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Chapter 3

Radiated and Scattered Fields

In this chapter we study time-independent radiated and scattered fields by using the
angular spectrum techniques discussed in Chapter 2. This permits to characterize these
fields at any point of space, no matter how close it is to the volume containing the
sources. Therefore, it is not necessary to use approximations (e.g. Fresnel or Fraunhofer)
usually made in other approaches. Once the angular spectrum is known, the field can
be computed at any point exterior to the source volume. The usefulness of this method
will be seen in this and subsequent chapters. Also, it provides a new way of dealing
with certain radiation problems, such as those on fields from moving particles, as shown

by R. Asby and E. Wolf [5.1] and E. Lalor and E. Wolf [5.2].

We shall deal in this chapter with direct source and scattering problems; namely, given
the sources, or potentials of the medium, we shall study the field that they produce.

Inverse source and scattering problems will be addressed in Chapter 10.

Even the direct scattering problem is usually an involved subject, requiring the so-
lution of (generally coupled) integro-differential equations. Methods on scattering by
volumes have been extensively developed in connection with wave propagation in inho-
mogeneous (often random) media. We shall see that certain approximations useful in
the case of weak, or slightly fluctuating, scatterers permit to obtain analytically sim-
plified solutions. This is the case of the first Born, Rytov and Eikonal approximations.

Approaches put forward for dealing with multiple scattering will not be discussed here,
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as these have been extensively accounted for in other texts and can be found in the

references given at the end of this chapter.

3.1 Radiated Fields from a Localized Charge-Current
Distribution

Let us consider the monochromatic electromagnetic field radiated into free space by a

system of charges and currents specified as follows:

q(r,t) = q(r) exp(~iwt), (3.1 a)

i(r,t) = j(r) exp(—iwt). (3.1 b)

We assume that q(r) and i(r) are continuous and differentiable functions of position
and vanish outside a certain volume V. The real physical magnitudes are obtained, as

usual, by taking the real part of these quantities.

We shall discuss the characterization of the field radiated from a finite volume distri-
bution by means of angular spectrum methods, (A.J. Devaney and E. Wolf [5.3], A.T.
Friberg and E.Wolf [5.4], and W.H. Carter and E. Wolf [5.5]).

If the medium inside the volume V is non-magnetic, the time independent parts

of the vectors E and H satisfy the inhomogeneous vector equations, (cf.Egs.(1.8) and

(1.10} of Chapter 1):

V x V x E(r) - &’E(r) = 41rt'§j(r), (3.2 a)

V x V x H(r) - ¥’H{r) = 41r%v x i(r), (3.2 b)

where k = w/c. And the radiated field outside the volume V can be written as (cf.

Egs. (1.46} and (1.47) of Chapter 1):

E(r,) = VxVxIH(r,), (3.3 a)

H(rs) = —ikV x II(r,). (3.3 b)
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where TI(r) is the electric Hertz vector for the radiated field (cf. Eq.(1.42)):
o 81
= — 34
T(r,) kcfv_](r)G(r,,r’)d r, (3.4)

G(r,r') being the scalar outgoing Green function.
Note that in this case, according to Eq.{1.43), the magnetic Hertz vector is zero.

For this reason we do not need to use now the subindices e and m.

3.2 Angular Spectrum Representation of Radiated
Fields

Suppose that the radiating volume V is situated within a strip 0 < 2 < L, (Fig . 3.1).
Let us introduce into (3.4) the angular spectrum representation (2.51) of the outgoing
Green function G(r,r’); after interchanging the order of integration, one obtains the

following plane wave expansion for the electric Hertiz vector:

M(rs) = [ [ a®(K) expli(K - B> 3 kuzs K, (3.5)
where:
aS(K) = g [ 3 expl—i(K R & ki2)ld- (36)

In Egs.(3.5) and (3.6) R and R’ are two dimensional vectors: R = (z,y), R' = (¢’ V)i
r=(R,z), r = (R',?). Also, K = k(p,q), k. = km. Where p, ¢ and m are the cosine
directors satisfying Egs.(2.9).

The signs plus or minus in the superscript of a(K), and in the exponent of the
integrands in Egs.(3.5) and (3.6), are chosen according to whether the point r5 belongs
to the source-free half spaces R* or R™, respectively, (see Fig. 3.1). In addition, we
have used the fact that |z, —2z'| = z> — 2’ when r; is in R+ and |z, — 2| = 2 — 2> when
T, isin R™.

On substituting from (3.5) into (3.3a) and (3.3b), we also obtain the angular spec-

trum representation of the radiated electromagnetic field in the two half spaces Rt and
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E(r,) = [ [_ : e (K) expli(K - R, + k,z,)]d*K. (3.7)
H(r,) = [ i : h®)(K) expli(K - R, + k,2,)|d’K. (3.8)
Where:
e (K) = k@) x (k™) xal*l(K)). (3.9)
h*)(K) = k[k® xa*)(K)]. (3.10)

k™) being: k®*) = (K,+k,). On the other hand, the spectral amplitudes are related
by: h(*)(K) = 1/k[k(*) xe*)(K)|.

Egs.(3.7)-(3.10) permit the determination of the radiated field at any point, either in
R* or R~. Note the preferential role played by the z-axis. When the radiating volume
is finite and has a shape with no particular symmetry, the z-axis can be arbitrarily
chosen. Then, if this axis is varied, the lines z = 0,0”,..., etc, and z = L, [, L",..., etc,
conform a convex domain 0 that encloses the volume V, and outside of which Eqs.(3.5),

(3.7) and (3.8) are valid with the appropiate rotation of coordinates, (see Fig.3.2).

3.3 The Field and the Intensity Radiated in the Far
Zone

Let the point P of observation be situated in the far zone ,(Fig. 3.3). The radiation
volume V being finite. Denote the position vector of P by r, = rn, n = (nzyny,n,)
being a unit vector. According to Section 2,12, as kr — oo the field in a fixed direction
specified by n is given as:

E(rn) ~ T2mikn,e®) (kn, , kn,)-2PU*T) (3.11)
r

H(rn) ~ F2rikn,h®(kn,, kn,)-ZP0E")

r

(3.12)

Alternatively, the far zone expressions can be also obtained by making the approxima-
tion (Fig. 3.3):

r—r'|~r—-r.n (3.13)
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So that the Green function becomes:
1k
G(r,") ~ ﬂ(r—‘—ﬂexp(—ikr’ -n). (3.14)

Substitution of Eq.(3.14) directly into Eqs.(3.3a), {3.3b) and (3.4) yields again Eqgs.(3.11)

and (3.12) after making use of (3.6), (3.9) and (3.10).

Eqgs.(3.11) and (3.12) show that the far field at a given point rn is proportional to the
amplitude of only one plane wave component. Also, it has the envelope of a divergent
spherical wave. If the volume V' were constituted by sinks rather than by sources, the
envelope of the far field would be a convergent spherical wave.

The radiated intensity in the far zone is given by the magnitude of the time averaged
Poynting vector, which as seen in Eq.(1.18), is:

(t e
= gRe[E(r) x H*(r)]. (3.15)
Substitution of Egs.{3.11) and (3.12} into (3.15), together with the use of (3.6), (3.9) and
(3.10), leads to an expression of the radiated intensity in terms of the three dimensional

Fourier transform of the current density j(r). We leave its obtention as an exercice for

the reader.

3.4 Scalar Theory of Radiated Wavefields

A scalar wavefield U(r) radiated by a time harmonic source density p(r) localized in
a volume V, (Fig.3.1), satisfies the inhomogeneous Helmholtz equation, (A.J. Devaney

and E. Wolf [5.3]):
VU (r) + KU (r) = —47p(1), (3.16)

whose solution outside the volume V is known from Section 1.6.3 to be:
Ur,) = fvp(r')G(r,.,r')d?'r'. (3.17)

By introducing the plane wave representation (2.51) for G(r,’) into (3.17) and using the

same notation as in Section 3.2, one gets the following angular spectrum representation
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for U(r), either in R* or R™:
Urs) = ffm AUNK) exp[i(K - R + k,2,)|d*K, (3.18)

with the angular spectrum being:

AB(K) = E;T [ p(e') exp[—i(K - R’ & k)] (3.19)

Once again the signs plus or minus are taken according to whether the point r, is in
R* or R~, respectively.
And the radiated field in the far zone is:

U(rs) ~ (21r)35(K)§¥ﬂ.

