that with the
fact that through massive WDM the sliding-frequency filters have already
enabled a net capacity of nearly 100 Gb/s, whereas single-channel transmis-
sion at anything like that rate is at best formidably difficult, and filtering
in time no longer tooks economically or technically competitive for trans-
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mission. On the ather hand, filtering in time might be useful in enabling
long-term, fast-access data storage in large recirculating fiber loops.

4.7 LUMPED DISPERSION COMPENSATION AND FILTERING

From the discussion in Section 3.3 on the Gordon—Haus effect. we have
seen how the fiber's dispersion converts the frequency displacements of
the solitons into corresponding timing displacements (sce Eq. [3.9]}. Thus,
1o the extent that the accompanying pulse broadening can be tolerated,
one might be tempted to consider using dispersion-compensating elements
(either fiber having D < 0 or some equivalent lumped device) to reduce
the net timing jitter. In principle, at least, postransmission dispersion com-
pensation of —3 the total dispersion of the transmission line itself can reduce
the standard deviation of timing jitter by a factor of 2 [24]. As the system
length grows beyond a few times 7, . however. to prevent pulse broadening
from exceeding the bit period. the compensating element must become
weaker, and the jitter reduction correspondingly small. Because in most
cases of interest the system is many times z, long, such dispersion compensa-
tion does not buy much improvement.

Very recently, however, Suzuki ez af. [25] have shown how to make much
better use of dispersion compensation. In their experiments, periodically
along the transmission line, these researchers insert elements that compen-
sate for 90-100% of the dispersion. In a system N amplifier spans long,
and where there is complete compensation after each set of # amplifiers,
one can easily show (again, see Eq. [3.9]) that the standard deviation of
Gordon-Haus jitter should be reduced by a factor of #/N. In the experi-
ments of Suzuki er al., where N = 300 and n = 10, the Gordon-Haus jitter
is thus greatly reduced. To the extent that timing jitter is the dominant
source of errors, it is thus not surprising that transmission at 20 Gb/s was
error free over as much as 14 Mm. What is surprising is that the pulses
were apparently able to tolerate the huge periodic perturbation caused
by the dispersion compensation. One would expect thal perturbation to
generate copious amounts of nonsoliton components. Tndeed, apparently
it is necessary to use filters as well [25]. in order to suppress the growth of
such nonsoliton fields. Because the optimum filter strength in this case is
much weaker than with sliding-frequency filters, it is not surprising that
the decrease in the Q factor with distance is primarily from amplitude
jitter [25].

Because of third-order dispersion, any technique involving dispersion
compensation tends to work only over a rather narrow wavelength band.
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In addition, the discontinuity in D at each point of compensation would
tend to wreak havoc with soliton-soliton collisions c¢entered there. Thus,
Suzuki et al’s dispersion-compensation technique is likely not suitable for
WDM. For single-channel transmission, however, it represents an intriguing
concept, and one that may be of practical interest.

5. Wavelength-Division Multiplexing

5.1 SOLITON-SOLITON COLLISIONS IN WDM

In WDM, solitons of different channels gradually overtake and pass through
each other. Because the solitons interact with each other then. the time of
overlap is known as a collision (Fig. 12.32). An important parameter here
is the collision length. L, or the distance that the solitons must travel
down the fiber together in the act of passing through each other. If L, is
defined to begin and end with overlap at the half-power points, then trans-
parently

27

e 5.1
DAX’ (>-1)

Lo =

where AA = A; — A;. For example, for 7 = 20 ps, D = 0.5 ps/nm-km, and
AA = 06 nm, L., = 133 km.

The interaction stems, of course, from the nonlinear susceptibility, ¥
(see Section 2.3), or equivalently, from the nonlinear term in the NLS
equation (Eq. {2.12a]). In a single-channel transmission, the only significant
effect of that term is the self-phase modulation resulting from the self-
induced index change at each pulse. During collisions, however, each pulse

experiences an additional nonlinear index change as induced by the other
pulse or pulses: as is detatled shortly, the resultant cross-phase modulation
tends to produce shifts in the mean frequency, or group velocity, of the

A A A As

—
early stage — Iate stage

Fig. 12.32 Two stages of a soliton—soliton collision. Because of the anomalous
group velocity dispersion, the shorter wavelength soliton (A;) gradually overtakes
and passes through the longer wavelength one (A)}.
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affected pulse. Finally. the nonlinear term enables the coiliding pulses to
produce fields at the frequencies wy = 2w, — > and w,y = 20 - o {the
Stokes and anti-Stokes frequencies, respectively) in the process known as
four-wave mixing. In general, these effects have the potential to bring about
a significant exchange of encrgy and momentum between the pulses and
hence to create serious timing and amplitude jitter. Under the right condi-
tions, however, with solitons the nonlinear effects are only transient — i.e.,
the solitons emerge from a collision with pulse shapes, widths, energies,
and momenta completely unchanged. It is this potential for nearly perfect
transparency to each other that makes solitons so well adapted for WDM.

5.2 COLLISIONS IN LLOSSLESS AND
CONSTANT-DISPERSION FIBER

It is useful first to consider the ideal case of lossless and constant-dispersion
fiber. It is the simplest example of perfect transparency. and it is the easiest
to analyze. It is of more than academic intcrest, however. hecause it can
also serve as the paradigm for o number of practically realizable situations
with real fibers and lumped amplifiers. In particular, it is the exact mathe-
matical equivalent of the (at least approximately) realizable and practically
important case of dispersion-tapered fiber spans (sec Section 2.5.3).

The colliding solitions are writlen in the general form of Eq. (2.36),
where, for simplicity, we set A = |

iy = sech(r + (Yyz)e et 1 {5.2a)
u> = sech(t + (lz)e el el (5.2b)

Although the solitons’ frequencies will change during the actual collision,
and the difference between them is determined by their relative velocities,
we are perfectly free to choose the zero of frequency. For convenience
then, let us set {1,(—~) = ~{),(—c) = {} > 1. note that this makes the
solitons move with equal but opposite velocities in the retarded time frame.
Also note that this makes L,,.; = 1/ (= 1.762 ... % £,/ in ordinary units).

Now let us insert u = u; + u, into the NLS equation for lossless fiber,
expand, and group the terms according to their frequency dependencies.
As long as {1 > 1, the various frequency terms are independent. Thus, we
get four equations: one for each soliton and one each for the terms in +3(}.
The latter correspond to the aforementioned four-wave mixing components.
Because for the special case under consideration these components are
weak and disappear completely after the collision, they are neglected for
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now. Assuming, for the moment, that the pulses are copolarized, the equa-

tion for i is

ey 1 A
. =1z
a7 2 ot

+ iy + 2wy (5.3)

The first two terms on the right in Eq. (5.3) correspond to the NLS equation
for the isolated pulse, u,. The last term in Eq. (5.3} corresponds to the
cross-phase modulation and is zero except when the pulses overlap. It
produces a transient phase shift in i, at the rate

dep(z, 1) -
dz

2us(z, N

The corresponding trequency shift w(z. 1) = ady/at in 1 is thus induced
at the rate

't 0 0 A d i N
dop 9 dd1 D ad 9 o, (5.4)
oz Az it at az af

Note that this induced frequency shift is not uniform across the pulse.
Nevertheless, the soliton retains its shape, and we want the shilt in its
inverse group velocity. Now it can be shown rigorously that the inverse
group velocity is given by (—1 times) the mean frequency of the pulse.
Thus, we really want 8(); = (w). the time-averaged frequency of u,.

Using the weighting factor |, (r)]". and using the fact that [7. sech(x)
dx = 2. one obtains

an,

ir

S i

DR
=2l e

= Jx sech™(t + 3,z2) %sechz(! + {1,z) dt.
- ‘

(Interchanging subscripts in Eq. (5.5) yields a similar expression for a{2,/dz.)

Equation (5.5) (multiplied by —1) represents the “'acceleration” —1.e.,
the rate of change of inverse group velocity with distance into the collision.
All that remains now is to evaluate Eq. {5.5) and the corresponding inverse
velocity shift. Because for ) » 1, 8(0/€) < 1.in the integrals, we can replace
), and {)- by their initial values. Equation (5.5) can then be rewritten as

382y — (1) 1 d

£ 2t — cch?(t + Qz) dr. (5.5
e 50 a2 Isech(r £2z) sech?’(r 7) (5.5a)

Equation (5.5a) is now easily integrated to yield the inverse velocity shift:
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8ay = (—. +) 2_16 " sechi(r — Qz) sechr + O di (56)

2 [20z cosh(202z) — sinh(20)7)]
(} stnh*(20z) '

Finally. Eq. (5.6) can be integrated over z o vield the net time displacements:

= (- +) (5.6a)

Sty = (. )7 (5.7)
The preceding expressions for the acceleration and the inverse velocity shift
{Egs. [5.5] and {5.6]) may not be particularly transparent. When numerically
evaluated and graphed, however, they are seen to be simply behaved (see
Fig. 12.33}. Note. either from the graph in Fig. 12.33 or {from the pertinent
cquations, that the pulses attract cach other, whereas their frequencies
repel cach other. Also note that, as purported, the completed collision
leaves the soliton intact, with the same velocity and other properties that
it had before the collision. Thus, the only change is the time shift, & As
is shown later, however. the guiding filters tend to remove even that defect.
The discussion in this section has thus Tar been almost entirely in terms
of soliton umits. For convenient future reference, however, we now ist
formulas for the principal quantities i practical units, 1Mirst, in terms of
the full-channel separation Afand the pulse wadth 7, the hali-channel separa-
tion in soliton units is

§) = 1783 7Af. (5.8a)

0
1 ! |
2 -1 0 1 2
Z/Lro"
Fig. 1233 Acceleration (dv, '/dz). velocity shift (82,' = —8(1}, and time shift {81)

of the slower pulse, during a soliton—soliton collision in a lossless fiber. (For the
faster [higher frequency] pulse, turn this graph upside down.) The maximum inverse
group velocity shift {8v;')ma = 2/(302), and 81y, = 77
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The maximum frequency shift during the collision, 8f, and the net time
displacement. 61, when expressed in practical units, are, respectively.

0.105
5f = = 8b
f Tz.ﬁf (5 )
and
(.1786
= +
o= (5.8¢)

{In this case. the numerical coefficients are all dimensionless and represent
various combinations of 71, = 1.762 . . and 7.) For example. consider a
collision between 20-ps solitons in channcels separated by 75 GHy (0.6 nm).
Then Eqs. (5.84) through {5.8¢) vield, respectively, ) = 2.67 (inore than
large enough for effective separation of the soliton spectra), 8f = =35
GHz, and 6 = =1.59 ps.

5.3 EFFECTS OF PERIODIC 1.OSS AND
VARIARBLE DISPERSION

The periodic intensity fluctuations in a system with real fiber and lumped
amplifiers can serve 1o destroy the perfect asymmetry of the acceleration
curve of Fig. 12.33, and hence result in a net residual velocity shift and
associated timing displacement [26]. For the purposes of illustration,
Fig. 12.34 shows an extreme case, where the collision length is short relative
to the amplificr spacing, and where the collision is centered at an amplifier.
Note that just prior to the amplifier, where the intensity is low, the accelera-
tion curve is correspondingly attenuated, whereas just the opposite happens
in the space immediately following the amplifier. Thus, most of the integral
of the acceleration curve comes from the right half of the graph, and, as a
result. there is a large residual velocity (frequency) shift. The residual
frequency shift in this example (~4 GHz) is large. Note that when its
wavelength equivalent is multiplied by D = 0.8 ps/nm-km and by a charac-
teristic filter damping length of say, 600 km, the resultant time shift is
approximately 15 ps. When further magnified by the typical spread of nearly
zero Lo at least several tens of collisions in a transoceanic length. that time
shift would result in a completely disastrous timing jitter.

On the other extreme, where the collision length is large relative to the
amplifier spacing. one might reasonably expect the velocity curve to look
much like that of Fig. 12.33. For example. Fig. 12.35 shows what happens
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Fig, 1234 Acceleraton (hoay curvey and trequency st =« 1 ') (des) for a
colliston centered at an amplificr, and where 1., 2 Lopnp e 30 vs, 100 km). The
dashed lines show the relative intensitics in each span. The other pertinent parame-
ters here are: T = 16 ps, 1) = 0.8 ps/nm-km. and AA = 0.8 nm {Af = 100 GHaz).
Note the severe asymmetry of the acceleration curve and the resultant farge residual
velocity shift.

when L.z 18 just 254, Although the acceleration curve in Fig. 12.35
contains large discontinuitics at each amplifier, its integral looks remarkably
close to the ideal velocity curve (Fig. 12.33). Most important, the velocity
returns almost exactly to zero following the collision. Extensive numerical

L | L
-2 -1 0 1 2

Fig. 12.35 Acceleration and velocity shift for a collision centered at an amplifier,
in constant D fiber, and where Leow = 2.5L ;. Nole how the velocity curve here
closely approximates the ideal of lossless fiber (Fig. 12.33),
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Fig. 12.36 Acceleration and velocity curves for a collision centered at an disconti-
nuity in ). and where, for simplicity. the fiher is lossless.

simulation and related analysis [26] both show that the residual velocity is
essentially zero as long as the condition

Lo Z 2L (5.9

is satisfied. Note that this condition. combined with Fyg. (5.1). puts anupper
bound on the maximum allowable channel spacing:

T

B DLIUHP .

