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SPACE-TIME COHERENCE

< scalar theory
< stationary & ergodic field

Vi(r,t) COMPLEX ANALYTIC SIGNAL
(only positive frequencies)

[(x, 5,;7) = (V'(x, HV(r, t+ 1) MUTUAL COHERENCE FUNCTION

I(r)=T(r,r;0) = <| V(0 > (AVERAGED) OPTICAL INTENSITY
¥(r,1,;7) I, 5,0 EGREE OF C
LX) = COMPLEX DEGREE OF COHERENCE §
JI(x)I(x,)

DOMAIN D
0< IY(ru I'z?’f)| <1 C(r,r,;1)=U" (5 U(x,)e "
k _ } STRICTLY MONOCHROMATIC

INCOHERENT COHERENT ==

(V2 +kU(r)=0

YOUNG'S INTERFEROMETER

Delay =

| =
/ § Visibility ¥ e<|y,,(7)|
2

B Fringe location o phase of ¥




COHEREN(E PARAMGTERS
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SPACLE-FREQUENCY CORERENCE

F(r.rit)= l W(e 0 )™ do WIENER-KHINTCHINE

THEOREM

L<K7*(r1,0))\7(r2,0)')> =W{r,.r,;0)5(0 -

\x CROSS-SPECTRAL DENSITY

S(r,w) = W(r,r;w) SPECTRUM (SPECTRAL INTENSITY)
_ COMPLEX DEGREE OF
u(r,, 1, 0) = Wit 1;0) SPECTRAL (SPATIAL)
JS(x,, @)S(x,, @) COHERENCE

05‘#(1'1,1'2;(0)’51 DOMAIN D
A 4 W(r,r,;0)=U (r,0)U(r, o)
INCOHERENT COHERENT e=p> | FACTORIZATION

= stationary field may be partially coherent at single frequencies !

YOUNG + SPECTRAL FILTERS

T(w,,A0) As A® — 0

1 ::E Y(r],rz;r):u(rl,rz;mo)e(ﬂ
0(t) ~ T(w)
2 ::E )




AT, Feibevq @ E.Wsld , Opt. Lett. 20 €23-625 (1945)

INTENSITY _
Y VErsus U I(r) = [ S(r, 0)do
} } °
space-time  space-frequency NORMALIZED SPECTRUM
degree degree ) = S(r, )
A ) o jS(r,m)dm
relation ? 0

EXAMPLE: Black-body

Lambertian

) = sin k|r1 — r2|
/é"y l"l'(rl ,rZ b} - klrl _ rz l

() ~ Planck’s law

. ‘ temporal |y(0,7/c )
homogeneous, 1sotropic

E, H vectors spatial y{r/oc ,0)

W=Tr{W,;E)}
h
o=—
KT
At~ 2F 2T (h ] =223
w 282 \ KT

max



PROPAGATION

< Wave equations for I'(r,,r,;1)
< Sudarshan’s equations
< Helmbholtz equations for #(r,,r,;w)

(k=w/c)

< Solutions:
* Angular spectrum representation (exact)
+ st and 2nd Rayleigh Integrals (exact)
+ Extended Fresnel diffraction (beams)

(P (e o) =5,

+ symmetric lens systems (2 x 2 ABCD matrices)
¢ non-symmetric systems (4 x 4 matrices)
+ tiit & decenter (5 x 5 matrices)

in

—ik . _
Ulp.20) = S (det B [[Ulpo.2.)

x exp|ik(p" DB™'p~ 205 B'p +pg B~ dpy) / 2|d%py

EXTENSIONS

< Non-stationary fields (pulses)
< Electromagnetic coherence tensors
+ correlation functions
+ Maxwell’s equations
< Partial polarization
+ Blackbody radiation unpolanzed
< Higher-order correlations
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FIXED-BPSELIMNG SOURCE RECONSTRUCTION

\Ig At %vegrve,nuj w
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MICHELSON'S STELLAR INTCRIFEROMETER
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COHERENCY MATRICES
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QUANTUM COHERENCE
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INTENMSITY INTERFEROMETRY

(Hambury = Brown % Twiss | 1956)
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CORERENT-MODE REPRESENTATION

W(r r,;m) continuous in

a) ,U IW r,r,:0 ’ dBrldBrz <0 (Finite energy, Hilbert-Schmidt)
b) VV(I‘2 ,T ;a)) = VV*(I‘l N (D) (Hermitian)

c) _” W(r1 ,rz;o))f*(r, )f (rz) d’rd’r, >0 (Non-negative definite)

[any function £, eg. f(r) o 5T far- ﬁeld]

= (Mercer’s theorem)

(rl,rz, ) Zl (rl,m)\un(rz,co) (1,20)
_{W r,,rz;co)\yn(rl,(o)d r, :ln(co)\lfn(rz:“)) E (Jviv.=5..)

(Fredholm integral equation)

(&> < Factorization —  each term spatially coherent
Helmholtz eq. —  coherent (natural) modes

(& < Let Ur) = a,(0v,(r,o0)
(a (@)a, (@) =1, (@),

- W(rl,r:;m)=<U*(r|.m)U(r:,m)>

(correlation of ordinary functions !)



Space-time domain Space-frequency domain

(forbidden) (forbidden)

W (l' I, CO) F (l‘ T) -‘——'——W (rl'rz w)

Iyr,r,, 7 1Ty

FQ(rl ' Fys 1) = (Q*(rl ) Q(rz' t+ T)>t WQ(I'] e W)= <U;(rl , @) UQ(I'2 , C!J)>m

Field
{V(r,n)
\ \ (W, A)

W (‘3—1 \)w) Z 2‘ (w}‘“f/ (l’w *1' )

Source

{Q(r, D)
@, A)

Mode vepvetenhihom of o vadinfed {Reld.



QUASI-HOMOGENEITY
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EXAMPLE: GAUSSIAN SCHELL-MODEL SOURCES

SCHELL-MODEL:  u(r,r,;0)=g(r, -1,;0)

22
1S(r, ) = S(w) e %
_p2 /a2
g( ¢ ;0)) -0 r“/2cg
¥ o5>>0, —> globally incoherent (quasihomogeneous)
Gy>> A — locally coherent
G~ A — locally incoherent

Coherent modes (Hermite-Gaussian functions)

1/4 .2 w2
\v,,(x,co)=( 2 J 1 H,,[ V2x ]e I

nwsp W WS.\/B—
Ay (0) = S(@)VZT WSTE"E(E%]

WS = ZGS

o= S global degree
Wg of coherence

(0<B<)

[

1+ o2

< Bessel J,-correlated sources
< Short-correlation limit



TRANSVERSE STRUCTURE DETERMINATION

Fig. 1. Experimental setup to determine the modal weights of a

- multimode laser. HN=He-Ne laser, L,=positive lens,
A =aperture to block off undesired reflections [rom the laser
optics, M =mirror, Y= Young s interferometer, L, ="Founrer-
transforming lens, O =microscope objective for enlarging the
interference pattern, and C=CCD line ¢lement

< Needs spatial coherence data
< Different modes v, (r,0) have slightly different
frequencies — mutual intensity

< Spot size and curvature same
< Let v,(p.2) = 0,(p,2) )

We(p1,p232) zlfb (P1:2)0,(p2.2)
J.WR pl’pZ;ZN)n(p]’z)dzpl :ln¢n(p2’z)

Spot-size w in ¢,(p,z) not known !

PROCEDURE:

< Measure Wy(p,,p,) with respect to two fixed points

(zero crossings are observed from interference phase shifts)
< Solve spot size w numerically
< Compute modal weights &

@ NUMERICALLY AND EXPERIMENTALLY STABLE !



RESULTS

(20 by 20 grid) (Siemens 7621 MM HeNe)

il ¥ \\

il
41l
AR
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Fig. 2. (a) Measured intensity profile across the multimode beam. (b) Corresponding intensity
profile reconstructed from the calculated mode structure.

Fig. 3. (a) Mcasured correlation function Wy (r,rg) with respect 1o (2g.y0) = (3 mm, —1 mm).
(b} Correlation function reconstructed from the measurcd mode structure.




SOME METHODS FOR PRODUCING SOURCES OF
CONTROLLED COHERENCE PROPERTIES

ROTATING ROUGH SURFACES:
W. Martienssen and E. Spiller, Am. J. Phys. 32, 919 (1964)
P. de Santes, F. Gori, G. Guattari and C. Palma, Opt. Commun. 29, 256 (1979)
J. D. Farina, L. M. Narducci and E. Collett, Opr. Commun. 32, 203 (1980)

LIQUID CRYSTALS:
F. Scudieri, M. Bertolotti and R. Bartolini, App!. Opt. 13,181 (1974)

M. Bertolotti, F. Scudieri and S. Verginelli, Appl. Opr. 15, 1842 (1976)

HOLOGRAPHIC FILTERS:
D. Courjon, J. Bulabois and W. H. Carter, J. Opt. Soc. Amer. 71, 469 (1981)

ULTRASONIC WAVES:
Y. Ohtsuka, Opr. Commun. 17, 234 (1976)
Y. Ohtsuka, J. Opt. Soc. Amer. A3, 1247 (1986)

SYNTHETIC ACOUSTO-OPTIC HOLOGRAMS:

J. Turunen, E. Tervonen and A. T. Friberg, J. Appl. Phys. 67, 49 (1990)
E. Tervonen, A. T. Friberg and J. Turunen, J. Opt. Soc. Amer. 9,796 (1992)

LENSLESS FEEDBACK SYSTEMS:
J. Deschamps, D. Courjon and J. Bulabois, /. Opt. Soc. Amer. 73,256 (1983)

ACHROMATIC FOURIER TRANSFORM LENSES:
G. M. Morris and D. Faklis, Opt. Commun. 62, 5 (1987)
D. Faklis and G. M. Morris, Opt. Letr. 13, 4 (1988)

PUPIL MASKS IN DISPERSIVE SYSTEMS:
G. Indebetouw, J. Mod. Phys. 36, 251 (1989)
D. Faklis and G. M. Morris, J. Mod. Opt. 39, 941 (1992)

SOURCE FILTERS:
T. Shirai and T. Asakura, Optik 94, 1 (1993)

(From EW’s wotes)



COHRR=2NC 2 LOUN XU

< Apertures + propagation

< Laser + diffuser

¢ Liquid crystals

+ Holographic transparencies

+ Sprayed mist (Krylon)

¢ Ultrasound

+ ASE (Amplified Spontaneous Emission)

< Systems
GSM source:
o
s
= |— ¢ WO - Wf
- “ rram—y :
et (== i

| T ‘ _

| 3 Oo =

| , i S’

Fig. 1. The optical configuration used to create a variable-coher- : — OO

ence gaussian Schell-modei source. D=rotating diffuser,
S=aperture stop, T=gaussian (ransmission filter. and
L=collimating lens.

d  Synthetic acousto-optic
0 coherence-control

M technique

Figure 1. The experimental set-up. AO = acousto-optic
deflector, § g = Bragg angle, A = amplifier, M = mixer,
C = driver, H = infromation source, L = positive lens.




DBLANM SYINTAESIS

< Independent parallel beams
¢+ directionality

Tr

:

:
) e ——

v

)

.: .

5

. y —r

! PPy P

I'ig. 1. The beams (rom two indcpendent identical lasers L, and

Fig. 2. The ficld amplitude distribution produced by the laser
Lz are made parallel to cach other and brought to a focus (focal

beams on the plane S of fig. 1, versus an abscissa taken along a

plane ») of a converging lens. Plane S, intersccting the beams, line joining the centers of the beams.
is the cquivalent source,

< Independent inclined beams

elliptic GSM

.WX’GX

"Wy, 0y

2t
A TN
U(P;Br,ev): S(w)e "Te " e*0xr ™!
K ?.O-.rc v ‘%(ko.\ }2 8% “;I{ko}' ,]_ 8,%
P(6,.6,)=——¢" e’

< Twists



Conversion af laser beams

Q Qa
] ) u, = FAA
4o
n v -
? 1\8 \ . ; Zwg

The experimental set-up for reconstructing computer-optimized acousto~-optic
holograms. The angles and dimensions are not drawn to scale.

w2 j ) B
0
—-r/2
I T

T T T
0 g2z 04lgys 065570855591

“hln L.

----------------------------------

< Coherence-control
(uy << wp)

0.0 Ol.l 0.2
aAx /A

b, Unfiitered (open circles) and filtered (filled
circles) spatial coherence profiles across the secondary source.

< Beam shaping

(4o ~ Wr)

< Beam splitting
(up >> wp)

y

il
A s
-8 -4 a 4 8
Fig. 5. Experimental resuit: three-level interconnec-
tion pattern with goal distribution {I.} = {1, 05,0.5 1,

0, 0, 1, 1} for diffraction ordersn = —4,..., +3.

\
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GSM BEAMS

w(z) = “spot size”
R(z) = radius of wavefront curvature
o(z) = transverse coherence length
Define:
o= olz) constant ;‘global degree of coherence”
w(z)
1 -1/2
B=| jl+— 0<p<1
o

“beam parameter”




s e dleSs,s s

OPTICAL SYSTEMS

ray i A B GSM 1
T C D —< = )

GSM out

GSM beam:

“complex ray”

L
b

1
R

1
q
Any ABCD system:

Generalized Kogelnik’s
ABCD-law

Proof: + by symmetry considerations
+ using Wigner distribution function
+ by induction
+ using extended Fresnel diffraction

Use: Separate real & imaginary parts
and solve for b, & Ry,
interms of b, & Ry,

3 bout & Rout




IMAGING EQUATIONS

R

out
wW.

A B . L
wg out /Y 8;

7o C D - zi—+—0/2—-{

W,

| —

Observable quantities of interest associated with a gaussian Schell-model beam
emerging from an arbitrary optical system. -

< Start ABCD system from input GSM waist
* no loss of generality
¢+ considerable simplification

b - 2 + 23 -2 -
w =L g R 2]
_ A? +sz0_2 - g a1
out AC + BDbO-Z b;' = bou.r[l + bom‘Raut]
L A* + B*b* .
== _ » dist
AC + BDb;? +(ACB? + BD)' mage distance
2 A* + B*b? w, . .
m° = 2 m=—- magnification
1+(ACb, + BDb;") W,
c,=mo, transverse coherence
D=2mb 0" -1 depth of focus
O = arctan—L— ©, = arctan lim w(z)
mmmo B Zoe Z




4 4 & A = a -

CONSEQUENCES

<> coherent limit (¢ > o, B — 1)

2 2
o b = “";"aﬁ S me " GAUSSIAN LASER

<> equivalence relations
z

i 2
¢ m; dependonlyon b, ~ w;ﬁ
D s
;
wl'
o, ¢ dependalsoon w, & O,
©,

+ in non-dispersive (color-corrected) systems,
scale e.g. Apqer = MB

<> incoherent limit (a >0, p—>0 = |b,—>0| )

| a 2 BP GEOMETRICAL OPTICS
lm| — 1/D (transition region o = 1)

when o — 0 (A = fixed), the GSM source reduces to
a Gaussian ensemble of independently radiating points

po—

< limit A > 0 (o, pfixed = b, > ®|)

L 2 . -
7z > A ASYMPTOTIC LIMIT

im| — 0 (point image in the backfocal plane)

p— when A = 0 (a = finite), the GSM beam reduces to
an infinite plane wave




THIN LENS

N&’l/ : ; .
: i AZ
' z o | Z,

A Z,

S
Fig. 2. Focusing of a Gaussian Schell-model beam by a thin lens: M = 1 Zo
wy, w;, and wg and zg, 2;, and z¢ are the sizes and distances, respec- - F - —“F

tively, of the object, the image, and the Gaussian {geometrical-
optics) image.

1 1

Fzy+b)/(z, - F)

z

i

i
S whenb, -0, 4=t |ml=
z z, F

o i

a

v Az =2z -z5 “focus shift” (low f#-systems)



EXPERIMENTAL VERIFICATION

+ wavefront-folding interferometer

< propagation w(z) = wy| 1+ bi

0

N
o
x

204
> g
= E 15
k] —_
] N
> % 104

o
r

< focusing

lens
GSM
waist -t F
18 \
1=0,042 . \ .
E 2] v=0088 Tt )\' n .
E @=013 + . . \ . .
NaBq{ a= : . e . et )
S T F = 1800 mm
o DAY w, = 6.8mm
1

z. - F = “focal shift”

1600 170€¢ 1800 1900 2000 ]

z {mm}
Fig. 6. Beam profiles in the vicinity of the focused beam waist,
with several different values of . The dashed line is the theoret-
ical dependence of focal shift on focused beam waist size for this
particular arrangement. This curve (obtained from egs. (2) and
{3)) should cross the measured profiles in the beam waist planes.




TWISTED GSM BEAMS

2
_pi+ps (PP ik pt-p} )

S 2 2

2() e w*(z) e 204(z) e 2R(z)
w'(z)

—ku(z)p ep
e 172

W(pl,Pz,Z)Z

x L. o
" twist phase”

plspz = (xl yl)(

<~ four parameters w(z), o(z), R(z) & u(z)

& ju(z)| <1/ ko?(z)
= twist phase disappears in the limit of full coherence

< twist phase rotates the beam

< twist parameter alters the propagation laws;
it increases the “‘effective” degree of incoherence

< useful limits:

1N =0 < ordinary GSM beam
B=1 <> laser beam



RESULTS

LASER

elliptic
laser
beam

synthetic
a-o holograms

elliptic
GSM
beam

astigmatic
optics

twisted
GSM
beam

1 'l | I N I\ 'l L

w(z) {[mm]

L 1 1 H

twisicd GSM beam

cohercnt beam
—_——

measured beam radius of twisted GSM beam

T T

2000

z [mm)]

e in x-direction

3000

© in y-direction

Volume 106, number 4,5,6

Fig. 5. Illustration of beam rotation in the focusing g¢
generated by the acousto-optic deflector to
plane, (b) in the plane of best focus, i.e., 2

OPTICS COMMUNICATIONS

simulate the situation iltust

15 March 1994

ometry of fig. i. Three discrete spatial frequency components are
rated in fig. 2. () The intensity profiles in the source
= f/2 = 150 mm in fig. 4, and (c) in the plane = = f = 300 mm.




PROPAGATION-INVARIANT BEAMS

* Bessel beams  JZ(ap)
* Axicon line images

* Conical fields

+ Interference pattern

xcos8+ysinb)

2r icf
U(p,2) =€ [ F(o)e de
0

a2+ﬁ2=k2

== Kl‘“ g # Computer holograms

| B generate any

¥
I
b— F —t z, -
1 1 L - .
® 1z, j 8 diffraction-free field
| o
: |
— T d
o
— b
—_ prhfp! E L : Zz
T T 1
] I
! L — P uw o
Fig. 1. {a)Original experimental arrangement {or the generation of %
an approximate Bessel beam; (b} the modified system based on a \ L ~= 2JerHW / /1

holographic optical element (HOE).
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PARTIALLY COHERENT INVARIANT BEAMS

W(p.,p2z)=W(p1p.:0) |

+ invariant spectral intensity
¢ invariant coherence

CONICAL PLANE WAVES ARE UNCORRELATED IN RADIAL DIRECTION !

k2w 2x 2
i(z,—2) )} K227
W(rnrz)z J‘ IIfZS(f,Ql,QZ)e(Z l)m
0 O
ei27rf(x2ca:>sé?2—xlcosel+y2sinf)z-—ylsin@l)dfdelde2

X

EXAMPLE: Bessel J;-correlated beam
iflzy—z
W(rlﬂrz) = 5,€ ( 2 1]']0(0491 —pzi)

< Generation by computer holography
< Fabry-Perot modes (self-imaging)
< Satisfy (planar) paraxial equation !
<> Shape-invariant in ABCD systems




FOCUSING

Z/ Feesthel wuwbew-
l 2

Np > 1~ DEBYE THEORY

£

NF <14 ~ FOCUS SHIFT
SPOT C12E

o FFOCRAL DEPTH

o 3D -PROFILE

4 25
(b)

20

15+

ky sinc

» Lz sIn2¢




WAVE MODEL
AXICON LINE IMAGE

annvlav vade
RL= 3.5 v,

Rl = S.O WA wn

_(pi+p3)
2 cé

0.9 = (=) [[[L(o )1 (po) VCPupi P70 e

_ale ;pé)

-fk[tp(p,)—tp(p 3)]
X e <= e

p,p.dp,Ap;

where

(p,pycos(8,-8,) (p,cos@,—p,cos0,)
P

—ik

Clppprpzic,)=[[e °* e = de de




RIGOROUS WAVE THEORY
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PROPAGATION

Cohevent %elds (ea. f\modes) n mw-—&'qm.e

A) ANGULAR SPECTRUM

E(s2) = fa(%)edhéi-g-»mt)&g

o 1
m o= J1-9% 5 o qf<1
3 = W91 5 of lal> 1

9y Pv*opaea; ‘I\m) w/ave

N

—/ " CV)MQSCCnt wWave

B) GREEN FUNCTION

1 7., .0(e™ .
E(p,z)=—5;£lE(p ,O)E[—?,—}dzp , (e,xac,t)
K TTo e
E(pz)=-——~ _[ jE(P 0)cosé’——d"p’, (V\Qa\rlj X ct)
- ( Kyv >> 1 )
- ikr
Eu(p,z):—f27d<coseEo(ksr)er , (ggﬁmpﬁﬁc)

( r'=[(P—P')2+zz]vz’ cos@’ =z /r )



FAR — ZONE RBEHAVIOR

source ¢

ik(rl-rz)

e
2 @ IT, cosB cosb,

Wk s, 15, ® = k)’ W (ks ~ ks

(kr, = oo, kr,— )

a4

\){/ A~ AD SPMH")I FOx)\m'e,v‘ Hamsfo\r\m

¢ AVGULBR CORRELATION FUMCTION

\)ﬂ'(-g-:l.l., 92_1,‘)‘”) —_ I<§‘W(°)(k§'_l~‘- l(S'zl)w)

— c,lqavaml-‘lvfze: QOVVUR‘HOMS‘
between plane waves

[E,.W, Mave haa 4 QE.WO'*,> JO SR (3_%] 3%} 9 (lﬂ}l)?