(3.20)

#(K) being the three dimensional Fourier transform of p(r) at values k = (K, £,) of its

argument.

3.5 Examples of Radiation Fields: Charged Particle
with Uniforrn Two Dimensional Motion

The techniques based on the angular spectrum representation of fields allow the analysis
of radiated fields in a new way. As an example we shall study next the electromagnetic
field due to a charged particle. The role of homogeneous and evanescent components
appear in this example at the root of the threshold condition marking the existence or
absence of radiation. This method was first proposed by G. Toraldo di Francia [5.6]
and later developed by R. Asby and E. Wolf [5.1] and by E. Lalor and E. Wolf (5.2].

3.5.1 Field due to a Charged Particle Moving in Vacuum

Let us assume a particle with charge ¢ moving on a trajectory characterized by the

position vector r,(t). Then the electric current density j(r,t} and the charge density

p(r,t) are:

i(r,t) = ev(t)8]r — r (1)), (3.21)
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p(r,t) = eb[r — r(t)]. (3.22)

where v(t) = dr./dt is the instantaneous velocity of the particle.

Let us represent the source distributions j(r,t) and p(r,t) in terms of their Fourier

components j(k,w) and g(k,w):

j(k,w) = o f dt’ exp(iwt') f &r exp(—ik - P)i(r, ) (3.23)

ok, w) = [ dt' exp(swt') j d*r exp(—ik - r)p(r, ), (3.24)

(2 ®

where the r-integral is extended to the infinite space. By introducing Eqs.(3.21) and

(3.22) into (3.23) and (3.24) respectively, we obtain:
jlk,w) = (2 T j expli(wt’ — k- r.(¢')]u(t)dt', (3.25)

plk,w) = o )‘f explt{wt’ — k - r.(t"))]dt". (3.26)

Let us represent the electric and magnetic vectors E(r,t) and H(r, t) as Fourier integrals:
E(r,t) = f E(r,w) exp(—iwt)dw, (3.27)

H(r,t) = [: H(r,w) exp(—iwt}dw. (3.28)

Therefore, if TI{r,w) is the Fourier component, for each frequency w, of the Hertz vector

II(r,t), we have, analogously to Eqgs.(3.3):

E(rs,w) = VxVxIrs,w). (3.29 a)
H(rs,w) = —ikV xII(r;,w). (3.29 b)

Then all the analysis of previous sections applies to the Fourier components at a given
frequency w. Hence, TI(r,w) can be represented b, means of its angvlar snectrum

al*)(K,w) like in Eq.(3.5):

M(rs,w) = [ [ a®)(K,0) explil - B> & k250K, (3.30)
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with al*¥)(K,w) given according to (3.6), namely:

(27)?

a(*)(K,w) =iz

j(k*, w). (3.31)

The upper sign plus and lower sign minus are chosen according to whether the point r,
is in the half space to the right, R+, or to the left, R~, of the strip 0 < 2z < I assumed
to contain the trajectory r = r,(t), (cf. Fig. 3.4).

On introducing (3.25) into (3.31) we obtain:

a® (K, w) = _@:):TC’C. f L : expli(wt’ — k). r,(t)|u()ar!,  (3.32)

where, as before, k*) =< (K, +£,).
Also, from Egs.(3.6), (3.9), (3.10) and (3.25) we get for the angular spectra e(¥) (K,w)
and h*)(K,w) of each component at frequency w:

e®(K,w) = ___e__k(ilx[k(i)

(27)2kck,
x [_ "~ expli(wt’ — k) x, () o(t)t!], (3.33 a)
h)(K,w) = _mk(i)
X j: ” expi(wt' — ki) -r.(t"))]v(t')dt'). (3.33 b)

3.5.2 Particle Moving Uniformly in Vacuum

Let the particle move with constant velocity vy. We shall choose the trajectory along

the x-axis so that its parametric equation is:

T = z,(t) = v, (3.34 a)

y=2=0, (3.34 b)

On substituting from Eqs.(3.34) into Eqgs.(3.32) and (3.33) we get:

€Vq

(%) —_
a (K, w) 2rkek,

8(w — Kpvo), (3.35)

69



where vg = (v0,0,0) and we have taken into account that:
§(w — K.to) = %f expli(w — K vo)t'|dt. (3.36)

If the relations 6(z) = §(—z) and 6(az) = §(z)/la] are used (a being any real constant),

Eq.(3.35) may be written in the form:

a®(K,w) = — 5(Ke —k— )x (3.37)

2kk

% denoting the unit vector in the z-direction in which the particle moves.

Similarly, the angular spectra of the fields E(r,w) and H(r,w) at frequency w are:

e (K,w) = k@ x [k®) x R]6(K; - k— ) (3.38 a)

k ky
h*(K,w) = —-———{k(*) x %|6( Kz — k ) (3.38 b)

Eqgs.(3.38) imply that the field due to a charged particle moving with constant velocity
vo in the z-direction, consists of plane waves such that the z-component K, of their

wavevector are:

K.=K®=k= (3.39)
Yo

Since the speed vy of the particle is necessarily smaller than the velocity of light in
vacuum, K,(,O) is greater than k and hence, according to {2.9b), k, is purely imaginary.
The field created by a particle in uniform movement consists of evanescent waves only.
With this value of the transversal component [K| of the wavevector, the contribution of
these plane waves to the far field is nill when kr — oo, (cf. Egs. (3.11) and (3.12)). The
field is static. This agrees with the well known fact that a uniformly moving particle

produces non-radiating fields (se e.g. Refs.3.7, 3.8, or 3.9); namely, there is no radiated

power, as can be seen by evaluating the Poynting vector. (Compare with the result of
Problem 2.5). In fact, by introducing (3.37) into (3.30) one obtains for the Hertz vector

at frequency w (see Problem 3.6):

Ti(r,w) = ;:—;; exp[ikf;z]Kg(kqd)i, (3.40)
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where:

T=4/(=)*-1 (3.41)

d= [y + 22 (3.42)

and, (see Problem 3.5):

foo k-l—exp[t'(K,y * ki2)|dK, = —2iKo{kvd), (3.43)

where Ko(k~d) is the modified Hankel function of argument kvd and zero order.

As kd — oo the function Ko(k~yd) has the asymptotic behavior:

T

2
Ko(k~vd) ~ g(wkqd)iexp(—kvd).

showing that II(r,w) (and thus the field) decays exponentially with increasing distance

d from the line of motion of the particle.

3.5.3 Cherenkov Radiation

Let us consider now a charged particle moving with constant velocity vy in the positive
x-direction in a homogeneous, isotropic, non magnetic medium, characterized by a re-
fractive index n{w). In a way equivalent to that leading to Eqs.(3.37) and (3.38), we

obtain the angular spectrum amplitudes:

a®(K,w) = ~—W6(I(, - k(w) "5‘:) )%, (3.44)
and:
) (K,w) = mk(*)x[k(*)xi]ﬁ(Kx - k(w)”—f)~‘:_)), (3.45 a)
hH(K,w) = —2; i k) xx)6(K, — k(u)%"l), (3.45 b)
where:
v(w) = - (l) (3.46)
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is the phase velocity in the medium for plane waves at frequency w. Also, in this case:

k(w) = n(w)% = (3.47)

v(w)’
Eqs.(3.44) and (3.45) show that the angular spectrum of the field at frequency w consists

of plane waves such that the transversal component of their wavevector has the value:

K,=K9 = k(w)"g“'). (3.48)

Two cases can now be distinguished, (R. Asby and E. Wolf [5.1]):

a. The Speed of the Particle vy is Smaller than the Phase Velocity v(w).

