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1. Introduction

These lectures provide an introduction to the fundamental concepts of nonlinear optics. The
field of nonlinear optics is too large to be covered in a comprehensive way in the limited
amount of time available. Hence, we will spend most of the time on discussing the basic for-
malism of nonlinear optics and effects that could be said to represent the most traditional non-
linear optical processes. The remaining time will be devoted to topics that are related to the
development and characterization of organic nonlinear optical materials.

Common to the topics covered is that they can be described using the nonlinear suscep-
tibility (or hyperpolarizability) formalism. For example, in the electric-dipole approximation,
the material response (polarization) to the optical field is expanded in power series of the ap-

plied electric field as
P=yWE+ yDE2 L ,NE3 4 | (1.1)

The quantities y represent material susceptibilities of different orders and form the basis for
traditional nonlinear optics.

The power expansion (1.1) is not always valid. For example, when the optical field is
strongly resonant with the material, the effective susceptibility is sometimes of the form

- Ao 1.2
X T+ 11 (1.2)

where / is the intensity of the optical field and I, is a quantity characteristic to the material
known as saturation intensity. It is clear that when the field intensity exceeds the saturation
intensity, the power expansion of the type of Eq. (1.1) does not converge. Such saturation ef-
fects are not covered in these lectures. Other important topics not covered are: stimulated
scattering processes (e.g., Brilouin, Raman, and Rayleigh scattering), acousto-optic effects,
and photorefractive effects.

The lectures are based on the Gaussian system of units. The reason for this is that sev-
eral textbooks in the field are written in Gaussian units. In addition, a large number of scien-
tific publications still use these units.

Notationally, the lectures follow closely the textbook of Boyd [1]. This book is quite
accessible to a researcher entering the field of nonlinear optics. Nevertheless, it also covers
topics that are quite advanced. Another general textbook in the field is the book of Shen {2],
which is on a more advanced level than Boyd. In addition, the book of Butcher and Cotter [3]
provides a more mathematical and theoretically oriented approach to nonlinear optics. The
books of Prasad and Williams [4] and Bosshard er al. [5] cover the field of organic nonlinear

optics. References [6-11] are other books related to the general topic of the lectures.



2. Nonlinear Optics

2.1 Origin of nonlinear response

We begin by noting that the response of any system to an external perturbation will become
nonlinear when the perturbation is strong enough. For example, when a spring is stretched

(Fig. 2.1), the displacement x and applied force F are related by

Foekix+kax? +... (2.1)

When the force is small, only the term kx is important. However, it is clear that when the
force is sufficiently increased, the displacement can not be increased in the same proportion.

Hence, we can expect that the higher-order

terms become important when the displace-
ment is large.

A model of the type of Fig. 2.1 with an
electron attached to the end of a spring can be

Figure 2.1. Nonlinear response of a spring to an Used to predict nonlinear optical properties

applied force from a purely classical model (see, e.g., [1]).

2.2 Nonlinear optical susceptibility

In nonlinear optics, we are interested in effects where the response of 2 material to the optical
field becomes nonlinear. Most materials respond strongest to the electric component of the
electromagnetic field. This response will polarize the material. The polarization will then act
as a source of new radiation.

The polarization can often be expanded in power series in the applied field as
P(t)=x"-E@) + 3P B2 () + 1P EX ) +... (2.2)

Here %' is the linear susceptibility tensor that gives rise to linear refractive index and linear
absorption. x'%) and y'® are the second- and third-order nonlinear susceptibility tensors, re-

spectively, and so on. Most important nonlinear effects are second- and third-order processes.

2.3 Complex notation

We will use complex notation for the fields and polarizations. Each frequency component of

the field is expressed as
E(t) = E(w)e™® + E" (w)e'™. (2.3)

The field amplitude E(@) at frequency @ can contain any number of beams propagating to

different spatial directions characterized by different wave vectors.



2.4 Examples of nonlinear effects
By inserting Eq. (2.3) into Eq. (2.2), we find that the second-order response contains a polari-
zation component

P () =xD : EX(w)e 2, (2.4)

that oscillates at twice the fundamental frequency. Hence, we conclude that nonlinear proc-
esses can generate radiation at new frequencies (Fig. 2.2). Such frequency conversion is one

of the most important applications of nonlinear optics.

k
2 2
@ ___a)+ kl ; /
Ly —>| » |—»K
kz 21"1 - kz
Figure 2.2. Frequency doubling in a secend- Figure 2.3. Generation of a new beam through
order material. third-order nonlinearity.
It is easy to show that the third-order response contains a term of the form
PO (1) = 333 ' E(0)E(w)E’ (0)e ' . (2.5)
For the case of two beams propagating in different directions, we have
E(w) =A™ " + Ay, (2.6)
and the nonlinear polarization contains the following term
PO (@) = 3y P 1 AZAS K Ke)r Q.7)

The spatial dependence of this term suggests that nonlinear processes can generate beams that
propagate in different directions than the applied beams (Fig. 2.3).
In general, we can define nonlinear optics as the field that studies effects that occur

when the optical properties of a material are modified by the very presence of light.



3. Nonlinear Optical Susceptibility

3.1 Definition of nonlinear optical susceptibility

We assume that the optical field can be expressed as a sum over contributions at several dis-

crete frequencies as

E() = Y [B(w, e +E (w,)e'n ], (3.1)

where the summation is over positive frequencies. By extending the summation to include
also the negative frequencies, this can be expressed as

E(r) =Y E(w,)e ", (3.2)
n
The reality of the total field requires that the amplitudes of the negative and positive frequency
parts are related by
E(-@,)=E'(@,) . (3.3)

Analogous to Eq. (3.2), we also expand the material polarization as a sum over different fre-

quency components as

P(1) = > P(w,)e " . (3.4)

The electric field and polarization are vectorial quantities. In addition, the susceptibili-
ties are expected to depend on the frequencies of the optical field. We therefore define the

second-order susceptibility tensor formally as [ 1]

Plap+ay) =2, > 1@, + 0450,,0,)F (@,)E(@,). (3.5)
Jk (pg)

where the indices ijk refer to the Cartesian coordinates and the notation (pg) indicates that
@, + @y is to be held fixed in summation over p and g.
The summation over p and ¢ can be explicitly performed. In the presence of two differ-

ent frequencies w,and @, , we obtain

Plwy, +0y) =Y 27500, + 04:0,.00)E (0,)Ex(@,). (3.6)
Jk

where the intrinsic permutation symmetry

2 2
;g},g.’(a)p + 0,5 0,,0,) = z;.k)(a)p t i @,,0,), (3.7)



was used. For the case of one input frequency, we obtain

PQw,) =Y 12 20,:0,,0,)E (@,)Er(@p). (3.8)
Jk

We note that the susceptibilities are sometimes defined in such a way that the numerical fac-
tors [e.g., 2 in Eq. (3.6)] arising from summation over p and ¢ are absorbed into the suscepti-
bility.

The third-order susceptibility is defined in a way analogous to Eq. (3.5) as

Pi(a)p +wq +0),.) = Z Zzgﬁj)(wp +wq + wr;wp,quwr)Ej(wp)Ek(wq)E!(a)r) . (39)
JkE {pgr)

The second-order susceptibility is a third-rank tensor. Hence, it has in general 3} =27
independent complex-valued components. Similarly, the third-order susceptibility has 3t =81
independent components. The number of independent components can fortunately be reduced
by symmetry arguments.

3.2 Photon diagrams
The nonlinear response can be understood in terms of photon diagrams as shown in Fig. 3.1.
For example, the interaction

1P @, +0,;0,,0,)E@,)E(®,), (3.10)

indicates that the photons at the positive input frequencies @, and @, excite the material to
virtual states (upward thick arrows) and are annihilated. A photon at the frequency @, + @y is
simultaneously created (downward thin arrow).

________ - S W
E(w,) o, @) }E ()
E(w,)
Eo,tw,) Ea,)
v i
(a) (b)

Figure 3.1. Photon diagrams for sum- (a) and difference- (b) frequency generation.

The other example is difference frequency generation
z(z)(wp;a)p +wg,—wg ) E(@, + @, )E(-wy)

= 1 P(w,p;0, + 0,~0) E@, +0,)E (@,). (3.11)



Here we apply the rule that the field at the negative frequency (i.e., the conjugate part of the
field) drives the system down in energy. At the same time, a photon at this frequency is also

created.