RADIANT INTENSITY
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® RECIPROCITY FOR
QUASI-HOMDGENCOVS TOURCES

J(g) = (Q‘Tk)QC °) (ks_,) IR,
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EQUIVALENT GRUSSIAN
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lllustrating the coherence and the Intensity distributions across three partially coherent sources [(b), (c), (d)] which pro-
duce fields whose far-zone intensity distributions are the same as that generated by a coherent laser source [(a)]. The parameters

characterizing the four sources are:

(a) og = =, 0y =81, = 1 mm, 4 = | (arbitrary units)  (b) og =5 mm, o7 = 1.09 mm, A = 0.84

(c) op = 2.5mm, of = 1.67 mm, A = 0,36 ::aa = 2.1 mm,o; = 3.28 mm, 4 =0.09.

The normalized radiant intensity generated by all these sources is J(8)//(0) = costg exp m..uc_&rvu ::ui v (5L =1mm),

[After E. Wolf and E. Collett, Opt. Commun., 25, 293, 1978)]



PLANAR RADIOMETRY

* RADIANT INTENSITY  J(s)

EXACT FAR-FIELD PROPAGATION
PHYSICAL -OPTICS DEFINITION
MAIN OBSERVABLE QUANTITY
ANGULAR DISTRIBUTION
RADIATION EFFICIENCY

oo ooo

+ RADIANCE (BRIGHTNESS) B(p,s) |
o MAIN RADIOMETRIC QUANTITY

o AMBIGUOUS
(SEVERAL DEFINITIONS IN USE)

* RADIANT EMITTANCE E(p)

. [RRADIANCE

2 |
J(s) = (%) cos20{ | W(p1,p2; 0)e~ k2P0 d?p1d? p2

= cos 0 [ B(p,s; 0)d*p
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ANGULAR DISTRIBUVTION

J(®)
J(°)

(exact )

RADIATIVE TRANSFER

(s:9)T(ss) = — <(zs) Tlas)

-

+ SP(.'L‘,S,S'\I(!,_S_‘)J_Q_’ -+ D(_\r_-'g)

* s

CONV. Nes Yes
WAVE Yes No
am No No




ASYMPTOTIC RADIOMETRY
Z (OHERENCE TRANVSPORT

¢« B(¢s) = kas}l T, w) g(k_s:i}w)

o
O
O\

@ B(\_f‘_lg) = (,ov\r'hvx‘l’ alov\g S“}'V-\«\\?L\'i' ll‘V\eS

o W(v ) = f

sovvce L9(¢)

q(2)



AXICON LINE IMAGE

Spatial Coherence

g 10T Complex Degree of
5 081 Spectral Coherence
2 ost
S W(ryra)
«— 0.4r — T2
o wrisTa) = s T
o 0.2t
5
a%or -~
100 120 140 160 180 200
Axial distance [mm]
-0 Transverse Distributions
® 0.8 at z = 150 mm
-
o
3 0.6-
o
Q
o 0.44
®
Q
o 0.2
@
Q
0.0+

Transverse distance [um]

* Radiometric and wave-theoretic results are indistinguishable!



TWISTED GAUSSIAN SCHELL-MODEL BEAM

W(pi1,p2,2) = (Wf‘(’z))e-(p?w%)’wz(z)

o~ (P17p2)2207 (2) o =ik(p1-P3)/2R(2) g—ikp1-ep2u(z)

where
w(z) = w(O)[1 +(2/22)?]”* (beam radius)
o(z) = 6(0)[1 +(z/zx)*]"" (transverse coherence)
R(z) = 7[1 + (z&/2)*] (radius of curvature)
u(z) = u(0)[1 + (2/z R)Z]“I (twist parafneter)

and

a2 2172
ZR = ow2(0) B[l +n2(1_2_g_) } (Rayleigh range)

A

3= {1 + [w(z)/cr(z)]2 }_1,2 ('global’ coherence)
(0<B<1)

n = ka?(2)u(z) (normalized twist parameter)

(-1<n<1)

Comments:

* most general rotation-invariant Gaussian beam

* twist manifests itself e.g. in increased diffraction

0 ~ tan 8 = lim . w(z)/z = W(0)/zx



WIST EFFECTS

TWIST EFERC LS
+ FAR-FIELd DIFFRACTION ANGLE

w(0)
0 =3,

LASER T TWIST

REDUCED
COHERENCE

* BEAM ROTATION

o IN FREE SPACE

THE ROTATION ANGLE { ¢ = /4 AT Z=2ZR
b=m/2 AT Z>X

o IN QUADRATIC-INDEX (SELFOC) FIBERS

THE BEAM ROTATES BY 27
IN EVERY SELF-IMAGING DISTANCE

@ BEAM ROTATION CAN BE SEEN
BY DECOMPOSING THE TWISTED GSM BEAM

INTO AN INCOHERENT SUPERPOSITION
OF ELLIPTIC GAUSSIAN BEAMS

imm_ﬁmmmw

2 |
_ L 2 1B
=) B yﬁ“‘(zﬁ) |



TWIST GENERATION

anisotropic (elliptic) twisted
GSM source GSM bheam
(z=0)
v
Yy
u
Z
fy fr f f
X Y Y fx fy X

Astigmatic lens blocks

* 4f-imaging in one dimension
* 2f- Fourier transform in the other
* second block rotated by 45 degrees

First-order systems”

() (2 )05 '
p = / A,B,C,D are 2x2 matrices
P Jour ¢D P/

U(p, Zouw) = S2e™ (det B)™ [ [ Upo, zin)

2

.eXp [z‘k(pTDB“I p—2p3B'p+psB'4po)/2 |d*po

() A.E. Siegman, Lasers (1986), Section 15.6



DECOMPOSITIONS

V y »
. ) o A
u ’ | 5 X
jé — :/ L

anisotropic GSM twist beam waist
beam waist

\
1
\

- +

e INPUT
W(us, 4z, v1,v2) = | POYU (u1,v1,0)Uuz, v2, 8)dd
where
Uu, v, 8) = 1 exp(-u*/w2)exp(—v:/w})exp(ikBu)
P(8) = (2m)~2ka exp | —3(ko.)?0? |

e OUTPUT

* weighted distribution of rotated ellipses

* displaced in y-direction by yo

*

propagate in xz-plane (increasing tilt phase)

*

additional phase const - x(y — yo)



CONSTRAINTS

o INPUT: Elliptic GSM source

* characterized by wy,w), 0y, Oy

-1
* By = {1 + [wxylcxy]z}
* Rayleigh range zz = TwiB,/A = wwiB,/A

= f, = 2f, = half of block length

e OUTPUT: Twisted GSM source

: I
(" beam radius w= ‘/-é-(w,% +w})

_ [ BBy
{ coherence OC=w 1B,

curvature R=o00
. _ Lﬁx‘ﬁy
|_ twistphase w= o BBy
* B=yBsBy
_ Bx—PBy
* n - I_BxBy
o IMPLICATIONS
o symmetric input = no twist (1 =0)
o one B=1 = maximum twist ([n| =1)

o increased ellipticity = |n| increases



TWIST INTERPRETATION
(Inl=1)

twist
beam
waist

Rayleigh
range

far-field




LASER TO ELLIPTIC GSM CONVERSION

C; Cp2 C3 Cy C5 Cg

AOD L; S
“DzeBOI 000 000

elliptic
laser elliptic GSM twisted GSEM

Synthetic Acousto-Optic Holograms(")

* optimized, binary-phase modulated Bragg diffraction
* coherent, uncorrelated fields in different directions
* spatial filter removes unwanted orders

power spectrum
(in x-direction)

(), 1(y)

T T T T ¥ 1 T T ]

-1.5 0 1.5 -0.5 0 0.5
x,y [mm] X [mm]

measured intensity and coherence across elliptic GSM source
® along x-direction o along y-direction

(c) J. Turunen, E. Tervonen, and A.T. Friberg, J. Appl. Phys. 67,49 (1990)



EXPERIMENTAL RESULTS

Twisted GSM waist: w=0.616 mm
c=0.190 mm
B = 0.294
n=-1
L ) 1 -
2 N
-~ -
= . E
i i L L) l 1 T T T T T T 0 ] T .| T T T 1 T 13 ]
-1.5 0 i5 05 0 0.5
x,y [mm)] x [mm]

measured intensity and coherence across twisted GSM waist
® along x-direction o along y-direction

J twisted GSM becam
6 ]
4]
Ol
2
2 coherent beam
- _— .\
O ] T L] T T 13 ) L] ¥ T L) L] L) 1 T 1)
0 1000 2000 3000
z fmm)]

measured beam radius of twisted GSM beam
® in x-direction o in y-direction

FAR-FIELD DIFFRACTION ANGLE:

O7rcsm/Ocsm = 1.85  076sm/Oraser = 6.28




RADIJANT INTENSITY

* ROTATIONALLY SYMMETRIC

J(0) = J(0)cos2Qe5"sin’®
J(0) = So(203)E>

-1
2 1 2 2
&= [2(1«;92 + (kog)? +2(osu) }

* CONSEQUENCES

o EQUIVALENCE RELATIONS
o TWIST & INCREASES = & DECREASES
= RADIATION SPREADS MORE

PARAXIAL LIMIT:
(cos@z 1, sin@ze)

04 =2 (1/8)

12
S 2(1"’2)2 OK
= w0 B N =g .

12

B— Bey= B[l +n2(1—;§i)2}




RADIATION EFFICIENCY

C= & _ RADIATED POWER
N = TOTAL INTENSITY

= (2 J()dQ (Total Flux)

N = _[ o S(p, 0)d2 p (Source-Integrated Spectral Intensity)

C=1-D(&)/5
D(&,) = exp(—&z)jﬁ exp(t 2 )di (Dawson's Integral)

J2 nw(0
£ = T;W()Beﬂ

¢ IMPLICATIONS:

+ C 1S MONOTONOUSLY INCREASINGIN &

-1
TN 2 2
&° = [2(1«;5)2 t oy +2(osu) ]

* FOR QUASI-HOMOGENEOUS (Cs >> Og) TGSM SOURCES

52 - k2o Es Ko} > k*c2 _ kzog{cg)z
2 2(1+k2ckou?) 2(1+c§/cg) 2 Os
A A A
no twist twist max twist
(u=0) () (|lu| = Vko})

2 2
+ QH MORE EFFICIENT THAN LASER, IF G2 > 407 (1 +k?c505u°)



RADIATION EFFICIENCY

NO TWIST (GSM) MAX TWIST
(u=0) (|lu| = 1/ko})

1.21C (@) 1.21C ()

1.2]C (o) 10 1.21C (d) 10
1 1
0.8 2 0.8
0.6 0.6
0.4 kog=1 0.4 2
0.2 Ko, ¢.2 og=1 «
2 4 6 8 10 2 4 6 8 10

Figure 3. Radiation efficiency C as a function of ko, for selected values of kos (aand b) and as a
function of ko's for selected values of ko, (c and d), both in the no-twist case u = 0(aand ¢) and

in the maximum-twist case [u| = 1/kc] (band d).



RADIANCE
(WALTHER 1968)
2
B(p,s) = (%) coS 9[ Wi(p - %p’, p+ %p’)e-—tkf-p’cpp/ :
+ ~ WIGNER DISTRIBUTION FUNCTION

¢ INVARIANT IN ABCD SYSTEMS
* 'TRANSFER FUNCTION' E(p,0)= C(cs, Og, 4; P)S(p,0)

B(p,s; 0) = (2So/m)(kGos)*cos O exp [—(kCEP)?]
XexXp {—-2(k§cs)2[sin29 + 2u sin B(x sin @ — y cOS ¢)]}

T~ 20 30 40
-10

-20

-30

-40

(6= 0) (65=2) (6 =10)

(WALTHER 1972)
2 .
B'(p,s) = (2%] cos O [ W(p/, p)e >+ CP)dp’

+ ASYMPTOTICALLY INVARIANT IN ABCD SYSTEMS (A — ()




FOCAL REGION

R
W,
a, -—
1 C D 1 H 1 iAad z
) |
b —af
! e z -
z=0 =7

12
W(Zour) = W(O)(A2 +.Bzz,_22)
)\ 12
o(Zou) = G(O)(A2 + B?zj )
R(zow) = (A2 + B2z )/(AC+ BDZI?)
N
W(Zour) = u(O)(A2 +B%zy )

where

2N\ 2 —1/2
ZR = TEW;(O)B\:I + 1]2 (%g") ] (Rayleigh range)

B= {1 + [W(O)/O'(O)]z}_ll2 (Coherence)
n = ko (0)u(0) (Twist)



THIN LENS

w(2) {mm]

0.21

0 o =200 300
Z [mm]

Solid dots: =~ Twisted GSM beam
Open dots: Normal GSM beam

WHEN f =z THE BEST FOCUS IS AT Zf = f2 AND w(zy) = w(o)/ 2
THE BEAM ROTATES BY_45 DEGREES AT z7 AND BY



SPECTRAL CHANGES

r |
a2 T T Q
| GERYE I, (s 5a) = (o) Wglte) |
specTRuM - Sy (W) = W, (£,¥;w)
SouRCE { sPecTRUM S, (50 = W, (5,55w)
(OMHERENCE /Aa(g_“f,_im)
® SCALING LPW (. Wby, PRL 138¢)

(planav rouvaes)
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(Gxample: Lambevham sou\rces)
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Effects of coherence in radiometry

Ari T. Friberg*

University of Rochester
The Institute of Optics
Rochester, New York 14627

Abstract. Radiometry evolved over a long period of time around rather in-
coherent sources of thermal nature. Only during the last few years have
the effects of coherence begun to be taken into account in radiometric
considerations of light sources. In this review article the fundamental
concepts of conventional radiometry and of the theory of partiai
coherence will be first briefly recalled. The basic radiometric quantities,
namely the radiance, the radiant emittance, and the radiant intensity,
associated with a planar source of any state of coherence will then be in-
troduced. It wili be pointed out that the radiant intensity, representing
the primary measurable quantity, obeys in all circumstances the usual
postulates of conventional radiometry, whereas the radiance and the ra-
diant emittance turn out to be much more elusive concepts. The
radiometric characteristics of light from incoherent and coherent
sources as well as from a certain type of partially coherent source, viz.,
the so-called gquasihomogeneous source, will be analyzed.
Quasihomogeneous sources are useful models for radiation sources
that are usually found in nature. Lambertian sources will be discussed
as examples.
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1. INTRODUCTION

Radiometry, being one of the oldest branches of optics, has
undergone extensive development and refinement over a period of
several hundreds of years. The earliest notions of radiometry
originated in the studies of Bouguer and Lambert, who in the eigh-
teenth century formulated some empirical laws of optics.!
Radiometry was subsequently developed in connection with the in-
vestigation of energy transfer by heat radiation. Notable contribu-
tions are especially the introduction of the concept of blackbody by
Kirchhoff and Stewart and the discovery, in 1900, of the spectral
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distribution of blackbody radiation by Planck.? In its conventional
form radiometry appears to have been systematized around this
time, the turn of the twentieth century.

Conventional radiometry describes the transfer of radiant energy
on a phenomenological basis involving intuitive notions such as
tubes of light rays. In that form it has been applied to a wide variety
of problems both in physics and in engineering. Yet it does not
seem to be generally realized that the fundamental concepts and
laws of conventional radiometry have never been derived from the
presently accepted basic theories of light. Only relatively recently
the accuracy and the range of validity of conventional radiomerry
have come under closer examination.

It is sometimes asserted that conventional radiometry describes,
in some unspecified approximation, light fields generated by in-
coherent sources and that incoherent sources are Lambertian. Ex-
perimental evidence indicates that light sources under thermal
equilibrium conditions, such as blackbody sources, radiate in ac-
cordance with Lambert’s law. This fact would imply that
blackbody radiation sources are incoherent, an assertion which is in
disagreement with recent researches in coherence theory.
Moreover, even the fields emitted by incoherent sources do not re-
main incoherent but instead, according to the famous van Cittert-
Zernike theorem, gain coherence by the mere process of propaga-
tion. This results in a great variety of radiation patterns that can be
found in nature but cannot be expiained on the basis of conven-
tional radiometry with incoherent sources. The above observations
serve 1o illustrate the connection that must exist between the
radiometric and the coherence properties of a light source.

The first attempt to incorporate the coherence properties of a
light source into its radiometric description was made by Walther?
in 1968. Considering a planar source of any state of coherence, he
constructed a function that possesses several of the properties nor-
mally attributed te the radiance in conventional radiometry. This
paper has becorne the cornerstone of virtually all of the subsequent
research on the refationship between the radiometric properties of a
source and its coherence properties. Other major contributions in-
clude an investigation by Marchand and Wolf* generalizing the

OPTICAL ENGINEERING / September/Cctober 1982 / Vol. 21 No. 5 / 927



FRIBERG

Fig. 1. A planar source o occupying a portion of the plane z = 0
and radiating into the half space z > 0.

Fig. 2. Illustration of the notation relating to the traditional defini-
tion of radiance.

basic concepts of conventional radiometry to fields generated by
any steady-state pilanar source (including fully coherent sources
such as lasers), and a study by Carter and Wolf* on the coherence
properties of Lambertian as well as non-Lambertian sources. Of
great importance also is a recent investigation by Carter and Wolf,8
in which they introduce and study a model that can be used to
represent true natural radiation sources.

In the present article we will review some of the more important
effects that recent research on radiometry with partially coherent
light has revealed. In order to bring out the essence of these
phenomena, we will make a number of simplifying assumptions.
First of all, the quantum nature of light will be entirely ignored. We
will also neglect all polarization effects and hence take the light
field to be represented by a (fluctuating) complex scalar function.
Furthermore, we will consider only fields generated by two-
dimensional {planar) radiation sources.

. SOME FUNDAMENTAL CONCEPTS

Before discussing in some detail the major effects that the
coherence properties of a light source have on its radiometric
characteristics, it will be convenient first to recall briefly the basic
concepts and laws of conventional radiometry and of classical
theory of partial coherence.

2.1. Conventional radiometry

[n this article we are mainly concerned with the light energy emerg-
ing into the half space z>0 from a planar source o located in the
plane z = 0 (Fig. 1). The central quantity in the traditional
radiometric description of such a source is the radiance (also
known as the brightness or the specific intensity). It is defined in
the following way’: Let d, represent the power, per unit frequen-
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cy interval centered at frequency w, radiated by a source element do
surrounding a point P into a solid angle dQ around a direction
specified by a unit vector s (Fig. 2). Then, the formula

dé_ = B _(r,s)cosfdlldo, (n

where 1 denotes the position vector of the source point P and ¢ is
the angle between the s direction and the normat n to the source,
defines the radiance B_(r,s) at frequency w, at the point P(r), in the
s direction. The radiance B_(r,s), which is simultaneously a func-
tion of both position and direction, thus represents the power (at
frequency w) radiated by the source per unit solid angle and per unit
projected source area, the projection being onto a plane perpen-
dicular to the § direction.

The fundamental relationship expressed by Eq. (1) can be used to
obtain expressions for the other radiometric quantities. The radiant
emittance, denoted by E _{r), is defined as the power (at frequency
w) radiated by the source per unit area around the point P(r). In
view of Eq. (1), it may be written as

E, () = f 2y BulDc0502 @

where the integration extends over the 2x solid angle formed by ail
the possible s directions. The radiant intensity, denoted by J (s), is
defined, on the other hand, as the power (at frequency w} radlatcd
by the source per unit solid angle around the s direction. Using Eq.
(1}, it can be expressed in terms of the radiance as

J(s) = cosb f B (r.sMo, 3)
a

where the integration extends over the source area o. If the source is
of infinite extent, the integration is to be carried over the entire
source plane.

It is obvious from the definitions of the radiant emittance and
the radiant intensity that the total power (at frequency w) radiated
by the source o into the half space z> 0, denoted by ®_, is obtained
from either one of the following two formulas:

E (rdo = J {s)dQ . “
fa W(D ? f(Zr) u(i) @

In terms of the radiance B (r,s), an expression for the total power
¢, would, of course, anOT\,IE a double integration over the source
area ¢ and over the solid angle 2x.

The three basic radiometric quantities defined above, namely,
the radiance B_(r,s), the radiant emittance E_(r), and the radiant
intensity T (s), have certain characteristic propertles by virtue of
their physm:ﬂ significance. In particular, they are always non-
negative for all possible values of their arguments. Moreover,
B (r s) and E () assume a zero value whenever the vector ¢
represems a pomt located in the source plane outside the source
area g (if the source is of finite extent). To these properties we must
add still a further requirement on the radiance B (r,3) in the half
space z>>0. For this purpose we first need to generahze slightly the
definition (Eq. (1)) of B_{r,s), where we assumed that the point P{(r)
is located in the source plane z = 0. We will now allow the vector t
1o represent a point in any plane z = z, with z; = 0. Hence, Eq. th
then defines the radiance B (r,s)ata p01m P(r)in the plane z = z,.
The unit vector s specnﬁes a direction towards z>z,. The
dependence of B_(r,s) on z is left implicit for simplicity. It is nor-
mally assumed in conventional radiometry that the radiance

B_(£,5), with 5 fixed, remains constant along the line through the
poml P(r} in the direction of the fixed s vector. With the above
generalrzed notation, this requirement may be expressed as?