Adinax (5.1
For example. let 7 = 20 ps. ) = 0.5 ps/nm-km. and L., = 33 km. Equation
(5.10) then yields AAq,, = 1.2 nm with a nearest channel wavelength
spacing of 0.6 nm. the maximum allowable number of channels 1s just three.
As is shown later. however. this limit can be circumvented.

Variation in the fiber's chromatic dispersion can also upset the symmetry
of the collision. For example, Fig. 12.36 illustrates what happens when the
collision is centered at a discontinuity in D. To keep the example pure.
the fiber is lossless. Note the different length scales on either side of the
discontinuity in D. These occur. of course. because the length scale for the
collision, or for any partof it, is L, i, which is in turn inversely proportional
to D (see Eq. [5.1]).

5.4 DISPERSION-TAPERED FIBER SPANS

From the discussion in Section 5.3, note that a decrease in the acceleration,
from decreasing intensity, can be compensated for by a corresponding
increase in L., hence by a decrease in D. Thus, if the dispersion-tapered
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fiber spans discussed in Section 2.5.3 were used, it should be clear that the
resultant curves of acceleration and velocity (as plotted in soliton units)
will look exactly like the symmetrical ideal of Fig. 12.33. Formally, the NLS
equation for real fiber with dispersion tapering cun be transformed into
that for lossless fiber with constant dispersion (sce Ref. 26, Appendix).
Thus, with that one transformation, it can be seen that the use of dispersion-
tapered fiber spans removes aff perturbing effects stemming from the use
of lumped amplifiers. This idea is extremely important for the achievement
of massive WDM with solitons.

Fiber spans having the ideal exponential taper in £ are not yet available
commerciaily. Thus, at present it is usually necessary to use a stepwise
approximation. Figure 12.37 illustrates the optimum three-step approxima-
tion 1o the ideal taper. The length of cach step is inversely proportional to
the I value of the step. Note that this makes the steps all have equal
lengths, as measured in soliton units. Also note that using such an N-step
approximation to the ideal dispersion taper increases the limit on maximum
channel spacing imposed by Eqg. (5.10) by a factor of N. That is, one now has

NT
AA “/,‘7,;,,,,_ (5.10a})
In practice, once N is large cnough, the intensity variation over each step
becomes so small that the perturbations become acceptably small in any
event. In that case, the “limit’"" of Eq. (5.10a) is no longer significant.
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Fig. 12.37 Ideal exponential taper of  and the best three-step approximation to
it for a fiber span with L,,, = 33.3 km and a loss rate of 0.2t dB/km.
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5.5 FOUR-WAVE MIXING IN WDM

In Section 5.2, we were able to ignore the terms (in 730) that result from
four-wave mixing. In general, however, pseudo phase matching from the
periodic intensity fluctuations associated with the use of lumped amplifiers
can enable the four-wave mixing products to grow to high levels [27]. Very
serious timing and amplitude jitter can then result. Thus, it is necessary to
consider four-wave mixing carefully.

There are three possible four-wave mixing processes:

20, - O — O (5.11a)
20, -0, - 0, {5.11b)
0+ - Oe— 0, (5.11c)

The spectrum associated with these processes is shown in Fig. 12.38. In the
first two processes, two photons from one of the strong fields mix with one
from the other strong field. to create either a Stokes or an anti-Stokes
photon. In the third process. one photon each at (3, (). and ()¢ (or Q.4
combine to form a photon at 4 (or §1¢).

Note that the first two of these processes are dominant because three
of the fields involved are initially nonzero. For these processes, the phase
mismatch 1s

Ak = (ks + ky = 2kyor ky + ky ~ 2k3)

R , (5.12)
ak . AD(A2) 5
= Aw™ = —————2 A’
dew” 2wc

1.2

where the subscripts 1.2 apply to the processes in Eqs. (5.11a) and (5.11b),
respectively. It is important that Eq. (5.12) is completely independent of
third-order dispersion and of the choice of zero frequency.

= Aw =  {Aw=20Q)

T A SN

0, Q Q, Q,

Fig. 12.38 Spectrum of source fields and their four-wave mixing products at {1
and (1,.
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When the fields at {1, and {2 are continuous waves, the four-wave mixing

products grow as

dE,

iz

o« FRET expi Akz). (5.13)

where the set of subscripts i j.k on the field quantities £ is either §,1,2
(process in Eq. [5.11a}) or A2, (process in Eq. [5.11b]). and z is the
distance along the fiber. Note that the phase of the generated product is
periodic in z. with period L,., = 2n/Ak, as a result of the phase mismatch.
For a lossless fiber with constant dispersion (i.e., where £ :(z) = const,
and Ak = const). Eq. (5.13) 1s readily integrated to yield

ey T i sy 5.14
e fexp(r Akz . {5.14)

a field that merely oscillates hetween zero and a fixed maximum and
never grows.

Nevertheless, if the transmission line has periodic perturbations with Kpert
in resonance with the phase mismatch of the four-wive mixing, i.e., when

Nkpoo = k. (N = 1203 (5.15)

then one has pseudo phase matching. and the four-wave mixing product
can grow steadily. The perturbations can correspond to the gain-loss cycle
whose period is the amplificr spacing, L,,,.. and/or to periodic variations
of the fiber parameters (dispersion, mode area). For the case of lumped
amplifiers, k,,,, = 2a/l.,,,,. and the pseudo-phase-matching conditions are
met when

Lomp = NL,., = 20N/AK. (5.16)

Although four-wave mixing generation during a soliton-soliton collision
is more complicated than with continuous waves, the basic features remain
the same. Figure 12.39 shows the numerically simulated growth in energy
of the four-wave mixing products at w, ¢ during a single collision of two
solitons. (The particular parameters represeated in Fig. 12.39 are those of
recent experiments [28. 29], viz., 7 = 20 ps, adjacent channel separation
Af =75 GHz [AA = 0.6 nm at A = 1556 nm]. and where the path-average
dispersion D = 0.5 ps/nm-km.) For these parameters, L,,., = 44.4 km. Note
that for the case of lossless fiber of constant dispersion, and for the case
of real fiber with exponentially tapered dispersion. the four-wave mixing
energy disappears completely following the collision. Also note that hecance
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Fig. 12.39 Growth of four-wave mixing encrgy during a single soliton—soliton
collision. for three conditions: lossless fiber with constant dispersion (small, smaoth
curve); real fiber with lumped amplifiers spaced 33.3 km apart and exponentially
tapered dispersion (small, jagged curve); real fiber with lumped amplifiers spaced
33.3 km apart and constant dispersion {farge, jugged curve). The {our-wave mixing
energy is for a single sideband and is normalized to the soliton pulse energy. Note
that for the first two cases, the four-wave mixing energy disappears completely
following the colhision, whereas for the third cise, wheie there is effective pseudo
phase matching, the four-wave mixing enevgy builds toa knpe residual vilue.

the solitons have finite temporal and spectral envelopes. and because of the
effect of cross-phase modulation (which shifts the pulses carrier frequencies
during the collision). the oscillations of the four-wave mixing energy with
the period of L., are almost completely washed out. Finally. for the case
of real fiber with constant dispersion, note that the collision produces a
residual four-wave mixing energy several times larger than the (temporary)
peak obtained with lossless fiber.

Although the residual energy from the pseudo-phase-matched collision
of Fig. 12.39 may seem small. the fields from a succession of such collisions
can easily build to a dangerously high value. Such uncontrolled growth
of the four-wave mixing imposes penalties on the transmission by two
mechanisms. First, because the energy represented by the four-wave mixing
fields is not reabsorbed by the solitons, the solitons tend to lose energy
with each collision. Because the net energy loss of a given soliton depends
on the number of collisions it has suffered. and upon the addition of four-
wave mixing fields with essentially random phases, it directly creates ampli-
tude jitter. The energy loss leads to timing jitter as well, both through the
intimate coupling between amplitude and frequency inherent in filtered
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systems, and through its tendency to asymmetrize the collision, and hence
to induce net velocity shifts. Finally. certain noise fields in the same band
with the four-wave mixing products can influence the soliton’s frequencies,
in a kind of extended Gordon—Haus effect. Thus. even in a two-channel
WDM, there can be scrious penalties {sce Fig. 12.40). Moreover, if the
wavelengths of the four-wave mixing products coincide with the wave-
lengths of other WDM channels (possibly only when three or more channels
exist), the runaway four-wave mixing becomes an additionat source of noise
fields to act on those channels. In that way. the well-known amplitude and
timing jitter effects of spontaneous emission are enhanced.

The growth of four-wave mixing can often be controlled adequately
with the use of onc or another of the N-step approximations to the ideal
exponential dispersion taper discussed in Scetion S, Figure 12.41 plots
the residual four-wave mixing intensity resulting from a single collision, as
a function of L. for various numbers of steps i £ per L. for the
channel separation of 0.6 nm, and for the 7 = 20 ps solitons and D =05
ps/nm-km of Fig. 12.33. Figure 12.42 docs the same. but for twice the
channcel separation (1.2 nm). First. note that the intensity scale in Fig. 12.41
is approximately a factor of 27 32 times that of Fig, 1242, just as implied
by Eqgs. (5.12) and (5.14) and by the fact that £, scales inversely as the
channel spacing. This scaling is casily generalized: for channels spaced n
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Fig. 1246 Pulses that have traversed a 1(-Mm transmission fne with £, =
33 km and constant £ = 0.5 ps/nm-km, and that have undergone collisions with
an adjacent channel, 0.6 nm away, containing all ones. In this numerical simulation,
there were no guiding filters. A small seed of noise was added. but only in the four-
wave mixing sidebands: thus. the large amplitude and timing jitter seen here is from
the uncontrolled growth of four-wave mixing alone.
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Fig. 12.41 Residual four-wave mixing energy following a single collision of 20-ps
solitons in channoels spaced (0.6 nm apatt in a chain of fiber spans with {3 = 0.5 ps/
nm-km, as a function of the amplifier spacing, for constant £ and for the optimal
two-, threc-, and four-step approximations to the ideal exponential taper. The four-
wave mixing energy is for a single sideband and is normalized to the soliton pulse
energy. No noise sced was used in these simulations.

times the adjacent channel spacing. the four-wave mixing intensity should
scale as # °. This apparently rapid falloff in four-wave mixing effect is
tempered somewhat by the fact that the number of collisions tends to
increase as n. and that it is really the vector addition of residual field
quantities from at least several successive collisions that is to be feared in
this case. Also note that the number of steps required for total suppression
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Fig. 12.42 The same setup as Fig. 12.41, except the channel spacing is twice as
great; i.e. itis 1.2 nm.
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of the four-wave mixing intensily increases with wider channel spacing.
For example, in Fig. 1241, just two steps are required for L, in the
neighborhood of 30 km. whercas four steps are required for the same in
Fig. 12.42. Finally, note that because of the finite nature of the pulse widths
and collision lengths, the resonances in Figs. 12.41 and 12.42 are fairly broad.

5.6 CONTROL OF COLLISION-INDUCED
TIMING DISPLACEMENTS

With the use of dispersion-tapered fiber spans, the only major penalty in
WDM comes from the collision-induced timing displacements given by Eq.
(5.7) or Eq. (5.8¢). Breause some pulses undergo dozens of collisions
whereas others undergo nearly none in the course of a lransoceanic trans-
mission, the resultant timing jitter can be substantial, even when the time
displacement from a single collision is no more than a picosecond or two.
[t so happens. however, that the frequency guiding filters nearly eliminate
that jitter as well [30]. The argument can be made as follows,

First, to simplify the notation. let dv,' — voand av iz — a. Without
filtering, let the colliding solitons accelerate cach other by uy(z ). whose first
z integral is vy(z), and whose second z integral is (z). We require only
that the completed collision leave no residual velocity shift (see Fig. 12.35,
for example). Thus,

ES)

vyi0) = f an(z) dz = 0. (5.17)
For simplicity, we assume that the filters are continuously distributed and
that they provide a damping (acceleration) a, = —yv = —v/A, where y and
A are the damping constant and characteristic damping length, respectively
(see Eq. [4.8]). The equation of motion then becomes

dv

7o 9nlz) — vz (5.18)

Equation (5.17) can be rewritten as

v(z) = [GU(Z) - C%J A (5.18a)

To get 1, we simply integrate Eq. (5.18a):
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Hz) = J vix)dx = A X J [an(.r) - %] dx. (5.19)
We are primarily interested in (o)

(o) = A X [ aolx) dx — A X j dv. (5.192)

x“

The first term on the right is equal to zero by virtue of Eq. (5.17). The
second term is just v(e), which for a filtered system with no excitation
beyond a certain point must equal zero. Figure 12.43 shows the quantities
ay(2), the 8f corresponding to —v(z). and (). numerically simulated for
the case of lumped filters. One can see from this figure how the timing
displacement is nulled: the filters reduce the maximum frequency (velocity)
shift, so that the acceleration in the second half of the collision causes an
overshoot in frequency; the area under the long tail of the frequency curve
thus produced just cancels the arca under the matn peak.