3.3 Microscopic vs. macroscopic response

We have defined the susceptibility for a macroscopic material in the laboratory frame of refer-
ence. However, the macroscopic response is due to the microscopic response of the building
units of the material. For the case of crystals, the building units are the unit cells of the crys-
talline lattice. For the case of molecular (or atomic) media, the response originates from the
individual molecules.

For molecules of low symmetry, the molecules themselves have a preferred coordinate
system. Analogous to Eq. (2.2), the microscopic molecular dipole moment is expressed as

n=po+o-E+B:E2+y E3 + . (3.12)

where pg is the permanent dipole moment of the molecules, « is the linear polarizability, and
B and y are the first and second hyperpolarizability tensors, respectively.

For the case of second-order quantities, the relation between the molecular and macro-
scopic quantities 1s (Fig. 3.2)

Z,ﬁ) = N{f(@, +w,) f(,) f(w3) Bk cos(i, I)cos( JrJ)cos(k, K)), (3.13)

where the upper- and lower-case subscripts refer to the
molecular and macroscopic frames of reference, re-
spectively, the brackets denote averaging over the ori-
entational distribution of the melecules, N is the num-
ber density of the molecules, and f are the local-field

factors.

. The tocal-field factors account for the difference
Figure 3.2. Transformation between the

moiecular (XYZ) and laboratory (xz)
frames of reference. individual molecules respond to the local field, which

between the macroscopic and microscopic fields. The

includes the applied external field and the field due to
the surrounding molecules, whereas the susceptibilities are defined in terms of the macro-
scopic field. No general way of accounting for the local fields exists. However, the local-field
factors are usually approximated by
g(w)+2

f(w)=————3——, (3.14)

where (@) is the linear dielectric constant. By appropriately combining materials of low and



high dielectric constants, the local field effects can be used to enhance the nonlinear response
[12-14].

3.4 Quantum-mechanical result

For the case of electronic nonlinearities, expressions for the molecular polarizabilities can be
derived from quantum mechanics. Two different approaches can be taken. The first is based
on a Schrodinger equation (wavefunction) calculation and leads to results that are valid when
the optical frequencies are detuned far from the resonance frequencies of the material. How-
ever, close to material resonances, dissipative processes (damping of the material response)
become important. Such damping effects are better treated using the density matrix formalism
[1,15]).

When all molecules are assumed to be initially in their ground state, a density matrix

calculation yields the first hyperpolarizability (second-order response) in the form

Han M Fimg
Wy _i}/ng)(wmg —Wp _i}’mg)

1

I K ,J
HenHnmBmg
(a’ng —Wp — Wy — i}’ng)(mmg — g — i}’mg)

+

1+ i(ymn —Vng "}’mg) ﬂ‘gnﬂtgm#r‘vlzg
L a’mn_wp_a’q—i}’mn_(a)ng+wp+i}’ng)((’)mg_wq_i?’mg)

i . 7 J 7 K
N i(Ymn — Vng “J’mg) HanlnmHmg
L wmn_wp_wq“fymn_(wng+wq+iyng)(wmg_wp_iymg)
K J 1
+ HeontlnmHmg
(@Opg + @p + @y + Y mg X Opg + @p + i¥ng)
J K0
+ #gﬂlllnmﬂmg ‘ . (3‘15)
(Wmg +@p + 04 + i¥mg W @Opg + @q +i¥ng)
where g is the ground state of the molecules, m and " ——————
refer to the excited states, g, is the dipole transi- a)T
b
tion moment, A®,, = E, — E, the encrgy differ- m—
ence, and ¥, the damping rate between states » and @
- . . . p
m. The wavefunction result is obtained by setting all
o,

damping rates to zero in Eq. (3.15). 7 Yy
The damping rates (linewidths) y,, of the

transitions are small compared to the resonance fre-  pjgyre 3.3. Resonance enhancement

quencies @y, . Eq. (3.15) shows that the nonlinear  of susceptibility.
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response can be greatly enhanced by tuning any of the frequencies o ps @g, 0T @, +@, close
to the resonance frequencies of the material (Fig. 3.3). The drawback of this strategy is that

such resonances can often lead to losses because of linear absorption associated with the reso-
nance.

3.5 Symmetry principles

The number of independent components of the susceptibility and hyperpolarizability tensors
can be greatly reduced by symmetry principles.

Because the total optical field and polarization are real quantities, we have
E(-w,) = E'(0,) and P(-w,)=P"(@,). (3.16)

Consequently, the nonlinear tensors satisfy the symmetry property

2 2
Zi(jk)("wp — Wgi=Wp,~0y) = Zg'(ik)(wp + wq;a’p’wq)* : (3.17)

The intrinsic permutation symmetry is

2
Z,'kj)

(a)p+a)q;a)q,a)p):zlﬁ)(wp+a)q;a)p,a)q) (3.18)
and was already used in Egs. (3.6) and (3.7). There is no fundamental reason for this symme-
try. However, it is useful for book keeping in Egs. (3.5) and (3.9) and the susceptibility is usu-
ally defined so that this symmetry is fulfilled. This symmetry implies that the frequencies ),
and @, can be freely interchanged as long as the indices j and & are simultaneously inter-
changed.

The nonlinear material can be assumed to be lossless when the optical frequencies are
detuned far from the material resonances. The damping rates y can then be neglected in Eq.
(3.15). Consequently, the susceptibility (or hyperpolarizability) is a real quantity for lossless
media. In the same limit, the susceptibility can be shown to satisfy the full permutation sym-
metry, which implies that all frequencies can be freely permuted as long as the indices i, /.
and & are simultaneously permuted. In applying this rule, we have to remember that the output

frequency is always the sum of the two input frequencies. For example

2 2
250 @y + 050,.00) = 1 (-0 p0,-0, - 0,). (3.19)
The optical frequencies are often much smaller than any of the resonance frequencies of
the material. The susceptibility can then be assumed to be independent of the frequencies. In
this case, the indices 7, j, and & can be permuted without permuting the frequencies, i.e.,

(2) _ (2 _ (2) _ () _ (2) _ _(2)
Ligg =Xig = X = Xjie = Kby = Mg - (3.20)
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This symmetry is known as Kleinman symmetry and it can greatly simplify the description of
nonlinear optical interactions. However, one must be very careful in justifying it in practical

situations.

3.6 Spatial symmetry

The nonlinear susceptibility (and hyperpolarizability) tensors must also satisfy conditions that
reflect the spatial point-group symmetry [16,17] of the material. Probably the most powerful
symmetry rule is the requirement of noncentrosymmetry for second-order (and other even-
order) processes.

Centrosymmetric materials have spatial inversion as a symmetry operation. This opera-
tion implies that the material looks the same when the sign of each spatial coordinate is in-
verted, i.e.,

r—>-r. (3.21)

The electric field and polarization transform similar to the position vector r [18]. Conse-

quently,
—P@ = @ . (_E)? = 42 E2 =P =0, (3.22)

The second-order susceptibility tensor must therefore vanish in all centrosymmetric materials.
This is a very powerful rule because 11 of the 32 point groups of crystals are centrosymmetric.
In addition, the nonlinear tensors must be compatible with any other spatial symmetry
operations of the material.
The symmetry requirements are equally applicable on microscopic and macroscopic lev-
els. Therefore, for second-order nonlinear optics one needs molecules (or other building units)
with a noncentrosymmetric microscopic structure. In addition, such molecules must be or-

ganized in a macroscopically noncentrosymmetric way.
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4. Wave-Equation Description

4.1 Wave equation

Starting from Maxwell's equations for the eclectromagnetic field, one can derive the wave
equation for the propagating optical field. For transverse plane waves, the wave equation is
1 6°E 4z 7P

VE-—2 =700
c?a? cr ot

(4.1)

where ¢ is the speed of light and the polarization P contains both linear and nonlinear sources.
This form can be used in most practical situations.
By considering a field component at frequency w, the wave equation becomes

2

2
V2E(w) + 5 E(@) = - 4rw
C

(,‘2

P(w). (4.2}

We first consider linear propagation. The linear polarization is
P(w) =" Ew), (4.3)

and the wave equation can be written as
>
V2E(@)+ 21 + 4] E(w) = 0. (4.4)
¢

We seek solutions in the form of plane waves propagating in the positive z direction and con-

sider one of the eigenpolarizations of the material. The scalar amplitude of the eigenpolariza-
tion ; is assumed to have the spatial dependence