In this case K, > k, (namely, p > 1), and hence all waves at frequency w are
evanescent. Like in the case of uniform movement in vacuum, the particle does not
radiate at frequency w. In Fig.3.4 (a) the point (K® = kv(w)/e, K,) lies outside the
circle K2 = k2.

b. The Speed of the Particle v, is Creater than the Phase Velocity v(w)-

In this case K, < k, (which means p < 1), and the point (K = kv(w)/vo, K,) in
Fig.3.4 {b) is on the line that intersects the circle K* = k? at points A and B. These
two points limit the range of values of K for which K2 + K? < k*; namely, for which

the waves are homogeneous (cf. Eqs.(2.9)). Le., for values:

k)l - (s < K, < ket - (y (3.49)

Vo

the waves are homogeneous; whereas for values:

k{w)[1 — (”—S”—))’]% < Ky < oo, (3.50 a)
0
—o < K, < kw1~ ("EJ“’))H% (3.50 b)

the waves are evanescent.
The directions of propagation of all homogeneous waves form a circular cone about
the z-axis of movement of the particle. The semiangle of this cone is (Fig.3.5):

). (3.51)

v(w)

8o(w) = arccos( "
0
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On introducing (3.44) into (3.30) the reader can verify that the Hertz vector at frequency
w is given by the following expression:

Mr,w) = —5 exp[z'k(w)%;J)z]ﬂél)(k(w)awd)i, (3.52)

where Hé” is the Hankel function of the first kind and zero order. And:

ou =41- (Ef:—))z = sin 6, (3.53)

d=/y* + 22 (3.54)

Eq.(3.52) represents a conical wave with its axis along the line of motion of the particle,
(namely, the z-axis).

Asymptotically, (kd — o0}, it can be seen (Problem 5.5) that the Hertz vector decays
as 1/(wd/c). This indicates that the particle now gives rise to a radiated field which is
known as Cherenkov radiation (see Refs. 3.9 and 3.10).

Other studies, (Refs. 3.2, 3.6 and 3.11), show that the evanescent components of the
field due to a uniformly moving charge in vacuum can be converted into homogeneous
waves after interaction with a dielectric when v, > v(w) ; namely, when the speed
of the particle exceeds the phase velocity in the medium, hence producing Cherenkov

radiation.

3.6 Integro-Differential Equations for the Scattered
Electromagnetic Field in a Time Independent
Medium. Angular Spectrum Representation Out-
side the Strip 0 < z < L

The response of a material to an incident field is described by the constitutive relations
for the tnduced polarization P(r) and the induced magnetization M(r). The representa-
tion of the scattered field in terms of these quantities is formally equivalent to that used

for radiated fields. As a matter of fact, this field can be considered as the field radiated
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from sources induced in the material. These sources being characterized by the quanti-
ties P(r) and M(r). The direct scattering problem consists of finding these sources from
knowledge of both the incident field and the dielectric and magnetic susceptibilities of

the scattering medium.

The angular spectrum representation of scattered fields discussed in this section was
established by A.T. Friberg and E. Wolf [5.4], and is analogous to the formalism of Refs.
3.3 and 3.5 discussed in Section 3.2 in connection with radiated fields.

Let E®)(r) and H)(r) represent the electric and magnetic vectors, respectively, of
a monochromatic field incident on a generally inhomogeneous medium characterized by
a refractive index n(r), r being a position vector. Upon interaction with the medium,
a new field E(r), H{r) is created. We assume that this medium occupies a volume
that always in practice is finite, (see Fig. 3.1). By omitting the time dependent part
exp(—iwt) of the complex amplitudes, it is customary to express the new field as the

sum of the incident and the scattered field:
E(r) = E®(r) + E¥(r), (3.55 a)
H(r) = HO(r) + HO)(r), (3.55 b)
E® and H® being the scattered electric and magnetic vectors. It should be reminded
that only the real part of the product of these functions by their corresponding harmonic

time dependent factor represent real physical quantities.

As seen in Section 1.2, the vectors E(r) and H(r) satisfy the following equations:
V x V x E(r) — k’E(r) = 4nk[kP(r) + 1V x M(r)], (3.56 a)
V x V x H(r) — k*H(r) = 47k[-sV X P(r) + kM(r)]. (3.56 b)

Egs.(3.56) are analogous to Egs.(3.2), the only difference being the source term in the
right hand side. In addition, as seen in Section 1.6.2, the scattered electric and magnetic

vectors are given at points inside the scattering volume by:

EQ(r) = V x V x TL(r) + ikV x Mn(re) — 47P(re), (3.57 2)
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HO(r) =V x V x Ip(re) - kY x L (r.) — 47M(r). (3.57 b)

At points outside this volume V the fields are given by expressions identical to Eqgs.(3.57)
with P(r>) = M(r>) = Q.
The electric and magnetic Hertz vectors TI, and I1I,, satisfy the integro differential

equations similar to (3.4):

IL(r) = fv P(r')G(r,r')d, (3.58 a)
IL,.(r) = /V M(r')G(r, r')d%". (3.58 b)

On comparing Eqs.(3.56)-(3.58) with Eqgs.(3.2)-(3.4) one can straightforwardly obtain
the angular spectrum representation for the scattered vectors in the two half spaces R*
and R~ in the form given by Eqgs.(3.7) and (3.8), where now the spectral amplitudes
e(*}(K) and h(*)(K) are expressed by:

eH(K) = -—i%’f)—z[k(*’ x [k®) xP(k®)]

+k[kE xM(kE))], (3.59 a)

h*)(K) = ~i%’51f[k(*) x [k® xM(k*))

’ —kk®) x P (k)] (3.59 b)
Where P(k(*)) and M(k(*)) are the three dimensional Fourier transforms of P(r) and
M(r), respectively. Note that since the components of k(*) satisfy: K? + k2 = k2, P
and M are ultimately functions of K.

Eqs.(3.59 a) and (3.59 b) characterize the scattered field at any point either in R+
or R~, no matter how close to the scattering volume is. Since this volume V is finite, by
varying the orientation of the z-axis, a convex domain 1 is built by a procedure similar
to that of Section 3.2, (see Fig. 3.2), outside of which this form of representation of the
scattered field is valid.

The fields and intensity in the far zone can be easily obtained from Egs. (3.59) in

an identical way as in Section 3.3.
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3.7 Angular Spectrum Representation of the Scat-
tered Electromagnetic Field Inside the Strip 0 <

z< L

Let us refer again to Fig.3.1 and address the obtention of the scattered field at points
situated inside the strip 0 < z < L. Two cases will be considered depending on whether

the point is outside or inside the volume V.

3.7.1 Scattered Field Outside the Scattering Volume

When the point r is inside the strip 0 < z < L, but outside the scattering volume v,
we introduce the plane wave expansion for G{r»,r'), (2.51), into Eqs.(3.58); then the
electric and magnetic vectors are evaluated from Eqs.(3.57). Let us see first the result
of this operation for the Hertz vectors. Due to the existence of the factor {z> — 2'| in
the exponent of the integrand when Eq.(2.51) is used for G{rs,r'), the strip 0 <z < L

has to be divided into two regions: z < 2 and z > 2, (see Fig. 5.9), so that:

|z — 2'| = z> — 7, when 2, > 2, (3.60 a)
|zs — 2’| = 2' — 2>, when 2, < 2. (3.60 b)
Let us denote by V ~(z>) the portion of V that contains points r' with Z < z., and
by V*(z,) the part of V with points r' for which 2' > 2, (Fig. 3.7). Obviously, these

two volumes are both functions of the z-component, 25, of the point r> = (R>, z,) at

which the scattered field is being considered. In addition, it is evident that the sum of

these two volumes equals V', namely:
V = V_(2>) + V+(Z>)- (3-61)

On introducing the expansion (2.51) for G(r»,r') into (3.58) ,and taking (3.60) and

(3.61) into account, we obtain:

IL(rs) = [f_w alY(K, z5) exp[ik(+) 1| K
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+]j‘ al~)(K, z, ) exp|ik(”) -r,|d*K, (3.62 a)
I, (r,) = [ f = al(K, 2, ) exp[ik™) . 1, |d* K
+ f [ &K, 2,) explik) -1, &K, (3.62 b)

where:

1
al)(K,z,) = e w(':")P(l")exp[—:'k(*)-r"]d’r", (3.63 a)
:

2Tk' V:F(8>)

a&)(sz‘«")

M(r') exp{—sk®) . r'|d%". (3.63 b)

Let us introduce now the two dimensional Fourier transform of the induced polarization

P(r) and magnetization M(r):

P(K, 2) @ [ ’[_ : P(r) exp(—iK - R)d’R, (3.64 a)
M(K,z) = ﬁ//_: M(r) exp(—iK - R)d’R. (3.64 b)

By means of Eqgs.(3.64) we easily obtain from (3.63):

2mi fo -
alM(K,z) = %/; P(K,2') exp(—ik,2')dz, (3.65 a)
2y > 2,
(-) 2my (L ) o N gt
a, '(K,z,) = i [ P(K, ') exp(tk,2')dz2', (3.65 b)
z TE>
2, < 2z,
{+) . 2wy [ - ] . t '
alt(K,z,) = e o M(K, z') exp(—ik,z")d2', (3.66 a)
25 > 2,,
- 2ny (L - . g
a, (K,z,) = . M(K, z') exp(ik,2')d?’, (3.66 b)
z YIx
z, < 2,

Eqs.(3.62), together with Egs.(3.65) and (3.66) show that now the Hertz vectors

II. and Il,, contain both forward propagating plane waves with spectral amplitudes
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al*)(K,z2,) and a{*)(K, 2, ), respectively, and backward plane waves with spectral am-
plitudes a{)(K, 2, ) and a{-)(K, z, ), respectively. In this case, these amplitudes depend
on the z-component 2, of the point r; in which the field is being evaluated.