Real filters. such as etalons. do not always perform exactly as in the
simplified mode! just discussed. First, with real tilters the damping force is
not always strictly proportional to —v. or. cquivalently, to §f. Second, the
time delay through the filters exhibits a certam dispersion as the signal
frequency moves off the filter peak. Nevertheless, numerical simulation
shows that the etalons used in the theoretical examples and in the experi-

Sf / dp '
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| ] 4 |
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Fig. 12.43 The frequency and time shifts, as a function of distance, resulting from
a collision in a transmission line with lumped amplifiers and lumped filters spaced
33.3 km aparl. The other paramelers are as follows: D = 0.5 ps/inm-km; 7 = 20 ps;
channel spacing. AA = 0.6 nm: damping length, A = 400 km.
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ments cited here tend to cancet out at least 80% of the timing displacements.
That large improvement has turned out to be sufficient for most purposes.

5.7 EFFECTS OF POLARIZATION

Thus far in the discussion. we have assumed that the colliding pulses are
copolarized. It is important to note. however, that all the effects discussed
so far (cross-phase modulation and four-wave mixing) are significantly
affected by polarization, and all in the same way. Although we defer a full-
blown discussion of polarization until the following sceiton, the state of
affairs can be summarized as follows: First. just as for the path-average
solitons (Section 2), the residual birefringence of even the highest quality
transmission fibers available at present is large enough that over the {tens
or hundreds of kilometers long) path of a single cotlision. the Stokes vectors
representing the polarization states of the individual pulses tend to rotate,
more or less at random. many times over and around the Poincaré sphere.
Thus, in that way, the polarization tends to be well averaged over arepresen-
tative sample of all possible states during a collision. On the other hand,
the relative polarization — i.c.. the angle between the Stokes vectors — of
the colliding pulses tends to be only mildly affected. (The relative polariza-
tion is affected by two factors: the dispersion in the fiber’s linear birefrin-
gence and, as is detailed in Section 6. a nonlinear birefringence induced
by the collision itself.) Thus. even in the worst case. Lo first order at least.
one can treat the relative polarization during a collision as a constant, so
polarization does not significantly affect the symmetries of the collision.
Nevertheless, under those conditions (of thorough averaging over absolute
polarization states, while relative polarization states are preserved). the
frequency shifts induced by cross-phase modulation and the intensities of
four-wave mixing products are both just half as great for orthogonally
polarized pulses as they are for copolarized pulses. This fact is of obvious
practical importance,

5.8 GAIN EQUALIZATION WITH GUIDING FILTERS

The inevitable variation of ampliticr gain with wavelength presents a prob-
lem for WDM. one that becomes ever more serious with increasing system
length. In linear transmission (such as NRZ), where no self-stabilization
of the pulse energies is possible, custom-designed, wavelength-dependent
loss elements must be inserted periodically along the line to try to compen-
sate for the variable amplifier gain. Even then, however, in practice it has
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proven difficult to maintain even approximately equal signal levels among
the varous channels. For soliton transmission using guiding filters, however,
the guiding filters themselves provide a powerful built-in feedback mecha-
nism for controlling the relative strengths of the various signal channels in
the face of variable amplifier gain. As should be evident from the discussion
of guiding filters already presented (Section 4), the control stems from the
fact that the guiding filters provide a loss that increases monotonically with
the soliton bandwidth, and hence with the soliton energy. Thus, for a
channel having excess amplifier gain, a modest increase in soliton energy
quickly creates a compensating loss, and the signal growth is halted.

Because the soliton bandwidth scales as ' o W/D, where W is the
soliton pulse encrgy (see Eq. {2.16]), the soliton’s energy loss from the
guidmg filters can be written as a monotonically increasing function of
(W/D). For Gaussian filters, the relation f(W/D ) is quadratic; for the shallow
etalon filters used in practice, however, f(W/D) is more nearly linear. The
energy evolution of N WDM channels in a soliton transmission line with
sliding filters can then be described by the following system of coupled
nonlinear equations |31 ]

] dwf o u[
W, dz 1+ mR(W, + W, + ...+ WP,

-, — f(W/D,).
(5.19)

The subscript { = 1, .. ., N identifies the particular channel, W;(z) is its
energy. «, 1s its small-signal gain coefficient, o, is its linear loss rate, m is
the mark-to-space ratio (usually one-half), R is the per-channel bit rate,
P, is the saturation power of the amplifiers, and D,(z) is the dispersion
at the ith channel wavelength (the dispersion could change with distance
z as a result of the combined action of the frequency sliding and third-
order dispersion). Note that the Eq. (5.19) fixes the equilibrium values of
W./D, according to the various ;. Thus, when the «; are all nearly the
same, the various channel energies will scale in direct proportion to D(A).
In the usual situation where the third-order dispersion is essentially a
constant, the channel energies will be in direct proportion to their separation
in wavelength from A,. the wavelength of zero D. 1t should also be noted
that Eq. (5.19) is essentially the same as Eq. (4.5a). with the frequency
offset term omitted. (Recall that in soliton units, one has W = A4 [not W =
A?], and recognize that the quantity « in Eq. [4.5a] is just a compact way
of writing the sum of the first two terms on the right-hand side of Eq.
[5.19). Finally, for Gaussian filters, f[W/[}] = const. X W2 Thus, just as
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Fig. §2.44 Growth with distance of signal pulse energies in WDM channels having

relative gain rates of =1 and 0 dB/Mn, respectively, [or a system using shiding-
frequency filters (damping length & = 400 km). and for no filters at all.

a linearized version of Egq. {4.5a) was shown to be a damping equation,
the linearized version of Eq. (5.19}) is essentially the same damping equation,
with W df/dW as the damping constant. Thus, one has

df 1

aw oA {5.20)
where, at least for Gaussian filters, A is the same characteristic damping
length as discussed in Section 4.3.

Figure 12.44 shows the solution to Eq. (5.19) for the case of three channels
with significantly different small-signal gain rates, both with and without
filters. Note how the filters quickly lock the signal energies to tightly clus-
tered equilibrium values. By contrast, the large divergence in channel ener-
gies that occurs when no filters are used will clearly lead to large penalties
and disastrous error rates. Thus, the ability of the guiding filters to regulate
the relative channel energies constitutes a major and very important advan-
tage for solitons over all other possible modes of WDM.

5.9 EXPERIMENTAL CONFIRMATION

Recently. the ideas in this section have been put to extensive test in transmis-
sion mvolving massive WDM at per-channel rates of 5 and 10 Gb/s (with
the major emphasis on the greater rate) [28, 29]. Whereas many aspects
of the transmissions were monitored, the ultimate criterion of success was
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to achieve measured BER rates of 1 X 10 ” or less on all channels over at
least the trans-Pacific distance of 9 Mm.

Figure 12.45 is an overall schematic of the signal source. The soliton
pulse shaper. based on a LiNbO; Mach-Zehnder-type modulator, both
carves out the pulses and provides them with a controlled and desired chirp
[32]. (A simple phase modulator, driven sinusoidally at the bit rate, was
also used successfully, as an alternative to the pulse shaper. The idea in
this case is that whenever the upper or lower sidebands created by the
phase modulator are selected by a suitable filter, one obtains a train of
nearly sech-shaped pulses suitable for soliton transmission [33]. In this
example, the filtering action of the transmission line itself provides the
necessary sideband selection.) After a second modulator imposes the data
(a 2'"-bit. random pattern), the 4-km length of standard fiber (£ —~ 17 ps/
nm-km at 1557 nm) compresses the pulses to about 20 ps; it also separates
the bits of adjacent channcls by 40 ps. This separation prevents the occur-
rence of half-collisions at the input to the transmission line for all but the
most widely spaced channels. Finally, the 3.7-m length of polarization-
maintaining fiber, used as a multiple hall-wave plate. enables adjacent
channels to be launched with orthogonal polarizations.

The orthogonal polarizations provide two sigmiticant bencefits: Tirst, they
reduce the interchannel interaction by a factor of 2 over that obtaining
with copolarizalion states. Sccond. at least where the number of channels
is even, the net optical power in the transmission line is essentially unpolar-
ized, so the amplifiers exhibit no significant polarization-dependent gain
from polarization hole burning. Thus, there is no need for polarization
scrambling of the individual channels. There is more here than just the
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LASERS 5D FIBER P.M. FIBER
LAt SOLITON DATA OO0 O
O — —{>- PULSE MOD. >
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RECIR.
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e
]
)
CAn

Fig. 1245 Source forsoliton WDM experiments at 10 Gb/s per channel. DBR, dis-
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avoidance of unnecessary and expensive hardware, however, because the
fiber's birefringence tends to convert polarization scrambling into timing
jitter. Therefore. unless it is needed (as with NRZ) to avoid serious polariza-
tion hole burning, polarization scrambling is a detriment and is thus to
be avoided.

It should also be noted that the order of the pulse shaper and the
data modulator is of no consequence. In a real system. of course, prior to
multiplexing, each continuous-wave (CW) laser source would be foliowed
by its own individual data modulator. Thus, for soliton transmission, sche-
matically one just has a WDM NRZ source, followed by a common soliton
pulse shaper. In a source for true NRZ transmission, however, one must
use expensive LiNbO;. Mach-Zchnder-type modulators. symmetrically
driven to avoid significant chirping at the transition points between ones
and zeros. For soliton transmission, on the other hand, one could just as
well use a set of semiconductor absorption modulators, with their absence
of significant bias drift and their potentially much lower cost. This exchange
is possible because in removing all but the center of cach NRZ bit, the
soliton pulse shaper also tends to get rid of all chirping induced by the
data modulators. Thus. in this way the soliton transmission has an advantage
over NRZ that is sigrificant both cconomically and in the strictly techni-
cal sense.

The recirculating loop contains six spans of 33.3 km cach between (Er
fiber) amplifiers, each span dispersion-tapered typically in three or four
steps. with span path-average value D = 0.5 + (.05 ps/nm-km at 1557 nm.
Two of every three loop amplifiers are immudiately followed by piezo-
driven, Fabry-Perot ctalon filters. each having a 75-GHz (0.6 nm at
1557 nm) free spectral range and mirror reflectivities of 9% this combination
provides the optimum path-average filter strength of n ~ 0.4 at 1557 nm
(Fig. 12.46).

At the receiver, the desired 10-Gb/s channel is first selected by a wave-
length filter and 1s then time-division demultiplexed to 2.5 Gb/s by a polar-
ization-insensitive clectrooptic modulator having a 3-dB bandwidth of
14 GHz [34] and driven by a locally recovered clock (Fig. 12.47) The
demultiplexer provides a nearly square acceptance window in time, one
bit period wide.

Figure 12.48 shows a typical set of BER data. Note the tight clustering
of the BER performance for all channels.

Figure 12.49 plots the measured error-free distances versus the number,
N, of 10-Gb/s channels. For each of these points, the BER was better than
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Piezo driven filters (0.6 nm FSR, R=9% etalons)

B B S

33 km long, dispersion-tapered spans

- 200 km
A. O. Mods,
— 3dB D Q00
Signal In —» ~ x - Signal Out

Fig. 12.46 Reccirculating loop with sliding-frequency filters and dispersion-tapered
fiber spans. The A.Q. (acoustooptic) modulators act as optical switches with very
farge on-off ratios to coatrol the sequencing of cach transmission. That is, initially
the lower switch is held closed and the upper switch open long enough for the
source to {ill the recireutating loop with data and to bring the amplifier chain 1o
equilibrium. The conditions oof the two switchues are then simultancously reversed,
so that the loop i< closed on tsell, and there s no longer an external source. During
each such transmission, a linear ramp voltage is applicd 1o the piczo-driven filters
to produce the desired sliding of the filter frequencies. Samples of the signal,
corresponding 1o successive round-trips, emerge more or less continuously from
the signal out port.

electro-optic
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Fig. 12.47 Time-division demultiplexer,
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Fig. 12.48 Meoeasured BER versos distnee for a6 % 10 Ghfs WM transmission.

to loop amplifiers pumped at 1480 nm. with corresponding high noise figure
(~6 dB) and narrow gain bandwidth. The last point corresponds to pumping
at Y80 nm. however, where the noise figure is much closer 10 3 dB and the
gain bandwidth is improved. ot least toward shorter wavelengths. The error-
free distances represented in Fig, 12,49 tend 1o be determined by a low-

Net Bit Rate (Gbit/s)

22 10 20 30 40 50 60 70 80 90 22
* A D Y A S R B T T
201 (35) 20
18 o ¥ 418
16 |- o 116
14 114
Mm 12 O 12
101 | - 410
8l ' 18
6- D amps. pumped at 1480 nm 46
4 = amps. pumped at 980 nm 4
2t 42
o l 1 1 i 1 vl | 1 | 0

Fig. 12.4%9 Measured error-free distances versus the number. &, of channels at 10
Gb/s per channel.
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level error floor, which is only very weakly dependent on distance, This
dependence is especially noticeable for the largest values of N. Thus, even
small future improvements should enable both the error-free distances and
the maximum number of allowable channels to be increased.