Ej(w)=4;e"". (4.5)
By inserting Eq. (4.5) into Eq. (4.4), we find that the wave vector is given by

kj=nj-a)/c, (4.6)
where the linear index of refraction n ; is determined by

1
g =1+dmy'y. 4.7)

4.2 Spatial evolution of the nonlinear signal

We next consider the case where a nonlinear source P (@) at frequency @ is also present.
We again seek solution in the form of Eq. (4.5). However, due to the nonlinear interaction, we
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allow the possibility that the amplitude 4 has spatial dependence. For a given polarization and
using Eqgs. (4.6) and (4.7), Eq. (4.2) can be manipulated into the form

d? A(z) Lo A2 __4mo
2

2
— PM(z)e7 (4.8)

dz dz c

This can be further simplified by making the siowly-varying-amplitude approximation

d?A(z)
: . (4.9)

<< ‘km
dz

This approximation implies that any significant variations in the amplitude A occur over sev-
eral wavelengths. The spatial evolution of the slowly-varying amplitude is then found to be
governed by the equation

dA(z) _ . 270

~ i7PNL(z)e-”f2. (4.10)

This is the fundamental equation to study spatial evolution of the nonlinear signal. The equa-
tion can be applied immediately once the form of the nonlinear source PM(z) is known.

4.3 Phase matching

As an example of the application of Eq. (4.10), 2w
) —_—>
we consider frequency doubling from the funda- —» | d= 22 R

mental frequency @, to the second-harmonic fre-

' f—>z
quency @, =2, (Fig 4.1). We assume that the (') 1‘;

fundamental beam also propagates in the positive  Figure 4.1. Second-harmonic generation.

z direction and is of the form

Ey = Aie™* (4.11)
The nonlinear polarization at the second-harmonic frequency is then from Eq. (3.8)

Py(z) = 2dAte’* 7 (4.12)

where d = y'?)/2 and accounts for the tensor character of the interaction. We also assume
that d is a real quantity. By inserting this into Eq. (4.10), we find the equation that governs the
spatial evolution of the second-harmonic signal

Ay _ 4702 2 gih-kz 2702 it 4.13)
dz RaC HaC

Here the quantity
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Ak =2k - ks (4.14)

is known as the wave vector or phase mismatch between the fundamental and second-

harmonic waves.
For now, we consider the case where only a small fraction of the fundamental intensity

is converted into second-harmonic radiation so that A; can be taken as constant. We also as-
sume the boundary condition 4,(0) = 0. For perfect phase matching Ak =0, the solution of
Eq. (4.13) is

47[602

A (L) =i dAlL. (4.15)

HoC

where L is the length of the nonlinear material.
The intensities of the fields are defined as

=4 (4.16)

The intensity of the second-harmonic beam is then found to be

3273 (02

Iy(L) = |d| 1212 (4.17)

The intensity grows quadratically as a function of the length of the nonlinear medium (Fig.
4.2).
For the case of Ak # 0, the solution is

4 iAkL 1
Ap(Ly =i 2 g2 & (4.18)
nmc iAk
%‘ Q A i
=
o
g
v 6 =
£ R
£ E
23] g
= non-phase-
5 matched
§ 0 -. ™ T T 0 i T T T T T T T
0 1 2 3 302 -1 0 1 2 3
length (L) X
Figure 4.2. Growth of the second-harmonic in- Figure 4.3. The sinc’ function.

tensity for phase-matched and non-phase-
matched frequency doubling.
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and the intensity is

12873 a)2 | ‘2 5 Sin (AkL/2) 3273 w2

L) = =
2th) = 1 nl (Ak)? n2n|

2|4 12 I2sinc? (AKL/2) . (4.19)

For a given phase mismatch Ak, this solution oscillates sinusoidally as a function of the
length of the medium (Fig. 4.2). The second-harmonic field reaches its first maximum at a

distance

L, =7n/Ak, (4.20)

into the medium. This distance is known as the coherence length. It is the maximum useful
length that can be used for harmonic generation. Note that for L = L, , the expressions (4.17)
and (4.19) already differ by a factor of m/4~25.

The soluation (4.19) is similar to that for the case of perfect phase matching [Eq. (4.17)]
except for the factor

sinc(AkL/2). (4.21)

This factor is plotted in Fig. 4.3. Phase matching is therefore seen to be one of the most im-
portant concepts in determining the efficiency of second-harmonic generation or any other

frequency conversion process.

4.4 Interpretations of phase mismatch

In the previous section, the concept of phase mis-

match arose in a somewhat abstract and mathemati- \/\
cal way. However, it can be interpreted in various
ways that are more physical. One interpretation is to \/\/\
note that a difference in 2k, and &, signifies that the
waves at the fundamental and second-harmonic \/\/\/

fields propagate at different phase velocities in the L

E(w)

P(2w)

EC2a

==5

material (Fig. 4.4). Consequently, the coherence Figure 4.4, Second-harmonic field and its

length signifies a length after which the second-  griving polarization end up out of phase after
harmonic field and its driving polarization have one coherence length.
ended up out of phase.

Phase matching can also be interpreted as k, K, Ak

momentum conservation (Fig. 4.5). The linear mo- > <

k,

mentum of a photon is Ak . Second-harmonic gen- '
eration annihilates two photons from the fundamen-  gjgyre 4.5. Phase matching as momentum

tal beam and converts them into a single photon at  conservation.
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the second-harmonic beam. Therefore, conservation of linear momentum requires
20k = hk, . (4.22)

which is equivalent to the phase-matching condition Ak = 0.

From the microscopic point of view, the nonlinear process sets the molecular dipoles
oscillating at the second-harmonic frequency. Each dipole will then emit its characteristic di-
pole radiation pattern (Fig. 4.6). In the case of perfect phase matching, the phase relation of

each oscillating dipole and the second-harmonic field is maintained. This leads to complete

@ N constructive interference in the forward di-

2w rection. The intensity of N dipoles emitting
CXD dipole pattern in phase scales as N2. The number of di-
poles depends linearly on the length of the

2 § Q g e e 2w material and therefore explains the quad-
O © ratic dependence on length L. This inter-
e e e g s constructive pretation is analogous to the molecular the-
phased array interference ory of nonlinear optics, which accounts for

of dipoles the radiative properties of the elementary

Figure 4.6, Molecular interpretation of phase matching.  dipoles [19].

4.5 Backward second-harmonic generation

The molecular interpretation of phase matching and Fig. 4.6 suggest that some second-
harmonic light is also emitted in the backward direction. This is true and hence the assump-
tion of the boundary condition 4;(0) =0 is not strictly valid. However, the backward gener-
ated field is usually much weaker than the forward field, which validates the above treatment.
It can be shown that the slowly-varying envelope approximation is equivalent to neglecting
the backward generated second-harmonic field [2).

There are also situations where the forward and backward generated second-harmonic
fields are approximately equally strong. This occurs when the length of the material is much
smaller than the coherence length that phase matching considerations are unimportant. This is
particularly the case for thin films and surfaces {2]. Several different formulations exist that
properly account for the forward and backward generated fields in surface and thin-film non-

linear optics [2,20,21].



1/

5. Second-Order Processes

5.1 Second-harmonic generation

In Section 4.3, we considered second-harmonic generation in the limit of an undepleted fun-
damental beam. This allowed us to introduce the fundamental concepts of frequency conver-
sion processes. In most practical situations, however, one would like to convert as much as
possible of the fundamental radiation into the second-harmonic radiation. The assumption of
an undepleted fundamental beam is then clearly unjustified.

In the more general case, the nonlinear polarization at the second-harmonic frequency is
Py(z) = 2dAE (z)e" 7 (5.

Note that we now allow A4;(z) to be spatially varying. We must also consider the nonlinear
polarization at the fundamental frequency due to the difference-frequency mixing
(@ = 2w — @) between the fundamental and second-harmonic beams. The nonlinear polariza-

tion describing this process is given by
Pi(2) = 4dAy (2)4f (2)e! s )2 52

In writing this equation, we have assumed that the nonlinear tensor possesses full permutation
symmetry so that the nonlinear coefficient d is the same as in Eq. (5.1). These sources lead to
the following equations governing the spatial evolution of the fields

i _ 870 g it (5.3)
dz mce
g_A;;:zAmz AP (5.4)
dz nsc

The solutions to the coupled equations (5.3) and (5.4) are quite complicated [22]. For the case

of perfect phase matching and no applied second-harmonic field they are
Ii(z) =sech?(z/zp), (5.5)
I5(z) = tanh®(z/ zg), (5.6)

where zy is a characteristic length. These results show that all fundamental radiation can be
converted into second-harmonic radiation (Fig. 5.1). Of course, for this to occur, the nonlinear
medium must be sufficiently long.