When Eqs.(3.62), (3.64), (3.65) and (3.66) are introduced into (3.57), the following

expression for the electromagnetic field is obtained:

E)r,) = [ [_: e (K, z,) exp(tk*) - r;)d K

+ [ j * o)(K, z,) exp(ik) - 1, )dK, (3.67 a)
—o0
H(r,) = fj;: h(+}(K,z>)exp(ik(+) -r,)d* K
[ [ B, 2) exp(i) 1)K, (3.67 b)

where:
e(K,z) = aii—“ [k x [k
X [b P(K, ') exp(—tk,2')d']
0

+kk) '/; > M(K, ') exp(—ik.#)d']], (3.68 a)

(K, 25) = —i—?—[k(‘)x[k(‘)

L ) z
x [ P(K, #') exp(ik,2)dz]
L .

+E[k) % [ M(K, /) exp(ik,2)d2]], (3.68 b)

hH(K,z2,) = —i?ki[k(ﬂx[k(ﬂ

X j:) M(K, 2') exp(—ik,2')dz']
_kkIx [o ” P (K, ') exp(—ik.2)dZ']], (3.69 a)

B)(K, 2) = —i 1 KO x [k

X j;L M(K, 2') exp(tk2")dz'}

—k[k I x ‘[: P(K, ') exp(ik,z')dz']]. (3.69 b)
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Eqgs.(3.67)-(3.69) show that the electric and magnetic vectors contain both forward and

backward plane wave components. Note that when the point at which the field is being

considered moves to R* or R~ these equations coincide with those of Section 3.6,

3.7.2 Scattered Field Inside the Scattering Volume. The Slowly

Varying Amplitude Approximation

If the point at which the scattered field is considered is inside the volume V of the

scatterer, the expressions of Section 3.7.1 for the Hertz vectors IL.(r) and I1,(r) are

still valid, with r, being now replaced by r.. Namely:
00
IL(r.) = [ [ al (K, z.) exp[ik™® . r | K
+/‘[°° a,(,_)(K,z.()exp[ik(‘) -ro|d*K,
Ta(ro) = [ [~ alP(K, zo) explik® - r Ja2K

+[ [T aD(K, 2) explik) - rj@k,

where:
a£+)(K,z<) — 2;"1 ./[;"‘f f’(K, Z') exp(—ik,z')dz',
2e > 2,
{—) 271 (L ] . [ '
a, '(K,z) = % /. P(K, 2') exp(tk,2')dZ',
x <
2o < 2'5

alt(K,z.) = Im fr< M(K, 2') exp(—ik, 2’ dz',
m k., Jo

ze > 2
{-) 27t L . f . ' '
a, (K,z.) = = M(K, 2') exp(ik,2')d2,
r JZIg
Ze < 2,,

On introducing Eqgs.(3.70)-(3.72) into Eqgs.(3.57) we get:

EC(r ) = /‘fw e™)(K, 2.) exp(ik*) . r }d2 K
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+[ [T (K, 20 exp(ik) - r)dK,
HYr ) = [ f ” p(K, zc) exp(ik*) - r )’ K

o] ot -e

where:

(K, zc) = —i?’;[k(*) [k
X j;‘< P(K, z') exp(—ik,z')d2'|

2 o~
+k[k(+)x[ M(K, ) exp(—ik,2')d?'|

0
—41rf’(K,2<] exp(_"kzz<)s
eI, =) = —i k(K
L i f 4

x[ P(K,?) exp(ik,z')d?|

+k[k) x j

j M(K, #') exp(ik,2')d?']]

—47P(K, z) exp(tk.2<),

BE(K, 20) = —i - [k x [k
X [ “ M(K, ') exp(—ik,2")dz]
0
— KM x [ " P(K, ) exp(—ik.2')d2"]
0
—41rIQI(K, z.) exp(—tkszc),
WK, 2¢) = —i%ﬁ[k(‘)x[k(”
L ) X
x [ B0, ) explikea)d2'
1.
Kk x [ P(K, ') exp(ik,2')d2"]

-—47rl(d(K, z.) exp(tk,z<)-

(3.73 a)

(3.73 b)

(3.74 a)

(3.74 b)

(3.75 a)

(3.75 b)

Egs.(3.71)-(3.75) can be used to calculate the field inside the medium upon interaction

of the incident field with the material. The integral equations (3.71) and (3.72) can
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easily be written in the alternative form:

(#) -
dal)(K,zc) _ i@P(K,Z<)eXP(:F5k.Z<), (3.76 a)
3Z< kl
daH)(K, 27 - .
ama(z z() _ :t_k?_'lM(K’ Z<) exp(:ng’z(.), (376 b)
< L]

As an example, let us assume that the response of the medium to the incident field
is isotropic, linear and spatially non dispersive, then according to Section 1.1, the field
inside the volume V is related to the induced polarization P(r) and magnetization M(r)

by the following constitutive relations:

P(r} = x(r)E(r} = x(r) E(r) + E¥)(r)], (3.77 a)
when r belongs to V.
P(r) =0, when r does not belong to V.
M(r) = n(r)H(r) = n(r)[HO(r) + HO(r)], (3.77 b)
when r belongs to V.

M(r) = 0, when r does not belong to V.

where x(r) and n(r) are the dielectric and magnetic susceptibilities, respectively.

By defining the two dimensional Fourier transforms of x(r) and n(r) as:

. I o . 2
X(K,z) = @n)? f_w x(r) exp(—1K - R)d*R, (3.78 a)
(K, 2) = (271r)"' [ () exp(~iK - R)d’R. (3.78 b)

And introducing Eqs.(3.73) and (3.78), together with the corresponding angular spec-
trum representation for the incident field, into (3.77), and the result into Eq.(3.76), and
taking the definitions (3.64) into account, one obtains straightforwardly a differential
equation for a(*)(K, z) and alf)(K, z) that requires to be iteratively solved. The exis-
tence of both forward and backward waves simultaneously, complicates the calculation.

Sometimes, however, backward waves can be neglected; this happens when the slowly

varying amplitude approrimation, (see, e.g., Ref. 3.12}, can be made for a*)(K, 2) and
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al¥)(K,z). This approximation amounts to assuming that the interaction of the field
with the material is significant only after the wave has travelled a large distance in the
medium compared with the wavelength. In this case one can consider that a{t)(K, z.)

and a{*)(K, z.) vary so slowly with z< that the following conditions hold:

3*alt(K,z.) 3alM(K, z<)
a, 2| cc k|t 3.7
| 8z | <<H 9z< ! (379 2)
d*alt) (K, z.) dal(K, z.)
l--—~-———'-—'——6zi | << kl———_‘_az<' |1 (3'79 b)
and:
al (K, z.) = al)(K,zc) = 0. (3.80)

When the slowly varying amplitude approximation is valid, Eqs.(3.76) can be itera-
tively solved by using numerical methods like the finite difference procedures which use
the Adams-Bashforth algorithm as a predictor and the Adams-Moulton algorithm as a
corrector , (see, e.g., Ref. 3.13).