— B (r,5) =0, (3)
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where d/ds denotes the directional derivative with respect to the
spatial vartables (r and implicit z) in the s direction. Equation (5) is
known as the equation of radiative transfer in {ree space. It ex-
presses the notion, lantamount to conventional radiometry, that in
free space energy is propagated along straight lines.

To conclude this brief review we wish to emphasize four aspects
of traditional radiometry which are evident from the above discus-
sion. First, the radiance, the radiant emittance, and the radiant in-
tensity are conventionaily defined at a single temporal frequency of
the optical field. Second, the three radiometric quantities are
regarded as measurable in principle. Third, a simple additive super-
position of energy from the various parts of the source is assumed
to hold. And fourth, any effects due to diffraction are neglected,
As we will see shortly, most of these presumptions of conventional
radiometry have to be relaxed when considering partially coherent
fields with diffraction and interference taking place.

2.2. Theory of partial coherence

A proper accounting for the diffraction and interference of light re-
quires the introduction of the notion of coherence of the light field.
This concept is closely related to the more or less irregular fluctua-
tions that every practical optical field undergoes. In general, the
fluctuations are much too rapid to be directly measurable by means
of the usual types of detectors. However, it is often the correlations
between the fluctuations rather than the fluctuations themselves
which are of principal physical importance.

Let us therefore briefly discuss how the correlations of the fluc-
tuations may be mathematically represented in a form suitable for
our present purposes. 1t will be sufficient to consider only correla-
tions up to the second order in the optical field variable, Let V(r,t}
be the complex analytic signal® that represents the optical field at a
point P specified by the vector I, at a time instant t. For simplicity
V(£,1) is taken to be a scalar, We assume aiso that the field V(r,t)is
statistically stationary in time. For such fields the most common
quantity in the analysis of coherence effects is the so-called mutual
coherence function. It is normally defined in terms of a long time
average (Ref. 7, Sec. 10.3.1). In recent years it has become
customary, however, to define the mutual coherence function in a
more general manner by means of an average over a suitable ensem-
ble of realizations characterizing the statistical properties of the
field ¥(r,t). If the field is not only stationary but also ergodic, then
such an ensemble averaging yvields the same result as the time
averaging. Since most optical fields of practical interest are sta-
tionary and ergodic, we will consider only such fields from now on.
We may then define the mutual coherence function by the formula

L(r.rym) = <Vt + Vi > (6)

where the brackets denote either the time average or the ensemble
average and the asterisk denotes the complex conjugate. Despite
the appearance of the variable t on the right-hand side of Eq. (6),
I'(r;,r5:7) is independent of t because of the assumed stationarity.
The mutual coherence function ['(r),r;;7) characterizes the second-
order field correlations at the points specified by the vectors I, and
Ty, at instants of time separated by r.

The transfer of radiant energy from partially coherent sources is,
however, more naturally described in the space-frequency rather
than the space-time domain. This circumstance is a consequence of
the fact that the different temporal frequency components of a
statistically stationary field are uncorrelated. To obtain a measure
of the optical field correlations in the space-frequency domain, we
recall first that the cross-spectral density function (also known as
the cross-power spectrum), denoted by W(r,,r,;w), and the mutual
coherence function [(r,,r.;7) are related by the formula

o
w(rprz;h’) = —l f F(I’I,FZ;T)eledT . (M)
- 2r oo -

The Fourier transform relationship expressed by Eq. (7 is, of
course, an optical analog of the well-known Wiener-Khintchine
theorem for stationary random processes. The cross-spectral den-
sity function W(r,,r,iw) characterizes the correlations of the Optical
field at frequency w, at the two points P(E,) and P(r,). Further
properties of W(r,,r,;w) are discussed in a paper by Mandel and
Wolf. 0

In terms of the cross-spectral density function Wi{r,.ryw), one
may define the quantity'®

Wi ryiw)
wlry Iyaw) = , (8)
[(r),0) 1(rp0)] 2
where
Ir.w) = W(r.rw) 6]

represents the averaged optical intensity at frequency w, at the
point P(r). [t can be shown that #(r,.ry;w) is normalized so that for
all values of r,, 15, and w

0= |urpryw) 21, (10)

The quantity p{r,,r,;w), defined by Eq. (8), is called the complex
degree of spatial coherence of the light fluctuations at frequency w,
at the points P(r,) and P(r,). The limiting values | and 0 in Eq. (1()
indicate that the light fluctuations at frequency w at the points P(r))
and P(r,) are compietely correlated or uncorrelated, respectively, If
falry,I5w)| = 1 for all values of r, and I, then the optical field (at
frequency w) is said to be completely spatially coherent. On the
other hand if |a(r,,r5;w)| = 0 for all Iy # I, then the optical field
(at frequency w) is said to be completely spatially incoherent. These
limiting cases should be regarded only as convenient mathematical
idealizations rather than real physical conditions actually observed
in nature. No practical optical field can be spatially incoherent in
the sense defined above. A more realistic model for spatial in-
coherence will be introduced later.

3. RADIOMETRY WITH PLANAR SOURCES OF ANY
STATE OF COHERENCE

In this section we will first obtain expressions for the basic
radiometric quantities [cf. Eqs. (1)-(3)] associated with a planar
source of arbitrary state of coherence, located in the plane z = 0.
The source can be either a true primary source or a secondary one,
such as an optical image for example.'!"'2 In either case, there will
be some field distribution across the plane z = 0. This distribution,
occupying an area o (which may be infinite), is what in the follow-
ing will be referred to as the source ¢ (Fig. 1). It gives rise, by the
process of optical wave propagation, to the field distribution in the
half space z > 0. The state of coherence of the source is specified in
terms of the cross-spectral density function W(m(rl,rz;u), where 1,
and r, are the position vectors of two typical points in the plane z =
0 (indicated by the superscript 0}, and « denotes the temporal fre-
quency under consideration. The resulting formulas for the
radiometric quantities are consequently expressed in terms of the
function W®(r, r.-w). Some features of these radiometric expres-
sions associated with a partially coherent source will be discussed
and contrasted with the corresponding properties postulated in
conventional radiometry.

3.1. Expressions for radiometric quantities

In order to determine the radiometric quantities associated with a
partially coherent planar source, we need to consider the energy
flow in the far zone of the source. This situation is a consequence
of the fact that only sufficiently far away from the source can the
behavior of the energy flow be unambiguously described. Let us
denote by F(r,w) the energy flow vector associated with the optical
field at the point P(r). Then it can be shown that in the far zone of
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Fig. 3. Energy flow in the tar zone of the source.

the source Fir,w) always points radially outwards from the source
and that it is proportional to the optical intensity.!? Hence, in a
suitable system of units,

F®)rs,0) = 1=)rs,w)s, ()

where s is a three-dimensional unit vector pointing to the point P(r)
(i.e.,5 = r/rwithr = [r]), and the superscript oo indicates that the
quantity has been evaluated in the far zone of the source (i.e., as
kr — = withk = w/c, ¢ being the speed of light in free space) (Fig.
J). The quantity § « E‘”)(r;,u) represents the rate per unit area,
located in the direction specified by the unit vector s, at which
energy traverses a surface element dS on a large sphere of radius r
centered at the origin. If we let dQ denote the solid angle that d5
subtends at the origin, then, in view of the relation

ds = ridg, (12)

the radiant intensity J_(s) and the far-field flux vector F(®)(rs,w)
are clearly related by the formula

1) = r’s « F®)(rs,w) . (13
On substituting from Eq. (11), we obtain
J 8 = ril(®Xrs,w) . (14)

The right-hand side of Eq. (14) is to be considered in the limit kr —
e, and hence it is independent of r.

The next task is to express the far-zone optical intensity
I(®Xr5,0) in terms of the cross-spectral density function
W"”(LI \I3:w) across the source. This can be accomplished by first
considering the propagation of the cross-spectral density function
into the far zone and then using Eq. (9) to find the optical intensity.
The cross-spectral density function is known to obey a pair of
Helmholtz equations in free space. Using standard mathematical
techniques, such as Green’s functions or the angular spectrum
method, one can show that'*

1= )rs,0) = {2nk)kcosf Lz WO ks | ,-ks | sw) (15)
r

where W(OXF f,iw) is the four-dimensional spatial Fourier

transform of WOXr, r);w), defined by

1 =] Q0
f _f WO 1y}
-

WO, fyiw) =
B 2! Y

. e‘i(ﬁ o+ f '.r.’-)dzrlerl' (16)

In Eq. (15), # is the angle between the s direction and the normal to
the source (i.e., the positive 2 axis), and 5 | is the two-dimensional

930 / OPTICAL ENGINEERING / September/Qctober 1982 / Vol. 21 No. 5

vector obtained by projecting the unit vector s onto the source
plane z = 0. )

On substituting from Eq. (15) into Eg. {14), we find the follow-
ing important expression for the radiant intensity*!3;

1 (s) = (2xk)%cos?8W ks | ks | iw). (17)

The formuia (17), in its various forms, forms the basis for the
discussion of radiation from partially coherent sources. 1t also
represents the starting point in an effort to define the radiance and
the radiant emittance associated with a partially coherent planar
source. This can be seen more clearly if Eq. (17} is first rewritten,
with the help of Eq. (16), in the form

2 @ oo
k ) .
] =L\ cos¥ WO 150)
o2 ( 2r ) [oo f—co ==

vo kS Wy g2, (18)
Then, introducing the difference and average coordinates
T R SRS (19)

as new integration variables, the expression (18) for the radiant in-
tensity becomes

k \?2 Sl I 1
J &) = {— cos’9 f I wi(r + o r-— ')
= z'l' —go  _ 2 2

colkE e (20)

The integration is to be taken twice independently over the entire
source plane, once with respect tor’ and a second time with respect
tor. )

Comparison of Eqs. (3) and (20) suggests that the rqdlance
B (r.5) associated with a partially coherent planar source might be
given by

k \? b 1
Bw(r.s) = I COSO! W(O)(E + - _l:, :[ -
- 2r —oa 2

. e—ik§L “Uaze (21

This expression for the radiance was first introduced by Wz-ilthq:r3 in
1968. The radiant emittance E (r), obtained by substituting from
Eq. (21) into Eq. (2}, can then be written as?

E () =I ® W + —l-g' ,5--'—;’ WK, (e)dr (E¥3)
W o —_ 2 2
where
k 2 5, -iks s’
== - = =da. (23}
K, i) ( - ) f(zw)cos e

The integration in Eq. (23) may be carried out to yield*

@ k)

37 (krf).'i/.?,

K () = 24




EFFECTS OF COHERENCE IN RADIOMETRY

where 1' = 1’ and },,(x) is the Bessel function of the first kind
and order 3/2. it can be represented in terms of trigonometric func-
tions as

2 Sinx -cosx | . (25)

J39x) =

L8

We have thus established expressions for the basic radiometric
quantities associated with a planar source of any arbitrary state of
coherence. The radiance B_(r,s) is given by Eq. (21), the radiant
emittance E (r) by Eq. (22) and the radiant intensity J 5 by Eq.
(20). The coherence propertics of the source are embodled into the
cross-spectral density function W‘O’(rl,rz,w) entering each of these
expressions. -

3.2. Properties of radiometric quantities

Equations (20)-(22) appear at first sight as the complete solution to
the problem of specifying the basic radiometric guantities
associated with partially coherent planar sources. Closer examina-
tion reveals, however, that some problems still remain concerning
this radiometric description. It has been shown? that both the ra-
diance B_(r,s) and the radiant emittance E w0 occasionally assume
negative vélues and that they do not necessarlly always vanish out-
side the source area ¢ in the source plane. Moreover, there is no
reason io expect that the radiance B (r,s} would, under all cir-
cumstances, obey the equation (5) of radiatwe transfer in the half
space z > O [¢f. Ref. 3, Sec. III). For these reasons the radiance
B,(r,s) and the radiant emittance E_(r), given by Eqs. (21) and {22)
respecnvely, cannot strictly spcakmg be regarded as true measures
of energy flow in the traditional sense. The radiant intensity J_(s),
given by Eq. (20), on the other hand always correctly represents ﬂ’xe
power per unit solid angle as in conventional radiometry.

Another problem associated with the radiance B (T,8) is that the
procedure by which it was derived above does not spec1fy it unique-
ly. It is easy to find other nonequivalent expressions for the ra-
diance such that, when substituted into Eq. {3) with the integration
extending over the whole source plane (rather than just over the
source area ¢), they would lead to the correct expression (20} for the
radiant intensity J_(s). One such expression was actually proposed
by Walther!* in 1973 Its derivation was originally based on a local
energy balance argument involving an energy flux vector F(r,w)
associated with the optical field. It was later rederived'® in an in-
teresting way by means of a set of constraints posed on the radiance
B, (r,5). However, because of the inherent ambiguity of an energy
flux vector in the near field of a source, that expression cannot be
regarded as any more correct than the expression in Eq. (21). It
does not possess all the features of the radiance in conventional
radiometry. In particular, it too can occasionally take on negative
values.'”

In view of the fact that there are several possible definitions for
the radiance function associated with a partially coherent planar
source, one cannot avoid asking the following question: is it possi-
ble to find amongst all these definitions one that would satisfy all
the requirements normally postulated for the radiance in conven-
tional radiometry? !t has been shown by Friberg!'8:!% that no such
definition, assumed to be linear in the source cross-spectral density
function, can be given with sources of all states of coherence. This
resuit has its root in the fact that the radiance B i s) is
simultaneously a function of both r and s, which are essentlally
Fourier conjugate variables of each other. In analogy with the prin-
ciples of quantumm mechanics, this result also suggests that the ra-
diance no longer can be regarded as a measurable quantity.'8.20 I
fact, the basic measurable quaniity associated with radiation from
parlially coherent sources is the distribution of the radiant intensity

I (5).

“In spite of the above somewhat disconcerting comments made
about the radiance and the radiant emittance associated with a par-
ttally coherent source, they can nevertheless be used successfully in

calculating values of truly measurable quantities. As we shall see
later, in most practical cases they behave much in the same way as
the radiance and the radiant emittance in conventional radiometry
and provide a great deal of insight into the manner in which energy
is radiated by partially coherent sources.

4. LIMITING CASES OF COHERENCE

As special cases of the general formulas (20)-(22) for the
radiometric guantities, fet us consider the two limiting cases when
the planar source is either completely spatially incoherent or com-
pletely spatially coherent. Even though these two limits must be
regarded as pure mathematical idealizations, they nonetheless pro-
vide useful information about the properties of several types of
sources. A more realistic model representing a true natural source
will be discussed in the next section.

4.1. Incoherent sources

In an earlier section we already encountered a definition of spatial
incoherence in terms of the cross-spectral density function. For
most practical purposes it is, however, more convenient to repre-
sent the cross-spectral density function of a completely spatially in-
coherent source in the form [Ref. 9, Sec. 4.4]

Wy riw) = i@y (26)
where 6(r") is the two-dimensional Dirac delta function, and
i%(r,w) 2 0 with i¥(r,w) = 0 for points located outside the source
area . The quanuty?m(r w) may be loosely identified with the op-
tical intensity distribution across the source.

Because of the delta function appearing in Eq. (26), some of the
integrations in the expressions for the radiometric quantities can
now be readily carried out. On substituting from Eqg. (26) into Eqs.
(21}, {22}, and (20}, we find for the radiance, the radiant emittance,
and the radiant intensity, respectively,*

2
B (r.s) = (L) cosd i'0r,wy , (27)
- 2x -
E i =— i), (28)
- 1.4 -
and
k 2
1,6 = (?) cosf f ; iOr,w)do - (29)

In Eq. (29} we have used the fact that i')(r,w} is assumed to vanish
outside the source area o. It is observed from Eqs. {27) and (28) that
for a spaually completely incoherent planar source the radiance and
the radiant emitiance are non-negative quantities and, moreover,
that they assume zero values in the source plane outside the source
area o, These results indicate that in the limit of spatial incoherence
there is no disagreement with conventional radiometry (except that
the equation of radiative transfer may not be rigorously satisfied in
the field generated by an incoherent source).

Another interesting feature is seen from Eq. (29). Denoting the
radiant intensity in the forward direction (i.e., in the direction with

= 0byJ, o Eq. (29) may be rewritten as

Js) =3, sc0s8 . (30

This shows that the radiant intensity from a compietely spatially in-
coherent source decreases, regardless of its optical intensity
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distribution, in proportion to cos and not to cosé as is typical of a
Lambertian source.2! In view of this result, a blackbody radiation
source, whose radiant intensity distribution is well known to follow
a cosfl law, must possess some degree of spatial coherence. Recent
researches have shown, indeed, that a blackbody source exhibits
field correlations over distances of the order of the mean
wavelength of the radiation.

4.2. Coherent sources

In the idealized case when the source is completely spatially
coherent, its cross-spectral density function may be factored in the
form?22

WO rw) = v WO (r,w) . (30

Here v%r w) may be identified as the optical field distribution
across the source. Naturally, v*®(r,w) vanishes whenever &
represents a point outside the source area o.

With the cross-spectral density function of the source being
represented by Eq. (31), the radiance, the radiant emittance, and
the radiant intensity, given by Egs. (21), (22), and (20) respectively,
may be written as?*

Kk 2 o 1 .
Burs) = (?) cosd j: . v + 5 L)

1

kg, e

« vO(r - S I we dxr, (32)
_ k! ) 1, o 1,
E ) = vOr + — (- — 1 w)
r2r - - 2 T2
Iy, 2(kr)
LA (33
(krf)3/2
and
1,08) = @xi)%eos™® [VO(ks | )2, (34)

where VO(f,w) is the two-dimensional spatial Fourier transform of
V(O)(l"'")' defined by

1 o :
p = f viO(r,w)eif-rg?r (35)
- 2} I -
The best way to illustrate the predictions of Egs. (32)-(34) is to con-
sider a simple example.
Example. Let us consider a cophasal planar source with Gaussian
optical intensity distribution

-2/ 2g2
10r,) = 15T T, (36)

where 1, and o) are positive parameters (Fig. 4). The optical field
distribution across the source can then be written as

r? 2
VO oy = VI_e T4 37)

o}
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Fig. 4. Gaussian distribution of optical intensity.
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Fig. 5. Angular distribution of the normalized radiance associated
with a fully coherent and cophasal planar source with Gaussian op-
tical intensity distribution.

The waist of a fully coherent laser beam, for example, is a practical
realization of the type of source represented by Eq. (37).

On substituting from Eq. (37) into Eq. (32}, we find for the ra-
diance

-2k )sing

Bw(l"i) = Bw'o(_r_)cosﬂe . (38)
where
B o) = = (koH(r,w) . (39)

1n deriving Eq. (38) we made use of the identity s_:"L = sin’g. The
radiance at any given source point is seen to be proportional to the
optical intensity at that point, The graphs in Fig. 5, calculated from
Eq. (38), illustrate the dependence of the radiance B (r,s) on the
angle # for several values of the parameter ko. T

On substituting from Eq. (37) into Egs. (35) and {34), the radiant
intensity is readily found to be

. - 25ing
I (8) = 1, ccosfe keiaint {40)
where
Joo= (ko)1 . (a1
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Fig. 6. Polar diagram of the normaiized radiant intensity from a
fully coherent and cophasal planar source with Gaussian optical
intensity distribution.

Figure 6 iliustrates, in the form of polar diagrams, the dependence
of the radiant intensity .Iw(_s_) on the angie # for several values of koy.
These graphs, computed according to Eq. (40), differ from the
graphs in Fig. 5 by a multiplicative factor of cosf. With a suitable
value for ko, Eq. (40) represents the radiant intensity generated by
a fuily coherent laser operating in its lowest transverse mode. For
typical lasers ke, » 1, and thus the radiant intensity distribution
is highly directional, centered in the forward direction. One may
then approximate cosf = 1 and sind = §, For instance, for a He-Ne
laser with A = 6328A and o, = 1 mm, the parameter ko, =
0.99.10%, and the radiant intensity J (s} drops to e'2 times its value
in the forward direction when # = [.01+10% radians.

The radiant emittance E_(r) associated with the fully coherent
and cophasal planar source with Gaussian intensity distribution can
be obtained by substituting Eq. (37) into Eq. (33). After some
algebra, the result is found to be

E ) = [ 1- F—;al 1%r,w), (42)
where
a =2 (ke)), (43)
and

a
F(a) = e’ f e dy . (44)

Q

The quantity F(a}, defined by Eq. (44), is the so-cailed Dawson in-
tegral whose values can be found tabulated in the literature.?® The
radiant emittance is seen to be proportional to the distribution of
the optical intensity across the source.

In an effort to describe the radiation characteristics of a source,
it will be convenient to let

ao
No= f 7 19w (45)
—o0 -

denote the integrated optical intensity across the source. Then the
ratio

Co=®,/N,. (46)

.
1.0

Q.75

050

.25
e B ey e

Fig. 7. Radiation efficiency of a fully coherant and cophasal planar
source with Gaussian optical intensity distribution,

where & is the total radiated power given by Eq. (4), may be called
the radiation efficiency of the source at frequency w. It can be
shown that regardless of the state of coherence of the source, the
radiation efficiency satisfies the inequality

05C,Z1. (47)

The radiation efficiency C,_ may be smaller than unity for two
reasons: first, a substantial amount of the radiation may be con-
verted into evanescent waves which do not carry energy into the far
zone. And second, the source may be only partially spatially
coherent.