As expected, imperfect phase matching limits the maximum conversion efficiency. In
this case, the energy flows back and forth between the fundamental and second-harmonic

beams. Consequently, the net efficiency depends also on the exact length of the medium.
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0 1 2 3 Eq. (5.8) Eq. (5.9) Eq. (5.10)

Figure 5.1. Evolution of fundamental and Figure 5.2. Photon diagrams for Eqs. (5.8)-(5.10). For Eq.
second-harmonic intensities in frequency dou-  (5.10), the ordering of the input photons can also be reversed.
bling.

5.2 Three-wave interactions

We next consider the general interaction between three waves at three different frequencies.

For definiteness, we choose

w3 = +aw;. (5.7}

Using the general techniques, we can derive the following three coupled-amplitude equations
that describe the mutual evolution of the slowly-varying envelopes

dh 870 4y etk (5.8)
dz nic

Ay _ 370 g ik (5.9)
dz HyC

ddy _ 8oy dA, Ayei™e (5.10)
dz n3c

where the phase mismatch is

Ak=k|+k2—k3. (5.11)

Eq. (5.8) [(5.9)] describes generation of the field at frequency @; (@, ) through difference
frequency generation between the frequencies @3 and @, (@,). Eq. (5.10) describes sum-
frequency generation of the field at frequency w; = @ + w,. The photon diagrams of these

processes are shown in Fig. 5.2.
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5.3 Manley-Rowe relations

From Egs. (5.8)-(5.10), we can derive the following equation that describes the total evolution

of the intensities of the three waves

%(114—124-[3):0. (512)

This equation implies that the total intensity (energy) of the waves is conserved.
The number of photons in each beam is proportional to the quantity //f@ . We can de-
rive the following equation describing the evolution of the number of photons in each beam

S dh_ \dlp 1 dly

X (5.13)
w dz @y dz w3 dz

This result implies that the only possible processes are the ones where photons at frequencies
@y and @, combine into a photon at frequency wj or a photon at w; splits into photons at

frequencies @y and - .

5.4 Sum-frequency generation

Sum-frequency generation is a generalization of second-harmonic generation for two different
input frequencies. In the general case, the process is governed by Egs. (5.8)-(5.10) with the
boundary condition 43(0) =0 and the other two waves applied as inputs. The general solution
of these equations is again rather complicated [22].

Sum-frequency generation has a real application for the case in which the beam at fre-
quency @, can be assumed to be strong and undepleted. This process can be used to convert a
weak infrared signal at frequency @, to a visible frequency 3 by mixing with a strong in-
tense laser beam at @, [23]. This situation is described by coupled Egs. (5.8) and (5.10) with
A, taken as constant. For the case of perfect phase matching, the solution to the coupled

equations is straightforward. For the case of no applied field at frequency @;, the solution is

A (z) = 41(O) coskz, (5.14)
1/2
A(z2) = i[”“’”] A4;(0)sin xze'?: (5.15)
n3ah

where ¢, is the phase of 4, and the coupling constant is defined by

2
K2 = mzﬂ’id2|,4212 . (5.16)
mnsc

The energy is again seen to flow back and forth between the two fields in an oscillatory way.




20

3.5 Difference-frequency generation

We next consider the situation in which frequencies @; and ¢, are applied to the nonlinear
medium to generate radiation at the difference frequency @, = @3 —@y. We assume that the
field at frequency s is strong and undepleted. The propagation of the fields at frequencies
@ and @, is then governed by Eqgs. (5.8) and (5.9) with 43 taken as constant.

For the case of perfect phase matching and boundary condition A4;(0) =0, the solutions

to the coupled equations are

Ay (z) = A4 (0)coshkz , (5.17)
: e 1/2 )
A2(2)=i[ ‘ 2] A7 (0)sinh kze'® , (5.18)
Ry

where ¢ is the phase of 43 and the coupling constant is defined by

2
k2 = DO gy (5.19)
R ¢

Both fields are seen to grow essentially exponentially as a function of the length of the nonlin-
ear medium. This is quite different from the case of sum-frequency generation in which the

weak fields exchange energy in an oscillatory manner.

5.6 Parametric oscillation and amplification

The solution for the field at frequency @ [Eq. (5.17)] is independent of the phase of this
field. The process of difference-frequency gencration is therefore seen to amplify the field at
frequency ;. In addition, a field at frequency @, is generated. The intensity of this field can
grow higher than the input intensity at frequency w;. This process is known as parametric

amplification [8,24].

The three-wave-mixing process pumped ) W
_ ] ——»signal
by the field at frequency w3 provides gain to w33 603’ >0
the fields at frequencies @; and @, . Similar to ~ pump —a? —Widler

lasers, the gain can be made to oscillate by en-
closing the nonlinear material in a resonator Figure 5.3. Parametric oscillator. The mirrors are

made of hi ghly reflecting mirrors at frequency highly reflecting at e and have low reflectivity at o,

w; or @, (Fig. 5.3). The output frequency of and .
such parametric oscillators can be tuned by adjusting the phase matching and the cavity reso-
nance frequency synchronously. Parametric oscillators are presently becoming increasingly
important in constructing all-solid-state sources of tunable radiation.

Even when the parametric gain is low and only a field at pump frequency ws is applied,
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there is a finite probability that a pump photon splits into two photons of lower frequency.
This is equivalent to spontaneous emission in a laser gain medium. Such spontaneous para-
metric down-conversion (parametric fluorescence) gives rise to two photons whose properties
are correlated. The correlated photons can be used to study fundamental quantum-mechanical
properties of light {25].

3.7 Phase-matching

The efficiency of all the above frequency conversion processes depends on phase matching.
The phase-matching condition Ak =0 can be expressed in the form

N33 = Ny + Ny (5.20)

In the case of no dispersion n3 =#n; =n,, the phase refractive
matching condition would be automatically satisfied. index
Unfortunately, for most materials the index of refrac-
tion increases for decreasing wavelengths (Fig. 5.4).

This 1s referred to as normal dispersion. Consequently,

N

phase matching is one of the most important problems wavelgngth
in second-order nonlinear optics. Figure 5.4. Normal dispersion.

It is possible to achieve phase matching through
anomalous dispersion close to an absorption feature of a material [26]. Anomalous dispersion
leads to increasing index of refraction for increasing wavelength. It can therefore be used to
compensate for the effect of normal dispersion. In practice, this technique is not used, because
the absorption band increases losses.

The most common way to achieve phase matching is to rely on birefringent crystals
(Fig. 5.5). For example, for uniaxial crystals, the index of refraction is different for light po-
larized along the optic axis and perpendicular to the axis [27]. More specifically, the light po-
larized perpendicular to the plane containing the optic axis and the propagation vector is re-
ferred to as ordinary polarization and always experiences the ordinary index ng . The light
polarized in the plane of the axis and the propagation vector is referred to as extraordinary

polarization and experiences a refractive index

refractive
index n,
ge c ne‘
el ; =<
2 k n?'*“‘--:-‘.::;:
2 @ >
wavelength

Figure 5.5. Birefringence phase matching of second-harmonic generation.
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1 sin @ . cos® @
2 -2 2
n;(6) ne ng

(5.21)

where ¢ is the angle between the axis and the propagation vector and ny is the principal
value of the extraordinary refractive index. Therefore, by changing the angle &, phase match-
ing can be achieved at the desired wavelength.

Phase matching is referred to as type I when the two lower frequency waves have the
same polarization (ordinary or extraordinary) and type II when the polarizations are different.
In general, type I phase matching is easier to achieve,

When the phase matching angle € is different from 0 or 90 degrees, the Poynting vector
S (energy propagation) and the propagation vector k (wave front propagation) point to differ-
ent directions for extraordinary light. Such walkoff is a serious problem of birefringence phase
matching, which limits the maximum interaction length of the process. A phase matching an-
gle other than 90 degrees is referred to as critical. In some cases, it is possible to maintain the
phase matching angle of 90 degrees and tune the phase matching wavelength by changing the
temperature of the crystal. In such cases, noncritical phase matching is achieved.