An experiment was also performed at 5 Gb/s per channel (six channels},
with the same apparatus, simply by programming the pattern generator to
eliminate every sccond pulse of the otherwise 10-Gb/s data. As the only
other substantial change, consistent with the lower bit rate, the time-accep-
tance window of the demultiplexer (Fig. 12.47) was opened up by a factor
of 2. For that experimert, the error-free distance was greater than 40 Mm
on all channels. The great increase in error-free distance was due primarily
to two factors: First, at half the bit rate, the rate of collisions was decreased
by half. Sccond. the doubled time-acceptance window greatly increased the
tolerance to tining jitter.

Finally, Fig. 12.50 shows an example of the spectrum of the WDM
transmission. Although the example corresponds to a particular distance
(10 Mm), the spectrum looks the same at any other but the very shortest
distances. In all the experiments carried out so fur regardless of the number
of channels, the spectra all had the same feature. viz., that the spectral
peaks could all be joined by a straight hine that passed through the zero
intensity axis at A,. the wavelength of zero dispersion. All this occurred in
the face of considerable amplifier gain variation over the total wavelength
span. Thus, in these spectra we have direct and complete confirmation of
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Fig. 12.50 Optical spectrum of 9 x 10 Gh/s WDM transmission, as measured at
10 Mm. Naote that the dashed dine connecting the spectral peaks of the individual
channels passes through the wavelength of zero dispersion, Aq. This behavior results
from the strong regulation of the soliton pulse energies provided by the sliding-
frequency filters. Following initial adjustment, it becomes independent of distance.
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the ideas presented in Section 5.8, where the guiding filters were shown
to provide a very tight control over the relative signal strengths of the
various channels.

6. Polarization Effects

6.1 APOLOGIA

Thus far in this chapter, we have tended to gloss over polarization and
effects of the fiber’s birefringence on it. That is. for the most part we have
been content to note the thorough polarization averaging, created by the
fiber's random residual birefringence, over those distances (or which the
nonlinear term has significant e(fects, We have used that averaging to justify
further neglect of polarization. Nevertheless. there are certain important
polarization phenomena that require examination. One of these is called
polarization mode dispersion (PM D), which makes the transit time for a
pulse dependent on its polarization history and produces some dispersive-
wave radiation in the process. The other is the fact that colliding solitons
in WDM alter each other’s polarization states. Therefore, we now examine
the linear birefringence of fibers and its statistical properties, the birefrin-
gence induced nonlinearly by the pulse itself. and the effects of both on
transmission.

6.2 POLARIZATION STATES AND THE
STOKES-POINCARE PICTURE

If 7 is the propogation direction and % and ¥ are unit vectors in the x and
y directions, respectively, a unit normalized polarization vector can be
written as 4 = (r& + s¥), where r and s are complex numbers with |r|? +
isf? = 1,so thatd* - & = 1. A corresponding normalized real field component
at frequency w has the form

Re(u) = Re[(rt + si)e’] W=k - wt+ D (6.1

If the phases of r and s are both changed by the same amount §®, then ¢
in Eq. (6.1) simply changes to ® + &®. With no loss of generality we can
therefore express r and s in polar form by r = cos{fexp(—i¢) and s =
sin(#)exp(i). where 0 = @ =< 7/2 so that cos(8) = |r| and sin(6) = |s|. Thus,
the real field can be written as
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Re(u) = ¥ cos(ficos(¥ — ¢ + ¥ sin{@)cos{V + ¢). (6.1a)

One way to visualize the polarization state of the field is to plot the
motion of the vector Re(u) in an x-y coordinate system as W varies from
0 to 2m. The resulting figure is generally an ellipse. The state of polarization
of the ficld is determined by the shape of the ellipse and by the direc-
tion of motion of the vector around the ellipse. It is independent of the
constant @ in the phase ¥. [n general, a change from ¢ to — ¢ reverses the
direction of motion around the same ellipse. When ¢ = 0 or ¢ =
#/2, the ellipse degenerates into a straight line making an angle # or —8,
respectively, with the x axis. This represents linear polarization. When
¢ = m/4. the axes of the ellipse are the x and vy axes, and they have lengths
of 2 cos(#) and 2 sin(#), respectively. When ¢ = 7/4, so that cos(§) =
sin(f) = 1/\/2. the axes of the ellipse are rotated by #/4 from the x and y
axes. and they have lengths of 2|cos(@)] and 2Jsin( )], respectively. When
both ¢ and ¥ arc equal to 7/4, the ellipse degenerates to a circle and we
have circular polarization.

A more useful tool for visualizing the state of polarization as it varies
during transmission s the real three-dimensional Stokes vector. A Stokes
vector § of unit length is derived from the normalized polarization vector
in Eq. (6.1) or Eqg. (6.1a). I has the components

S o= el — 5P = cos(28)
S: = 2Re(r*s) = sin(2@)cos(2¢) (6.2)
Sy = 2Im(r*s) = sin(28)sin{2¢).

We see that the angles 26 and 24 are, respectively, the polar and aximuthal
angles representing the vector § in a spherical coordinate system with the
$ axis as the polar axis. It is worth noting that S, is proportional to the
difference in the powers that would emerge from linear polarizers in the
x and y directions, and that §, is likewise proportional to the difference in
the powers that would emerge from linear polarizers rotated from the
previous two by an angle of #/4. thus bisecting the x and v directions,
whereas §, is the difference between the powers that would emerge from
left and right circular polarizers. Hence, the Stokes vector can be measured
directly, and such machines are now fairly common. One can verify that
the (5, ;) plane represents plane polarized fields (2¢ = 0 or #), whereas
the 55 axis represents circularly polarized fields. Note that the Stokes vectors
corresponding to the orthogonal polarization states & (r = 1, 5 = 0) and
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¥ (s = 1, r = 0) lie antiparallel along the $; axis. More generally, two
polarization vectors @, and @, are orthogonal if G¥ - 4, = 0. Thus (s*% —
r*§) represents the state orthogonal to (r¥ + s¥), and the Stokes vectors
of these two polarization states always lie antiparallel along the same axis.
Because the Stokes vectors of concern here have unit length, their ends
always lie on a sphere of unit radius, the Poincaré sphere, as shown
in Fig. 12.52.

6.3 LINEAR BIREFRINGENCE OF TRANSMISSION FIBERS
6.3.1 Birefringence Element and lIts Effects

Consider the effect on § of a short length dz of birefringent fiber (Fig.
12.51). There are many rcasons for such birefringence. principal among
them being a slight ellipticity of the fiber. or some strain on it. Suppose
first that the principal states of the birefringence are the x and y linear
polarizations (6 = ( in Fig. 12.51). If 8k is the corresponding difference in
wave number, then in the course of traversing the piece of fiber, a phase
shift 8¢ = 8k dz will develop in the quantity rs*. Consequently, the Stokes
vector precesses through the angle 8¢ around the & axis, marking out a
cone. The corresponding generalization is that for any birefringence, the
Stokes vector precesses through an angle 8¢ = 8k oz around the axis in
Stokes space that corresponds 1o the two principal states of the birefrin-
gence. If B is a vector whose length is 8k and that lics along this axis of
birefringence. then § precesses around B according to the equation

ds _ B xS (6.3)

dz

Figure 12.52 illustrates this behavior. When 8¢ reaches 2m, § has swept out
a complete cone. An optical element of this sort is called a full-wave plare.

dz -

Fig. 12.51 Element of fiber with birefringence axis x'.
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Fig. 12.52 'The hirctringence clement 8 causes 8 Lo precess in a cone around it.

In a fiber. the nceded length 27/8k = A(k/6k) is called the bear length. Tt
is typically very short. a few meters to tens of meters. If the birefringence
axis varies in a random way along the fiber. the Stokes vector soon comes
to have a random direction on the Poincard sphere.

Along with the wave-number birefringence just discussed comes a bire-
fringence in the inverse group velocity. Let b = d Bidw. If B does not change
direction with frequency (in practice the change tends to be negligibly
small), then we have
wherc b, for example, is the magnitude (length) of the vector b, and the
last equality is s0 because dk/dw = v,' holds for each of the two principal
states of polarization. If we refer again to our piece of fiber with x-y
birefringence, we can determine that the average time delay for the energy
of a field in the polarization state {(+¥ + s¥} is proportional to {|r]* — |s]%)
and thus to S,. In general, the time delay is proportional to the projection
of § on the hirefringence axis, so we get

di, =48 - b dz (6.5)

6.3.2 Calculus for Long Fibers

In a typical transmission fiber, both the strength and the axis of the birefrin-
gence vary along the length of the fiber, which causes the Stokes vector to
wander more or less randomly around the Poincaré sphere. The motion of
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Fig. 1253 Rctative time delay. in a long tiber, of a pulse with polarization vector §.

S(z2) = M{z:. 7)) - S(z)). (6.6)

where M is a rotation matrix, a (3 X 3) form of a Mueller matrix. and
M(z,, z;) is the inverse of M(z>. z;). For a long fiber, of length Z, the total
delay caused by the birefringence can be written as

fy =

7 - -~ v
f” $(2) - bezy dz = 580 - [ (M. ) - o) dz

P —
1] —

(6.7)

S(0) - T.

Bl

where we have used the inverse Mueller matrix 1o project the vector dot
productatlocation z back tothe input ef the fliber, and the last equality defines
the vector T. We call Tthe podurization time-dispersion vector | 35].% [ts length
i5 the difference between the maximum and minimum delay times, and the
Stokes vectors pointing in its positive and negative directions represent the
principal states of polarization for which the delay times are, respectively,
fongest and shortest. [t behaves very much like the local birefringence, except
its magnitude and direction on the Poincaré sphere are more rapidly fre-
quency dependent (Fig. 12.53). In the case of lincar propagation, any input
pulse can be resolved into a lincar combination of components in the two
principal states, which have different delays. As a result, one secs the output
pulse width vary as a function of the input polarization, its mean delay time
being given by Eq. (6.7). In the case of scliton propagation, if the PMD is not
toolarge, the nenlinear effects hold the pulse together, so that the pulse width
does not change, but its mean delay time also obeys Eq. (6.7). Soliton propa-
gation is discussed further later in this chapter.

6.3.3 Growth of T with Increasing Fiber Span Length

We can think of a long fiber as a concatenation of two shorter fibers, joined
at some point z = z,. Accordingly, the vector T for the whole fiber can be
split into two pieces as

* Prior to the appearance of Ref. 35, however. the polarization dispersion vector and its
statistical properties had already been thoroughly explored by Poole and coauthors; see, for
example, Refs. 36 and 37. Note that the vector (1 in those papers is the same as M(Z, 0)- T
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T = J. M(0. 2} - b(z) dz + M(0, z,) F Mz 2) - blz) dz
: (6.8)
=T, + M(0.z,) - T..

where T, and T; are the T vectors for the two sections taken individually.
We arc primarily interested in fiber spans thal are long with respect to the
characteristic distance (typically only a few meters) for the reorientation
of b. In that case, the direction of T; is at random with respect to that of
T); furthermore, because there is no correlation between M(0, z,) and T;.
the second term in Eq. (6.8) is still oriented at random with respect to the
first. This division can be iterated. giving
N

T=T + > M{.z) T, (6.9)

PN

until the T vectors of the individual sections cease being uncorrelated. From
this exercise it should be obvious that the growth of T (the magnitude of
T) is a random walk process, where T is expected to grow as z'2. Another
way of seeing this is to Jook at the quantity

B

I-=T-T-~ J: J; [M(0. 2) - b(z)] - [M( 2°) - b(z) dz’ dz
(6.10)
= [7]7 b MGz 2y b dz dz

Beyond the length over which b(z} is correlated with M(z, z') - b(z') this
double integral is expected to grow noisily but roughly linearly with Z. To
take a simple example, imagine a fiber, initially with a constant linear
birefringence. which is cut into short sections of length /., and put back
together after each section has been rotated through a random angle around
its cylindrical axis. Then, referring to Eq. (6.10), we can see that because
b(z} is oriented along the local birefringence axis. M(z, z') reduces to the
identity matrix as long as z and z* are both in the same section. There is
no correlation hetween the directions of b(z) in the different sections, so
in getting the expected value of 77, the first integral over z' reduces simply
to b7/, and the second integral produces the factor Z.

An expected value of T is usually inferred from measurements made
over a wide band of optical frequencies. As the fiber is cut back, the data
[38] indeed tend to fit a curve of form

T(z) = D' (6.11)
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D, is known as the PMD parameter. For the highest quality transmission
fibers available at present. (L.06 = [}, = 0.1 ps/km'™.