The radiation efficiency C,, of the fully coherent and cophasal
planar source with Gaussian optical intensity distribution (Eq. (36))
is seen from Eqgs. (46), (45), and (42) to be

] F[V2 (ko))
V2 (kap)

(48)

3

where F(a) is the Dawson integral defined by Eq. (44). Figure 7 il-
lustrates the dependence of C, on the parameter ka,. Since the
source under consideration is completely spatially coherent, the less
than perfect radiation efficiency is entirely due to the evanescent
waves. However, for a typical laser source C, = I, as is evident
from Fig. 7. Later we shall encounter sources where the loss of
radiation efficiency is due to the imperfect coherence properties.
One such example will be the class of the so-called quasihomo-
geneous sources discussed in the next section. In fact, in that case
the loss due to the evanescent waves is entirely negligible when com-
pared to the loss caused by partial spatial coherence.

Let us finally briefly examine the limiting case as ko — o. In
this limit Eqs. (38), (40), (42), and (48) reduce to

B (r,s) 1 (s) 1, 8 =10,
Lk S (49)
B, .olt) tuo 0, § =0,
E (1) — %W, (50)
and
C - 1. (51}

w

It is apparent that in this limit the source approaches a
homogeneous plane wave, giving rise to a perfect unidirectional
light beam undergoing no diffraction at all.
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Fig. 8. Schematic illustration of the intensity and coherence varia-
tions across a quasihomogensous source.

5. RADIOMETRY WITH QUASIHOMOGENEQUS
PLANAR SOURCES

A guasihomogenecus planar source is characterized by a cross-
spectral density function of the form®

WO i) = 1O [—;(:t + _"z)-w] 8Oty - 130), (52)

where 10%r,w) regrmms the optical intensity distribution across
the source, and uf ’(r ;w) is the complex degree of spatlal coherence
[cf. Eq. {8)], assumed to depend only on the difference r’ =1,-T;
It is assumed that the intensity distribution I Xr,w) varies with ¢
much more slowly than the complex degree of spatial coherence
#O%r’ ,w) varies with r’ (Fig. 8). Furthermore, it is assumed that the
linear dimensions of the source are large compared with the
wavelength of the light and that |4 )| is substantially dif-
ferent from zero only within an r’ domain that is small compared
to the size of the source. The quasihomogeneous model, unlike the
strictly homogeneous one, can be used to represent radiation
sources of finite size frequently encountered in practice.
The radiometric quantities associated with a quasihomogeneous
planar source can be readily found by substituting from Eq. (52) in-
to the general expressions (20)-(22). The resuits are®

2 on : .
B(r.s) = (L) costlr0) [ a0 0y €™ g
-0

2x

(53)

Q0
B0 = 1% O wiK @k, (54)

-

and
20520710 ® o kg et

J(s) = koI (U,w)f a0 e g (s5)

-0

where K _(r’) is given by Eq. (24), and"‘o’(o w) is the value, at the
origin f =0, of the two-dimensional spatial Fourier transform of
the source intensity distribution, defined by

Ty - 1 ® 0 -ifer
10%(f,0) = f 10%r,w)e =~ d2r. (56)
(27)2 -0 -

It is seen from Eq. (53) that the radiance B_(r,5) is proportional
to the optical intensity 1%r,«w) and to the two-dimensional spatiai
Fourier transform of the complex degree of spatial coherence

(0)(,- w) of the light across the source. Because x(¥%r w) is a non-
negative definite quantity,'® its Fourier transform is always non-
negative by the classic theorem of Bochner.?* Hence, the radiance
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B (r.s) associated with a quasihomogeneous planar source is a non-
negaﬁve quanuly that vanishes outside the source area. Moreover,
it can be shown?* that the radiance B (T s). given by Eq. (53), re-
mains essentially constant along any given s direction over a
distance f that satisfies the conditicn

3
P ( ch’m k A 7
sing ] p——

Here 8 is the angle that the s direction makes with the positive z
axis, k = 2x/h, and |f|,,, i5, roughly speaking, the magnitude of
the largest spatial frequencies of the source intensity distribution
[cf. Eq. (56)]. Since the optical intensity across a
quasihomogeneous source varies very little over distances of the
order of wavelength, the ratio k/|f| .5, is large compared to unity.
Consequently, the radiance associated with a quasihomogencous
source satisfies the equation (5) of radiative transfer to a good ap-
proximationn. In the limits as the source approaches a strictly
homogeneous source or the angle § — 0, the upper bound for ¢ set
by Eq. (57) approaches mﬁmty. indicating that in thesc cases the
equation of radiative transfer is rigorously obeyed.?
Comparing the expression (54) for the radiant emittance E (_5)

the definition (46) of the radiation efficiency C_, one sees that®2

E (0 = C 1O w), (58)
where
o
C, = J‘ KO WK . {59)
-0

Hence, the radiant emittance E (1) associated with a
quasihomogeneous planar source is proport:ona] to the source in-
tensity distribution, with the proportionality factor being deter-
mined by the complex degree of spatial coherence uP(r’ w). In
view of Eq. (47), the radiant emittance E (1) never exceeds the
value of the optical mtensnty 10(r,).

An interesting result® is readily seen from Eq. (55): the angular
distribution of the radiant intensity J (s} is proportional to the two-
dimensional spatial Fourier transform of the complex degree of
spatial coherence of the light across the source and to the square of
the cosine of the angle that the s direction makes with the positive z
axis. Thus, the coherence properties of a quasihomogeneous source
completely determine the angular distribution of the radiant inten-
sity generated by the source. This important result is cne part of a
remarkable reciprocity theorem,% the other part of which asserts
that the complex degree of spatial coherence of the light in the far
zone of a quasihomogeneous source is, apart from a simple
geometrical factor, equal to the normalized spatial Fourier
transform of the optical intensity across the source. This second
part of the theorem can be regarded as a generalization of the
famous van Cittert-Zernike theorem to quasihcmogeneous pianar
SOurces.

5.1. Examples of quasihomogeneous planar sources

We will illustrate the general expressions (53)-(55) of the
radiometric quantities pertaining to quasihomogeneous planar
sources by several examples.

5.1.1. Gaussian correlated source

Let us assume that the complex degree of spatial coherence of the
tight in the source plane is given by

w7 w) = RS 60
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Fig. 9. Angular distribution of the normalized radiance from =
Gaussian cormrelated quasihomogeneous planar source.

where g is a positive parameter. The exact form of the optical in-
tensity distribution [%%(r,w) across the source is of no consequence
as long as it meets the requirements stated at the beginning of this
section, On substituting from Eq. (60} into Eq. (53), we find for the
radiance

L (ko,)Zsin2

B, (1.8} = B, o(r)cosfe , 61)
where
a#)2
B, 4D = 1O} . : (62)
e 2x

The graphs in Fig. 9, computed from Eq. (61), illustrate the
dependence of B_(r,s) on the angle § for several values of the
parameter ko,,. It 1s observed that the larger the effective coherence
area of the source is, the more directional the radiance B (r,s)
becomes. The broken line corresponds to a Lambertian source,
Sul:gtzi?tution from Eq. (60) into Eq. (55) yields for the radiant inten-
sity®

- L koysine
2
1,(5) = I, jcos™e . (63)
where
Jyo = 22(ko YTO0,0) . (64)

Here, T(0,w) is given by Eq. (56) with f = 0. Figure 10 illustrates,
in the form of polar diagrams calculated according to Eq. (63), the
distribution of the radiant intensity J.(s) as a function of the angle
8 for several values of ko, . It is evident from these graphs that there
is a profound modification in the directionality of the radiant in-
tensity when the correlation distance ¢_ is increased from zero to a
value of about a wavelength.Z’ The broken line corresponding to
the radiant intensity from a Lambertian source is included for cotn-
parison.

The radiation efficiency of a Gaussian correlated quasihomo-
geneous planar source is found by substituting from Eq. (60) into
Eq. (59). The result is®

Flka,/V2

, (65)
ke, /V2

lambertian ~_ ~ —~ — 30°

Fig. 10. Polar dlagram of the normatized radiant intensity from a
Gaussian comelated quasihomogeneous planar source [after
Carter and Wolt#8].

where F(a) is the Dawson integral defined by Eq. {44). The radia-
tion efficiency C_, calculated from Eq. (65), is presented in Fig. 11
as a function of kcr#. It is seen to increase monotonically from a
value zero, when ka“ = 0 (incoherent source), to its maximum
value unity, when kau = oo (coherent source). Hence, the loss in
radiation efficiency is due to imperfect spatial coherence properties
of the light across the source.

3.1.2. Blackbody source

Consider an opening of area A made into one of the walls of a cav-
ity inside which optical radiation is at thermal equilibrium. We
assume that the linear ‘dimensions of the opening are large com-
pared to the mean wavelength of the radiation field. The opening
can be regarded as a planar source within which the optical inten-
sity (at frequency w) is a constant, denoted by I, o> and the com-
plex degree of spatial coherence is3 ’

sinkr’ ‘
WO ) = ot (66)
ty

where 1 = {r"|. For such a source, which is a special case of the
so-cailed Bessel correlated sources,?® Eqs. (53) and (55) yield for the
radiance and the radiant intensity

B,rs) = — I, ., (67
03 = 5o

and

Tu® = 21, jcoss, (68)
D= o e,

respectively. The radiation efficiency is found? to be C, = 12
Equations (67) and (68) show that the radiance is a constant within
the source area and that the radiant intensity follows a cosd law.
Both these features are characteristic of a Lambertian source. This
result them indicates that a Lambertian source is not completely
spatially incoherent but exhibits, according to Eq. (66), field cor-
relations over distances of the order of the wavelength of the light.

6. SUMMARY AND DISCUSSION
In this article we have reviewed some of the more important
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Fig. 11. Radiation efliclency of a Gaussian correlated
quasihomogeneous planar source [after Carter and Wolt$).

features of radiation emanating from planar sources of any
prescribed state of coherence. It is evident from the discussion that
the coherence properties of a source play an essential role in deter-
mining its radiation characteristics. When comparing radiometry of
partially coherent light with conventional radiometry, it is observed
that in both cases energy transfer is naturally treated frequency by
frequency. However, many other aspects of conventional
radiometry cannot directly be taken over into the generalized
radiometry. In particular, the radiance and the radiant emittance
can no longer be considered as measurable quantities with their in-
tuitive physical interpretations postulated in conventional
radiometry, The primary measurable quantity associated with
radiation from partially coherent sources is the angular distribution
of the radiant intensity.

We have discussed the radiometric description of planar sources
of any state of coherence and analyzed in some detail the limiting
cases of spatially completely incoherent and spatially completely
coherent sources. We have also presented, with illustrative ex-
amples, the radiometric characteristics of a source medet, the so-
called quasihomogeneous model, that can be used in many in-
stances to represent true natural sources. Still more refined source
meodels, which we have not been able to touch upen in this article,
have been proposed in the literature. One example is the so-called
Schell model source, ! which represents a broader class of radia-
tion sources than does the quasihomogeneous model. When the
area occupied by the source is sufficiently large and the intensity
variation across the source sufficiently slow, the predictions based
on the Schell model are essentially the same as those obtained from
the quasihomogenecus model. Further details and relevant
references can be found in some recent related review
articles.20:32.33

All throughout this articie we have been concerned with the
determination of the radiometric characteristics of a source assum-
ing that its coherence properties are known. The inverse problem,
i.e., determining the distributions of the optical intensity and the
complex degree of spatial coherence across the source from the
measured radiation data and especially from the angular distribu-
tion of the radiant intensity, has recently acquired increased atten-

tion.5:3335 The solution of the inverse problem is important both
from a practical point of view and from a mathematical point of
view, but it does not fall into the category of topics to be covered
under the present title. In Ref. 36 some aspects of the uniqueness of
the relationship berween the cross-spectral density function across a
planar source and the angular distribution of the radiant intensity
will be considered.
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Radiation from partially coherent sources
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Abstract. Aithough the theory of partial coherence was formulated in a rea-
sonably general form about a quarter of a century ago, it was not until a few
years ago that this theory began to be applied to problems of radiation from
partially coherent sources. In this review article, the properties of the radiant
intensity generated by a planar source of any state of coherence will be
discussed. it will be first recalled that the radiant intensity can be expressed as
a two-dimensional spatial Fourier transform of a correlation function of the
fietd in the source plane, averaged over the source area. The characteristics of
the radiation from several model sources will then be analyzed. With the help of
these results, certain equivalence theorems relating to the radiant intensity
from planar sources of entirely different degrees of spatial coherence will be
reviewed and the underlying physical principles will be elucidated. A number of
illustrative examples will also be given. Finally some very recent work, which
tas led to the construction of planar sources with controllable degrees of
spatial coherence, will be described. Experiments carried out with these sour-
ces will be discussed; they verify the main relationships between the coher-
ence properties of the source and the directionality of the light it generates.

Keywords: coherence of planar sources, directionality.
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1. INTRODUCTION

In an carlier article,' we have reviewed some of the more important
effects that have been discovered during the last ten years or so in
connection with the studies of radiometry with partially coherent
light. In that article we presented expressions for the basic radio-
metric quantities associated with a planar source of arbitrary state of
coherence and discussed. with illustrative examples, the limiting cases
of completely coherent and incoherent sources as weli as some par-
tially coherent model sources that havc been proposed in the hitera-
ture. We noted that the angular distribution of the radiant intensity is
the primary measurable quantity pertaining to radiation from par-
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tially coherent sources. In the present article, we will pursue further
the considerations of the radiation characteristics of steady-state
planar sources; in particular, we will analyze more deeply the proper-
ties of the radiant intensity generated by a planar source of any state
coherence, Some very recent experiments aimed at testing the theoret-
ical predictions will also be briefly discussed.

To get some insight as to the type of phenomena we will be talking
about in this paper, let us consider a simpie example.? Suppose one
compares the radiation generated, on one hand, by a thermal light
source and, on the other hand, by a typical gas laser (Fig. ). The
angular distribution of the radiant intensity from a thermal source is
well known to follow Lambert’s law, whereas the distribution of the
radiant intensity from a typical laser s quite different, being sharply
peaked in the forward direction. Now, a thermal source is spatially
almost completely incoherent, and a laser is, of course, spatially
highly coherent. Hence, this example seems to indicate that there js a
close relationship between the state of coherence of the source and the
directionality of the light it generates. This, indeed. is the case, as recent
researches on radiation from partally coherent sources have shown.

Hlustrative as the above example may be. it does not fully clarify the
matter. One might be tempted to conclude from it that complete
spatial coherence is a sufficient condition for the generation of highly
directional light beams. This is obviously incorrect. as can be easily
seen by considering the diffraction of an expanded laser beam
froma circular opening.’ If the radius of the opening is of the order of
the wavelength, the resulting radiant intensity distnibution—the
classic Airy pattern—shows a substantial divergency angle. More
surprising, however, is the fact that not only is complete spatial
coherence not a sufficient condition, but 1t s not even a necessary
condition for the attainment of high directionality. This result was
recently demonstrated by Collett and Wolf 45 who describe several
planar sources which are rather incoherent in the global sense and yet
generate precisely the same angular distribution of the radiant inten-
sity as a fully coherent laser. This research has also led to the novel
concept of partially coherent light beams.®
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fig. 1. Schematic illustration of the angular distribution of the radiant
intensity from a thermal light source and from a typical laser.

In th present article, we continue to use the same notation as in
the previous article.! We consider a planar source, ¢ither a primary or
a secondary one, occupying an arca o (which may be infinite) in the
plane z = 0 and radiating into the half-space z>>0 (Fig. 2). The light
gencrated by the source is represented by a fluctuating complex
analyticsignal, taken to be a scalar function of position and time and
assumed to be stationary and ergodic. Because the different temporal
frequency components of a stationary random function are uncorre-
lated,” it is sufficient to consider the transfer of energy at a single
temporal frequency. wsay. of the optical ficld. The state of coherence
of the radiation source is therefore conveniently specified by the
cross-spectral density function” W (r . r,: w) of the light across the
planc z =0. The vectorsr| and r, represent a typical pair of points in
the source plane z = 0 (indicated by the superscript 0). Equivalently,
the coherence properties of the source meaz be expressed in terms of
the complex degree of spatial coherence p®(r .r;;w) and the optical
intensity I(o)(L w} of the light across the lane 2 =0. They are related
to the cross-spectral density function W% (1 1-E2: @) by the following
formulas:? o

19%(r,w) = WO(r ria), n

WO 1y w)
[[(m(h ) [(0)(£2‘w)]”2

MOy 1yw) = 2)

Several properties of these functions as well as their relationship to
some of the more commonly known quantities in the theory of
partial coherence, such as the mutual coherence function and the
complex degree of coherence, are discussed in Ref. 7.

The primary object of interest in this paper is the angular distri-
but!on of the radiant intensity generated by the planar source o. The
radiant intensity, denoted by J (s}, is defined as the power (at
f{cque‘ncy w) radiated by the source per unit solid angle around a
direction specified by the unit vector s (Fig. 2). The total power (at
frequency w) radiated by the planar source ointo the half-space 2 >0
may thus be obtained from

o, = / T (s)d0 . 3)

(2m)
where l_he integration extends over the 27 solid angle formed by ali the
Sdirections pointing into the half-space 7 >>0. Denoting, moreover, by

oc

Nm = / |t0)(£.w)d2r (4)

—0c

Fig. 2. IHustration of the notation relating 10 radiation from partially
coherent planar sources.

the integrated optical intensity (at frequency w) across the source,
one may define the ratio

C, =9

)
w w'

(5

as the radiation efficiency of the source at frequency w. lrrespective
of the state of coherence of the source. it can be shown 1o satisfy the
inequality 0 = C_, = [.

2. RADIANT INTENSITY FROM PLANAR SOURCES
OF ANY STATE OF COHERENCE

In this section we will first present several different formulas expres-
sing the radiant intensity generated by the planar source o described
in the introduction (Fig. 2). The state of coherence of the source,
which may be quite arbitrary, is specified by the cross-spectral
density function WO (1| r,:w) of the light across the source plane
z = 0. The different formulias for the radiant intensity, each having
their own distinct advantages, will then be used to elucidate various
aspects of radiation from partially coherent planar sources.

2.1. Expressions for the radiant intensity

The radiant intensity J,,(s) generated by a planar source in the
direction specified by a unit vector s (Fig. 2) has been shown to be
given by!-#9

Ju(8) = (2mk)? cos?g W (ks|, —ks;w) . (6)
where k = w/c. with ¢ being the speed of light in free space, and

WO (f, {,:w)is the four-dimensional spatial Fourier transform of
WO (1 1, w). defined by

-~ 1
WO (@) = W/ / WO 1o w)
e n gl d2r, | N

Moreover, in Eq. (6), 8 is the angle that the unit vector s makes with
the positive z-axis, and 3| denotes the two-dimensional vector
obtained by projecting s onto the source plane z = 0.

On substituting from Eq. (7) into Eq. (6). we obtain

5 o
k 2
J () = (2—) cosla/ / wilir, roiaw)
m
—te —oC

. emiks (T 292 d2r, (8)
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Let us next introduce the difference and average coordinates

|
£ L LT oA ) 9
and define

i) f ! 2
C(rlw = wi ](£+'2‘L'.£“5_r_';w) d’r . (1)

where the integration extends throughout the source plane z = 0.
With this notation, Eq. (R) may be rewritten as® 1©

J s = kzcoszﬂa\,(k_s_l.w) . (1

where C, (f, w) is the two-dimensional spatial Fourier transform of
C, (I’ w), namely,
ot

Co(r w e g2, (2

The quantity C,,(r’.w), defined by Eq. (10}, is called the source-
averaged cross-spectral density function of the light in the source
plane. In view of the physical significance of W% (r .r,:w). the
function C_ (1", w) 1s clearly proportional to the average value of the
correlations of the light fluctuations at frequency w for ail pairs of
poinist | and £, in the source plane whose relative “separation™is r’=
Iy — I, the average being taken over the whole source.

It will be convenient 1o introduce still a third expression for the
radiant intensity. For that purpose, let us define the quantity

Gyt Cylr.e)

C,(0.w) N (3

,,lO) ' w =

[

where the second equality follows the Egs. (10), (1}, and {(4). It can be
shown that o9 (', w) satisfies the conditions!t

190w = 1 [ w=1, (14)

regardless of the state of coherence of the source. Substitution from
Eq. (13) into Eq. (11) yields for the radiant intensity

I 8) = ki’-coslon‘,?O)(kgl,m) . (15}

where 39 (f, w) is, of course, the two-dimensional spatial Fourier
transform of n%( 1, w) [¢f. Eq. (12)]. With Eqgs. (14) and (15) in
mird, it is natural to call the quantity n®(r’, ) the coefficient of
directionality!! of the planar source at frequency w.

We have thus three formaliy different expressions for the radiant
intensity from a planar source, namely those given by Egs. (6), (11),
and (15). The formulas in Eqs. (6) and (i5) are useful when describ-
ing certain recent equivalence theorems* ' which imply that sources
of entirely different states of coherence may nonctheless produce
exactly the same distributions of the radiant intensity. A conse-
quence of such an equivalence is, for example, that sources which are
far from being spatially completely coherent generate light beams
that are just as directional as a Gaussian laser beam. The expression
in Eq. (11), on the other hand, turns out to be very convenient when
discussing the implications of the analytic properties of the radiant
1ntensity.