Another potential problem of birefringence phase matching is that it relies on the off-
diagonal components of the nonlinear susceptibility tensor. For several materials, the diagonal
tensor components are largest. Diagonal (or the largest possible) tensor component can always
be utilized by quasi phase matching (Fig. 5.6). Quasi phase matching is based on reversing the
sign of the nonlinearity after every coherence length
[22,28]). We recall that, after one coherence tength,

i i ——— >
the ?hase relat10f1 of the converted frequency a-nd its === N
driving polarization is lost. However, a change in the — T
i f th lineari the si t th
sng-n. of the flon' inearity reverses the sign of the coherShe length
driving polarization. Consequently, the phase rela-
tion between the wave and the source is restored. Figure 5.6. Quasi phase matching,
3.8 Linear electro-optic effect
The linear electro-optic (Pockels) effect is described by the nonlinear polarization
2
Pit@) =23 1y (@:0.0)E (@) E (0), (5.22)
Jk

where E(0) is the (quasi)static electric field. For typical electro-optic crystals, two linear ei-
genpolarizations with i = j are found. By taking the static field along the k direction and in-
serting Eq. (5.22) into the wave equatton (4.4), we find

2
VZE (w)+ “’—2 [1 +4my) + 8my D E, (0)]51-(@) =0. (5.23)
c
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The linear electro-optic effect is therefore seen to change the linear index of refraction of the

eigenpolarizations in the presence of the static field, i.e., the effective index is

1]

nl = (n + 8n)? =1+ 4my() + 8D B (0). (5.24)
For a small electro-optic index change, the change 1s

A E(O)

i

(5.25)
n;

Because of the change of the refractive index, the electro-optic effect can be used for phase
modulation of light.

Analogous to the other effects, we have described the electro-optic effect using the sus-
ceptibility formalism. This is not usual. Traditionally, the electro-optic effect is described in
terms of the electro-optic coefficients defined as

A(%J =i £ (0). (5.26)

H
From this, we obtain for small effects

K (0)

An" =
2

(5.27)

2

and the relation between the electro-optic coefficient and the second-order susceptibility is

therefore

Hig = ’"%Z!ik- (5.28)
h;

Due to the electro-optic effect, the indices of refraction of the two eigenpolarizations (x
and y) become unequal. The electro-optic material therefore becomes birefringent in the pres-
ence of the static field. The material can then be used as a waveplate to control the polariza-
tion of light. The index changes of the eigenpolarizations are often equal in magnitude but op-

posite in sign. The phase retardation between the x and y polarizations is then

8mayE0) ; _ _ an’rE(0) .
CH C

(5.29)

¢ =2An{w/c)l = .
where the notation has been simplified and L is the length of the material. Rotation of the lin-
ear polarization is obtained when the retardation between the eigenpolarizations is 7 This is
obtained at a voltage known as the half-wave voltage. Combination of an electro-optic polari-

zation rotator and a linear polarizer can be used to make an intensity modulator of light.
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Figure 5.7. Longitudinal and transverse electro-optic configurations.

An electro-optic device can be either longitudinal or transverse (Fig. 5.7). In the longi-
tudinal geometry, the static field is applied along the direction of propagation. The field
strength is then

E)=V/L. (5.30)

where ¥ is the applied voltage. By Eq. (5.29), the total effect then depends only on the applied
voltage and is independent of the length. The half-wave voltage of a longitudinal electro-optic

device is then

cn cm
Vip=c—=—7. (5.31)
8wy wrn
In the transverse geometry, the field is
EQ)=V/d, (5.32)

where d is the thickness of the device. The net effect is then proportional to the ratio L/d, and
the half-wave voltage is
d en d cx (5.33)

Vi so—t =2 :
A2 L8wy L arn’

The half-wave voltage can be significantly reduced by the ratio &/ L . This is particularly true

in waveguided geometries.
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6. Third-Order Processes

6.1 General third-order processes

The definition of the third-order nonlinear susceptibility is

Plw, +w; +@,)= Z Zx;.ﬁ(a)p + 0, + 0, 0,,04,0,)E (@,)E(@,)E(w,), (6.1)
JK {pgr)

where the three input frequencies are, in general, different. The important difference compared
to second-order processes is that no centrosymmetry rule exists for third-order processes.
Hence, third-order processes are allowed in materials of all symmetry groups.

Analogous to second-order processes, third-order processes can be used for frequency
conversion, for example, third-harmonic generation. Phase-matching considerations apply
also to such processes and they can be treated using techniques similar to the ones used for
second-order processes.

A large number of third-order processes exist that are automatically phase-matched or
near-phase-matched. In the following, we will focus on such processes. In addition, we as-
sume that all interacting fields have the same linear polarization. The scalar approximation
can therefore be used. We also assume that the susceptibility is a real quantity unless specified

otherwise.

6.2 Intensity-dependent refractive index

We consider the case where the optical field has only one frequency component, i.e., it can be

expressed in the form
E(t) = E(w)e™** + E*(w)e'™ . (6.2)

By explicitly evaluating Eq. (6.1), we find that the third-order polarization contains a term at

frequency @ given by
P(@) =37V 0,0,-0)|E@)] E@). 63)

When the field at frequency @ consists of a single beam propagating in the positive z direc-

tion
E(w) = 4¢'*F, (6.4)
we obtain a contribution

P(2) = 3xO|4f 4e™, (6.5)
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which is phase-matched with the original beam. When inserted in the wave equation (4.4), we

find that the influence of the third-order contribution is to change the refractive index experi-

enced by the beam. The index is

nér =(n+Am? =1+4zyV + 121[1(3)|A‘2 ) (6.6)

For small nonlinear effects, the change in the index is

61y |4
L 6.7)
n
We define the nonlinear refractive index n, by the equation ~
Rer =0+ nyl, (6.8)
where the intensity is
nc 2
I=—\4". 6.9
-~ |4 (6.9)
By using Egs. (6.7)-(6.9), we find that the nonlinear refractive index is
2.3
ny = 1—21’2—2’“ . (6.10)
n-c

This process, where a strong optical beam influences the refractive index experienced by it-
self, is also referred to as self-phase modulation (Fig. 6.1). The change in the phase acquired

in propagation is called a nonlinear phase shift.

A
A Aet \] Azeigﬁ,w‘
—| n = | n |T>
AZ \
(a) (b)

Figure 6.1. Self- (a) and cross- (b) phase modulation.

We next consider the case in which the field at frequency @ consists of a strong pump

beam A, and a weak probe beam 4,
E(@) = 4™ T + Aye™®2T . (6.11)
To first order in the weak beam 45, the third-order nonlinear polarization contains a term

P =604 dpe™T, (6.12)
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This term is phase matched in the direction of the weak beam. We then find that the nonlinear

refractive index describing the influence of a strong beam on a weak beam is given by

2,3
ek _ 247 Y

HZC

(6.13)

This process, where a strong beam influences the index experienced by a weak beam, is re-
ferred to as cross-phase modulation. The process occurs also in the case where the beams are
distinguished by frequency rather than direction of propagation. Note also that the nonlinear
index for cross-phase modulation is twice that for self-phase modulation. Self- and cross-

phase modulations have important consequences for the propagation of short pulses in optical
fibers [29].

6.3 Self-focusing and self-defocusing

Self-phase modulation makes the refractive index expe- n, <0 -
rienced by a beam intensity-dependent. Real laser —>—+———Tdiffraction
beams often have a near Gaussian transverse profile S Ea—— S
where the highest intensity occurs in the center. For self
defocusing

such beams, the effective index of refraction is different
for different parts of the beam. Consequently, a nonlin-  Figure 6.2. Self-defocusing.
ear material can act as a lens for an intense beam.

When the nonlinear refractive index is negative, the effect is that of a negative lens. The
beam then tends to diverge faster than its natural tendency due to diffraction only (Fig. 6.2).
This process is called self-defocusing.

When the nonlinearity is positive, the material acts as a positive lens and tends to focus
the beam (Fig. 6.3). If the nonlinear effects are small, the consequence of self-focusing is to
slow the diffractive divergence of the beam. For strong nonlinear effects, self-focusing can be
catastrophic and lead to optical breakdown of the material.