It should be emphasized that Eqgs.(3.76) hold for any kind of medium, and irre-
spective of whether it is linear or non linear. When the interaction is non linear, the
restrictions imposed by the requirements of phase matching between the interacting
fields, make the slowly varying amplitude approximation accurate, even in presence
of strong interaction, providing that there are no reflections at the boundary surface
enclosing the volume V. This is due to the negligible contribution of the backward
propagating components because of their phase mismatch. Examples of these calcula-
tions for non linear wave interactions in both isotropic and anisotropic materials can be
found in Refs. 3.14-3.16.

In general, the iterative solution of BEgs.(3.76) for the spectral components of the
Hertz vectors leads to the values of E(r) and H(r) inside the medium; and then by
means of the constitutive relations, to the computation of the source terms represented
by the induced polarization P(r} and the induced magnetization M(r). The fields

outside V can be subsequently determined according to the analysis of Sections 3.6 or
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3.7.1.

3.8 The First Born Approximation

A well known method of solving the integral equations that result from the combination
of Eqs.(3.57), (3.58) and (3.77), and whose solutions yield the source terms P(r) and
M(r}, is based on the expansion into a Neumann series. This series is also known in
scattering theory as the Born series.

When the scatterer is sufficiently weak and thin, the interaction may be described
by the first Born approzimation, which correspons to the first term of the Neumann
series.

Let us substitute Eqgs.(3.77) into (3.58), thus obtaining:

IL(r) = [V X(F)E()G(r, '), (3.81 a)

IL,(r) = fv n(¥)H(r)G(r,r')d%. (3.81 b)

Egs.(3.57) and (3.81) constitute a complete system of integral equations for the
electric and magnetic vectors. In many cases of practical interest, however, the medium
can be assumed non magnetic so that n(r) = 0, namely, I1,(r) = 0. In this case, the

vector Helmholtz equation (3.56a) becomes:
V x V x E(r) — K*E(r) = 4nk*x(r)E(r), (3.82)

which contains the potential 4xk?x(r) in analogy with the scalar Helmholtz equation
for the time independent potential scattering problem in quantum mechanics, (see, e.g.,
Refs. 3.17 or 3.18). Note that in general, when II,,(r) # 0, the two potentials of the
Helmholtz equations (3.56a) and (3.56b) are the electric potential 4mk®x(r) and the
magnetic potential 4mkn(r).

The Neumann (or Born) series consists of iteratively solving for the field inside V

the integral equations obtained from (3.57) and (3.81), the first term of this iterative
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ned by substituting E and H by the corresponding values E® and HO,

As quoted above, this is the first Born

series is obtai

respectively, in the integrals of Eqs.(3.81).

(3.77) that it amounts to considering the interaction

approzimation. It is seen from
between the incident field and the medium so weak that this field remains unperturbed

inside the volume V.

There exist no accurate criteria of validity of the first Born approximation. Roughly

turbation in the medium upon the incident field will be small if the

and n{r) are not large. Then

f the

speaking, the per
energy of this field is high and the fluctuations of x(r)

the energy associated to the scattered field should be much smaller than that o

incident field. Also the volume of interaction should be small. A sufficient criterium

that covers this is:

iis al

i

id

e 5

e B

kFoL <<1, (3.83)

F, being the strength of the fluctuation of either the electric or magnetic potential and

ing volume. For low angle

nting the maximum linear dimension of the scatter
ive than Eq.(3.83)

L represe

scattering, the validity of the first Born approximation is less restrict

imposes.
The fields outside the scatterer ado

Let us assume that the incident field is a homogeneous plane wave:

pt a very simple form under this approximation.

EO(r) = e exp(iki 1), (3.84 a)

HO(r) = h;exp(ik: 1), (3.84 b)

where the incident wavevector &; has magnitude w/c and e; and h; are constant am-

plitude vectors that satisfy the relations: h; = n;xe;, Ny = k;/k. On substituting from

Eqgs.(3.84) into Eqgs.(3.77) one readily obtains the following expressions for the three

dimensional Fourier transforms of P(r) and M(r):
P(x) = (k — ke, (3.85 a)

M(k) = Ak — ki (3.85 b)
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X(k) and 7(k) are the three dimensional Fourier transforms of x(r} and 5(r), respec-

tively. On substituting Egs.(3.85) into (3.59) one gets the spectral amplitudes of the

electromagnetic field in the half spaces R* or R~ in terms of the Fourier transforms

of the electric and magnetic susceptibilities within the first Born approximation, (A.T.

Friberg and E. Wolf [5.4]):

e§016) = Ol e ezt - iy
’ [k xhy ] (k®) - k), (3.86 a)

h$)(K) = —f%ﬂi[[k(i)x[k(*)xh,—]]ﬁ(k* ~k;)
. +hk® xe 7 (k) — k). (3.86 b)

Eqs.(3.86) show that these spectral amplitudes are expressed in terms of the three

dimensional Fourier transforms of X and n evaluated at the wavevector transfer K =

k#) _ i,

The far fields are easily obtained from Egs.(3.86) in a manner similar to that used

in Section 3.3.
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3.9 Scattering from a Weakly Fluctuating Random
Medium

In this section we shall consider scattering by non magnetic, isotropic, linear, spatially
non dispersive, time independent random continuum media. These are systems char-
acterized by a dielectric permittivity e(r) which is a continuous random function of
position r. Fundamental accounts on the theory of wave scattering and propagation
in random media, as well as on the mathematical grounds of the theory of random
variables, can be found e.g. in the works by V.I. Tatarskii [5.19], L.A. Chernov [5.20],
A. Ishimaru [4.21], J.L. Doob [4.22] and A. Papoulis [4.23]. An excellent summary of
statistical concepts in connection to this problem can be also found in the work by G.
Ross [4.24].

We shall consider media that are statistically homogeneous, by this it is meant that
the ensemble average < € > of the permittivity over different realizations of the material,
(namely, over different samples),is a constant independent of the position. Without loss
of generality, this quantity be normalized to unity. Then we shall write ¢(r) as the sum

of the average and the fluctuating part:
e(r) =1 + b¢e(r) (3.87)

where §¢(r) represent the random fluctuating part of e(r).

But since:
e(r) = 1+ 4mx(r), (3.88)

we obtain from (3.87) and (3.88):
4xx(r) = be(r). (3.89)

On the other hand, since (r) = n?(r), n(r) being the refractive index, if the fluctuations

are weak, by using (3.89) one can make the following approximation:

6e(r) ~ 26n(r). (3.90)
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The eztent of the fluctuation is characterized by the covariance Ca(r1,r;) (Refs, 3.19 -
3.24):

C“(l"l,rg) =< 671(]'1)6?2(1’2) >, (3.91)

where, once again, the bracket < . > means ensemble average over many realizations of

the medium. A consequence of the statistical homogeneity of ¢ is that:

Cu(l'l,l'z) = Cn(p)v (3'92)

p=T —Try,

In addition, if the medium is statistically isotropic [5.19]- [4.24]

Cnlp) =Calp), p=|r;i~r1,|. (3.93)

The covariance function C,(p} is an even, monotonically decreasing function of p; more
details on its properties can be found for instance in Refs. 3.22 and 3.23. The effective
width T of C,(p} constitutes the scale of the fluctuation and is called the correlation
length. On the other hand, its height: ¢2 = C,(0) =< (6n)? > is the variance, or
strength of the fluctuation. The function B,{p) = [C,(0)]7'C,(p) is the autocorrelation
function of the fluctuation. If n(r) follows a Gaussian statistics, then the second order
moment Cy(p) is sufficient to completely characterize it, [4.21], [4.22)].