1.2. Implications of the expressions for the radiant intensity

Let us consider, first, Eq. (6). According to that formula, only those
spatial frequencies of WO(1 |, 1;: ), which obey the constraints f
=-—f,= ks, contribute to the radiant intensity. Such a pair (£, —{}1s
commonlycalled an antidiagonal pair of spatial frequencies, and the
corresponding spatial Fourier component WO ({ —[: w) is referred
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to as an antidiagonal element of W(O)(_l',,_fz;m). Moreover, since
ikgy| = ks} = k. only spatial frequencies for which |f] = k, the
so-¢alled low spatial frequencies, appear in the expression (6) for the
radiant intensity. With this terminology we may thus say that the
radiant intensity from a planar source is uniquely determined by the
low-frequency antidiagona! elements of the four-dimensional spatial
Fourier transform of the cross-spectral density function W (1, , r5; )
of the light across the source plane.

An interesting conclusion may be immediately drawn from the
above result: any two planar sources, whose cross-spectral density
functions are such that their four-dimensional spatial Fourier trans-
forms have identical low-frequency antidiagonal elements, will gen-
eratc identical distributions of the radianmt intensity. This is the
original form of the equivalence theorem, formulated by Collett and
Wolf,* pertaining to planar sources of arbitrary states of coherence.
Such equivalent sources will, of course, in general generate ficlds
with entirely different far-zone coherence properties, because the
far-field coherence is determined by all the low-frequency elements
of WO(f, f,:w), not just by the antidiagonal ones, 2

Let us now turn our attention to Eq. (15} and reformulate the
above equivalence theorem in a manner that affords a simple and
intuitive explanation of the underlying physical reasons for the
cquivaience. The foliowing result is seen at once from Eq. (15}; any
two planar sources, which have the same coefficients of directional-
ity n® (1", w) and whose integrated optical intensities N are the
same, will generate identical distributions of the radiant intensity.
This new version of the equivalence theorem, with some additional
mathematical refinements, was formulated by Collett and Wolf !t
To fully appreciate the physical insight provided by this new formu-
lation, let us express the coefficient of directionality nf®(r’, w) in
terms of the complex degree of spatial coherence ‘(1 ,r,; w) and
the optical intensity ' (r,w) By substituting from Eq. (2) into Eq.
(10} and using the result in Eq. (13), the following expression is
obtained: :

oo

I 1 1
71, o) = N / o (1 S 512«»)

—o0

| I 1/2
[1(0) (I + _2.11“") I(O} (_1: _ _Z_La'w)] 42t . (16)

This formuia shows that the coefficient of directionality depends not
only on the distribution of the complex degree of spatial coherence,
but also on the optical intensity distribution of the light across the
source. The coefficient of directionality may be thought of as being
obtained by means of an integral of the complex degree of spatial
coherence, appropriately weighting each contribution to the integral
by an intensity-dependent factor. For instance, two planar sources
with the same integrated optical intensities N may have quite
different distributions of the complex degree otpspatial coherence
#9(r,.1,:w) and of the optical intensity I(r,w), and yet they
generate the same distributions of the radiant intensity, provided
only that for each " the integral in Eq. (16) is the same for both of
them. In such a case, the differences in the complex degrees of spatial
coherence are compensated by the differences in the optical intensi-
ties. Concrete illustrations of these remarks will be provided shortly.

Finally, let us briefly consider the implications of Eq. (11). It shows
that the radiant intensity (at frequency w) produced by a planar
source of any state of coherence is proportional to the product of
cos’§ and the two-dimensional spatial Fourier transform of the
source-averaged cross-spectral density function C, ( 1', ) of the field
inthe source plane. Since k = w/c =2/ A, where Ais the wavelength
corresponding to the frequency w, the radiant intensity is also
inversely proportional to the square of the wavelength of the light If
the planar source o under consideration is of finite extent, the
source-averaged cross-spectral density function C_{1’, w), in view of
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Eq. (10), obviously vanishes identically outside some finite r' domain.
According to some theorems on Fourier transforms, the function
C,({,w) in such a casc possesses certain unique analytic properties.
Without going into the details of the mathematics, we will mentiona
few conclusions that can be drawn by such analytic considerations.
In the first place, it can be shown that’

I8 —0 as 8 — /2, an

to at least the second order in cosé. Hence a finite planar source does
not radiate in any direction parallel to the source plane. This result
also implies that, strictly speaking, no finite planar source radiating
in accordance with Lambert's law can exist. However, many light
sources encountered in practice are Lambertian to a good
approximation.

Another important conclusion that follows immediately from the
analytic properties of the radiant intensity produced by a finite
planar source is related to the inverse problem of determining the
source coherence properties from the measurements of the radiant
intensity. The following very strong theorem has been proven by
Wolf*9 the exact knowledge of the radiant intensity for ail 5 direc-
tions filling any finite solid angle, however small, uniquely deter-
mines the compiete source-averaged cross-spectral density function
C, (r',w) of the light in the source plane. According to Eq. (13), the
coefficient of directionality nf®(1', w) and the integrated optical
intensity N, of the planar source are readily obtained once C, (1, w)
is known. In particular, one can take the finite solid angle appearing
in the above theorem to be the whole 2 rsolid angle formed by all the
possible 5 directions. These results then imply that the quantities
G, w) 79, w),and N @ associated with a planar source giving
risc to any prescribed distnbution of the radiant intensity J (s}
(assumed to have been produced by some finite planar source) can be
uniquely specified.

1t should be noted that even though the radiant intensity J_(s)
uniquely determines the source-averaged cross-spectral density
function C, (1, w), the cross-spectral density function W (1, ,r5;w)
itself is not necessarily unique across the source. This remark is in
keeping with the earlier observations that planar sources of entirely
different states of coherence may generate identical distributions of
the radiant intensity. However, it can be shown that in the special
case of a nonradiating finite planar source (i.¢., a source for which
J () has a zero value for all the possible s directions), the cross-
spectral density function W (r, r,;w) must vanish whenever
I, # g, Hence every finize planar source, other than a strictly spa-
tially incoherent one, necessarily radiates. This result also implies
that a finite planar source cannot generate a field that consists of a
pure surface wave. Analogous considerations pertaining to true
primary planar sources were presented by Friberg.!?

3. QUASIHOMOGENEOUS SOURCE THAT
GENERATES A KNOWN DISTRIBUTION OF
RADIANT INTENSITY

As an application of the general discussion presented in the previous
section, we will consider here the foilowing two related problems:!!
first, how 1o specify a quasihomogeneous planar source that will
produce the same radiant intensity as any given planar source,'*and.
second, how to specify a quasihomogeneous planar source that will
generate any prescribed distribution of the radiant intensity, assum-
ing that the radiant intensity was produced by some finite planar
source,

Forthat purpose, we first recall that a quasihomogeneous planar
;s_ourcc is characterized by a cross-spectral density function of the

orml. !5

1
WO (r, ryiw) = 1O [5(;, +;2)‘w] A1) = 1yia), (18)

where 1100( r, w) is the optical intensity distribution, and O w),
assumed to depend only on the difference r’ = r, — r,, is the com-

plex degree of spatial coherence of the light in the source plane. Itis
assumed, moreover, that 119(r, w) varies with r much more slowly
than u®{r'.w) varies with 1’, and that the linear dimensions of the
source are large compared to both the wavelength of the light and the
effective coherence interval of the light across the source. On substi-
tuting from Eq. (18} into Eq. (16), the coefficient of directionality of
a quasihomogeneous planar source (denoted by subscript Q) is
readily found to be

rg(rw) = Wg(rw . (19)

where use was made of the result

Noog = / 1@ w)d?r (20)

—o0

with { (0’(5, w) being the optical intensity distribution of the quasi-
homogeneous source. Eq. (19) shows that the coefficient of direc-
tionality of a quasihomogeneous planar source is precisely equal 1o
its comptex degree of spatial coherence.

Consider now some given planar source o of any state of coher-
ence whatever. lts coefficient of directionality, denoted by r"c(v ’(_1;'. w),
may be computed from Eq. (16), and its integrated optical intensity,
denoted by N_ ., is readily obtained from Eq. (4). The radiant
intensity distribution produced by this source is therefore known. it
being given by Eq. (15). Now, according to the cquivalence theorem
discussed earlicr, a quasihomogeneous planar source whose coeffi-
cient of directionality n, )(1', w} and integrated optical intensity
Nuw.Q satisfy the conditions

ném(f.w) = n;m(f.rw): N,o = Nyoo (20

will generate precisely the same distribution of the radiant intensity
as the given planar source g. With the help of Eqs. (19) and (20).
these conditions take the form"’

-]

@ w) = 0wk / Wt =N, . (22)

These resuits show that there is, in fact, an infinite number of
quasihomogeneous sources that produce the same radiant intensity
as any given source. They all have the same complex degree of spatial
coherence, uniquely specified by the first condition in Eq. (22), but
their optical intensity distributions may differ, provided that they
are sufficiently smooth and satisfy the second condition in Eq. (22).

To illustrate the above comments, let us determine a quasihomo-
gencous source that will produce the same radiant intensity as a
completely coherent and cophasal square source of uniform intensity
I,- Taking the sides to be of length 2¢. one easily finds for such a source

0 (1 =x]720(0 —iy’l/20), if || = 2tand |y| = 2¢,
2 w) =

0. otherwise , (23)

where r' =(x'.y"). The integrated optical intensity Ny ols of course,
equal Lo 442 1,. The radiant intensity distribution generated by the
source under consideration is known 10 be

kK \2 - ) sinks, ¢ z sinksy!, 2
Jus) = {55 ) @67 1080 ot ) (24)

where s = {s, .8y.5 ) with s, = cosf. Now, according to Eq. (22), 2
quasihomogencous planar source, whose complex degree of spatial
coherence is given by the right-hand side of Eq. (23), will also give
rise to the radiant intensity of Eq. (24). The complex degree of spatial
coherence ,u(;m(f. w) of the quasihomogeneous source, with y’ =0,
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Fig. 3. Tha compiex degree of spatial coherence, with y' =0, of a quasi-
homogenseous planar source that produces the same distribution of the
radiant intensity as a uniform, completely coherent, and cophasal square
source of sides 2/,

is illustrated in Fig. 3. The actual shape of the optical intensity
distribution across this equivalent source is irrelevant, as long as it
meets the requirements of quasihomogeneity and integrates Lo 442 1y
Equivalent quasihomogeneous sources corresponding to more

mplicated examples, possibly illuminated with partially coherent
light, can be specified in a similar manner.

Let us now turn our attention to the second problem stated at the
beginning of this section. As we have already explained. a prescribed
distribution of the radiant intensity (assumed to have been generated
by some finite source o) uniquely determines the source-averaged
cross-spectral density function, denoted here by C, oL ) for
convenience. Accordingto Egq, (I%&. this in turn uniquely determines
the coefficient of directionality » ¢ {1’ w) and the integrated optical
intensity N, .o of the source. Now, by substituting these on the
right-hand side of the conditions in Eq.{22), we obtain a quasihomo-
geneous source that also will produce the prescribed distribution of
the radiant intensity. As before, the complex degree of spatial coher-
ence of such a quasihomogeneous source is unique, but its optical
intensity distribution may vary.

As an example, we will take the prescribed distribution of the
radiant intensity to be the famous Airy pattern

(k )2 raraa[ ikasing) T
_]m(__S_) = ;’ {rra<) IDCOS [V} ——W . (25)

where J, (x}is the Bessel function of the first kind and first order. The

uantities a and I, are positive parameters. A quasihomogeneous
planar source producing the radiant intensity, given by Eq. (25), can
be shown'' to have a complex degree of spatial coherence

0. otherwise .

where r’=(r’|. Its optical intensity distribution must have an integral
over the entire source equal to (naz)lo. The complex degree of
spatial coherence, given by Eq. (26). is illustrated in Fig. 4,

4. MODEL SOURCES

To become more familiar with the various concepts introduced
carlier in this article, we will now discuss several partiatly coherent
model sources. In addition to the quasihomogeneous sources,!s we
will also consider the so-called Schell model sources.’s-'7 A Schell
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n::,m(_[',u)

Fig. 4. The complex degree of spatial coherence of & quasihomogeneous
planar source that produces the classic Airy pattern of the radiant intan-
sity (aftor Collett and Wolf").

model source is characterized by a cross-spectral density function of
the form

WOy i) = (19, 0) K95, 0)] 2 6@, —1yiw) . (27)

Here (. w) is the optical intensity distribution, and 49 (r’, w),
assumed to depend only on the difference " = r| — r,, is the com-
plex degree of spatial coherence of the light in the source plane. The
Scheil model sources, like the quasihomogeneous ones, are a gener-
alization of the statistically homogeneous sources. If the optical
intensity distribution across the source varies sufficiently slowly
from point to point, as is the case with many natural radiation sources,
the Schell model sources become essentially quasihomogeneous.

We will consider three types of quasihomogeneous sources and one
type of Schell model source. The quasihomogeneous sources are taken
to have a distribution of the complex degree of spatial coherence,
which is either of Gaussian or of exponential form, or it is specified in
terms of Bessel functions. These distributions are, respectively,

WO w) = e7T?/20) (28)
F(O)(l"w) = e—l_"'“D , (29)
2 3y i klrt)
(00 o+ = - ( _) -
W) = =T+ 3 ) 4 NG (30)
3 k|

Here o, and D are positive parameters, I'(x) denotes the gamma
function, and j,(x) is the spherical Bessel function of the first kind
and of order », with v 2 —1/2. The exact forms of the optical
intensity distributions I (1, w) across these sources are of no impor-
tance in the present context, as long as they meet the requirements of
quasihomogencity. The Schell model source, on the other hand, is
taken to have both its complex degree of spatial coherence and its
optical intensity of Gaussian form; i.e., f!9(1’, w) is the same as Eq.
(28), and 1'% r, w) is given by

E(OI(L,W) = Ioe—_rlfzazl s (3])

where 1, and o are positive parameters.

We will determine the coefficient of directionality 7% ( 1, w), the
distribution of the radiant intensity J,(s), and the radiation effi-
ciency C  associated with these four model sources. The results,
some of which can be found in Refs. 1, 5,11, 15, 18-22, and some of
which are new, are given in tabulated form (Table I).

A few comments are perhaps in order regarding the entries in
Table I. In the first place, if o, >3>0_ then 4—c,, and the Gaussian
Schell model source reduces to a Caussian correlfated quasihomo-
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TABLE I. Radiation from Partialty Coherent Modsl Sources.

MODEL QUAS THOMOGENEQUS SCHELL
INTENSITY NOT RELEVANT GAUSSIAN
COHERENCE GAUSSIAN EXPONENTIAL BESSEL GAUSS1AN

COEFF ICIENT 2 er i’
oF e—y f20, i 2 1 _3.,5\*“'5'“
F5 27 1 v
DIRECTIONALITY L L, 1
a7 2oy?
- ko ) atn? -2 -Lixar2ain?
NIMT Ju'omlzac Ehad" oo Jmlocnlzellf(kn)zlinzﬁl ? Jm'amuzv*la Jm,o°°'26‘ 2“““ sine
INTENSITY ko )2 2
Ju.o - ——-2-“—. Ilm) (g.uidzr Ju.o - ——-—LUZ‘E I!(o) (g,u)dzt Joo ™ %(w—%)ll(m (E,uldzr Joe " (ga.;:)z:o
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y y - Elks//3)
RADIATION koy/¥7 kb /VE
1 - L -in—l( kb ) 2v + 1
xD) — 3 ST
EFFICIENCY 22 W v a2
Fla) = e [e du Fla} = & Ie du
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geneous source. On the other hand, if o, =, then it represents a
completely coherent and cophasal planar source with Gaussian opti-
cal intensity distribution. 1n that case, A—2g,, and the results are
found to be identical to those given in Refs. i, 4, and 11. If,
moreover, ko, > |, then such a source represents a Gaussian laser,
and one may, of course, approximate cosf= 1 and sin =~ 6. Several
special cases of the Bessel correlated quasihomogeneous sources are
also of interest. For y = —1/2, the complex degree of spatial coher-
ence is found from Eq. (30) to be J (kr), where r' =| '| and J, (x) is
the Bessel function of the first kind and order zero. Hence the source
exhipits a finite (non-zero) correlation distance, and yet its radiation
efficiency is seen to be zero, At first sight this appears to contradict
our earlier remark that every finite planar source (other than a
strictly spatially incoherent one) necessarily radiates.!? The resolu-
tion of this dilemma is, of course, that the Besse! corrclated quasi-
homogeneous source with ¥ = —1/2 is of infinite extent. For » =0,
the right-hand side of Eq. (30) reduces to sinkr’/kr’, leading to a
Lambertian planar source.t.2Y For p = 1/2, Eq. (30) gives, on the
other hand, a complex degree of spatial coherence of the form
23, (kr)/kr', where J | (x) is the Bessel function of the first kind and
order one. The radiant intensity from such a source is seen to follow
a cos2g-law, identical 1o that from a spatially incoherent source
{when spatial incoherence is defined in terms of the non-normaliza-
ble Dirac delta function).!-4.23

5.PARTIALLY COHERENT SOQOURCES THAT PRODUCE
THE SAME RADIANT INTENSITY AS A LASER

We have already described a procedure by which one can specify the
characteristics of a quasihomogeneous planar source that will gen-
erate the same distribution of the radiant intensity as any given
planar source. We illustrated this procedure by determining a quasi-
homogcncous source which produces the same radiant intensity asa
uniform, fully coherent, and cophasal square source. In this section,
we will discuss a broader class of partially coherent sources, each
with a different coherence area and a different optical intensity
distribution, giving rise to a radiant intensity distribution identical
to that of a fully coherent Gaussian laser beam.*

Let us first compute the radiant intensity distribution generated

by a laser source with a flat output mirror, operating in its lowest-
order transverse mode. Neglecting the diffraction effects caused by
the edges of the output mirror, the radiant intensity may be found
from Table 1 by setting o, = > for the Gaussian Schell model source.
Writing o, and I, in place of oy and 1, to indicate that these
quantities pertain to the laser, the optical intensity distribution
across the output mirror is

(2
0 (rw) = 1 eT00 (32)

and the resulting radiant intensity distribution is readily found 10
be! 4.5

Jo L) = (2ko?)1, cos2e— ko T’ (33)

By comparing the formula of Eq. (33) to the expression of the

radiant intensity given in Table 1 for the Gaussian Schell mode.
source. the foliowing important theerem follows at once:*any Schell

model source, whose optical intensity distribution and complex

degree of spatial coherence are both Gaussian and whose parameters

o, 0, and I, satisfy the conditions

I 1 2
L= 2;1=(5'J~)|L, (34)
a, (20y) (20)) a

will generate precisely the same distribution of the radiant intensity,
namely that of Eq. (33), as a fully coherent and cophasal planar laser
source with the Gaussian optical intensity distribution of Eq. (32).
Even though all sources satisfying the conditions (34) will generate
the same radiant intensity distributions, their far-field coherence
properties will, as we have discussed earlier, in general be different.

Itis evident from the first condition of Eq. (34) that the parameters
o, and o, of any Gaussian Schell model source producing the radiant
intensity of Eq. (33) must satisfy the inequalities o) Z g, and g, =20, .
Hence the width of the optical intensity distribution across any such
Schell model source can be no smaller than the width of the laser
intensity distribution, and the width of the complex degree of spatial
coherence must be at least twice the width of the laser intensity.
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Fig. 5. lllustrating the coherencs and intensity distributions across par-
Eiallv coharent Gaussian Schell model sources (b, ¢, and d) giving rise to
the same radiant intensity distribution as & fully coherent laser source (a).
The radiant intensity is given by Eq. {33) with o; =1 mm and I_arbitrary
(after Wolf and Collett®),

LASER

Fig.6. Schematic illustration of the Gori systemn {after De Santis, Gori,
Guattari, and Paima??}.

Choosing o, =~ 20, and g, >>a . theresulting Schell model source
is essentially quasihomogeneous.* This source is precisely the one
which would have been obtained by using the procedure, described
earlicr, of specifying equivalent quasihomogeneous planar sources.

In Fig. 5, we present the distributions of the optical intensity and
the complex degree of spatial coherence of the light across several
different Gaussian Schell mode! sources, each source generating the
same radiant intensity as a fully coherent Gaussian laser source. The
graphs clearly illustrate the trade-off taking place between the source
coherence and the source intensity, so as to produce identical distri-
butions of the radiant intensity.

6. SOURCES WITH CONTROLLABLE DISTRIBUTIONS
OF INTENSITY AND COHERENCE

Even though the properties of radiation from partially coherent
sources have been the subject of active research for more than ten
years, experimental investigations as to the practical realization of
such sources and the testing of the theoretical predictions have only
very recently begun. Among the suggested ways of producing a
controllable partially coherent source are, for example. a suitable
superposition of independent laser beams and the scattering of
light by a liquid crystal under the application of a dc electric
field. 2226 Mast of the experimental effort so far has concentrated
on direct verification of the predicted relationship between the
coherence properties of a source and the directionality of the light it
generaites. The firstexperimental results, supperting the equivalence
thearem which implies that certain partiatly coherent planar sources
may produce light fields just as directional as a laser beam. were
obtained by DeSantis, Gori. Guattari, and Palma?’ using an optical
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Fig. 7. Recording of the optical intensity distribution in the far field of a
tully coherent Gaussian laser source {after De Santis, Gori, Guattari, and
Palma?7).

system resembling an ordinary collimator. Because of the impor-
tance of the results and the ingenuity of the device. we will briefly
describe the experiment carried out by Gori and his coworkers.