An interesting possibility occurs when self-

n>0
focusing due to the nonlinear response is just . diffraction
right to counteract the effects of diffraction. In > > --"'}____;elf .
. . X > s Y ocusing
this case, the light can propagate over long dis- o

tances maintaining a diameter much smaller than
that allowed by diffraction. Such self-trapping >

= catastrophic
—>—-——_:" self focusing
occurs only when the power (not intensity) of the

beam is just right (critical power) [30]. If the self trapping
power is too high, the beam can break up to sev-

eral filaments each containing the critical power
[31] Figure 6.3. Self-focusing.
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6.4 Induced focusing

Cross phase modulation can also lead to focusing and defocusing effects. More importantly,
cross-phase modulation by a strong beam can induce focusing of a weak beam even in a mate-
rial where the weak beam alone would be self defocused. The process i1s quite complicated,
and the induced focusing is accompanied by deflection and wave breaking of the weak beam
[32].

6.5 Degenerate four-wave mixing

Degenerate four-wave mixing is possibly the single most important third-order process. The
process can occur in various different geometries. All these geometries can be described by
the same basic formalism.

Degenerate four-wave mixing involves the interaction of four beams of the same fre-
quency in 2 nonlinear medium. Usually two of the beams are strong pump beams and the re-
maining two beams are weak. The pump beams are used to control the interaction of the weak
beams and to provide energy to the interaction.

We assume that the field at frequency @ can be expressed as a sum over a strong part
F,and a weak part F,, as

E(@)=E, +£E,. (6.14)

The nonlinear response is assumed to be due to the strong part. Hence we calculate the third-

order polarization from Eq. (6.3) to first order in the weak field and obtain
P(w)=32|E,["E, +62|E, [ £, + 34E2ES,. (6.15)

This result already shows that the strong part influences itself and the weak part. However, the
weak part has no influence on the strong part.

To set up the equations for four-wave mixing, we express the strong field as a sum of
two distinct pump beams and the weak field as a sum of two distinct beams. The strong field

is therefore of the form

EP=E|+E2, (6.16)
and the weak field is of the form
E,=Ey+E,. (6.17)

Note that we have not yet specified the directions of propagation of the fields. This allows us
to keep the treatment of the present section as general as possible. We will only specify the
directions of propagation when specific experimental geometries are considered.
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By inserting Eqs. (6.16) and (6.17) into Eq. (6.15), we obtain the nonlinear polarization

in the form
P(@) =37|E[ By +62\E\[* Ex + 3 2B E3

+34|Ea| By + 6%|Ea| Ey +37E3E}

+ 62|\ B3 +62|Es|" B3 + 6 4\ E3 Es + 6 YE E1 E

+ 6 2|Er[* Eq + 6 2Es|” Eq + 6 yE{E3Eq + 6 ¥E1Ef s

+3yE2E; + 37ESES + 6 yE{E ES

+3 zElz‘EZ +37E3E; + 6 E\E1Ey (6.18)
This result is quite general and can be used as a starting point to treat any four-wave mixing
geometry. To go further, we need to specify the harmonic spatial dependence (i.e., wave-

vector dependence) of the four waves. Only terms that are phase-matched to any of the four

beams are then maintained in Eq. (6.18).

6.6 Phase conjugation

As an example of the use of Eq. (6.18), we consider phase conjugation. Phase conjugation is a
process where the four-wave-mixing interaction between two counter-propagating pump
beams and a probe beam gives rise to a fourth beam. The fourth beam is known as the phase-
conjugate of the probe beam and it propagates in a direction that is exactly opposite to the di-
rection of propagation of the probe beam.

To define the process of phase conjugation, we express the probe beam in the form

E,(@)=é,4,e""", (6.19)

where 4, is the scalar amplitude, €, is the polarization unit vector, and the wave vector k
represents the overall direction of propagation of the beam. When the plane-wave approxima-
tion is not valid, the scalar amplitude and the polarization unit vector can depend slowly on all

three spatial coordinates. Analogously, we express the conjugate beam as
E. (@) =68 A.e™*". (6.20)

The process of phase of phase conjugation is ideal if the following three requirements

are satisfied:

1) The wave vectors of the probe and conjugate beams are opposite k. = k.
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2} The scalar amplitudes of the fields are complex conjugates of each other A, = A;,. This

fact can be used to remove wave-front aberrations from an optical beam.

3) The polarization unit vectors are complex conjugates of each other €, = é;, . This process is
also known as vector phase conjugation [1]. The process can be used to remove polarization

aberrations from an optical beam.

For several phase-conjugating processes,
| fied > Y 2
only requirements 1) and 2) are satisfied. { { i
y . q‘ . ) - ) By aberrating ( \ 2 orfllnary
Polarization conjugation, on the other .~ medium ?}' 2 nrror
hand, is more difficult and can be Tz P 2
achieved only through very specific non-
linear interactions [33-35].
. |
An optical device that generates a ﬁ{ . ; ) phase-
phase-conjugate beam is known as a <.§ ab::;‘atmg 44’\ 7| conjugate
. , medium NN o m
phase-conjugate mirror. The effect of a (_i -’ .| mrror
1

phase-conjugate mirror on an incident
wave front is quite different from that of
4 Figure 6.4. Reflection of an aberrated wave front from an

an ordinary mirror (Fig. 6.4). The phase-

ordinary and a phase-conjugate mirror.
conjugate mirror reflects the light exactly
back to where it came from, independent of any phase aberrations accumulated on the beam

before interaction with the phase-conjugate mirror. Such aberration correction has been dem-

onstrated in several experiments.

6.7 Phase conjugation by four-wave mixing

To understand how degenerate four-wave mixing

can be used to generate a phase-conjugate beam, 4, 2 AAZ/
we assume that the two strong pump beams are S 4
counter-propagating in z’ direction (Fig. 6.5). We A;

also assume that the two components of the weak /Al 0 7

field are counter-propagating in z direction. The
four components of the total field are thus of the ~Figure 6.5. Phase conjugation by degenerate

form four-wave mixing.

Ey = 46| Ey = dpe ™ | Ey =M™, Ey= Ay, (6.21)

where 4; are slowly-varying.
Inserting Eq. (6.21) into Eq. (6.18) and keeping only the terms that are phase-matched
with any of the four beams, we find that the nonlinear polarizations driving each of the four
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beams are given by

B = Grlaf’ 4 + 6|4 4)e™ (6.22)
Py = (6z|41[* 4y + 37140 )™, (6.23)
Py = (6|4 43 + 674" 43 + 6 34 42 43)e™ (6.24)
Py = (62|41 Ay + 67| 4| Aq + 624 Ap 43)e ™ . (6.25)

When inserted into Eq. (4.10), we find that the spatial evolution of each of the beams is
governed by the equations

% =i (i + 2Py A = x4y, (6.26)
nc
% =i %72 (s + 2Py = —inydy, (6.27)
nc
U210 0 ot s ] 28
ne
12 "
ddi4 =1 o Z[(|A;|2 + |A2'2 VA4 + AjAx A3 ] (6.29)
Hc

Note that Egs. (6.27) and (6.29) have a different sign that Eq. (4.10). This is because beams 2
and 4 propagate in the negative z’ and z directions, respectively.

Egs. (6.26) and (6.27) describe mutual interaction of the two pump beams. This interac-
tion is completely independent of the probe and conjugate beams. The first and second-terms
on the right-hand sides of these equations represent self- and cross-phase modulation, respec-
tively.

We assume that the third-order susceptibility is a real quantity so that neither linear nor
nonlinear absorption occurs. The mutual interaction of the pump beams then only influences
the phases of the beams. Eqs. (6.26) and (6.27) can then be directly solved to yield

4(z') = 4(0)e™ (6.30)

A (2') = Ay(0)e ™27, (6.31)

Egs. (6.28) and (6.29) contain terms that describe cross-phase modulation by the pump
beams and terms that describe coupling of the probe and phase-conjugate fields through the
four-wave mixing interaction. Note that this coupling depends on the quantity

A (2')42(2") = 4)(0) A (0)e'*17¥2)7" (6.32)

This result implies that the phase-matching condition of the four-wave-mixing process is




32

modified by the nonlinear phase shift of the pump waves due to their mutual interaction. Only
for the case of equal pump-wave amplitudes is the phase-matching condition preserved.