6.3.4 Statistical Properties of T

The PMD parameter [, for a length of fiber is found from averaging
the values of T obtained over a rather broad range of frequencies. The
distribution of T values so obtained tends to be Maxwellian. Changing the
temperature of a fiber leads to similar results. This distribution can be
understood as follows: The value of T is sensitive to the wave-number
birefringence of the liber, because this is what causes precession of the
Stokes vector, and so determines the values of the Mueller matrices. We
have seen that T can be considered to be the sum ol a targe number of
independent vectors T, trom fibuer sections, cach projected 1o the beginning
of the fiber by the appropriate Mueller matrix. As these Mueller matrices
are changed by changing frequency, say, one would expect the components
of T to have nearly independent Gaussian distributions.

If each of the three components of T in Stokes space (7. T2, T3) has
an independent Gaussian distribubion with standard deviation o, then the
distribution of T has spherical svmimcetry and the magnitude of T will have
a Maxwellian distribution, as tllustrated in Fig. 12.54. The probability that
T lies between Tand T + d7T 18
2

R (6.12)

Y dT = |
p(T)« N

The most probable value of 7/ is \/5 = 1.414, its mean value is \/% =3
1.596, and its standard deviation is V3 = [.732. By definition, D, is
the mean value of T divided by the square root of the length of the fi-
ber, so that ¢ = D, V7 Zi8. As an example, if D, ~ 0.1 ps/km'? and

.6 |
i i
aptl) [ \ mean=\8/T o |
h I K .
| .
v} '!,, o 1. . P _ﬁ_]
0 1 2 3 4 5

Fig. 12.54 Maxwellian probability distribution of T.
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Z = 10,000 km, then o ~ 6.3 ps. As a final bit of housekeeping here, note
from Eq. (6.7) that the delay time for a pulse is half the component of T
along the direction of §(0). Thus the expected standard deviation of the
pulse delay is a0, = ¢/2 = D, \/7Z/32.

6.4 SOLITON PROPAGATION

We now consider soliton pulse propagation in a randomly birefringent
fiber. First, it 15 known that the nonlinear coefficient n, is a function of
polarization, varying, relative to its polarization average, from § for linear
polarization to § for circular polarization (on average, linear polarization
is twice as likely as circular polarization). The changes in n, as a soliton’s
polarization state varies during propagation cause some radiative loss of
energy. However, this loss is much smaller than a similar loss due to PMD,
and it may be ignored. To avoid unnecessary complication. we shall there-
fore continue (o treat n; as though it were polarization independent.

We now come to consider the residual birefringence. On the often used
assumption that the local form of the birefringence is not very important
overall, we shall invoke a well-worn mode! similar to that used previously.
in which the fiber is composed of short sections of constant linear birefrin-
gence, whose axes are assumed randomly directed, and whose magnitude
may also have some random distribution, Consider the effect of one such
section. We can denote the slow and fast axes of this piece of fiber by the
orthogonal unit vectors ¥ and ¢. The entering soliton will be in some

linear combination of these two polarization states and will in general have
the form

u{z, 1) = (r£ + sy) sech(¢). (6.13)

where the polarization state vector has unit fength, as before, satisfying
(Ir* + [s|* = 1). After traversing the section of length /, this soliton will
have changed to the form

w(z + [ t) = e"lrei sech(t — &) + se ®¥sech(t + ¢)]. (6.14)

where the angle ¢ = (4 8k{ arises from the local wave-number birefringence
8k, while & = (}) bl is half the time delay birefringence of the fiber section.
For good fibers, ¢ is a very small number. Using this, we can expand the
sech functions to first order in e [d sech(¢)/dt = —sech(f)tanh(r}], and with
a bit of manipulation arrive at
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u(z + L0 = eff(ret + se *yIsech(t — &(|r] ~

g))

+ & 2rs(s* e?% — r* e "*y)sech(f)tanh(n)].

A

(6.15)

We have split the terms proportional to ¢ into two parts, one having the
same polarization state as the soliton, which we put back together with
the soliton, and the other having a polarization state orthogonal to the
soliton. We see that the soliton’s polarization state and PMD time de-
lay have changed in accordance with our previous general discussion.
The field scattered into the orthogonal polarization state. proportional to
sech(f)tanh(r). can be shown to be a dispersive field and so represents a
loss mechanism for the soliton. The fractional energy loss due to this section
of fiber is the ratio of the time integrals of |ul® in the two orthogonal
polarization states, which yields 8£/F = (3)|rs]e”. independent of . If we
assume that the birefringent time delay stays small with respect 1o the pulse
widrth of the soliton, then the scattered fields will be uncorrelated. and the
total loss will be the sum of the c¢nergies scattered from each section. To
find the expected loss. it is apprapriate to do an average over polarizations.
From Eq. (6.2) one can see that 4lrs]” is the sum of the squares of the S,
and §ycomponents of the unil Stokes vector S. and therelore its polarization
average is 4. Using this. and cvaluating e, we get

SE 1 ..

(xi,,,,,;l = TET = mh"l’“, (6.16)
where @, 15 the exponential energy loss coefficient. In comparison. the
time delay for this section, &, = e(|r]* — is]°), is proportional to the §
component of §, so its polarization average is zero, but its variance is

oy =380 = b0 (6.17)

The loss due to PMD is therefore related to the variance of the time delay
bY apmal = (})o}. Because the loss and the variance of the time delay both
grow linearly with the number of sections. the loss for a length z of fiber
will be given by

2, ”
apmdz = § U‘(?(Z) = %D,IZJZ (618)
This equation is written in soliton units. It can be made dimension free by

dividing its right side by 2, or (7/1.7627)% removing the common factor of
z as well, one gets
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Qg = 0.2034D7/ 77 {6.18a)

To take a good fiber as an example, with D, = 0.1 ps/km'“, then a pulse
with 7= 20 ps yields o, = 5 % 10 %km, or 0.005/Mm. Although the loss
rate in soliton encrgy due to PMD appears small in this case. note that the
total encrgy lost in 1 Mm is 5% of the soliton’s energy, Because this lost
energy is scaticred into dispersive waves, it can add significantly to the
total noise. especially in a broadband transmission line. On the other hand,
sliding-frequency filters (see Scction 4) control the growth of this noise just
as effectively as they control the growth of spontaneous emission noise.

It should also be noted from Eq. (6.18a) that the loss rate from PMD
increases rapidly with decreasing pulse width. For example. for the maxi-
mum pulse width (7= 2 ps) permitting a single-channe] rate of 100 Ghis,
and again for 1, - L1 ps/km P Fpry TISCS L0 05/MimL a value large enough
to cause very serious problems. This is vet another reason why, for the
attainment of very large net bit rates, massive WDM (as described in
Section 5.9, for cxample) is by far the better choice.

If the valuc of 1, becomes too large. solitons can become unstable. For
distances of the order of 2 | essentially fincar propagation oceurs. $o a
soliton has a chance of being split into its two principal state components.
Some years ago.a criterion for stability was established by numerical simula-
tion, using a kind of worst case scenario [39]. In soliton units, the result
was simply

D, = 0270/, (6.19)

o

Using Eq. (6.19) with the equality sign to establish the largest allowable
D,. and setting D,z'"" = 1., note that a linear pulse would split into two
pieces spaced by ¢ in a distance (0.27 ¢ = 14) % z.. Under those same
conditions, however, nonlinear effects hold the soliton together over an
indefinitely long distance of propagation. From Eq. (2.15a), we recal} that
1./2}7 scales with the dispersion constant D, so in standard units Eq.

(6.19) becomes
D, = 03D, {6.19a)

Note that for 2, = (.1 ps/km ', Eq. (6.19a) is satisfied for D as small as
about 0.11 ps/nm-km. For an example of what can happen when the criterion
of Eq. (6.19a) is violated, see Ref. 40,

It is interesting that even at the stability border, the loss calculated from
Eq. (6.18) seems very small. If we use Eq. (6.19) with an equals sign, then

12. Solitons in High Bit-Rate, Long-Distance Transmission 453

from Eq. (6.18) we get a,,, = D{8/z . which does not seem large enough
to signal impending doom for the soliton. The answer to this conundrum is
probably in the statistics. The loss was calculated on the basis of polarization
averaging, while the split-up of a soliton can occur in any section of the
transmission fiber a few g, long if the T vector for that section is large
enough. Simulations also support this conclusion. As long as the soliton
transmission is stable, the loss (per z.) is small.

6.5 POLARIZATION SCATTERING BY
SOLITON-SOLITON COLLISIONS

As already noted in the miroduction to this section, colliding solitons in
WDM alter cach other's polimization states. Although this polanzation
scattering was described i 1973 by Manakov [41]. its consequences were
not generally appreciated until they became manifest in a fairly recent
experiment [42]. In the experiment, each of several 10-Gb/s WIDM channels
was subdivided into two polarization- (and time-) division multiplexed, 5-
Gib/s subchannels. As had been known for some teme [43], such polarization-
division multiplexing works welloat least m the absence of WDM. Indeed,
in the experiment, with only onc such potarization-multiplexed, 10-Gbf/s
channel present, the orthogonality of the 5-Gb/s subchannels was well
maintained over transoceanic distances, and the transmission was error
free. As soon as a second WIDM channel was added, however, polarization
scattering from the collisions destroyed the orthogonality of the subchan-
nels, and the error rate became high for all but very short distances. To
confirm that polarization scaticring was to blame, the degree of polarization
of each 10-Gb/s channel {this time with all pulses initially copolarized)
was measured as a function of distance. The results are summarized in
Fig. 12.55. With only one channel present (no WDM), as expected, the
degree of polarization {DOP) was only slightly reduced in 10 Mm, from
the mild effects of spontaneous emission {43]. With just one other channel
present, however, the degree of polarization of either channel was reduced
nearly to zero in the same distance.

The origin of the polarization scattering in WM transmission is not
difficult to understand. It comes about because the magnitude of the cross-
phase modulation between waves of different frequencies is dependent on
their relative polarizations, being twice as large for copolarized waves as
for orthogonally polarized waves. One can think of this as a nonlinearly
induced effective birefringence, keeping in mind that the birefringence seen
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1

Degree of Polarization

0 }
0 5 10
Path (Mm)

Fig. 12.55 Experimentally measured degree of polarizahion for a given wavelength
channel as a function of distance. No WDAM: Only one channel is present on the
transmission line. WDM: Two channels are present on the line. Channel separations;
0.6 nm (selid liney, 1.2 nm (dashed line): 1.8 nm (dotted line). In all cases. the
channels were initially copolarized.

by each of the waves 1s different from that seen by the other., We discuss
this effect in more detail later. Consider now a collision between solitons
in two frequency channels of a WDM system. Label the solitons @ and b.
The cross-phase modulation phase shift given to the component of soliton
a copolarized with soliton b is twice as large as that given to the component
of soliton a orthogonal 1o soliton b. The result is a change in the polarization
state of sohton a. In terms of the three-dimensional Stokes vector represen-
tation of a soliton’s polarization state, the first-order result is a precession
of soliton a’s Stokes vector around that of soliton b. Soliton b is similarly
influenced by soliton a, so their Stokes veclors precess around each other,
The cross-phase modulation occurs only while the solitons overlap, and
after a completed collision the differential phase shift (which, as we
shall show, equals the precision angle of the Stokes vectors) is approxi-
mately equal to L..,/{1.76z.}. Note that there is no change in the polariza-
tions of either soliton if they are in the same or orthogonal polarization
states.

To analyze the polarization scattering in detail, we describe the optical
field envelope in a fiber, in the manner of Eq. {6.13}, using

u=uf + u (6.20)
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Here u, and u, are the x and v components of the field. normalized so that
uw*-u = |, ]! + |u, i is the optical power in the fiber. Instcad of the Stokes
vector of unit length used in Section 6.2, we shall here usc an instantaneous
Stokes vector with the components (5. S.. 83 = [ ]” — |u, /%
2Re(uu,), 2Imjutu,)), so that the length of the Stokes vector is the optical
power. Using a unitary transformation (the Jones matrix). we can mathe-
matically eliminate the rapid motion of the polarization of the optical field
caused by the fiber’s wave-number birefringence. Then, taking into account
that the collision length for the solitons of interest here is short enough
(Leonr = 200 km), that the effects of polarization dispersion on the relative
polarizations of the two fields can be neglected, and that the nonlinear
term s averaped over all polarizations, we are left with a much simplified
version of the propagation cquation, known as the Manakov equation [41]:

U 14

—_—— = =

)
iz 2

u .
5 + (0* - wu (6.21)
Now if u is composed of two fields with distinctly separable frequency
ranges (e.g., pulses in a WDM system). we can isolate the terms of Eq.
{6.21) in cach frequency range. If the two frequencies are identified by
subscripts @ and b, then for the frequency of u,, we lind the equation

Jdu, 1 0%,
I = = >
Az 2 ar

+ (uwi-uu, + (i ou)u, + (ufu ), (6.22)

The equation for the frequency of u, 1s obtained by interchanging indices,
There are three nonlinear terms on the right-hand side of Eqg. (6.22}. The
first is the self-phase modulation term, while the second and third constitute
the polarization-dependent cross-phase modulation. For copolarized fields,
the second and third terms become identical (compare with Eq. [5.3]),
while for orthogonally polarized fields, the third term goes to zero.