The Gori system is tllustrated in Fig. 6. G is a rotating ground
glass, F is a Gaussian amplitude filter, and L, -1, are simple lenses.
Consider first the ground glass G and the amplitude filter F removed.
The field, originating in the laser, can be made to emerge {rom the
lens L, with no phase curvature and with a2 Gaussian optical intensity
distribution. if the focal lengths f; and f, of the lenses L,and L, as
well as their separation are chosen properly. Hence, in this case. the
lens L, realizes a fully coherent Gaussian planar source. Its optical
intensity distribution may thus be represented by Eq. {32), with the
constants [} and o; being determined by the system parameters. The
lens L, produces in its back focal plane the far-field distribution of
the coherent field emerging from the lens L,. and the lens L, forms
an eniarged image of that distribution on the photodetector PH. The
intensity profile scanned along a line perpendicular to the optical
axis in the far-field distribution of the coherent Gaussian source (le.,
the plane of the lens L,) is presented in Fig. 7.

After examining the coherent case, the rotating ground glass G
and the Gaussian amplitude filter F are reinserted. A Gaussian spot
of laser light is produced on the ground glass by the lens L,. If the
spot diameter is large compared to the inhomogeneity scale of the
glass, it can be considered as a spatially incoherent planar source
with a Gaussian intensity distribution.?® Eet us denote the value of
the intensity on the optical axis by I; and the rms width of the
intensity distribution by og. The lens L, is placed a distance fy. ie,
the focal length of L,, from the ground giass G, and the filter F, with
a field transmission function of rms width o, is adjacent to the lens
L,. Using the van Cittert-Zernike theorem and the usual optical
propagation laws, the cross-spectral density function of the field
emerging from the filter F can be shown to be?’

2
M e_.(k o5/ 220 () — ;1
41rf§

2 2
eI tI20, (35)

W(O)(Il«lz:‘”) =

This formula implies that the plane of the filter F acts as a Gaussian
Schell model source. Its complex degree of spatial coherence is given
by Eq. (28}, and its optical intensity is given by Eqg. {31), with the
constanis [, o). and ¢, beingrelated to the system parameters I, ag,
f,. and gp by the formulas

o Akl e (36)
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Fig. B._ Recording of the optical intensity distribution in the far field of a
Guassian Schell model source reslized by means of the Gori system (after
De Santis, Gori. Guattari, and Palma®?),

Now, according to the discussion in the previous section, if the
parameters 1, ), and o, associated with the light emerging from the
filter F satisfy the conditions (34), then such a source produces
cxactly the same far-field intensity distribution as the fully coherent
Gaussian source characterized by the parameters I, and oy . The
intensity profile scanned along a line perpendicular to the optical
axis in the far field produced by a source of this type (i.c.. the field
emerging from the filter F) with suitably chosen system parameters is
shown in Fig. 8. The arbitrary units used for the intensity and for the
distance from the optical axis are the same in both Figs. 7and 8. Itis
observed that the measured far-field imensity distributions pre-
sented in these figures show a remarkable similarity, thus providing
evidence in support of the theoretical predictions.

It is of interest to note that the Gori system described above can
be used to produce a whole class of partially coherent sources with
controllable distributions of intensity and spatial coherence. By
varying the system parameters lg, ag, f,, and o, the constants 1, oy,
and o, may be alered thus changing the spatial coherence and
intensity profiles of the Gaussian Schell model source, located in the
plang of the filter F. An additional degree of freedom could be
provided by using, in place of the laser illuminated rotating ground
glass G, some partially coherent light source with known spatial
coherence and intensity propertics.

. Further experimental studies with regard to the highly direc-
tional character of the radiation patterns produced by certain types
of quasihomogeneous sources have been carried out by Farina,
Narducei, and Collett.? Their interest has been to investigate the
problem with a minimum number of optical elements, so as to
reduce extrancous effects and the possibility of experimental error.
Using phase screens illuminated by a collimated laser light as quasi-
homogeneous sources, 'they have observed that the radiated fields
are very directional, as predicted by the theory, in spite of the
globally incoherent character of the light in the source plane. They
have also observed that changing the intensity distribution across
the source plane does not essentially alter the radiation pattern, as
long as thc_ intensity distribution meets the requirements of quasi-
hpmogeneuy. Some preliminary measurements concerning the re-
ciprocity theorem!. '3 pertaining to quasihomogencous planar sources
were aiso made,

7. SUMMARY AND DISCUSSION

In this_rcvicw article we have discussed various aspects of the radiant
Intensity generated by a planar source of any state of coherence.
Among the more important results mentioned is an equivalence

theorem which implies that sources with entirely different coherence
properties may, nevertheless, produce identical distributions of the
radiant intensity. This theorem was illustrated by means of several
examples, inciuding a class of partially coherent sources which give
rise to a radiation field that is just as directional as a fully coherent
laser beam. Several model sources were analyzed in terms of con-
venient new concepts, such as the coefficient of directionality and the
radiation efficiency. Finally, some experimental work, aimed at the
practica] realization of partially coherent sources with controllable
coherence and intensity properties and at the testing of the theoreti-
cal predictions regarding their radiation characteristics, was briefly
described.

Even though the number of experimental results regarding radia-
tion from partially coherent sources is still rather limited, it appears
safe Lo say that such measurements have verificd the main relation-
ships between the coherence properties of a source and the direction-
ality of the light it generates. In particular, the fact that complete
spatial coherence is not a necessary requirement for the generation
of highly directional light beams has been experimentally confirmed.
However, 10 obtain convincing experimental evidence about many
other phenomena predicted by the theory, a subtantial amount of
further effort is required.

As is well known, fully coherent laser beams give rise to pro-
nounced speckle effects that are often very disturbing. in many
applications, a very directional light beam with low spatial coher:
ence would have several advantages over the fully coherent laser
beam. For these reasons, especially after it was shown that a globally
rather incoherent source may produce a light beam which is just as
directional as a laser beam, highly directional partially coherent light
beams appear o be likely subjects of future research.
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PARTIALLY COHERENT BEAMS
Ari T. Friberg

Department of Technical Physics, Helsinki University of Technology
Rakentajanaukio 2C, FIN-02150 Espoo, Finland

Abstract

A tutorial review of partially coherent beams in optical systems is presented.
The main theoretical concepts, some principal applications, versatile practical
implementation techniques, and the most significant physical effects brought
on by a reduced optical coherence are discussed and illustrated with examples.

L Introduction

With the rapidly expanding use of lasers e.g. in communication, information technology, process industry,
and medicine, the importance of beam optics has increased considerably. The physical properties of the
radiation emitted by many novel laser types can be efficiently controlled, and 5o in recent years the need
has arisen to understand the characteristics and behavior of partially coherent beam fields in advanced
optical systems. In this tutorial paper we review some of the characteristic features of such beams with
a particular emphasis on the effects of partial spatial coherence.

For dlarity the main ideas and phenomena are presented in simple terms, but important consequences
are mentioned and references are given to the more comprehensive accounts, After reviewing the basic
notions of optical coherence in the space-time and space-frequency domains, the so-called coherent-
mode decomposition is introduced and the formulation is applied to the determination of the transverse
mode structure of multimode laser beams. Various exact and approximate properties of the beam-like
wavefields in free space are analyzed, and partially coherent beam synthesis methods are discussed.
Central to this work is the hybrid acousto-optic technique that can be employed to control efficiently (in
real time) the coherence properties and intensity distributions of optical beams. The most widely used
theoretical and experimental mode! fields are the Gaussian Schell-model ({GSM) beams that constitute, in
essence, extensions of the fully coherent Gaussian laser beams into the realm of variable-coherence optics.
The principal propagation techniques and coherence-influenced physical effects in optical systems are
elucidated using the GSM beams. Finally, the main concepts and results associated with the partially
coherent nondiffracting beams are recalled.

2. Optical coherence theory

Optical coherence phenomena are customarily described in terms of the space-time correlation functions
but in many situations, such as generalized radiometry, a corresponding space-frequency representation
of optical coherence seems more appropriate. We begin by briefly reviewing these two coherence
formulations, discuss their relationship, and point out some important consequences that follow from it.

Let V(r,t) be the complex analytic signal [1, 2} that represents a statistically stationary and ergodic
scalar field. The main space-time correlation quantity then is the mutual coherence function

U(raryr) = (V¥(r, )V (r2, t + 1)), ¢y

where the brackets denote (time or ensemble) averaging. When the mutual coherence function is divided
by the averaged optical intensity

I{r) = I(r,r; 0) = {|V(r, )| (2)
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in the form

r(re,r27) = Dy, r2 7) /[ () I(r2)]'/2, 3

a classic quantity known as the complex degree of coherence is obtained. This function is normalized so
that for all values of its arguments

O0< [y(rrsr) <1, - )

and the lower and upper limits correspond, respectively, to complete incoherence and complete coher-
ence in the space-time domain. A field that is fully coherent in this sense throughout some domain is
necessarily monochromatic [3]. Physically the mutual coherence function I'(ry, r2; 7) characterizes the
(second-order) field correlations at points ry and r; and at time instants separated by r. The function
[(r1,r2; v) has several unique properties that derive from its nature as a correlation function [4]. The
normalized form v(r;, rz; v) quantifies the degree of the field correlations and it can be measured e.g.
in the usual Young’s two-pinhole experiment [2—4]; the fringe visibility is proportional to the modulus
while the locations of the intensity maxima determine the phase, and r represents the difference in time
delays owing to wave propagation to the observation point from the pinholes at r; and ra.

Since the stationary random process V/(r, 1) cannot die out as t — oo, the field does not possess a
temporal Fourier transform. We may, however, introduce purely formally as a generalized function the
Fourier transform

V(r,w)= zl' /_ ” V(r, t)exp(iwt)dt, )

for which V(r,w) = 0 when w < 0, and after inverting it make use of this definition in Eq. (1). Since the
left-hand side of Eq. (1) is independent of ¢, it follows that the (statistical) average (V* (r1, w)V{rs,w’))
must vanish unless w = w’, and so [5}

(V'{r;,w)i-/(rz?w')) = W(r, ruw)b(w — w'), (6)

where the factor W(ry, rz;w) multiplying the Dirac delta function §(w — «') is the cross-spectral density
associated with the field. On substituting the above expression into Eq. (1) we then find at once that

Ty, ry1) = jum W (ry, rsw) exp(—iwr )k, ' N

This formula shows that the mutual coherence function I'(r1, r2; 7) likewise is a complex analytic signal.
Equations (6) and (7) together constitute the essense of the extended Wiener-Khintchine theorem [5],
namely that the different {(generalized) Fourier components of a stationary field are uncorrelated and
that the mutual coherence function ['(ry, ra; 7) and the cross-spectral density function W{ry, r2;w) form
a Fourier-conjugate pair. :

It is evident that the cross-spectral density W(ry, ry;w) characterizes the {second-order) scalar field
correlations at points r; and r; and at frequency w. This function is the primary quantity in most
applications of the modem coherence theory and below we will apply it extensively in partially coherent
beam analysis. We assume that Eq. (7) can be inverted and the result is

o0

Wi(ry,rw) = :'Zl;,/ I(r1,rz; v) exp(iwr)dr. (8)

-0

The ‘diagonal element’ of the cross-spectzal density, i.e. the function
S(r,w) = W(r,rw) )]

is the spectrum (or spectral density) of the optical field at point r and at frequency w. If the cross-spectral
density function is normalized as

p(ry, rw) = W(rg, rpw)/{S(r,w)S(e, w)] /2, 10
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then for all values of r1, rp, and w
0 < lu(rr )] < 1. an

The quantity u(r,r2;w) is calied the complex degree of spectral (or spatial) coherence [5]. As before,
the (mathematical) limiting values 0 and 1 above indicate that the light fluctuations at points r; and
r2 are fully uncorrelated or fully correlated, respectively, but this time at the temporal frequency w of
the stationary field. If the condition of complete spectral coherence is satisfied in some volume, the
cross-spectral density W(ry, r2;w) factors in r, and r; [6,7]. It is interesting to note that the quantity
p(r, r3w) can also be measured in a Young's experiment if the pinholes are covered by narrow-band
spectral filters [8]. The situation is illustrated in Fig. 1. When the filter passbands are made arbitrarily
small, the maximum visibility of the interference fringes formed in the observation plane by the filtered
light will not, in general, tend to unity, but rather (ata symmetric point for which = 0, and assuming,
sufficdiently long integration time) it is equal to the absolute value of the complex degree of spectral
coherence of the incident light at the two pinholes and at the center frequency of the filters.

v Figure L The spectral filters T'(w) modify the in-
cident cross-spectral density (and therefore also
the space-time correlations) but leave the com-
plex degree of spectral coherence unaltered. For
narrow-band filters centered at wo, the exiting
complex degree of coherence is [8] ¥(r1,r2 T) =
p(ry, riwo)d(r), where 8(r} is solely determined
by T(w) and obeys 6(0) = 1.

As the filtering example demonstrates, the two quantities ~4(r1, r2; 7) and p(ry, rz;w) measure different

of coherence. For example, being fully coherent in one domain does dot imply the same in the

other domain. The two complex coherence degrees are, however, intimately related as can be seen by

deriving a functional dependence between them. More specifically, we first find from Eqs. (7) and (10
that -

F(ri,ru7) = fo m[S(rl.W)S(rz.w)]” 2u(ry, r3;w) exp(—iwr)dw. 12

Using Eq. (2) and the fact that u(r, r;w) = 1 forallw [cf. Egs. (9) and (10)], the (averaged) optical intensity
at point r is found to be

I(r) = Lw S(r,w)dw. (13)

This expmssibn is merely a statement of the obvious physical situation that the total intensity is made
up of all the spectral contributions. If we define the normalized spectrum as

ste,0) = S(r0)/ [ S(rde, 14)
0

then Eq. (12) readily implies that

Hry,rp7) = j [s(r;,w)s(rz,w)]”zp(n, ra;w) exp(—iwT)dw. (15)

0

This is an important relation which shows, first of all [cf. Eq. (7)], that the two quantities y(r1,r27)
and [s(r,w)s(r2, w)]"/2p(r1, r2;w) form a Fourier-transform pair. It also readily leads to expressions, in
terms of the normalized spectrum s(r,w) and the complex degree of spectral coherence p(r1, ry;w), for

the quantities [1,2,4] that are traditionally used to characterize the spatial coherence and the temporal
coherence, viz. v(r1,r2;0) and ¥(r,r;7), respectively.
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An illustrative special case is the uniform and isotropic blackbody radiation source, which obeys
Lambert’s law J(#,w) o cosd at each frequency. In such a case the complex degree of spectral coherence
(e.g. at a sufficiently large planar opening} is uniquely given by {9]
sinkfr; -y

N 1
Y — (16)

p(ri.rw) =

where & = w/c is the wave number and ¢ is the vacuum speed of light. Since the (space-independent)
normalized spectrum is known to follow Planck’s law

_157 & \* w?
=2 (#r) s o

where T is the temperature, K is Boltzmann’s constant, and £ is Planck’s constant divided by 2, the
associated space-time complex degree of coherence v(r;,rz 7) is obtained at once from Eq. (15). The
resulting temporal and spatial coherence properties are illustrated in Fig. 2. It is recalled [10] that
blackbody radiance (brightness) asswmes its maximum at wmax = 2.82 (KT/K) and, according to Fig. 2,
the temporal coherence is seen to extend over a range of just about up t0 7 ~ 2% /wmax. Of course it is
obvious that Lambertian radiation fields do not constitute beams, but these sources have played a central
role in elucidating the foundation of spectral radiometry with partially coherent light [11]. We note also
that, strictly, the expressions above correspond to the trace of the 3 x 3 electric cross-spectral density
tensor which can be argued to be compatible with the scalar physical optics [9,12]. In literature, the
exact electromagnetic correlation properties of blackbody radiation are analyzed and illustrated [2,12).

IO Figure 2. Graphs of blackbody temporal coherence

08F "\ ,,..2% =£.[__§_) =223 (0, ')} as a function of +* = r/a (solid line) and

osk \ @__ 282 \ kT ’ spatial coherence y(1”,0) as a function of ' = rfac

) ‘.‘ (dashed line), obtained by numerical integration

04F " from Egqs. (15)<17). The temporal coherence func-

o2k “a tion obeys {7(0, -7')] = |y(0, 7')]. The parameter
Sl a=R/KT.

. = .
5 {0 15 20 25 30 .t

So far we have not taken into consideration the fact that optical fields are (electromagnetic) wave
fields. Therefore in free space the mutual coherence function I'(r1,rz; 7) obeys a coupled pair of wave
equations, whereas the cross-spectral density W (r,, r2;w) satisfies two Helmholtz equations [11]

(Vi + W, me) =0, (j=1.2), - as

where k is the wave number associated with frequency w. In half-space problems, often encountered
in optics, exact solutions to Eq. (18) can be furnished in terms of the angular spectrum {or plane-wave)
representation or the (1st and 2nd) Rayleigh integral formulas [13]. In the context of optical systems, the
function W (ry, r3;w) is normally required only in planes z = constant and the paraxial approximation
for beam-like fields is usually employed. With rotationally symmetric optical systems {containing no
losses or gains), the general solution for the planar cross-spectral density function is expressible using
the extended Fresnel diffraction integral as

ikD
Wioyexz) = (/2e8P e |-52(R - A)] [[ wist,io)
kA, k , '
X exp {—%F(mz - ] exp {%(pl P =Py Pz)] d*pd’p), (19)
where r = (p, z) for (j = 1,2), and A, B, C, and D are the (real) elements of the system ray-transfer
matrix; the input plane is taken at z = 0 (the frequency w is not shown explicitly). In nonsymmetric

aligned cases the ABCD matrix M is a 4 x 4 (symplectic) matrix, but the diffraction integral can still be
written in a convenient block form; with tilt or decenter, 5 x 5 ray matrices are needed [14].
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The propagation equations for the stationary second-order correlation functions are another obvious
reason why the spatial and temporal coherence properties cannot be independent. In fact, Sudarshan [15]
has shown that in free space the coupled wave equations for the mutual coherence function I'(r1,xr2; 1)
can be turned into differential equations that are of first order in time (though nonlocal in space). These
equations have then been solved to produce explicit formulas for the mutual coherence function, as
well as for the cross-spectral density W (r1, rz2;w) and the spectrum S(r,w), in terms of a spatial integral
over the mutual intensity [(ry, r2;0) [16]. In nonstationary wave fields, such as pulses, the situation is
more complicated. Likewise, the vector nature of random electromagnetic fields brings in additional
difficulties. Although the electromagnetic correlation tensors, various relations among them, and the
degree of polarization have long been studied [1-4], the effects of polarization in narrow optical beams
have not so far received much attention. The far field of a blackbody radiator was recently shown to be
unpolarized in all directions [17].

3. New space-frequency theory and the coherent-mode representation

The cross-spectral density function W(ry, r2;w) can be introduced either via Eq. (6) or Eq. (8), but both
methods are somewhat unsatisfactory. The temporal Fourier transform V(r,w) does not exist as an
ordinary function [cf. Dirac delta function in Eq. (6)], and a great deal of mathematical sophistication is
expended to deal with this problem. The possible approaches include generalized harmonic analysis,
stochastic Fourier-Stieltjes integral, or use of generalized function theory [18]. In Eq. (8), on the other
hand, the cross-spectral density is obtained through space-time correlations, which seems an added
unphysical complexity. For these reasons a new space-frequency representation of optical coherence
was developed a few years ago by Wolf [18-21]. This theory also leads to certain natural modes of
partially coherent fields that have found several applications [21].

We assume that the cross-spectral density W(ry, r2;w) is a continuous function of w and contains a
finite amount energy in the volume of interest {18,19), i.e.

J[ e rmaiendn < o, | @0

and consequently W (r,r2;w) is a Hilbert-Schmidt kernel [20]. The cross-spectral density is evidently
Hemnitian [cf. Eq. (6)]

W(rs, riyw) = W*(ry, raw), (21)
and it can also be shown to satisfy the non-negative definiteness condition [20, Appendix A]

[ W(er, r2iw) f* (01) f(e2)dridr2 2 0, @)
where f(r) is any square-integrable function. This expression obviously leads at once e.g. to the general
result that the radiant intensity produced by a fluctuating planar source is a non-negative quantity.
Equations (20)-(22) together imply, by Mercer’s theorem, that the cross-spectral density function admits
the convergent expansion {18-21]

W(rnrw) = 3 M) (v, w)dn(rz,w), (23)
where ), (r,w) are the eigenfunctions and A, {w) the eigenvalues of the Fredholm integral equation

jW(n,rz;w)tb,,(rl,w)darl = An{w)Pn(r2,w). (24)
The eigenvalues are real and non-negative, A, (w) > 0, and the eigenfunctions can be taken orthonormal
in the volume of field analysis. For a given cross-spectral density there may be one, many, or infinite

non-zero eigenvalues. It is clear that with obvious modifications the discussion above applies also to
two and one-dimensional field distributions.
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The important point now is the following. If one defines a statistical ensemble of monochromatic
functions {U(r,w) exp(—iwt)} such that [18,19] ’

Ulr,w) = Zan(w)wn(r,u), (25)

where the coefficients satisfy {a},(w)am(w)} = An(w}dnm, then on comparison with Eq. (23) it readily
follows that '

W(ri, rw) = (U (r1,w)U(r2,w)). (26)

Hence this result shows that, contrary to popular belief, the cross-spectral density of a stationary optical
field can be expressed as a correlation of ordinary functions in the space-frequency domain.