Since the strength of the fluctuation is assumed small, we can use the first Born
approximation, as indicated by Eq.(3.83). Then according to Section 3.3, Egs.(3.11),
(3.86), (3.89) and (3.90), the electric vector of the scattered field in the far zone is given
by:

k?
E{)(rn) ~ ——nx(nxe;) [V exp(—iK - r)én(r)dr, (3.94)
with K being the wavevector transfer: kn — k;; and the scattered magnetic vector being

determined from Eq.(3.94) through:

Hg)(rn) = nxEY (rn). (3.95)
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By introducing (3.94) and (3.95) into (3.15) one gets the ensemble average of the

time averaged Poynting vector:

k‘l
< 8§} (m) >= 6:“‘Srz]nx(nxe.-)[2
fv Lexp(—iK - (r - ")) < én(r)én(r) > d’rd’r. (3.96)
Let us write:
nx (nxe)=nXxtsin® = easind, (3.97)

© being the angle between the direction of polarization e; of the incident wave and the

direction of observation n. t and e, are unit vectors such that:

tsin® =n x e, (3.98)
and:
en =1 X t. (3.99)
Also, let us transform the variables r and r' of the integrand in Eq. (3.96) into the
difference p and average r,:
p = r—r, (3.100 a)
1
r, = E(r +r'). (3.100 b)

On introducing (3.97) into (3.96), taking the definition (3.91) and Egs. (3.92) and

(3.93) into account, and using the transformation (3.100), we easily obtain from (3.96)

4
(#) — _ﬂc__ in? 3 [ 3 —K. 3.10
< §%(rn) > no s sin G-)fvd ro | d*pexp(—iK - p)Cn(p)- (3.101)

where the integral in p is extended to all space, whereas the integral in r, is done over
the scattering volume V. In establishing these limits of integration we have made use
of the fact that the correlation distance T of the fluctuation is much smaller than the
linear dimension L of the scattering volume, and therefore Cn{p) is negligibly small for

ra>>T.
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The integral over r, is equal to V. On the other hand, the integral in p represents
the three dimensional Fourier transform of the covariance C,(p). This is the spectral

density ®,,:
®,(K) = (21T)= [ o exp(~iK - p)Cal0). (3.102)

Sometimes the spectral density is defined as the Fourier transform of the correlation
function B,(p) [4.23]-[4.24]. In this case the only difference with Eq. (3.102) is the
normalization factor C,(0).

With the above considerations, and using the definition (3.102), we can express

(3.101) as:

cVkt

8r?

< §®}rn) >=n sin® ©%,(K). (3.103)

Therefore, the mean scattered intensity in the far zone, (cf. Problem 2.5), per unit

volume and per unit of solid angle is:

1d<I®(rn) > ck* _,
v 0 = 5 sin 0d,(K). (3.104)

Note that for a statistically homogeneous and isotropic fluctuation the spectral density
can be expressed after performing the angle integration in Eq. (3.102):

49

K[ Jo Calp) sin{|K|p)pdp. (3.105)

&, (K) =

It is easy to see that:

K| = 2ksing, (3.106)

where @ is the angle between the direction of observation n and the direction of propa-
gation k; of the incident field. (Fig. 5.8).

Eq.(3.104) shows that the mean scattered intensity is proportional to the spectral
density of the refractive index fluctuation, has the sin’® dependence and, due to a
well known property of Fourier transforms, is more concentrated about the direction of

incidence the larger the correlation distance T of the refractive index fluctuation is.
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3.10 Scalar Approach to Scattered Scalar Wavefields

Let us assume that the scatterer is non magnetic, namely # = 0, so that M(r)=0. Then

Eqs.(3.56) become:

V x V x E(r) — k*E(r) = 47k’ P(r), (3.107 a)
V x V x H(r) — k*H(r) = —47ikV x P(r), (3.107 b)

with:
P(r) = x(r)E(r)- (3.108)

Taking into account the vector identity:
VxVxE=V(V-E)- VE, (3.109)

and introducing (3.109) into (3.107a) we obtain the following differential equation equa-

tion for the electric vector:
VIE(r) + k*E(r) = —k*[n*(r) — 1|E(r) + V[V - E(r)], (3.110)

where we have made use of the expression:

_ n?(r) — 1 if r belongs to A" 3.111
4mx(r) = { 0 if r is outside V (3.111)

n(r) denoting the refractive index of the scatterer.

Eq.(3.110) shows that the change in polarization of the electric vector, as a result
of the scattering described by the left hand side, is due to the source term V|V -E(r)].
When the scale over which n(r) varies is much larger than the wavelength A, this term,
and hence the depolarization, may be neglected, (see also e.g. J .W. Strohben [4.25]).
One is then left with a differential equation that for each Cartesian component of the

electric vector has the form:

VU (r) + k*U(xr) = F(r)U(r), (3.112)
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where the potential F(r) is:

(3.113)

_ | —K*n*(r) - 1] if r belongs to V
F(")“{o if r is outside V

Note that Eq.(3.112) is formally identical to the time independent Helmholtz equation
of potential scattering of quantum mechanics, (Refs. 3.17, 3.18). Its integral form was
discussed in Section 1.6.3., Eq. (3.112), is also similar to Eq.(3.16), where the source
distribution p(r) is given by Eq.(1.49) and, hence, it contains the wavefunction I (r).
The solution of (3.112) can be written at points outside the scattering volume (<f.
Section 1.6.3):
U(rs) = U%r,) + UG(r,). (3.114)

And for points outside V:
U(I'() = U(i)(r<) + U(‘)(I‘<). (3.115)
Where the scattered field is:

U(r) = _21; | Few e ey, (3.116)

Eq.(3.116) constitutes a Fredholm integral equation of the first kind for the field E(r.)
inside the scattering volume. Once this field has been found, the field outside the
scatterer can be obtained by means of Eq.(3.116) substituting r by r..

With reference to Fig. 3.1, the fields inside the strip 0 < z < L, (either inside or
outside V'), and the fields in R* or R, can be found from Egs.(3.114)-(3.116) in an
way identical to that developed in Sections 3.6 and 3.7. This is left as an exercice for
the reader.

It should be remarked however, that although Eq.(3.112) represents an adequate
way of describing the strong multiple interaction of a scalar wavefield with a scattering
medium, (like e.g. an acoustic wave); when (3.112) is applied to the electromagnetic
field, it is nevertheless meaningful only within the domain of validity of the first Born ap-

proximation, or the Rytov or the eikonal approximations to be discussed next. Namely,
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it is only with these simplifications when one can assume lack of depolarization of
the field. Those three approximations belong to the range of small fluctuations, (Refs.
3.19-3.21, 3.25). Due to its importance in many problems, we shall derive explicitely the
expressions for scattered scalar wavefields within the first Born approximation. Then

the Rytov and the eikonal approximations will be discussed.

3.10.1 The First Born Approximation for Scalar Wavefields

Let the incident field be a plane monochromatic wave of unit amplitude and wavevector
k;:

Ub)(r) = exp(ik; - T). (3.117)
Then, the first Born approximation assumes that U(r) in the integrand of Eq.(3.116)
can be replaced by U®)(r). As mentioned before, this constitutes the first term of the
Neumann series for the integral equation (3.114). When one makes this operation, and
Eq.(2.51) is introduced into (3.116), the following expression for the scattered field is
obtained, (E. Wolf, [4.26]):

U ) = [ [ AP () expli(K - R> £ ks> )|°K, (3.118)
with the angular spectrum being given by:

AB(K) = _,-ki Fx® — k), (3.119)

where, as before, k*) = (K,xk,), > = (R,,2). And the sign plus or minus is
considered according to whether the point r, is assumed in R* or R, respectively.
Egs.(3.118) and (3.119) permit to find the scattered field either in RY or R7, no
matter how close the point rs be to the scattering volume V. Eq. (3.119) shows that
the angular spectrum of this scattered field is given by the three dimensional Fourier
transform of the potential F(r) evaluated at the wavevector transfer Ki£) = k) —k;.

On the other hand, the scattered field in the far zone is:

U(rn) ~ —2w2ﬁ‘(K(*))ﬂgﬁc—'). (3.120)
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3.10.2 The Rytov Approximation

Another approximation useful in the range of small fluctuations of the refractive index

n(r) is the Rytov approximation, (Refs. 3.19 - 3.21). It is often used in problems of

optical and microwave propagation in turbulence, (Ref. 3.25), optical tomography and
acoustic wave propagation in biological media. The scale of the fuctuation must be
large compared with the wavelength. This means that the field is scattered in a cone
of small angle about the direction of incidence; and therefore there is no backscattering
into the region R* of Fig. 3.1. A discussion on the relative advantages of the Rytov
approximation over the first Born approximation may be found e.g. in Refs. 3.19- 3.20.

The Rytov method consists of writing the wavefield U/ (r) as:
U(r) = exp[¢(r)], (3.121)

then developing a series solution for ¢(r).