For simplicity, we assume that the pump beams have equal amplitudes. We also assume
that the pump beams are not depleted by the four-wave-mixing interaction. The mutual cou-
pling of the probe and conjugate beams is then represented by the equations

dA ‘

=B ik Ay +ind], (6.33)
dz

dds —iKk3 Ay —ixA3, (6.34)
dz

where the coupling constants are

1270 2 2
K3 =—— (4| +]|4]). (6.35)
nc
k= 1270 44y (6.36)
hc

The solution to these equations is straightforward. For the case of no phase-conjugate input at

z = L, the transmitted probe beam is found to be

- A;(0)
Ay (L) = '™l 23170 6.37
i(L)=e cosrl’ (6.37)

and the reflected conjugate beam is
A3(0) = i} (0) tan &7 . (6.38)

These solutions show that the four-wave-mixing proc- Y Y
ess can amplify the probe beam and simultaneously
generate a phase conjugate beam with higher intensity - L 2
than that of the initial probe beam. Such amplification AIA @

occurs at the expense of the pump beams. One possible

photon diagram describing this is shown in Fig. 6.6. A 4

Note that the situation is very similar to that of para- ,
Y P Figure 6.6. An example of a photon dia-

metric down conversion by difference-frequency gen- gram describing degenerate four-wave

eration (Sections 5.5 and 5.6). mixing.
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7. Nonlinear Optical Materials

7.1 Requirements for nonlinear materials

The principal requirement for a good nonlinear material is a high value of the nonlinear re-
sponse. However, a number of other properties are also required from useful materials. The
material should have low loss at the operation wavelengths. To minimize absorption losses,
the operation wavelengths must be sufficiently longer than the principal absorption band of
the material. In practice, this condition prevents the use of strongly resonantly-enhanced non-
linearities in applications. To minimize the scattering losses, the optical quality of the material
should be high.

For several applications, the nonlinear response should be very fast. For such applica-
tions, one should consider materials where the nonlinearity has an electronic origin. Response
times in the femtosecond regime can then be expected.

The nonlinear materials should also be easy to process into device configurations, such
as wave-guides, and the nonlinear response should be stable under the operating conditions.
Long-term thermal stability at temperatures of 80-100 °C is important for several potential
applications. In addition, for widespread applications, the materials should be in¢xpensive.

Second-order nonlinear materials have additional requirements, most importantly, the
requirement of noncentrosymmetry. For frequency conversion, a method to phase match the
interaction is needed. In addition, the speed of electro-optic devices is limited by the capaci-
tance of the device. For low capacitance, materials with small low-frequency dielectric con-
stant are desirable.

7.2 Organic materials

Organic molecular materials have been recognized as one of the most promising groups of
nonlinear materials. The properties of such materials can be easily modified through chemical
synthesis to optimize their nonlinear response and other properties. In addition, they are po-
tentially inexpensive and can be easily processed into various device configurations such as
thin-film wave guides. Compared to inorganic crystals (£ > 5-10), organic materials have a
low dielectric constant (~3), which is beneficial for electro-optic applications.

In the following, we will discuss some very basic issues that are related to the develop-
ment and characterization of organic nonlinear materials. In addition, we will describe some
new approaches that could become useful in materials development to overcome some of the
existing problems in organic nonlinear optics. We will focus on second-order nonlinear mate-
rials, because the design rules for good second-order materials are quite well defined. On the
other hand, all materials have a third-order response and no well-defined rules exist for the
optimization of third-order materials. It is also possible that through cascading effects [36].

second-order materials can be used for certain third-order applications.



7.3 Microscopic response

The basic building unit for organic nonlinear materials is a nonlinear molecule or chromo-
phore. For second-order nonlinear optics, noncentrosymmetric chromophores with a nonvan-
ishing first hyperpolarizability £ are required.

Traditional second-order nonlinear chromophores contain an electron donating group
(donor) and electron accepting group (acceptor) that are connected by a conjugated # electron
system (Fig. 7.1). The 7 electrons [37] are delocalized over the conjugated system and are
thus easily polarizable. The donor and acceptor groups break the centrosymmetry and the
charge distribution of the molecule is asymmetric with excess charge at the acceptor. Conse-
quently, the molecule has a permanent dipole moment.

The conjugated second-order molecules .
conjugated m system

A1+ _—_—_-1+D"
T . acceptor d
perpolarizability has only one dominant com- P dipole moment > conor

can often be assumed fo be almost one-

dimensional. In such cases, the molecular hy-

ponent f377,, where Z is the axis connecting Figure 7.1. A typical second-order nonlinear mole-

the donor and acceptor groups. cule.

7.4 Electric-field-induced second-harmonic generation (EFISHG)

The nonlinear properties of molecules are most convenient to measure by dissolving the
molecules in an appropriate solvent. In the solution, the molecules are randomly oriented
(isotropic) and the microscopic nonlinear response of the individual molecules usually aver-
ages to zero on the macroscopic level. Consequently, an isotropic solution has no macroscopic
second-order response.

The macroscopic centrosymmetry of the solution can be broken by applying a static
electric field over the sample. It then becomes possible to use the solution for second-
harmonic generation (Fig. 7.2). This process is known as electric-field-induced second-
harmonic generation (EFISHG).

The nonlinear response of EFISHG has two distinct contributions. The first contribution

is due to the second hyperpolarizability (third-order nonlinearity)

22=0 | ] #2940
VAMWAR] AR
isotropic T_

solution

Figure 7.2. Alignment of molecular dipoles by a static electric field for EFISHG.



u(2w) = yQo;0,0,0)E* (0)E,, (7.1)

where Ej, is the static field. The second contribution is due to the interaction of the permanent
dipole moments of the molecules with the static field, which tends to align the molecules par-
allel to the field. The interaction energy between the dipole po and the static field is
H = —py - Ey. The degree of orientation achieved depends also on the thermal energy k7. The
result is that, for low values of the static field, the macroscopic nonlinear polarization at the
second harmonic frequency is

PQw) = 20 Cw;0,0.0)EX(0)Ey = 23 Co;0,0)E* (0), (7.2)

where the effective susceptibilities are is

Xep Qo5 0,00) = NF[(?(Zw;a),w,O)) 4 Mo Brec Qs 0, 60)] , 13)
5kT
Zi})(Za);w,w) = zé;)(:za);a),m,O)Eo. (7.4)

Here B,,. is the vectorial part of the first hyperpolarizability, (y(2w;®,®,0)) is the isotropi-
cally averaged second hyperpolarizability, F is the total local field factor, and N is the number
density of the dissolved molecules.

These results are only valid for sufficiently low static fields that no saturation of the
molecular alignment occurs [4]. For good second-order materials, the part due to the first hy-
perpolarizability # dominates the nonlinear response. Note also that the net nonlinear re-
sponse is due to the product of the permanent dipole moment and the first hyperpolarizability.

The method can be used to determine the value of the hyper-

polarizability only if some other method is used to determine
E, 20 the value of the dipole moment {38].

Second-harmonic generation in an EFISHG-experiment
is not phase-matched. Consequently, the experiments are

X done using a cell with two windows that are not parallel (Fig.
¢translat10n .

7.3). The cell is translated to vary the pathlength and to rec-
Figure 7.3. A typical wedged ©rd the sinusoidal variation of the second-harmonic signal

EFISHG cell. (Eq. 4.19) as a function of the pathlength.

7.5 Hyper-Rayleigh scattering (HRS)

EFISHG is only applicable to molecules with a permanent dipole moment. However, there are
also second-order nonlinear molecules with a vanishing dipole moment. The second-order
nonlinear properties of such octopolar systems [39] can not be determined by EFISHG. In ad-
dition, EFISHG is not applicable to ionic materials.




Hyper-Rayleigh scatiering is a technique that can be used to determine the first hyper-
polarizability of any material in solution [40-42]. The technique is based on the fact that, in
1sotropic solutions, each molecule still has a microscopic nonlinear response, although the

solution is macroscopically centrosymmetric. The mac-

roscopic centrosymmetry only excludes coherent sec- R Observation
ond-order processes. Nevertheless, each molecular di- point
pole still emits its characteristic radiation pattern. In the 20\R-r
case that the molecules are not orientationally corre- ;
lated, the molecular radiation patterns add incoherently origin Ly T
in any direction. This incoherent radiation is hyper- @ scattering
Rayleigh scattering. volume

To analyze Hyper-Rayleigh scattering (Fig. 7.4), Figure 7.4. Geometry to analyze hyper-
we express the fundamental field components as Rayleigh scattering.