Several physically significant consequences can be pointed out. Since the various contributions in
Eq. (23) factor in r; and r;, each term corresponds to a spatially completely coherent field (at the given
frequency) (6]. This can also readily be verified on substituting the contributions into Eq. (10). Use of the
coupled propagation equations in conjunction with the eigenfunction orthogonality leads to the result
that each eigenfunction ¥, (r,w) — and therefore by linearity also the function U(r,w) - satisfies the
Helmholtz equation in free space. For these reasons the terms in Eq. (23) are spatially coherent modes
(natural modes of oscillation), and the expansion is known as the coherent-mode decomposition of the
cross-spectral density. The higher-order coherence functions of the optical fields in the space-frequency
domain were discussed quite recently (21]. '

4. Gaussian Schell-model sources and beams

Perhaps the most widely used model fields in modern coherence theory are the Gaussian Schell-model
(GSM) sources and the beam-like radiation fields that they generate {22-27). These beam-fields can be
analyzed in closed form and they are readily produced in a controlled manner in the laboratory [28,29).
The GSM sources bridge continuously the gap between the spatiaily incoherent (thermal) sources and
the usual fully coherent Jaser sources.

The general Schell-model sources are characterized by the fact that the spectral degree of coherence
in Eq. (10} depends only on the separation between the points r; and rz, i.e. p(r1, riw) = g(r2 — r1,w).
For Gaussian Schell-model sources both the spectral intensity S(r,w) and the (real) spectral coherence
degree g(r’,w) (with r' = r; ~ r;) are Gaussian functions. Hence the planar GSM sources (across the
waist plane, say z = 0) are defined by

W (py, priw) = (S(p1,w)S(py.w)]2g(p2 — pr, w0}, 7)
where

S(p,w) = S(w)exp(—2pfu?), (28)

9, w) = exp(~p"* [20}). (29)

Hereagainr; = (p;, z) for (j = 1,2), S(w) is the on-axis spectrum, and ws and o, are positive parameters
(that may depend on w). It is evident that the spectrum S(w) will also affect the (total) beam intensity
distribution generated by the source [30]. When ws > o, the GSM source is globally incoherent, but
it may still be locally coherent or incoherent depending on whether o, > A or o, = A, where ) is
the wavelength. The effectively incoherent limit above corresponds to a special case of the so-called
quasihomogeneous sources, for which the spectral intensity S{p,w) varies in space slowly enough so as
to remain essentially constant over regions in which the spectral coherence degree g(p’,w) has sensible
values {11,31]. The symmunetric GSM source (27)-(29) can be generalized in an obvious way to anisotropic
(but orthogonal) cases, that lead to several interesting results on far-field radiation [32,33].

The planar GSM sources (and beams) have an important place in the modem coherence theory also
because for them the coherent modes are explicitly known. Substitution of Egs. (27)-(29) into the integral
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equation (24) leads, after considerable algebra, to the separal:;le solution (i.e. identical expressions along
both z and y axes) [34, 35]

¥n(z,w) = (2/7wiB)/4(2"n!)"V2H, (V22 /ws\/B) exp(—z?[whp), (30)

An(w) = S(w)V2rws[8/(1+ B(1 - B)/(1 + A", G31)

where 8 = [1 + (0,/ws)"4~"/2, and H,(z) are the Hermite polynomials. The parameter a = o, /ws
appearing in g is the (non-normalized) global degree of coherence; £ itself is bound such that § = 1
implies full spatial coherence and § — 0 in the incoherent limit. The eigenfunctions are seen to be the
Hermite-Gaussian functions characteristic also of the usual Fox-Li modes of laser resonators [36). In
the coherent limit (¢, > c5) the lowest eigenvalue Ag{w) is dominant, whereas in the other extreme
(o4 € o5) a great many modes contribute. The number of oscillating modes can be connected with the
information content (degrees of freedom) carried by the beam [37].

The propagation of GSM fields can be studied on a mode-by-mode basis [35,42]. Besides extensions of
the GSM models to the anisotropic sources and quite recently also to include certain coherence-induced
twists (handedness) [38], another special case for which the coherent modes are explicitly known is the
Bessel Jocorrelated Schell-model source [39]. The coherent modes associated with any (finite) Schell-
model source have been proven to form a complete set (40], although generally they will have to be
evaluated numerically. A considerabie simplification, however, takes place in the homogeneous short-
correlation limit in which the eigenmodes are normalized harmonic functions and the eigenvalues are
samples from the spatial frequency spectrum of the cross-spectral density {41].

5. Determination of beam’s transverse modes

Let us briefly consider the determination of the spatial modes associated with a partially coherent beam.
The transverse mode structure can not be obtained from the planar intensity data alone, as is evidenced
e.g. by the fact that the spectral intensity in Eqs. (27)-(29) is the same regardless of the coherence
parameter o,. If the laser oscllates simultaneously in several transverse (and longitudinal) modes, the
frequencies of each mode are slightly different. The spectral width of the beam is, however, usually so
small that the detector integrates over all frequencies. Therefore the resulting cross-spectral density (or
actually the mutual intensity) is as expressed by Eq. (23), with w denoting the mean frequency and the
coherent modes ¥, (p, w) being products of functions of the form of Eq. (30).
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The spot sizes of all Hermite-Gaussian modes are the same. On propagation the spot size evolves as
usual and the mode function also acquires the typical phase curvature, likewise the same for each mode.
However, within the paraxial approximation the functions remain the coherent modes associated with
the cross-spectral density [43). So if we denote the eigenfunction (omitting the frequency w for brevity)
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across some plane z = constant by ¥a(p,z) = ¢a(p, z)explian(p, z)], where $a(p, 2} and an(p, z) are
real, the integral equation (24) evidently reduces to {44-46]

] Wr(p1, 1 2)8a(p1, 2)d2p1 = Andn(py. 2), (32)

where Wr(p,, py; z) is as in Eq. (23) but contains only the weighted superpositions of the (amplitude)
functions ¢, (p, z). This is now a central expression. If the function Wr(p,, p;; z) is measured interfero-
metrically, we could simply integrate Eq. (32) to find the eigenvalues ),. However, the problem is that
we don’t know the spot-size parameter w that is implicit in the eigenfunctions ¢n(p, 2) [cf. Eq. (30)].
Therefore one must measure the real kemel Wg(p,, py; z) with respect to fixed points, at which the
function ¢.(p, z) does not vanish. Then Eq. (32) can first be solved numerically for the spot size w, and
once this is known the eigenvalues can be integrated straightforwardly. In numerical simulations the
method proved amazingly stable, even in the presence of considerable noise [44].

In Fig. 3 we present experimental results obtained for a stable commercial multimode He-Ne laser
(Siemens model LGK 7621 MM). The real spatial coherence kernel Wg(py, p;; z) was measured on a
20 x 20 grid using Young’s interferometer with computer-controlled crossed-slit apertures. The possible
sign changes of Wr(p,, py; z) can be observed from the phase jumps (by x radians) in the interference
pattern. Several significant modes are found in a relatively symmetric pattern, with Aa the strongest,
in agreement with the observed increases in the far-field beam spread. Using the observed modes with
significant amplitudes, the function Wg(p,, py; z) can be reconstructed numerically. In this manner, the
calculated intensity and spatial coherence distributions are compared with the corresponding directly
measured distributions and the results are in excellent agreement [45,46].

6. Beam synthesis and coherence control

In view of the van Cittert-Zernike theorem [11], the spatial coherence properties of a wave field can be
modified simply through apertures and propagation (28,29], but the resulting beams usually are weak.
Since also the coherent modes of optical fields are difficult to control, more eificient methods of beam
synthesis have been developed. Gori and coworkers [47-49] express the GSM wave fields as incoherent
superpositions of elliptical Gaussian component beams, which are spatially displaced and propagate
parallel to each other. This technique has clarified greatly the directionality of partially caherent wave
fields [48]. In another superposition method the component beams may occupy the same area in the waist
plane, but they propagate in different directions [50]. This is a fiexible method that can be implemented
using synthetic acousto-optic holograms. Both superposition techniques can also be extended so as to
produce the recent coherence-induced twists [38].

Consider, for example, an anisotropic GSM source of the type of Eqs. (27-(29), with w, and w, being
the spot sizes in the z and y directions, and similarly ¢ and ¢, being the orthogonal transverse coherence
lengths. The decomposition of this field (at z = 0) by means of Gaussian beams propagating in different
directions is of the form

W(py, py;0) = ] / (82,0, (010, 03 )U (93O, B )A0l6, (33)
where

U(p;6:,8,) = /Sw) exp(—z2/wl) exp(—17 fwl) exp(ikfz) exp(ikbyy), (34)

P(8:,8,) = (27) Koo, exp[—(ko:)262 /2 exp{—(kay)?6; /2], (35)

as can be verified by direct integration (for paraxial fields the limits may formally be taken to infinity).
Physically, the integration variables ¢, and 8, give the deflection angles of the coherent (elliptic Gaussian)
beam components.

The cross-spectral density W(p;, p,;0) in Eq. (33) can be efficiently generated with an expeﬁmenta'll
setup [50,51] shown in Fig. 4. An incident coherent Gaussianbeam with the desired ellipticity (w., wy) is
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converted into a set of coherent, but mutually uncorrelated (because of Doppler shifts) Gaussian beams
by a synthetic grating that propagates in the acousto-optic deflector (AQ). To generate an approximate
GSM beam, the envelope of the discrete set of beams (diffraction orders of the progressive grating)
is made Gaussian by appropriately optimizing the grating profile. Thus a sampled version of the
decomposition (33)-(35} is produced by two crossed deflectors. In practice, it is convenient to realize
the acousto-optic grating in a hybrid form: A Raman-Nath regime grating (period Ay, generated by H)
with a Gaussian power spectrum is used to phase modulate a sinusoidal Bragg-regime carrier grating
{period Ac € Ag, generated by C) that deflects the incident beam by an angle 205 (where g == A/2A¢).
The phase-modulation grating, which carries the information, is analogous to the Dammann grating
in optics and it is illustrated in Fig. 5. The partially coherent, modulated beam then propagates in the
direction of the (negative)} first diffraction order of the carrier grating.
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Figure 4. Experimental setup. AO = acousto- Figure 5. Phase profile of an optimized binary
optic deflector, C = driver, H = information phase grating with approximately Gaussian
source, M = mixer, A = amplifier. power spectrum.

When the coherent Gaussian component beams propagate to the back focal plane of the Fourier-
transforming lens L {focal length F), they each acquire a certain width wr = AF/xuy (where uy is the
width at the deflector) and separation ug = AF/Ay between the adjacent beam centers. Two distinctly
different modes of operation are now available. If wr < uo (or equivalently vwy/A g >» 1), the diffracted
beams are well separated and one may speak of beam-splitting mode [52]. All individual beams are
now fully coherent, but mutually uncorrelated. I, on the other hand, wr > ug, the beams will partially
overlap and one is working in beam profile shaping mode. In this mode, the degree of spatial coherence
within the superposition field can take a variety of different values and functional forms. In addition to
the efficient GSM beam synthesis and control [50,51], potential applications include Gaussian to flat-top
conversion [53]. If the optimized phase-grating data are stored in a computer, the intensity and coherence
properties of the output beam can be reconfigured within the access time of the acousto-optic deflector.

7. GSM beams in optical systems

We shall return now to the GSM source (27)-(29) and analyze the evolution of the beam it generates in
free space and through optical systems. On propagation from the source plane [ie. the waist z = 0, at
which R(0) = co] in accordance with Eq. {19) in free space(viz. A=1,B=2C =0,and D =), the
planar cross-spectral density associated with the wavefield is

W(pi,piz) = Swhwduw (z)expl—(p] + p3)/w(2)]
x exp{—(py ~ p)?/207(z)| exp[—ik(p] — p3)/2R(2)], (36)

where w(z) is the beam's spot size, R(z) is the radius of wavefront curvature, and o(z) is the transverse
coherence length. If we define, as before, a = o(z)/w(z) and B = [1 + a~2]7/Z, then « and § are
known to remain invariant for the GSM beams [23]. Therefore, the spot size and transverse coherence
evolve in the same way and we may introduce a new quantity, called simply the beam parameter [54],
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as b(z_)_= xnw?(z)f/), where n is the refractive index and the coherence information is in 4. With these
definitions the GSM beam parameters obey in 2 homogeneous medium the propagation equations [54]

b(z) = boll + (2/80)?), (37

R(z) = 21+ (bo/ )1, C8
where by = xnw? 5/ is the beam parameter at the waist. These equations are seen tobe highly analogous
with those characterizing the usual Gaussian laser beam (limit ¢, — oo, or § — 1).

Particularly important in the passage of GSM beams through symmetric ABCD systems is a quantity
¢{z), kmown sometimes as the generalized complex ray. It is defined in terms of the real, coherence-
dependent parameters R(z) and b(z) by the formula {54,55]

I . 39
o(z)  R(z) ¥z)’
and it satisfies the extended Kogelnik’s ABCD law
Ago+ B
g 40
Jout Cep+D “0)

proved e.g. by symmetry considerations [24], by induction [55], and also explicitly (for arbitrary input
parameters) using the cascaded Fresnel diffraction integral (19) {56). The transformation law (40) implies
that a GSM beam remains a GSM beam in optical systems, only the parameters describing it vary.

out
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Figure 6. Observable quantities associated with a GSM beam emerging
from an arbitrary ABCD system.

On exit the GSM beam forms a waist at some distance z; (positive when converging) from the system
(see Fig. 6). Without any loss of generality, we may in analysis extend the ABCD system to begin from
the input beam waist. Separating the real and imaginary parts of Eq. (40) and using Eq. {39), one first
finds expressions for the output beam parameters Hou and by and these be inverted to yield z; and the
waist parameter b;. Expressed in terms of the matrix elements A, B, C, and D, the results are [54-56]

2 2p-2
2y = — A2+Bbo , (41)
AC + BDb;? + (AC® + BD)!
2 2—-2
2 A% + B, 2

m- = R
1+ (ACbo + BDb;')?

where in the latter formula we have introduced m = /b;/by = w; /wp as the image magnification. The
other observable quantities of interest in the exit beam waist region are

o; = may, (43)
D =2mbg /2 — 1, (44)
O; = arctan(A/rnmuwgJ), (45
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where o, is the image coherence width, D is the depth of focus (defined as twice the distance in which
the beam expands from w; to nw;), and ©; is the usual far-field diffraction angle. Equations (41)—(45)
provide a complete description of the GSM beam passage through symmetric paraxial systems.

Several consequences and extensions are of interest. It follows from Eqgs. (41)—(45) that the quantities
z, m, and D depend only on bg (ie. on rnwlB/A), whereas the quantities w;, o;, and ©; depend also
on up and op. An obvious generalization to an anisotropic case then shows, for example, that an
elliptic GSM beam for which w?#/) is the same in both orthogonal directions, retains its shape in a
symmetric optical system [49,56]. Various equivalence relations are similarly obtained e.g. for the far-
field radiation using Eqgs. (42) and (45). Evidently in nondispersive (color-corrected) optical systems the
coherence dependence can be compensated by scaling the wavelength as A/8. The coherent case (8 = 1)
corresponds to a Gaussian laser, while in the incoherent limit (§ — 0) we obtain by — 0 and Egs. (41) and
(42) reduce to z; — —B/D and |m| — 1/|D}. These expressions correspond exactly to the geometrical-
optics results for an ensemble of radiating point sources, distributed according to a Gaussian weight
function. In the asymptotic limit as A — 0 (with « and g fixed) we have by — oo, and Egs. (41) and (42)
yield z; — —A/C and jm| — 0. These expressions represent a point image in the system backfocal plane,
ie. the GSM beam behaves as an infinite plane wave (56].
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Figure 7. Dependence of the thin-lens image location z;/ F (left) and magnification m (right) on
the incident GSM beam waist distance z,/ F and the spatial coherence parameter o.

. As an important example we consider a thin lens of focal length F, placed at a distance z from the
GSM input beam waist. On substituting the ABCD matrix elements in Egs. (41) and {42), we find after
considerable algebra the following coherence-dependent thin-lens imaging equations [54,55}:

1 1 1
22 {46)
z F zg+b%/(zo—-F)’

= |(1- 3 boy2] 2
m—[(l e I 47

Once the magnification is known, the other quantities are obtained from Egs. (43)<45). The results (46)
and (47) are illustrated in Fig. 7 for several values of the global degree of coherence a = og/wo, while
keeping wo and A fixed (xw}/AF = 1). Itis seen that the magnification increases as the spatial coherence
is reduced, and the image beam waist moves closer to the position predicted by geometrical optics (set
bo = 0). The difference between the geometrical-optics and the actual image locations is known as the
focus shift, usually large in low Fresnel-number optical systems. The coherence-induced variations in
the G5M beam image size and position have been verified experimentally [57], and these phenomena
obviously affect e.g. the transverse coupling of partially coherent beams into optical fibers.
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8. Propagation-invariant partially coherent beams

It has been pointed out {58,59] that there exist exact free-space solutions of the Helmholtz equation, which
are propagation-invariant in the sense that the spectral intensity distribution S(p, z) is independent of
the axial coordinate 2. These solutions differ from the usual shape-invariant optical fields such as laser
beams in that also the transverse scale of S(p, z) is z-independent. Thus these solutions, which are
characterized by the fact that they consist entirely of plane-wave components that propagate along the
surface of a cone, have been called diffraction-free beams (or conical fields). Such a term is somewhat
misleading since these wave fields are not really beams at all in the traditional sense (consider the power
flow) but rather interference patterns, and because all these solutions contain an infinite amount of
energy, which is indeed a necessary condition for exact propagation invariance. Nevertheless, practical
finite-aperture approximations of such beams are efficiently generated e.g. by computer holography
and they are of considerable interest, for example, in metrology and precision alignment. The simplest
diffraction-free beam, and the only rotationally symnmetric one, is the classic (lowest-order) Bessel beam
$(p., z) = J3(ap), where a is a parameter such that 0 < o < k (this o is not to be confused with the
coherence degree). The Bessel beam has a narrow central maximum (half-width ppw ~ a~1), which
retains its shape over an appreciable distance (zmax & 2x Rpyiw/ A, if the radius of the aperture is R).

In partially coherent optics we consider the cross-spectral density function W(r1,rz) that obeys the
coupled Helmholtz equations (18). We take the requirement for the propagation invariance to be

for all z > 0[60]. This requirement poses an invariance condition on both the transverse intensity and the
transverse spatial coherence. On expanding the cross-spectral density in the form of a double angular
spectrum representation, expressing it in polar coordinates, and further requiring that the condition
(48) be satisfied, one can show that the angular correlations between all plane-wave components must
necessarily vanish in the radial direction; this condition may, in fact, be considered as the defining
property of the partially coherent propagation-invariant fields. Making use of this result the general
expression for the propagation-invariant partially coherent beams then is (601

kf2x r
W(ri,r2) = /o / J25(f.61,62) expli(z2 — 20)[k* — (22 f)]'/?)
(4] ) .
X exp{:'21rf(:z cosfy — xycos6y + nsiné; —wn sinﬂ;)]dfdﬁdﬂz, {19)

where S(f, 61, 62) is an arbitrary function and the upper limit of the f-integration has been set to exclude
the evanescent waves that cannot satisfy the invariance requirement.

Besides the coherent diffraction-free fields, the general expression (49) has a number of interesting
special cases. If we assume that the angular correlations between the plane-wave components vanish
also in the azimuthal direction, and moreover, that the angular spectrum is nonzero and of constant
strength on a single radial ring only, the general propagation-invariant beam formula reduces to the
Bessel-correlated field

W (r1,12) = Soexplifi(zz — z)}Jofaley ~ p2ll, (50)

where So = constant and o? + 2 = k2. This wavefield is of a uniform intensity but it has a sharply
peaked, invariant transverse coherence distribution; it can be viewed as the counterpart of the coherent
Bessel beam in variable-coherence optics. Incidentaily, this particular wave solution happens to be one
of the few fields for which the coherent modes of the cross-spectral density are known explicitly [39].
Propagation-invariant wavefields that possess rapidly varying profiles of both the spectral intensity
and the spatial coherence also exist [60]. Such fields, and the more general self-imaging wavefields,
constitute the partially coherent modes of a planar Fabry-Perot resonator [61). Finally we note that
the exact partially coherent propagation-invariant field (49) satisfies, in a plane-to-plane propagation,
remarkably also the corresponding (single) paraxial propagation equation for the planar cross-spectral
density W(p,, py; z) [62]. The wavefield remains shape-invariant in all lossless ABCD systems, but the
property of strict propagation invariance is conserved only if the system is afocal.
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9. Conclusions

We have demonstrated that optical coherence manifests itself differently in the different domains. The
concepts associated with spectral (spatial) coherence are relatively new. The spatial coherence properties
of confined optical beams can be analyzed mathematically and experimentally, and directional beams
of this type can be produced efficiently in practice with any desired spectral intensity and coherence
profiles. The coherence properties were shown to modify the beam evolution characteristics, both in the
context of passage through optical systems (focused waves) and with invariant fields. Partially coherent
sources and the beam-like fields they radiate have in the recent past also contributed to a variety of other
topics, including spectral radiometry and radiative transfer [38] as well as correlation-induced spectral
shifts and partially coherent spectroscopy [63}.
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Abstract

A coherence-dependent twist phase alters the propagation of Gaussian Schell-
model beams in free space and in optical systems. The modifications implied
by this twist effect onto the generalized radiometric description of the planar
Gaussian Schell-model sources and the fields they generate are discussed.

1. Introduction

It was recently shown [1} that partially coherent beam fields in rotationally symumetric optical systems
allow a spectral, position-dependent phase that rotates the beam on propagation. This novel twist phase
(handedness) has several remarkable properties that distinguish it from the customary phase curvature.
For example, because of the non-negative definiteness of the yoss-spectral density, the twist phase is
bounded from above and it disappears in the limit of full spatial coherence (corresponding to usual
lasers). Besides rotating the beam, the twist phase can further be viewed as decreasing the ‘effective’
degree of spatial coherence associated with the wave field. In free space this phenomenon obviously
manifests itself in increased diffractive spreading, while in first-order systems it is expected to modify
the various coherence-dependent propagation effects. For these reasons it appears natural to ask as to
what are the effects of the additional coherence twist phase on the radiometric properties of the Gaussian
Schell-model (GSM) sources and the fields they produce. This is the topic of the present paper.