If we expand Eq. (6.22) into its field components, it is straightforward
to show that the cross-phase modulation terms of Eq. (6.22)} modify the
Stokes vector of the a field according to the equation

a8,

=8, X 8§,. (6.23)

This equation and that for §, {exchange subscripts) show that the nonlinear
term causes the Stokes vectors of the two fields to precess around each
other, so that (S, + §;)/8z = 0. It is important to note from Eq. (6.23)
that when the pulses are either exactly copolarized or exactly orthogonally



456 L. F. Mollenauer, L. P. Gordon, and P. V, Mamyshev

polarized. there is no scattering. Thus, for example, in the experiment of
Fig. 12.55, there was no scattering between the initially copolarized channels
until the fiber's PMD) gradually opened up the angle between their
Stokes vectors.

To apply Eq. (6.23) to solitons. we have only to integrate it over the
course of a collision. In first order. if we neglect the simultancous precession
of soliton b, then the integration of Eq. (6.23) gives an effective precession
angle of 8, around 8,,. Single solitons of Eq. (6.21) have the general form

u(z. 1) = 0A sech|A(r + 02)) expliz(A? — Q)2 — iu],  (6.24)

where @ is a unit normalized polarization vector (8*-& = 1). To evaluate
the precession angle most easily. let u, be a stationary soliton (£}, = (),
and ket w, be a soliton substantialty displaced in frequency ([(2,] 3+ 1. Then
the integration wvver the collision mvolves the integration over z of
A sech’[A(t + 2,2)]. which gives a precession angle of 2A4,/),. This
formula uses soliton units. Noting that the (ull spectral width of the soliton
in Eq. (6.24) is dw = (2/m) X 1.763 A, we can reexpress the polarization
angle in the dimensionally independent form

Ai’;,

Ay

A0, = 178 (6.25)

Lt
where A#, i1s the precession angle for the stationary solition, Ay, is the full
(spectral) width at hall maximum of the passing soliton. and Awp,, is the
frequency separation of the two solitons. Note the inverse dependence of
the change in polarization angle on channel separation (Ar,,). Because the
number of collisions in a given distance is in direct proportion to Av,,,
however, the net spread in polarization vectors tends to be independent
of channel separation. as observed experimentally (Fig. 12.55). Note also
that Eq. (6.25) is valid whether or not the colliding solitons are equal in
amplitude. Because the bandwidth of a soliton is proportional to its ampli-
tude, the collision of two unequal solitons will yield unequal precessions
for the two. In the WDM experiments described in Section S, the ratio of
the channel spacing to the soliton’s spectral FWHM was about 5. which
would make the precession angle per collision about 0.35 radians. This is
a small enough angle to make the previously described theory applicable,
and yet is large enough that just a few collisions are enough to prohibit
the use of polarization-division multiplexing.

The argument just presented gives results applicable to a WDM commu-
nications system, where the channel spacing is much greater than the soliton
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bandwidth, so that the precession angle in a collision is small. Manakov
[41] was able to show that Eq. (6.21) supports polarized solitons in the
strict sense. A collision of two solitons therefore docs not give rise to
any scaltered radiation. The solitons emerge from the coflision with their
energies and veloctties unchanged, but their polarizations change as well
as their positions and phases. A translation of Manakov's result gives the
following Stokes—Poincar¢ picture. if colliding solitons a and b have ampli-
tudes A, and A, and normalized Stokes vectors S, and S,,, then the vector
A= A,Su + A,,g,, remains the same before and alter the collision. As a
result of the collision, the two Stokes vectors 8, and S, precess around the
axis defined by A through an angle ¢ whose tangent is given by tan ¢ =
2A0/Q0° — A7y, where Qs the difference between the solitons” frequencies
and A is the length of the vector A With adinde practice in geometry, one
can show that when £2° A", the exact result reduces to the approximate
one given previously.

Another consequence of the polarization scattering from collisions, more
fundamental than the simple prohibition of pelarization-division multiplex-
ng. 1s a jitter in pulse mvival wmes, mediated by the fiber birefringence.
Reference 35 describes a qualitatively similar hirctringence-mediated jitter,
as initiated by the (relatively small) noise-induced scatter in polarization
states. Because the spread in polarization states from collisions tends to
be much larger (note that it eventually tends to spread the Stokes vectors
over a large fraction of the Poincaré sphere), the jitter is correspondingly
greater, andin a typical case can casily add at least a few tens of picoseconds
to the total spread in arrival times over transoccanic distances. This repre-
sents a significant reduction in safety margin for individual channel rates
of 10 Gb/s or more. Nevertheless. note that in the WDM results reported
tn Section 5.9, that reduction, although undoubtedly present, was not fatal.
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ELECTRONIC REGENERATION VS OPTICAL AMPLIFIERS

Regenerated System:

Trans. R RF—---——R Rec.

Disadvantages:
Cost increases rapidly with increasing bit rate.
Each wavelength channel requires its own set of regenerators
Complexity increases probability of failure.

System Using Optical Amplifiers:

Trans —{A>——{E>—— . — > Reo

Advantages:
Amplifier bandwidth does not limit single-channel bit rates.
Many channels can be amplified simultaneously.
Simple, reliable, and inexpensive.




Erbium - Doped Fiber Ampilifier

Pump light: 10-20 mw from laser diode
~980 or ~1480 nm

<+ 5.20m —>

Transmission 3+ i Transmission
fiber Er doped fiber / fiber

signals at 1550 - 1560 nm
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THE NONLINEAR SCHRODINGER EQN:

2
SO 10 2y

ordinary based on
dispersion n =ng+njyl

SOLITON:

u(z,t) = sech(r)e*”?

SOLITON UNITS:

Length Time Power
2nc T T Agg . D
e 0.322775 1.763 Prot = 2nng 2o T

(For =20 ps, D= 0.5 ps/nm-km,
and A= 1556 nm, z,~200 km.)
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A BRIEF (AND SELECTIVE) HISTORY OF SOLTIONS
John Scott Russell observes "solitary” wave in the Union canal near
Edinburgh, Scotland.
Kortweg and deVries derive the equation of Russell’s solitary wave.

N. Zabusky (then at Bell Labs) and M. Kruskal observe that solitary
waves survive collisions with one another. Rename them solirons.

Zhakarov and Shabat (USSR) develop the inverse scattering theory and
use it to explore solitons of the nonlinear Schrodinger equation.

Hasegawa and Tappert (Bell Labs) predict that fibers can support solitons.

Mollenauer, Stolen, and Gordon (Bell Labs) make first experimental observation
in fibers.

Moilenauer and Smith (Bell LLabs) demonstrate first long distance (4000 km)
all-optical transmission, by using solitons and Raman gain.

Erbium fiber amplifier invented (Mears et al., Desurvire et al.).



FIBER NONLINEARITY

The induced polarization in a nonlinear dielectric takes the form:
P=gy[ x"E+y?:EE + x®:EEE + --- ]
For (isotropic) fibers, ' =n?-1 (n is the index of refraction), while y® = 0.

x* yields third harmonic generation (ordinarily negligibly weak in silica
glass fibers), four-wave mixing, and nonlinear refraction; only the later two
are of interest here.

In silica glass fibers, the index can be written, with great accuracy, as:
n@ El? =n@)+n,| E|?2
where n, is related to x® by

3.6
n = 1.

(x5 is a scalar component of x*, appropriate to the polarization.)

In silica glass fibers, if we write the nonlinear index as n,/, where I is the
intensity, then n, has the polarization-averaged value of 2.8x107'® cm?/W.



PHASE AND GROUP VELOCITIES

Consider a medium characterized by the dispersion relation w(k).
The phase of any frequency component is

O(z,t) =t —kz
For an observer in a frame moving at velocity v

49 = W—kv
dt

For stationary ¢, the terms in the above equation are zero.
The corresponding solution, v, = wi, is the phase velocity.

A pulse’s peak occurs where its Fourier components add most constructively.
Thus, in a frame moving at the group velocity, Vg, ONE must have:

_JL_.._ _
ﬁ(m) vg =0

The solution is the well-known result ve = dw/dk.



INVERSE PHASE AND GROUP VELOCITIES

Let the dispersion relation be written as k (w).
Let the phase of any frequency component be written as

O(z,t) = kz -t

For an observer in a time frame moving at reciprocal velocity v1,

49 =k-wv!
dz

For stationary ¢, the terms in the above equation are zero.
The corresponding solution, v;1 = k/w, is the reciprocal phase velocity.

A pulse's peak occurs where its Fourier components add most constructively.
Thus, in a time frame moving with reciprocal group velocity vgl, one must have:
d d¢ dk -1

doaz) " a8 =0

The solution is vgl =dk/dw



DERIVATION OF THE NONLINEAR SCHRODINGER EQN
Method of J. P. Gordon

Represent the complex field amplitudes with a scalar, dimensionless fn. U (z,),
where P = P, 1U 12, and let k(w,P) be the dispersion relation of monochromatic

waves U (z,t) = uge'** =9

Expand k(w,P) in a Taylor series about (wy,0):
k = kg + k(@—wg) + Yok (—wg)” + k2P (1)

Reciprocal group velocity (time per unit distance):

- dk P
vgl =—a;)' =k’ + k(®—0yg)

i.e., k” = vy () and k”" is the dispersion constant.
Note: Dispersion is often quoted as a wavelength derivative:

ok’ _  2me

_ _ K
oA 22



DISPERSION PARAMETER OF SINGLE MODE FIBERS
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DERIVATION OF THE NONLINEAR SCHRODINGER EQN
Step lI: Shift to zero frequency and retarded time.

Remove wy and k¢ from U (z,¢) by defining
u(z t) = U(Z t)ei(wof“koz) — uoei[(k"ko)z'(m_mo)‘]
The equation for u that reproduces the dispersion relation (1) is clearly

2
LI B "—a~—“—+k2Pc e 120 (2)

oz ar ot?

To make the time-frame for representing a pulse ind. of z, transform to retarded time:
lres =1—kz

Since the eqn. of motion for a pulse at wy is ¢,., = const., we have:

Thus, the (coefficient of the) g—l:term in (2) is eliminated.



DERIVATION OF THE NONLINEAR SCHRODINGER EQN
Step lil: Rescale the independent variables

Choose unit values ¢, z., and P, for time, distance, and power, respectively,
such that the rescaled coefficients k*” and k,P. in (2) each become unity.
That is, we have the new, "dimensionless" variables

t" = tyglt, = (t—k72)1,
z° =12/z,
where the new unit values must obey the relations
~t2z, =k~
(zc P! =k
Rewriting eqn. (2) in terms of the new variables, and dropping the primes, we get

2
S Lo g,

oz 2 o2



FOURIER TRANSFORMS

Let u(¢) and u(w) be Fourier transforms of each other, i.e.,

+o0 +o0
L i@ e dey u(w) = [u@yeiodr

1
2r . V2n .,

u(t) =

Note that

+o0

ou(f) = L f—-imﬁ(co)e“"’"dm

ot \n .

ou(t)
"ot

%u(t)
o2

i.e. —= —iou(m)

similarly, — —0’u(o)



THE NLS EQN: ACTION OF THE DISPERSIVE TERM

To get action of dispersive term alone, turn off NL term, so eqn. becomes:

du i d*u
% 2 32
The problem is most naturally solved in the frequency domain, where eqn. becomes:
ou _ L
0z 2

and where the general solution is:

—i

u(z,®) = 1(0,0)e
Thus, the dispersive term merely rearranges the phase relations among existing
frequency components; it adds no new ones.

2

To get the spreading of the pulse, must transform back to the time domain.
Example: Let « (0,7) = e™'2 for which u(0,®) = e 02,

2 2 1.2

W'z ) .
i ~i 1 G ——(+iz) . - -
u(z,t) = \(21_ Ju(O,m)e 2 T gy = o fe 2 e dw exe 21+iz)
n —h) —

Thus, intensity envelope lu 12 ate~t"/1+2") = ,~@8) \here §/2 — V1+22.



DISPERSIVE BROADENING OF GAUSSIAN PULSE WITH DISTANCE
(Minimum spectral width at origin)

Z (units of z.)



THE NLS EQN: ACTION OF THE NONLINEAR TERM

To get action of NL. term alone, turn off dispersive term, so eqn. becomes:
Ju

. 2
—— =ilul“y
oz

The problem is most naturally solved in the time domain, where gen. soln. is:
u(z,t) = u(0,t) e’ '* 12

The NL term modifies ¢(¢), but not the intensity envelope.

Thus, it only adds new frequency components.

To get spectral spreading, must transform back to the frequency domain.
Example: Again, let u (0,1) = ¢~**2,

0 OO

2, 1 _a2 ; .
fu(O,t)e““' z 0 gy _ Ie 12 yize™ el dw

I
V2r 2

For z>>1, this integral produces a multi-peaked spectrum, where the number
of peaks and the over-all spectral width increase directly with z.