Using Eq. (3.121) we obtain:
VU = U|[|V¢|* + V9. (3.122)
Introducing (3.122) into (3.112) one is led to:
V3(r) + |Vé(r)|* + k* = F(r). (3.123)
On the other hand, the incident field may be written as:
U®(r) = exp[st(r)], (3.124)
where ¢)(r} satisfies the homogeneous equation:
ViUO(r) + V(1) + k% = 0. (3.125)
Let us substract (3.125) from (3.123) and write:

¢(r) = ¢")(r) + ¢(r). (3.126)
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Then we obtain:
V3W(r) + 2V¢8 (r) - v (r) = —| VoD (r)[* + F(r). (3.127)
Using the identity:
V’(U(‘)¢(‘)) = (sz(i))¢(1) + 22UVl . vt 4 yigigl), (3.128)
And taking into account that:
vyl + Ut = o, (3.129)
we can write Eq.(3.127) in the following form:
(V? + ) (UOg) = —[|[VeI]? — F.(r)lU“’- (3.130)

Eq.(3.130) is of the form (3.112) and, hence, the solution ¢(1) can be expressed by means
of (3.116) as

$9) = 4 f, CEPNTONEN - FET o). (3.131)

4x UGYr

Eq.(3.131) can be iteratively solved like Eq.(3.116). The first iteration ¢E3 consists of
setting ¢} = 0 in the integrand of (3.131). Then, using (3.126), we obtain:

U(r) = expl¢? (r) + dlg)(r)], (3.132)
where, according to (3.131):

) =~ U(, s [ 6, FEUOE)E (3.133)

Therefore, from (3.124) the first Rytov approximation may be written as:
U(r) = U9(r) exp[¢(0)( r)], (3.134)

with da(o)( r) given by Eq.(3.133).
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When the exponential of Eq.(3.134) is expanded into a series, the first two terms

are:

U(r) = U9(r)[1 + 4{g)(r)). (3.135)

By taking (3.133) into account, we see that Eq.(3.135) constitutes the first Born ap-
proximation for U(r). Therefore, the first Born approximation is included in the first
Rytov approximation, thus being adequate when, in addition to A being very small
compared with the scale of the refractive index fluctuation, the series (3.134) converges
so fast that only the first terms contribute. This happens when the scattered intensity

is small.

In problems dealing with propagation in random media, it is customary to write:
¢(r) = x(r) + ¢S(x). (3.136)

The real part of ¢(r), represented by x(r), constitutes the logarithm of the amplitude
of U(r) and is usually called the log amplitude fluctuation. The imaginary part of ¢(r),
denoted by S(r), represents the phase of U (r). The reason of using the representation
(3.136) is that in many practical situations the log amplitude fluctuation follows normal
statistics. This is the so called log normal model. Then, as the field propagates in the
random medium, the fluctuations of U (r) can be easily accounted for analytically; (see

discussions on this subject matter in e.g. Refs. 3.21, 3.25, 3.27 and 3.28). (See Problem
3.14).

3.10.3 The Eikonal Approximation

For weak scatterers, the geometrical optics limit (Refs. 3.20, 3.21) can be employed
when the total length L of the scattering volume traversed by the passing radiation
is such that AL << T?, (see Fig. 3.8), T being the scale of fluctuation of n(r). (A
full discussion on the foundations and validity of this limit may be found for instance

in Chapter 3 of Ref. 3.29). In this approximation the wavefield inside the medium is
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expressed as :

U(r) = A(r) exp[sS(r)l, (3.137)
where A(r)is the amplitude and S(r) is the phase, optical path or eikonal [4.29]. The
function S(r) of the ray that can be associated in this case, and which describes a path

between two points r; and ra, is given by:
r
S(r:) - S(ra) = k j * n(r)ds, (3.138)
T

ds being the path element.
However, in order to evaluate (3.138) the ray path has to be known. In a weak scat-
terer this path can be approximated by a straight line along the direction of incidence.

Let this direction be along the z-axis, then Eq.(3.138) may be written as:
L
S(R,L) - S(R,0) = k[o n(R,z)dz, R =(z,y), (3.139)

The geometric optics limit can be straightforwardly derived from the the first Rytov
approximation, (3.134), for a weak scatterer when AL << T%. In this case one can
assume that the angle 8 of scattering is very small, (see Fig. 3.8). We shall use the
angular spectrum representation of the wavefield U(r).

Let the incident field U®)(r) be a plane wave of unit amplitude, propagating along
the z-axis:

UY(r) = exp(ikz). (3.140)

Since the propagation is now rectilinear inside V', ¢{!), (Eqs. (3.131) and (3.140)), will
be non zero only at points inside the geometrical projection S of the scatterer over a
plane z = constant, (Fig. 3.9).

From (3.133) and using (2.51) and (3.140), one has at points ry in R* lying in the
projection S:

t

ey L[ [ K expli(K
bioy(r>) = 8% exp(ikzs) f[_md Kexpli(K R + k;25)]
xkl j;, exp|—i(K -R' + k.7')] exp(ikz) F(r')d*. (3.141)
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The geometric optics limit amounts to assuming that the angular spectrum:
1 . .
A(K) = k—Lexp[—:(K ‘R’ + k,2')] exp(ik2') F (r')d®r' (3.142)
2

is different from zero only at spatial frequencies K very nearly zero. That is, such that:

=Vk? — K ~ k. (3.143)
Then Eq. (3.141) may be written as:
$(xrs) = ' ffm deexp(tK-R,,)/ exp(—iK - R')F(R', 2')d*R'd2". (3.144)
(0) 2k —o0 v ?

Rearranging the order of integration in (3.144) and recalling that:
[ [ expliK - (R - R)|&K = (20)%(K - K) (3.145)
—Q0
From (3.144) one gets:
ot “F(R, 2)d
bio)(r>) = (R, z)dz, (3.146)
r, = (R),Z}), ’
R being in S.
Let us write:
n(r) =1+ én(r) (3.147)
where én(r) represents the fluctuation of the refractive index. One has that:

n’(r) — 1 = 26n(r) + [6n(r))*. (3.148)

For a weakly fluctuating random medium the second term of (3.148) can be neglected,

(cf. Eqs.(3.87) and (3.90)), so that:
n*(r) — 1 ~ 26n(r). (3.149)
Thus, by introducing (3.149) into (3.113), and the result into (3.146), we obtain finally:

Fol(rs) :k[ én(r (3.150)
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Eq.(3.150) constitutes the eikonal approzimation for q’:g;(r). From Eqs.(3.150), (3.140)

and (3.134) we obtain the result:
' L
Ulrs) = explik(zs + [o sn(r)dz)]. (3.151)

Note that if U(r) were evaluated at a point r inside the volume V of the scattering

medium, the upper limit L of the integral in Eq.(3.151) should be replaced by 2..
Eq.(3.151) constitutes the basis of a wide class of computer tomography methods

(see a review of these procedures for example in Ref. 3.30). It is also of wide application

in techniques on wave propagation in random media (see e.g. Refs.3. 21 and 3.25).

3.11 Multiple Scattering Theories

The approximations discussed in this chapter are useful to describing field interactions
with weak scatterers; and in particular, with weakly fluctuating media. However, they
become inadequate as the strength of the interaction, or the refractive index fluctuations,
become larger. As a matter of fact, the range of validity of the Rytov approximation, for
example, has been found to be less broad than expected from the theoretical predictions,
(see Ref. 3.31). Hence, for multiple scattering resulting from stronger interactions,
other methods are required. These have been largely developed for wave propagation
in random media. They are not studied here, but the reader is referred to specific
references quoted below.

One group of such methods contains a phenomenological approach and is based on
the radiative transfer equation, (see e.g. Refs.(3.32, 3.33). This model also gives rise to
the well known diffusion approzimation (Ref. 3.21) for very dense random media. The
connection of this rather heuristic model with the theory based on Maxwell’s equations
encounters several difficulties that have generated a vast literature, (see for example
Refs. 3.34-3.37 and references therein).

Another group of methods contains rigorous diagrammatic procedures that solve

iteratively the wave equation for the total field using Feynman graphs, (Refs. 3.38, 3.39
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and 3.40). These lead to the Dyson equation, (Ref. 3.41), for the mean field, and to
the Bethe - Salpeter equation, (Ref. 3.42), for its correlation function. These techniques
are extensively used. Excellent reviews can be found in Refs. 3.21, 3.25, 3.43, 3.44 and
3.45.. Reviews and references on light scattering by dense media and the associated
effect of photon localization manifested by the phenomenon of enhanced backscattering
are given in Refs. 3.46 and 3.47.