After reviewing briefly the main characteristics and an experimental implementation to generate the
twisted Gaussian Schell-model (TGSM) beams in free space, the exact radiant intensity produced by the
planar TGSM sources is evaluated. The associated radiation efficiency and some physical twist-induced
consequences of these results are discussed. The twist phase naturally also alters the source’s generalized
radiance and generalized radiant emittance, as well as the far-field spatial coherence as expressed by
the extended van Cittert-Zernike theorem. Making use of the ABCD-matrix formalism the evolution of
the TGSM beams can be analyzed in paraxial optical systems, and some twist-induced effects such as
focus shift and changes in magnification have been observed. Certain propagation invariance theorems
in passage through first-order systems can also be derived for the main definitions of the generalized
radiance. The properties of the generalized radiance and some implications of these radiance (brightmess)
invariance laws e.g. in relation to the beam rotation are elucidated.

2, Twisted Gaussian Schell-model beams

Let us first recall the main properties of the twisted Gaussian Schell-model beams using the notation that
has been applied when studying the paraxial wave propagation [1,2]. Across any p}ane z = constant
the cross-spectral density [3} (at a frequency w which is not shown) of a TGSM beam is

Wipr.piiz) = Sow3(z)expl—(s] + p)/w’(2)] expl—(p: — p2)*/20°(2)]

x exp(~ik(p} — p3)/ R(z)) expl—ikpy - eppu(2)], M
where Sy is a positive constant (proportional to the on-axis spectrum), p = {(z,y) is a two-d‘imensioni'll
(column) vector, k = w/¢ is the free-space wave number (c is the speed of light), and € is anar}t:symmemc
2 x 2 matrix such that p, - €p, = z132 — z2y1. The real functions w(z), o(z), R(z), and u(z) in Eq. (1) are
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the beam’s spot size, ransverse coherence length, radius of wavefront ¢urvature, and twist parameter,
respectively. For a compact description of the evolution of these parameters in free space we need two
propagation-invariant quantities, viz.

8= {1+ [w(z)/e()]?} 2, 2
7 = ko?(z)u(z), _ €))

of which the (usual) spatial coherence parameter £ is obviously normalized between 0 (incoherent limit)
and 1 (coherent limit). The (new) twist parameter 1), on the other hand, is bounded [1] in such a way
that -1 < » < 1; in view of Eq. (3) n = 0 corresponds to u(z) = 0 (no twist), while || = 1 represents the
case of maximum (left-hand or right-hand) twist.

Taking the beam waist to be located in the plane z = 0 the four TGSM beam parameters obey, within
the accuracy of the paraxial approximation (i.e. Fresnel diffraction), the free-space propagation laws

w(z) = w(0)[1 + (2/2r)]'/?, @
o(z) = o (0)1 + (z/2r)]', (5)
R(z) = {1+ (zr/2)?], 1Y)
w(z) = w(0)[1 + (2/zr)}]7", 7
where
-1/2
R = "”;(0)5 [1 +7 (1-‘2-5‘3—2) z] l (8)

is the Rayleigh range of the TGSM beamn (\ = 2x/k is the wavelength). A measurement of the intensity
distribution across any plane z = constant gives the spot size w(z) but does not by itself reveal the
presence of the twist. However, the influence of the twist is naturally indirectly included in the spot
size through the n-dependence of the Rayleigh range. Calculation of the far-field diffraction angle from
Egs. (4) and (8) yields

a2
84 tanfy = lim w(z)/z = w:\ow [1+q2( IT;—)] . ©

and we see that the beam spreading increases when the twist parameter || increases.

The other characteristic effect of the twist, namely the beam rotation, cannot obviously be seen
in a rotationally symmetric field but it can be demonstrated by suitable decompositions of the beam.
Twisted GSM beams have been produced by passing a partially coherent, elliptic GSM beam field through
a certain astigmatic lens system {2]. The unisotropic input field can be decomposed (exactly) into an
integral of overlapping, mutually uncorrelated, Gaussian beams propagating in different directions,
with a weighting function that is also a Gaussian. A sampled approximation of this superposition is
efficiently generated using the acousto-optic coherence control technique {4], whereby a high-frequency
Bragg carrier wave in an acousto-optic deflector is modulated with an optimized Raman-Nath grating
(analogous to a synthetic hologram). The astigmaticlens consists of two groups of three cylindrical lenses,
with each group performing imaging in one coordinate and Fourier transformation in the orthogonal
coordinate (see Fig. 1). The focal lengths satisfy f: = 2f,, and the Rayleigh ranges z5 associated with
both orthogonal coordinates of the elliptic input beam [cf. Eq. (8) with 5 = 0] are equal to f;. When the
latter lens group is rotated about the z-axis by 45 degrees with respect to the former group, the entire
optical system converts the elliptic GSM beam into a rotationally symmetric twisted GSM beam.

If the elliptic GSM input beam is coherent in one direction while partially coherent in the other
direction, a maximum degree of twist (|p| = 1) is obtained. Twisted GSM beams corresponding to this
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situation have been produced and the rotation of the individual elliptic Gaussian component beams has
been demonstrated experimentally and by simulation [2]. In free space the beam rotation reaches »/4
at z = zg and approaches x/2 in the far zone. Measurements of the TGSM beam spot-size evolution
are presented in Fig. 2 as a function of the propagation distance from the waist, with w(0) = 0.62 mm,
f = 029, and n = —1. The calculated theoretical TGSM beam profile, as well as the profiles for the
corresponding ordinary GSM beam (n = 0) and coherent laser beam (8 = 1) are shown for comparison.

6- Iwisted GSM
E 4 GsM
i" -
2.
3
G T T L) T L]
0 1000 2000 3000
2 [mm]

Figure 1. Illustration of an astigmatic lens Figure 2 Measured TGSM beam spot sizes,
system that converts an elliptic GSM input compared with divergence of TGSM, ordi-
beam into a symmetric twisted GSM beam. nary GSM, and Gaussian laser beams.

We note that an analogous, although apparently different, practical superposition model of TGSM
beams has been suggested and analyzg: [5?. This model is expressed in terms of displaced and suitably
inclined ordinary Gaussian beams, and it clarifies considerably the main physical properties of the
twisted GSM beams. The mathematical coherent-mode decomposition associated with the cross-spectral
density function (1) of TGSM beams has also been found [6], but it is not known how these modes could
be realized in practice.

3. Radiometry of planar TGSM sources

Up to this point the discussion concems only the twisted GSM wave fields in the paraxial approxamation.
In view of the observed phenomena it is of interest to analyze the situation in terms of the generalized
radiometric theory that deals with energy-related quantities. We begin by considering the radiometry
of planar TGSM sources using exact (i.e. non-paraxial) field propagation.

The main (observable) quantity associated with any fluctuating source is the radiant intensity J(s).
which is defined as the rate of energy (at frequency w) emitted by the source per unit solid angle about
the direction s. For planar sources (located at z = 0} it can be expressed as [7,8]

J{(s) = (2xk)2 cos? 0 W(—~ksy, ksy;0), o

where s, is the two-dimensional projection of the unit vector s onto the plane z = 0, i.e. s = (sy, 5:)
with s, = cos ¢, and

W1, £2,0) = (2m)* / j W(p,. p20)exp[—i(fi-py + £ p)ld2mdm an

is the four-dimensional spatial Fourier transformation of the cross-spectral density ﬁmction‘associated
with the source. For a twisted GSM planar source the cross-spectral density is, from Eq. (1), given by the

formula

W {py, p2; 0) = Woexpl—(pl + p3)/205) expl—(p1 — )2 /2% expl—ikup, - €pa), (12)
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where we have introduced the abbreviations Wy = S/ w}(0), o5 = w(0)/2, oy = o(0), and u = u(0),
and noted the fact that R(0) = oo [cf. Eq. (6)]. Making use of the identities p - €p = 0, €p-ep = g%, and
S -€p = —esy - p, as well as the integral [9]

m -9x7y =_1_‘/E 0
[eva=35 @ 3)

we find first, on substituting from Eq. (12} into Eq. (11), after considerable algebra that

W
(2xP[(405)"F + (9502)~ + £2u?]

W(—ksy, ks ;0)

2.2
i {"&%{(4«;)-' : ErIEE kzuzl} - a9
Since the radiant intensity produced by a planar TGSM source is rotationally symmetric, we may then
express J(s) from Egs. (10) and (14) in the form
J(8) = J{0) cos? § exp(—£2sin® 9), (15)
J(0) = Wy (203) €%, 6)
where we have defined (with some foresight about the radiation efficiency) the quantity
€ = [1/2(kas)? +2/(ko,)* + 2(osu)} . (17)

As anticipated in the introduction, the angular distribution of the radiant intensity depends also on the
twist parameter u associated with the source. In the limit as u — 0 (i.e. when the twist disappears), the
result (15)~(17) reduces to that obtained before for the usual GSM sources [10).

If the radiation is confined (as a result of the parameter £) to small angles such that cosé = 1 and
sind = 8, the exact radiant intensity (15) leads to the far-field diffraction angle (¢~2 half-width)

04 = V2(1/€), 18)

which can be shown to be identical with that given by Eq. (9} for the twisted GSM beam-like fields. The
proof is greatly facilitated by noting that§ = v2 ko sfes, ie. the inclusion of the twist phenomenon in the
GSM sources can be effected, as suggested by Eq. (8), by replacing the ‘ordinary’ coherence parameter
with the ‘effective’ coherence parameter S, according to

-1/2
B — Pe = P [1+q2 (I—_E)z] (19)
28 '

where § and 5 have been introduced in Eqgs. (2) and (3), respectively.

Both the lack of full spatial coherence and the generation of evanescent waves are known to influence
the amount of power radiated by optical sources. The radiation efficiency of a planar source of any state of
coherence is defined as the ratio of the total hemispherical radiated power (flux) to the source-integrated

spectral intensity {spectrum), ie. (11]

C = ®/N, 0)
where
® = J(s)d2, 21
@)
N= / S(p,0)dp, 1Cr
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and the spectrum is S(p,0) = W(p, p;0). The radiation efficiency is known to satisfy the normalization
relations 0 < C < 1 for any planar source [1], 12). On substituting from Eq. (15) into Eq. (21) (and
applying the technique of integration by parts (13]), and from Eq. (12) into Eq. (22), we find that

C=1-D(£)/¢, (23)
where
) .
D - - ¢ -
() =¢ ) fo efdt (24)

is the Dawson integral {14l and £ is given by Eq. (17). Several special cases of Eqs. (23)-(24) corresponding
to the ordinary untwisted GSM sources, including the coherent (¢, — co), quasihomogeneous (o5 > 0,),
and homogeneous (o5 — o) limits, have been previously discussed [11-13]. In this paper we corcentrate
on the effects of the twist.

Since the magnitude of the normalized twist parameter 0 is bounded from above by unity, we obtain
from Eq. (3) that u? < 1/k%}. Considering for simplicity the quasihomogeneous TGSM sources only,
the values of the parameter £ in Eq. (17) lead e.g. to the following sequence
o2 S Ko} 5 ko) . Ko}

Z 231+ kolotud) - A1 +0%/ey) 2
where the (in)equalities correspond to the homogeneous limit with no twist (u = 0), quasihomogeneous
source with a twist (u), quasihomogeneous source with maximum twist (fu| = 1/ke?), and its limiting
value. The radiation efficiency C decreases along this sequence, since according to Egs. 23-24)Cisa
monotonously increasing function of . Graphs of the radiation efficiency C as its parameters are varied
continuously are shown in Fig. 3 both when there is no twist and when there is maximal twist.

o2 /o%), (25)

1

1.2 1.2

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

2 4 & 8 10 2 4 6 8 10

1.2C (0 10
1
0.8 2
0.6
0.4 kog=1
0.2 K,
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Figure 3. Radiation efficiency C as a function of ko, for selected values of kos (aandb)andasa
function of ko s for selected values of koy (cand d), both in the no-twist case u = 0 (a and ¢) and
in the maximum-twist case |u] = 1/kaj (b and d). :
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Concerning the radiation from twisted GSM planar sources, a general equivalence relation in analogy
with those discussed earlier (15-17] follows at once from Eqgs. (15)-(16) and (23)-(24):

* Any two TGSM sources for which the parameters { in Eq. (17) are the same, produce identical
angular distributions of the radiant intensity and their radiation efficiencies are equal. If, moreover,
the quantities J(0) are the same, then the entire radiant intensities are identical.

Relation (25) indicates that the coherence-induced twist may yield varied effects even among the class
of quasihomogeneous sources. We also note that a quasihomogeneous (o5 3» ¢,) TGSM source has a
higher radiation efficiency than a fully coherent Gaussian laser (rms width o1, of spectral intensity) if

a; >40i(1+ kzaéaiuz). (26)

When the twist parameter u = 0, this result reduces to the corresponding relation obtained before for
the ordinary GSM sources {12].

The radiance (brightness) is the principal quantity of a radiometric theory. The generalized radiance
function associated with a planar source and compatible with the ‘physical optics’ expression (10) of
the radiant intensity can be defined in several different ways [18]. The most commonly used definition,
analogous in some respects with the Wigner distribution function, reads [7,19]

2
B(p,s,.:;0) = (2—1‘;) cos&/ Wip—p'f2.p+ P'/2:0)exp{—iks; - p')d?p’, (v.vp)
where the integration is over the source plane. On substituting from Eq. (12) the integral in Eq. (27) can be
performed in closed form as above. Expressed using the polar angles s = (sin# cos ¢, sinf sin ¢, cos 9),
the result is
B(p,51:0) = (2Wy/x)(k¢os) cosd

x expl~(k¢€p)?) exp{~2(k(os)? [sin? 0 + 2usind(z sin ¢ ~ y cos ¢)]}, (28)
where £ is given by Eg. (17) and we have also introduced the parameter (2 = [t +4(os/0,)3]2. Itis seen
that unlike the radiant intensity J(s), the generalized radiance B(p, s, ; 0) associated with TGSM planar
sources is not symmetric about the z axis. Because of the twist phenomenon the radiance function (28)
contains, in addition to the { parameter, an exponential factor that depends both on # and the azimuthal
angle ¢. When the contributions from the various parts of the source are combined 50 as to produce the
radiant intensity in some given direction, the ¢ dependence disappears. In the limit as u — 0, the usual
rotationally symmetric radiance result pertaining to the ordinary GSM sources is recovered [10].

Itis of interest to note that the cross-spectral density of light at any pair of points in the far zone can be
obtained by suitable source integration of the generalized radiance function B(p, s, ;0) in Eq. (27); this
is the essence of the generalized van Cittert-Zemnike theorem [20]. Alternatively, and physically more
directly, the far-zone cross-spectral density may obviously be calculated simply by using Eq. (12) in
conjunction with the appropriate far-field diffraction integral [10,13]. We recall also that the generalized
radiant emittance associated with a fluctuating planar source (counterpart to the generalized irradiance
on ilumination), consistent with the generalized radiance B(p, s 1:0) in Eq. (27), is expressible in the
form [7,21]

E(p,0) = (k*/2v27) / W(p— 0120+ 0 [2,0)132(kp" ) (kp'Y/* &), 29)

where J;/;(x) is the Bessel function of the first kind and order 3/2. When the symmetrized form of the
source cross-spectral density is substituted from Eq. (12), the expression for E{p, 0) above can be written
in an abbreviated notation as

E(p,0) = C(os,9,,u;p) S(p,0), (30)

where 5(p, 0) is the source spectral intensity and C(cs, g, 4; p) is an extension of the ‘transfer function’
for TGSM sources [10,13]. The quantity C(os,0,, u; p) is analogous to the radiation efficiency C and
describes the flow of energy into the half-space z > 0, but we will not pursue these issues further.
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To conclude this section we emphasize that apart from convenience in any particular case, there does
not seem to exist any criteria to decide which one of the various generalized radiance functions should
be used. Another widely used definition for the generalized radiance is (22,23]

2
B'(p.s,1,0) = (Zi') cosﬂj wW{e', p:0)exp|—iks. - (p - p')] d%s'. (3D

This function can be shown to be closely connected with the point and angle eikonals that characterize
wave propagation in lenses, and 5o it too will be useful in problems of partially coherent radiance transfer
through optical systems [23].

4. TGSM beams in optical systems

The passage of twisted GSM beams through an arbitrary rotationally symmetric paraxial system de-
scribed by an ABCD ray-transfer matrix can readily be analyzed using the extended Fresnel diffraction
integral for partially coherent fields. We may take, without any loss of generality, the beam waist z = 0
as the system input plane; the effect of free-space propagation between the waist and the actual input
plane can always be included as part of the ray-transfer matrix. The parameters characterizing the TGSM
beam on exit in the system output plane z = zou then are [24]

w(zow) = w(0)(A? + B2z52) 2, . (32)
7(zout) = (O} A2 + B2z3?)/?, (33)
R(zow) = (A% + B*:z3%)/(AC + BDzg?), (34
u(zowt) = u(0)(A2 + B2z32)", ‘ (35

where zp is the Rayleigh range given by Eq. (8). Apart from Eq. (35), which is unique to twisted beams,
these expressions are the same as those obtained for ordinary GSM beams and Gaussian laser beams,
when the appropriate modifications in zp are taken into account. The ratio w(z)/e(z) (in the beam
parameter §) and the product ¢%(z)u(z) (in the twist parameter n) are seen to remain invariant.

x|

w(0) Az} = ®

wiz) [mm)

f —_— 0
o 100 200 300
z{mmj

Figure 4. TGSM beam focusing geometry,  Figure 5. Focused TGSM (solid circles) and
with exit-beam waist defined by R(z;) = oo. ordinary GSM (open circles) beam profiles.

We consider the standard focusing arrangement shown in Fig. 4 as an example. A thin positive lens
of focal length f is placed at the input beam waist, and we are interested in the beam properties near
the best focus at z = z; in the image space. Using A=1-z/f, B = 2, C = —1/f,and D = lin the
exit-beam waist condition R(z;) = oo, we first find from Eq. (34) that the image distance is (24}

zg = fiL+ (f/zr)7 (36)
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The remaining beam parameters at the image beam waist then are, from Eqs. (32), (33), and (35),

w(zy) = w(0)1 + (zr/f)?]" V2, (37)
o(zg) = o(O)[1 + (zr/F) "2, (38)
u(zy) = w(O)[1 + (zr/f)1]. (39)

According to Eq. (36), the exit-beam waist is not in the geometrical image plane x = f, but rather it is
closer to the lens. Moreover, since zp is smaller for a twisted GSM beam than it is for the corresponding
ordinary GSM beam [see Eq. (8) and Eq. (19)], the movement of the image waist location is larger for the
TGSM beams. This effect is the twist-induced focus shift. In view of Eq. (37), the focused spot size w(z;)
also depends on zx and for a given w(0) it is the larger the smaller zp is, i.e. the twist increases the best
attainable focal spot. If, for example, the focal length is f = zg, the distance to the best focus is z; = f/2
and w(z;} = w(0)/V2
In Fig. 5 we show spot-size measurements and theoretical beam profiles, both for the twisted GSM
andﬁ\eoonespmdmgordmaryGSMhmmdmibedmSec.z.mﬂlefomlmglonofalensforwh;da
= zp(twisted) = 300 mm. For the conventional GSM beam the Rayleigh range then accordingly is
za = 550 mm. Theoretically, the position and size of the best focal spot in this case are z; = 150 mm
and w{z;) = 0.44 mun for the twisted beam, and z; = 230 mm and w(z;) = 0.29 run for the ordinary
GSM beam. Good agreement between theory and experiment is observed. The rotation of the coherent
elliptic Gaussian component beams that make up the TGSM field was also demonstrated. The beams
have twisted about the z axis by v/4 at z = z; = 150 mm and by x/2 at z = f = 300 mm {24].

The generalized radiance functions (27} and (31) are known to obey certain propagation invariance
laws along geometric rays when traversmg symunetric optical systems. More specifically, for any
wavefield the quantity B(p, s, ;z) remains constant along a paraxial ray within the extended Fresnel
diffraction theory {1,25], while the quantity B'(p, s, ; z) stays unchanged along a ray only in the short-
wavelength limit (stationary phase calculation) [23). Hence

B(p,:810i Zout) = B(p;,8Li: 2in), (finite A), (40)
Bl(pols.l.o; zout) = B’{pil s.l.l';zin)l (”Ympt‘)ﬁcany as '\ i 0)! (41)

where (p,,s1,) and (p;,s ;) are the output and input plane ray coordinates, respectively, connected
in the usual way by the systems ABCD matrix. Regarding the twisted GSM beam fields that rotate in
optical systems, it is evident that the polar and azimuthal-angle dependence of the generalized radiance
[cf. Eq. (28)] is exactly compensated by the twist-induced radial beam evolution and field rotation.

5. Conclusions

The spatial coherence properties of a wavefield are known to influence its (spectral) radiometric behavior.
In this paper we have shown that the twist phase associated with the GSM beams further modifies the
wavefield’s radiometry in a manner that is consistent with viewing the twist as effectively reducing the
degree of coherence. The analyses pertained to the exact radiometric description of twisted GSM planar
sources and to the paraxial evolution of twisted GSM beams in free space and in ABCD optical systems.
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