However, for z <<1, the integral is approximately

u(z, W) =

[e=2(14i; e~ ) el gr = u(0,®) + iz v(w)

1
N2m
Note that once again, the new component is in quadrature with the original pulse.
Thus, the increase in net spectral width scales only as z2.




SPECTRAL BROADENING OF GAUSSIAN PULSE AT ZERO DISPERSION{

LA AN

15 »

25w 35w

Nonlinear @ shift (e'distance) shown under each spectrum.

+ From Stolen and Lin, Phys. Rev. A 17 (1978)



ORIGIN OF THE SOLITON

For the soliton, the NL and dispersive terms cancel each other’s effects.

But, how can the tendancies to spectral and temporal broadening cancel one another?
Ans: There is no broadening of either kind to first order in dz!

The first order effects of both terms are just complementary phase shifts ¢ o(2).

Proof: If f (z,¢) is real, then the general eqn.

du =if (z,0)u
V4

d

simply generates the phase change d¢(t) = £ (0,¢)dz in dz.
We have already seen how the NL term generates do(1) = lu(t)12%dz
For the dispersive effect, write the eqn. in the form

ou - ( i azu)u
0z 2u P2
Thus, the di ive t rates d¢ = (‘La_z“li)dz
us, the dispersive term generates d¢ = 2% 372

For u = sech(?), these terms are, respectively,

don; = sech®(t)dz  and dgisp. = [4—sech?(t)] dz.






. SEGMENT OF "HYBRID" SYSTEM FOR TEST OF SOLITON PROPAGATION
THROUGH CHAIN OF LUMPED AMPS AND D.S. FIBER

-

0 14 28 42 56
Distance (km)



PERIODIC PULSE ENERGY AND FIBER DISPERSION
IN SEGMENT OF TRANSMISSION LINE USED FOR
TEST OF "PATH-AVERAGE" SOLITONS

>
|
N

D (ps/nm-km)
(=)
\

Pulse Energy

0 15 30 45 60

Distance (km)



SIMULATED TRANSMISSION THROUGH SYSTEM WITH
LUMPED AMPLIFIERS AND PERIODICALLY VARYING DISPERSION

2
c
3 ........... 0 km
3,05_ — 15,000 km
o
3
Q.
&
— | | | | | | ] [ | | | |
3 060 = 500 400
0
.......... 0 km
1 — 15,000 km
S
Q.
& -4
-
o
(=]
o —6
o
-8,

Time (ns)



Dispersion Relation for Solitons and Linear Waves
Soliton Spectral Density Also Shown

Phase matching condition:
ok =k

pert. sol.

. —klin.
I (w) of soliton .
Effect is o< I(®,,4,01 )-

Resonance —bk,,,, =Y.




NUMERICAL SOLUTION OF THE NLS EQN: THE SPLIT-STEP FOURIER METHOD

The NLS equation is generally difficult to solve analytically. Numerical solution,
however, can be remarkably efficient, when it is based on the "split-step Fourier"
method:

z Z+h Z + 2h

The method is based on the fact that the effects of the dispersive term are most
naturally dealt with in the frequency domain, while those of the non-linear term
are best handled in the time domain. Thus, each increment # in z is treated in two
consecutive steps, as follows:

u(z,t) = (o) iz, w) e O = j;1h o)

u(z +h, ) - Upew(2,1); unew(z,t)ei"“z" = u(z+h,t)

Based on the ideas just discussed with respect to path-average solitons,
reasonable accuracy can often be maintained with relatively large step sizes.
Fiber loss and amplifier gain are simulated by appropiate scale factors on u(z).
Filter response functions and other frequency dependent factors are most easily
applied in the frequency domain.
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SPONTANEOUS EMISSION NOISE: GROWTH AND EFFECTS

P G G G GP
Trans | — 1/G >— 1/G > 1/G > 1/G __[>_f__
< N amps -

Noise Power/Unit Bandwidth
Each amplifier contributes P (v) =(G-1) hv ngp.

Noise at system output is:

P() =N(G-1)hvng, = %(G—l)hvnsp

Path average value in final segment of the line:

G 1)
P(v) = aZhVnsp—C(ml—G%z—

_132
The quantity F(G) = G-

is a penalty function.
G (InG)? penatly

Detectoi



NOISE PENALTY VS AMPLIFIER GAIN

Amplifier Spacing, km at .25 dB/km loss

0 20 40 60 80 100 120
! ; I ! |
12
8-
F(G)
dB [
41
00 | 1|0 | S R 2|0 N T W 3(9

Amplifier Gain (dB)



THE GORDON-HAUS EFFECT: OUTLINE OF PROOF

At each amplifier, addition of the noise field component du = iaus, tanh(t)
shifts the soliton's frequency by

80:%&1

The net time shift of a given pulse is:

amps

where z, is distance from nth amp. to the end. T L

Get variance of 8t by summing variances of the (independent) d,:

Vad

<8t2> =<892>amp > Z£=(SQ2)ampT
amp

amps

1 (G-1)ngphv
3 Wy

(It can be shown that (8Q? )gmp =

)



THE GORDON-HAUS EFFECT:
VARIANCE IN PULSE ARRIVAL TIMES
FROM AMPLIFIED SPONTANEOUS EMISSION

In a broad-band transmission line, spontaneous emission modulates the
soliton frequencies (velocities) at random.

Resultant variance of Gaussian distribution in arrival times at Z is:

alo.ss D
o = 4138 ng, F(G) g T z

where oy, is inkm™, D in ps/nm-km, Z in Mm, t in ps, A in pm?.

Example: Let 1t=20ps, D=0.5ps/inm-km, A, =50 pm?,  0y,s=0.048/km
(0.21 dB/km), F =1.19 (span between amplifiers = 30 km), and ng, ~1.4.
Then, for 9,000 km, one obtains:

c=11ps



BIT ERROR RATES IN SOLITON TRANSMISSION AT 9000 km
BROADBAND TRANSMISSION LINE, 30 km AMPLIFIER SPACING

<—— REL. SOLITON PULSE ENERGY
PO 2 1 7 5

| T | T -8
101 -10
o
L
o ol TIMING 12
g'i_) ,
— 2.5\Gbit/s  4\Gbit/s ENERGY
-14 |- —4-14
-16 L L . -16
0 20 40 60 80 100

1/D(nm-km)



FREQUENCY-GUIDING FILTERS
(Typically, low-finesse FP etalons, one per amplifier)

Wavelength Shift (hnm) at 1555 nm
8 .6 4 .2 0 -2 -4 -6 -8

1 | —
0.8 /

“— response

0.6
04

<« gpectrum,
0.2 20 ps soliton

| 1 i | { i l i i

0
-100 -80 -60 -40 -20 0 20 40 60 80 100
Optical Frequency Shift (GHz)

Filters:
e Reduce GH jitter by "guiding" soliton specta back to filter peaks.

® Reduce ampiitude jitter because filter loss increases as soliton BW (W,

® Are compatible with extensive WDM.
® Work only with solitons!

ol.)



DECREASE OF JITTER IN PULSE ARRIVAL TIMES
WITH OPTIMUM STRENGTH, FIXED-FREQUENCY FILTERS

30 :
g 5] ;
S 201 no filter [
o
g o 15
50 e
gor . e T
.s! 5 - e _ 5
3o

0 | | | 1 1 | | l 0

0 2 4 6 8 10 12 14 16 18 20
Path (Mm)



SLIDING-FREQUENCY GUIDING FILTERS:
Filter Frequency Response vs Distance

. wn+l(z)

-) ©0,(2)

e Solitons can follow the filter frequency sliding; noise cannot.

¢ Sliding allows filters to be many times stronger.



SLIDING FREQUENCY FILTERS:
NOISE SPECTRAL DENSITY VS. FREQUENCY AND DISTANCE

One R=9%, 75 GHz FSR Etalon Filter per 50 km
Sliding Rate = 13 GHz/Mm; excess In gain = 1.4/Mm

Density normalized to value at 10 Mm with no filtering.
0.8

4 6 8 10 Mm

I(f)

-20 0 20 40 60 80 100 120 140 160
freq. shift (GHz)



NLS EQUATION WITH FILTERING:

. d
ot
n = 2, = curvature at filter peak; wy = filter frequency; a = excess gain

Exact Solution (no sliding; ws=0):

U= \/Fsech(t)exp(iq)) where ¢ = Kz —v In cosh(¢)

! W_r“‘]‘”“ IR

a=(Mm/3)1 +v
P=(1+n )(1—v2/2)
K =(1/2)(1-v3) + (v%/3)(2 -v?)

(Pulse is chirped, i.e., 31;= —vtanh(z); rms BW increased by V1+v?)



STD. DEV. OF SOLITON ENERGY ("ONES") AND OF "ZEROS"

0.1

0.05

Standard deviations normalized to the soliton energy

no guiding filters
_ (filter passing 8 modes at end of path)

with sliding filters

-------------------------------------------------------------------------------------
-

1

|
10 12
Path (Mm)

8

0.1

0.05



THE GORDON-HAUS EFFECT:
BROAD-BAND VS FILTERED TRANSMISSION LINES

Get variance of 6t by summing variances of the (independent) &t,:

For broad-band transmission line, one has:

28

(8) = (80%)amp ¥ 27 = (3Q%)amp 5 —
amp

amps

where z, is the distance from the nth amp. to the end.

Filters reduce the z, to the filter-damping length, ¥, so one then has:

_D 7
(3F) = (8 )amp £ V7 = (8Q%Vamp 1=
amps amp

Ex: For 10,000 km line, root mean square value of z,, ~7000 km.

But typical value for ¥/ is ~500 km.



STANDARD DEVIATION OF JITTER IN PULSE ARRIVAL TIMES

30

20

o (ps)
10

16 ps pulse, D = 0.5 ps/nm-km, n sp=1.6

Effective damping length =400 km

no filters

with filters

--------------------
---------------------------------------------
e
-------------

—-30

20

Path (Mm)



PRACTICAL EXAMPLE

Filters: one 1.5(2) mm gap, R = 9% etalon every 33(50) km

Pulse width 16 ps

D 0.5 ps/nm-km

Zc 130 km
“Sliding rate ~7-14 GHz/Mm
Soliton pwr. 3.6 mW(path av.)

Time av. pwr. 0.6 mW(span input, 10 Gbit/s)



- Recirculating Loop with Sliding -Frequency Filters
(Filters are 75 GHz FSR etalons with R=9%)

Drive
Voltage >—_
Ll T T T e P 7"‘“““““‘“_“,‘,’ “““““ _"J




TIME-AVERAGE SIGNAL AND NOISE VS. DISTANCE
WITH SLIDING-FREQUENCY FILTERS




SLIDING-FREQUENCY GUIDING FILTERS AS AMPLITUDE NOISE EATERS

NOTE GREAT REDUCTION IN SOURCE AMPLITUDE NOISE AFTER
ONLY ~6 ROUND TRIPS (PASSAGE THROUGH 18 FILTERS):

~< - - --- - 1000 km - e

IMPLIED DAMPING LENGTH = 380 km.



EYE DIAGRAM OF 20 ps SOLITONS AFTER 10 Mm TRANSMISSION
USING SLIDING-FREQUENCY, GUIDING FILTERS
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TIME-DIVISION DEMULTIPLEXER

electro-optic
. switch
10 Ghit/s in 2.5 Gbit/s
-

>~
N\ out

2.5 GHz

T-flip-flops
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- adj./delay
(window pos.) (window width)
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PHASE MARGIN AT 1071 BER VS Z

708

50
40 -
30 -

20

10

10 Gbit/s:

- e 2.5 Gbit/s thru loop mirr.
= adjacent puises orthog. pol.
o adjacent pulses co-pol.




STD. DEV. OF JITTER USING SLIDING FREQ. FILTERS
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ACOUSTIC RESPONSE FOLLOWING PASSAGE OF SOLITONATt = 0,
AND REL. FREQUENCY SHIFTS INDUCED ON FOLLOWING SOLITONSt
1

B acoustic response
0.5 [

05 N IS N VOO SN U A S U U SN S S
o 1 t(ns) 2 3

2
This leads to the jitter term: 65 = 8.6 —%— VR-0.99 A*Z

where R is the bit rate and A is the filter damping length.

1 from Dianov, Luchnikov, Pilipetskii, and Starodumov, Opt. Lert. 15 314 (1990)



BIT-ERROR-RATE IN SOLITON TRANSMISSION PASSIVILY
REGENERATED BY "SLIDING-FREQUENCY GUIDING FILTERS"

Capacities shown can be multiplied many times by WDM
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COMPUTATION OF "DIMENSIONLESS" FILTER STRENGTH, SLIDING RATE,
AND EXCESS GAIN PARAMETERS FROM REAL WORLD QUANTITIES

With filters, the simplified propagation equation in soliton units is:

When using etalon filters with mirror spacing 4, reflectivity R, spaced Ly apart, 1,
o s and o are computed as:

2
1

_ _8=mR
CDLf

_ _8nR l|d
(1-R)?