3.12 Problems

3.1 A Hertzian dipole consists of two opposite charges, +e and —e, separated a distance
! and oscillating with time harmonic frequency as exp(—swt). The current I
and the dipole moment of this system are I = —iwe and P = Il, respectively.
Assuming the dipole at the origin and the charges on the z-axis, the electric

current density is:
i{r) = Il6(r)2

# being the unitary vector along the z-axis.

Find the angular spectra for both the electromagnetic field radiated by this dipole

and the time averaged Poynting vector.

3.2 Making use of Section 3.3 show that:

}illmor(VxE—iki-xE)zo,

lim r(V xH - ikt x H) = 0.
These are the radiation conditions for electromagnetic fields (Refs. 3.48 , 3.49)

8.3 Assuming fields with time dependence exp(—iwt), Maxwell’s equations imply the

possibility of introducing a vector potential A(r), such that:
B(r) =V x A(r),
as well as a sealar potential ¢(r), defining:
E(r) = ikA(r) — Vo(r).
Show that these potentials are related by the Lorentz’s condition:

V-A—tk¢ =0,
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and both satisfy the inhomogeneous Helmholtz equations:

A and ¢ are not uniquely defined since the same fields E and H are obtained from

any other potentials A’ and ¢’ that are given by the gauge transformation:
A'=A+Vy,
¢ = o+ tkyx.
X being an arbitrary function.

Show that the Lorentz’s condition imposes on x to satisfy the homogeneous

Helmholtz equation:
Vix +k*x =0.
3.4 Find the angular spectra of the scalar and vector potentials for a charge moving
uniformly in vacuum.
3.5 Show that:

f ” klexp[i(K,y + k,2)|dK, = ~2iKo(kvd),

‘,c dmk—"zm

Ko{k~d) being the modified Hankel function of zero order and argument k-yd.

3.6 Prove Fq.(3.40) for the Hertz vector I(r,w) of radiation at frequency w from a

charge with uniform movement in vacuum.

3.7 Consider a spherical shell of radius B with a source density distribution:

1
p(r) = pp— eb(r — R},

(3.152)
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where e is a constant.

Show that the angular spectrum of the field radiated by this distribution is zero
if kR = Ix, | being a positive integer; (G.A. Schott {3.50], see also Ref. 3.51).

3.8 Find the angular spectrum and far field within the first Born approximation for a

plane monochromatic wave scattered by a homogeneous sphere of radius a.

3.9 Find the angular spectrum, far field and Poynting vector, within the first Born

3.10

approximation, for the scattering of a plane wave by a non magnetic periodic

structure of spacing a with permittivity:

(r) = f: fi8(c —x5),

where the vector r; is: r; = (I,m,n)a, (I, m and n being integers and f; repre-

senting positive constants.

A non absorbing phase screen is a layer of dielectric material that introduces
changes in the phase of the incident wavefield U®) so that the wave emerging from

the screen in a plane inmediately behind it, is:
U(xr) = UU)(r) explip(r)],
where the real function p(r) represents the phase added to that of the incident

field after traversing the screen.

Assume o(r) being a homogeneous and isotropic random function with normal

statistics, zero mean, and correlation function B,(p):

< p(r)e(r +p) >

B,(p) =

3

where o is the variance of ©(r). The width of B,{p) is negligible compared

with the linear dimension of the illuminated area. Show that the mean scattered
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3.11

intensity in the far zone , per unit of solid angle and per unit of illuminated area,

is, (cf. Problem 2.4):

dI*)(rn)

— 2 2
dq S cmeos’f < |A(sy)) > .

Where, n is a unit vector characterizing the scattering direction: n = (ns, Ny, n,),
Ut is a plane wave with wavevector: knff) — k(nf, nl), nl)), and the average
of the square modulus of the spectral amplitude A(s,) is, (cf. Eq. (2.16) and
Problem 2.4):

< |A(8L)[? >= %k?z cos? 8./:0 d*pexp(—iks, - p)
exp[—ag(1 - B,(p))].

8, being the vector transfer: s, = (ng —nl n, — ng,")). nf) is assumed along the

z-axis so that n, = cos#.

Show that if B, (p) = exp|—p*/T?| the scattered intensity in the far zonedefined

above is:
dI)(rn)  ck? (2n)?
T = Z;coszﬂexp(—a;)[ e 6(81_)

00 a2m
+xT? Y —&- exp[~k*T?s? /4m).
m=1 m.
The é-function in the first term represents the strasght-through component of the
scattered intensity, whereas the second term involving the series expansion de-
scribes the diffuse part scattered at al] angles. (This result was originally derived

by E.N. Bramley [3.52)).

Find the limits of the above expression when: (a) o7 << 1, and (b) 02 >> 1.

Consider a slab of ground glass of uniform refractive index n. One of its surfaces
is rough with a random profile: z = D(z,y), (see Fig. 3.10). Show by means

of the eikonal approximation that this slab behaves as a phase screen, so that
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if U6)}(r) denotes an incident wave, the wavefield emerging from the screen in a

plane inmediately behind it, is:
U(r) = U9 (r) A explik(n — 1) D(z,y)],

A being a complex constant. Hence, the variance oy, of the phase p due to the

screen is: 0, = k{n — 1)op, op being the the variance of D(z,y).

Apply to this case the results of Problem 3.10.

A Goldfischer model [3.53] of phase sreen is that for which the random phases
are uncorrelated: B,(p) = 6(p). Suppose that this phase screen is superimposed
to a non random planar object of finite extent that emits with an frradiance
distribution o(z,y), (o(z,y) being therefore a non random real function). Then
the field emerging from the screen in a plane inmediately behind it, is, apart from

a complex constant that cam be omitted:

U(r) = o(z, y) explip(z, 1,

Show that the mean scattered intensity distribution behind the screen is:

dI (')(rn)

a0 o €8 Bexp(—oz)[(2'.-r)"lo(84_)|2 + Kj,
where 6(s,) is the two dimensional Fourier transform of o(z,y), and the d.c.

constant K is:

K = AC(0 f:

m:

C(¢) being the (non random) autocorrelation of the irradiance distribution o(z, y):
ci) = [[ R)o(R + ¢)d’R, R = (z,y)

The above result shows that the mean scattered intensity in the far zone is equal
to the power spectrum of the object irradiance plus a d.c. level. This has several

applications in image synthesis, (Ref. 3.54).
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3.13 Show that the mean scattered intensity from an inhomogeneous medium with

3.14

covariance:
2 P
B.(p) =< n?® > exp(—f),

(< n? > being the variance and T denoting the correlation distance of the refrac-

tive index fluctuations), is given by:

d<I¥@) > Ve k*T%sin’® <n®>
dn ~ 87% (14 4k*T?sin*(0/2))?

Show also that:

a. When the correlation distance ! of the refractive index fluctuations is much

smaller than the wavelength, one has:

(s) 4
iiit&.n(gﬁ = 8%k4T38in29 < n? >,

so that the scattering is isotropic and proportional to A~%. This is known as

Rayleigh scattering and describes the blue color of the sky.

b. When T is much larger than the wavelength the scattering is concentrated

about the direction of incidence, and one has:

d< 1) > Ve sin?0 < n? >
dn 12872 Tsin'(8/2)

»

The perturbation of a turbulent medium on a wavefield U (r) = exp[qb(l’ is often &

characterized in terms of the structure function Dy, (V.L Tatarskii, {5.19]):
Ds(r, ') =< [4(x) — ¢(r')]* >,
On expressing ¢(r) by Eq. (3.136), prove that:
Dy = Dy + Ds.

Where D, and Dy are the log and phase structure functions, respectively.
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Assuming homogeneous and isotropic Gaussian statistics for ¢, find the relation-
ship between D, 0, and By(p)-

In a Kolmogorov model ([5.19], [5.20], [4.21]), the structure function is: Dy(p) =
Ar%®. Find the mean intensity in the far zone for a field that, emerging from

a turbulent layer, and expressed in the form {121}, is characterized by such an

structure function.
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