A

®’f = 4n’fct 2 I(A° D)

o = agt.22mc/(A2D)



SOLITON PULSE ENERGY RANGE FOR ERROR FREE TRANSMISSION
SLIDING RATE = 13 GHz/Mm (OPTIMUM RATE)

11553 1555 1557 1559 1561
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 L L 1 1 | .1
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SOLITON ENERGY RANGE FOR ERROR FREE TRANS. VS SLIDING RATE
FILTER STRENGTH PARAMETER 1 = 0.4 (OPTIMUM VALUE)
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SOLITON PEAK INTENS. VS. PATH-FOR VARIOUS EXCESS GAINS

peak intensity, a.u.

8

N

N

W

| |

s |

2.0

1.45

1.4/Mm

2 4 6 8

Path (Mm)

10 12



TRANSFER FUNCTION

OF A TRANSMISSION LINE WITH SLIDING FILTERS
(sliding rate 13 GHz/Mm, excess gain 2/Mm, Tin= 15 ps)

©
;w".O"
-~
5
Q
= ;
- 1 Mm/
o) ;
5 0.5+
-
“’ !
2 1 : oo' 1 2 3 4 5 6 7
3 ; 3Mm ESMm
4 1
0 | | | | i 1
0 0.25 0.5 0.75 1.0 1.25

input pulse energy, Win/Wq,



Dual-wavelength source of high-repetition-rate,

transform-limited optical pulses for soliton transmission

Single
Frequency
Laser

inventor: Pavel V. Mamyshev

k Pulse train @ A 1

LINbO, phase
modulator

optical
filter

<iAAAmwmm2
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Experimental test at 10 GHz:

®q

20 psecidiv 10 GHz /div

Pulses Spectrum



"NRZ" soliton source

; NRZ pattern
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"NRZ" TO SOLITON CONVERSION BY FILTERED TRANS. LINE

i
.f,’-‘t.‘:r_‘-'}‘f" B
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.:—-——»-—.4"'—-—‘ — ] — e —

== — =R

< [ St : i A
Vit e N Y N

DATA OUT AT 10 Mm
(EYE DIAGRAM)
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ERROR FREE DISTANCES IN SINGLE CHANNEL TRANSMISSION
SOLITONS VS NRZ
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Lecture #3:
WAVELENGTH DIVISION MULTIPLEXING

Linn F. Mollenauer
Photonics Systems Research
Bell Labs )
Lucent Technologies
Holmdel, NJ '
USA

Winter College on Optics, Trieste, Italy
February 10, 1998



POTENTIAL CAPACITY OF ERBIUM AMPLIFIERS FOR WDM

log gain -

1530 1540 1550 1560

I l | l | I I
— 200 Gbit/s @ 10 Gbit/s, 0.6 nm/ch.
— 300 Gbit/s @ 20 Gbit/s, 0.8 nm/ch.

— 600 Gbit/s @ 40 Gbit/s, 0.8 nm/ch.
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61% = fractional path-av. inversion
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SOLITON-SOLITON COLLISIONS IN WDM

In WDM, solitons of different channels overtake and pass through
("collide" with) each other:

Al Ay

Let L., begin and end with overlap at the half power points:

21T
D AA

L coll =

Example: for T = 20 ps, D =0.5 ps/nm-km and AA = 0.6 nm,
LCOH = 133 km



SOLITON-SOLITON COLLISION IN A LOSSLESS FIBER
ACCELERATION, VELOCITY, AND TIME SHIFTS OF THE SLOWER PULSE

ot

acceleration

Z/L con

Note that there has been no net exchange of energy or momentum.
Thus, the solitons are perfectly transparent to one another.



SOLITON-SOLITON COLLISIONS IN A SYSTEM WITH LUMPED AMPS.
Leon =2.5x AMPLIFIER SPACING




Four-Wave Mixing in Soliton-Soliton Collisions

Collisions between solitons at optical frequencies ®; and
w3 produce the following four-wave mixing processes:

W + @y — Wg — Wy

-i—A(,O—--

(g w1 02 O )

Note that the first two of the above processes are dominant,
since three of the fiekds involved there are initially non-zero.
For these processes the phase mismatch is

Ak = (k2+kx—2k1 or k1+ku——2k2)

AZD 2
= —AW? = - A®
d 2TcC




GROWTH OF FWM ENERGY
DURING A SOLITON-SOLITON COLLISION

0.6 nm channel spacing, D = 0.5 ps/nm/km, 20 ps solitons.

6 L.
D=const, loss=0.2 dB/km,
8 lumped amplifiers
3
= 4L
~uy 4
E
= [
<
S 2F
o
D=const, lossless fiber
0 T | B I m
0 100 200 300 400

distance (km)



AMPLITUDE AND TIMING JITTER INDUCED BY PSEUDO-PHASE-MATCHED
FWM IN A TWO-CHANNEL SOLITON WDM TRANSMISSION

Stokes channel; Z=10 Mm; channel spacing 0.6 nm; Zamp =33.3 km, D=const.=0.5 psec/nm/km

1.0

intensity (a.u.)
o
T

ULJ\JLJLQ\

0.0 f T 1
-400 -200 0 200 400

time (psec)

—




DISPERSION-TAPERED FIBER SPANS

Let D(2z) in each fiber span decay exactly as the intensity:

[ |
L amp . 2L amp

Behaves just like lossless, constant-D fiber.

So, all perturbations stemming from the use of lumped amplifiers disappear.
In particular, for WDM:

 Pseudo phase matching of Four Wave Mixing disappears.

» The symmetry of XPM in soliton soliton collisions is restored.
Thus, the requirement Loy > 2L gy is lifted,
so no longer have limit on maximum channel spacing.



Recirculating Loop

Piezo driven filters (0.6 nm FSR, R=9% etalons)

N\

— P P

/

33 km long, dispersion-tapered spans:

- 200 km >

A. O. Mods.

- e 3 dB D OOO J

Signal In —» ——/3<— — Signal Out




BEST 3-STEP APPROXIMATION TO
THE IDEAL EXPONENTIAL TAPER OF D

AN

N

™~

S

0.2 0.4 0.6 0.8 1.0

Z/Lamp



RESIDUAL FWM ENERGY PER SOLITON COLLISION VS AMPLIFIER SPACING

Constant D and 2, 3 and 4-step approximation
to ideal exponential taper of D

0.6 nm channel spacing, D,,= 0.5 ps/nm/km, 20 ps solitons.

0O 10 20 30 40 50 60
L amp (km)



SOURCE FOR
N x 10 Gbit/s SOLITON WDM TRANSMISSION
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Error-free distances in soliton WDM at N X 10 Gbit/s.

Net Bit Rate (Gbit/s)
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FILTERING CAN DAMPEN OUT THE TIME DISPLACEMENTS OF SOLITON-SOLITON COLLISIONS

Without filtering, colliding solitons accelerate each other by a((z), whose first integral is
vp(z), and whose second integral is 7y (z). We require only that:

vgleo) = I ag(z)dz =0 (1)
That is, the completed collision must leave no residual velocity shift. Filters provide a damp-
ing, i.e., an accel. towards v =0. When the filter response function is parabolic, «¢,; = - v,
where yis the damping constant. Eqn. of motion then becomes:
d
== ap(2) - (@) 2)
dz

Eq. (2) can be rewritten as:
dv

|
= — . 2
v(z) Ylao(Z) dz] (2a)
To get 1, we simply integrate Eq. (2a):
F 1§ dv
= = — —- — 2
1(2) _L"(”dx ’Y_L[QO(X) oo ldx (3)
We are primarily interested in 1(eo):
o) = 1 T ag(x)dx — 1 of dv (3a)
Y e Y -e

The first term on the right = O by virtue of Eq. (1). The second term is just v(e), which for a
filtered system with no excitation beyond a certain point, must = 0.



Velocity and time shifts caused by soliton-soliton collision
in fiber with lumped amps and with Parabolic filters
Filters lumped at each amplifier.

D = 0.5 ps/nm-km; 1 =20 ps; AA=0.6 nm (Q =2.6729);
Lcoy = 133 km; Lamp =33.3 km; A=400 km.

z/Lcon

I [ | [ | 1 | I |

S+ -3
\Y
Va p 41.5
GHz pPS
0 .——//l | 0
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\
aop
51 1.3
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WDM CHANNEL STRENGTHS VS DISTANCE WIiTH AND WITHOUT FILTERS
THREE CHANNELS WITH RELATIVE GAINS OF +1, 0, AND -1 dB/Mm.

w
|
w

- ~""NO FILTERS B
ol 2
w .
[~ WITH FILTERS (SOLITONS ONLY) |
11— 1
0_ L1 L1l T~t=tododed 1T T-t-f-foi-i_] _10
0 5 10 15 20

FILTERS PROVIDE AUTOMATIC GAIN LEVELING AMONG THE CHANNELS.



OPTICAL SPECTRUM AT 10 Mm OF 9-CHANNEL WDM TRANSMISSION

FILTERS PROVIDE STRONG REGULATION OF SOLITON ENERGIES.

1562

(nm)

PEAK SPECTRAL DENSITIES ARE IN DIRECT PROPORTION TO D.



GUIDING FILTER STRENGTH PARAMETER 1

¢ For good stability range, must maintain n=0.4
(Stability range — 0 for n > 0.8.)

e But, for shallow etalons, n o R/D.

e Thus, to compensate for D-slope, must make
etalons with compensating variation in R(.).



TRANSMISSION OF VARIABLE-R ETALON FILTER MADE FROM BRAGG
GRATING MIRRORS IN FIBER. YIELDS NEARLY CONSTANT FILTER
STRENGTH IN THE FACE OF DISPERSION SLOPE OF 0.07 ps/nm2-km.
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filter strength (arb. units)

MEASURED STRENGTH (BW ' ) OF GRATING-IN-FIBER
ETALON FILTER AS A FUNCTION OF WAVELENGTH
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PATH OF 4-WAVE MIXING VECTOR IN THE COMPLEX PLANE

FUNDAMENTAL RESONANCE ( j ok dz = 21 )
D-map

(CHANNEL SPACING = 0.63 nm)

All final intensities normalized to
I=1 for the phase-matched case.

lossless) fiber
D-maps (D in ps/nm-km):
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DISPERSION MANAGED SOLITONS IN A NUTSHELL

D-MAP: O

PURE DISPER.
BROADENING
(low intensity)

pulse width

+ S.P.M.
(SOLITONS)

o Pulse width

[ J% | SR

zILmap

Path-av. SPM and D cancel each other’s effects exactly over each L ap®

Pulse shape, however, is largely determined by D‘mc (the dominant term).
Thus, pulse shape is essentially Gaussian.



retarded time (ps)
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COLLIDING SOLITONS:
RELATIVE MOTION IN RETARDED TIME
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SOLITON - SOLITON COLLISION LENGTH VS. CHANNEL SEPARATION

T=20ps; Lpgp=40km; D =0.5ps/nm-km

300
A
= —— D-map = £ 4 ps/nm-km
~ 200}
L
)
C
2 "safe"
_5 region
0
8O N 2lamp J
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INSTANTANEOUS FREQUENCY SHIFTS OF COLLIDING SOLITONS

CHANNELS SEPARATED BY 75 GHz (0.6 nm)

Lmlp = Lamp =40 km; D = 0.5 ps/nm-km

freq. shift (GHz)

-400 -260 0 260 400
z (km)

LUCENT and SSI PROPRIETARY
Treat According to AT&T/SSI KDD

AN #ar & laint Naualanmant Faacihility Study



INSTANTANEOUS FREQUENCY SHIFTS OF COLLIDING SOLITONS

Lm‘,:lp = Lamp =40 km; D = 0.5 ps/nm-km

- CHANNELS SEPARATED ' B
BY 150 GHz (1.2 nm)

—
o))
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I *4D-map —»
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"+4" D-MAP: FEATURES AND REQUIREMENTS

"Ideal” map:
+4

1’
Q

|
0 L

-4

Real map:

+4/W‘\/j.

I |
0 L

-4 e NPV

Variation of ~+1 ps/nm-km within each segment is not important.

_ L
Only D= (1/L) | oD(z) dz needs to be accurate.



OTDR-LIKE TECHNIQUE FOR MEASURING D-MAPS

This is now a Dragone multi-\ source
under control of the P. C.

:H:1ps@2-3kHz
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OTDR-LIKE METHOD FOR D-MAP MEASUREMENT

® Principal features:
® Requires access to only one end of the fiber span.

® Fast: Produces accurate D-map and its integral in seconds.

e Long range: Measures spans of up to 50 km without gain;
with Raman gain, should extend to 80 km.
® Accurate: Measures D to within <0.05 ps/nm-km and with spatial
resolution of 1 km or better.
@ Major uses:

® To characterize installed fiber spans in the field.
® To create spans with precisely controlled path-average D.

i ‘. ll'!! 1;'1:“5,"!"|i'lif'i'; [
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D (ps/nm-km)
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