E/(w) = 4™ . (7.5)

At location r, the i component of the molecular dipole moment at the second-harmonic fre-
quency is then

i = Pug(0) 4 AekT, (7.6)

where summation over repeated indices &/ is implied. Note that the hyperpolarizability has
spatial dependence, because it is now defined in the laboratory frame and is therefore different
for each molecule. The second-harmonic field at the observation point R is then obtained as a
sum over fieldlets emitted by all molecules in the scattering volume

EQw) =Y gr)ur)e "Rl (7.7)

where g(r,) represents the radiation efficiency from the location of the molecule r, to the
observation point, and X is the magnitude of the wave vector at the second-harmonic fre-

quency. The intensity of the second-harmonic field depends on the cross correlation function
[;(20) = E;(2w)E;(2w)

=3l w(r)u(r)

+ 3 g(r)g" (0) i (r) ) (r, )e KRl KR | (7.8)

UV

The second term of Eq. (7.8) represents coherent second-harmonic generation. For the case in

which the individual molecules have no orientational correlation, this contribution vanishes.



The first term of Eq. (7.8) on the other hand depends only on the properties of individual
molecules and gives rise to the incoherent radiation at the second-harmonic frequency, ie,to
the hyper-Rayleigh scattering signal.

The incoherent part is

1;20) = 3|2 Bt () Brmn (6 A A A A
N
=GN (ﬂxkt ﬁ;mn>Ak A A Ay, (7.9)

where N is the number density of the molecules, the angular brackets represent averaging over
the orientational distribution function of a single molecule, and G is an overall factor of pro-
portionality. The hyper-Rayleigh scattering signal therefore depends on the orientational aver-
age of the quadratic combination of the components of the first hyperpolarizability tensor.
This quantity can be transformed into the molecular frame to analyze the properties of the
molecular tensor.

In addition to hyper-Rayleigh scattering at the second-harmonic frequency, more general
second-order light scattering with two different input frequencies has been observed [43]. In
both cases, polarization technigues can be used to increase the amount of information on the
molecular hyperpolarizability tensor [43,44]. Unfortunately, the full tensor analysis of second-
order light scattering is very complicated [45].

7.6 Macroscopic response

For a macroscopic device configuration, the nonlinear molecules must be organized in a non-

centrosymmetric way. The most common way of doing this is by poling (Fig. 7.5). The chro-

2y = 0
matrix. The polymer is then spin coated on a A

substrate to form a thin-film structure. After fo ¢\T¥Jf ¢\ spin-coated film

spin coating, the chromophores have isotropic
orientational distribution and the system has T~T, V
no second-order nonlinearity. >T<I |
To break the centrosymmetry, the poly- \ffﬁ)rm fT )
poling

mer is heated close to its glass-transition tem-
perature 7, , which increases the mobility of I

mophores are first incorporated in a polymer

the chromophores. The chromophores are then
aligned by the application of a static electric r<T, 2+0

field as in EFISHG. In the end, the alignment
tr t
is frozen-in by cooling the sample below the \r/ﬁTm fT noncentrosymmety

glass-transition temperature while the static  figure 7.5. Poling of nonlinear chromophores in an

field is on. Such poled polymer films can be electric field.




used to make wave-guided second-order devices.
The main problem with poled systems is that they are thermodynamically unstable.
Hence, the ordering of the chromophores tends to relax with time, which leads to a decrease in

the nonlinear response. Traditionally, this has been the most important problem of poled sys-

tems. However, recent work has demonstrated significant improvements in the stability of

poled materials [46].

7.7 Orientational correlation of chromophores

One way of improving the performance of poled mate- A

rials is to use rigid molecular structures with several \gﬂzf

orientationally correlated chromophores [47,48]. The \ /

permanent dipole moment and the first hyperpolari- /

zability of the mesoscopic (supramolecular) structure \
backbone

are then obtained as coherent superpositions of the re-

spective molecular quantities. Figure 7.6. Orientationally correlated
As an example, we consider the system of Fig. chromophores attached on a backbone.

7.6, where the chromophores have a net alignment
along the z (mesoscopic frame) direction but the transverse orientation is random. We also as-
sume that the hyperpolarizability of the chromophores has a dominant 8777 = By (chromo-
phoric frame) component and that their dipole moment is also along the Z direction.

The dipole moment of the mesoscopic structure is then given by

H= nyo(cos 9) , (7.10)

where 4 is the dipole moment of a single chromophore, & is the angle between the
mesoscopic and chromophoric axes, # is the number of orientationally correlated chromo-
phores, and the brackets denote averaging over the orientational distribution of the chromo-

phores. Similarly, the vectorial part of the mesoscopic hyperpolarizability is given by
B = npy{cos). (7.11)

We recall that the macroscopic nonlinearity of poled materials depends on the product
43 (Eq. 7.3). In the mesoscopic structure, this product per chromophore is

“P _ nttofo(cos 6)” . (7.12)
n

This quantity is seen to be enhanced compared to individual chromophores whenever [47,48]

n{cos6)” >1. (7.13)
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Further enhancement of the product 43 can be obtained from the dipole moment of the back-
bone of the mesoscopic structure [49]. These principles have been utilized to enhance the
product 8 by a factor of 35 indicating a potential 1000-fold increase in the efficiency
[~(uf)?] of the nonlinear response of poled materials [47]. In practice, the enhancement
factor will most likely to be lower, because a large value of the dipole moment leads to satu-
ration (near-perfect alignment of the chromophores) in the poling process.

7.8 Chiral materials

Chiral molecules have no reflection symmetry
and occur in two different enantiomers that are
mirror images of each other (Fig. 7.7). In linear
optics, such molecules are known for their optical

activity, e.g., rotation of the plane of polarization
as linearly polarized light traverses the chiral me- Figure 7.7. Left- and right-handed enantiomers
dium [9,50]. Optical activity effects arise from the  of a helical model of a chiral molecule.

different interaction of chiral media with left- and

right-hand circularly-polarized light. In isotropic materials, optical activity is due to contribu-
tions of magnetic-dipole transitions to the linear optical properties of chiral media.

Chiral materials have interesting second-order nonlinear properties. Due to the low mo-
lecular symmetry, highly symmetric macroscopic samples (e.g., isotropic solutions) of a single
enantiomer are noncentrosymmetric with a nonvanishing second-order response {51,52]. Chi-
rality can also be used to ensure that a material crystallizes in a noncentrosymmetric way [53].

The components of the second-order susceptibility tensor of a chiral material can be
classified as achiral (allowed for a racemic 50/50 mixture of the enantiomers) or chiral (al-
lowed only for a chiral sample). For example, in an isotropic solution, the tensor component
Xxyz is chiral. This tensor component reverses its sign under reflection in plane and must
therefore vanish in a racemic sample with reflection symmetry.

In our group, we have recently investigated second-order nonlinear properties of thin
films of a chiral helicene molecule [54]. In the films, the molecule forms aggregates with chi-
ral properties enhanced over those of the individual molecules. For the case of nonracemic
(only one enantiomer) films, a very high second-order nonlinear response was observed. On
the other hand, the nonlinear response of a racemic sample was a factor of 1000 lower. This is
particularly interesting, because the helicene itself is not optimized for second-order nonlinear
optics. The high nonlinearity was shown to arise from the chirality of the nonracemic sample.

Chiral molecules can also have strong magnetic-dipole transitions. Symmetry properties
of magnetic-dipole transitions are different from those of electric-dipole transitions (see Sec-
tion 8). Second-order nonlinear processes involving magnetic (or quadrupole) transitions can

therefore be allowed also in centrosymmetric materials [55].
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8. Higher-Multipole Nonlinearities

8.1 Hamiltonian

The interaction energy between the electromagnetic field and the material can be expanded in
the multipole form [2,6,56]

H=-p-E-m-B-Q-VE, (8.1)

where E is the electric field, B is the magnetic induction field, p is the electric dipole moment,

m is the magnetic dipole moment, and Q is the electric quadrupole moment of the material.
The first term of Eq. (8.1) describes the electric-dipole interaction. This is usually the
leading contribution. Up to this point, we have only considered nonlinearities that arise from
the electric-dipole interaction. For example, the quantum-mechanical expression for the first
hyperpolarizability (Eq. 3.15) only includes electric-dipole transition moments.

8.2 Susceptibilities

In most materials, the electric-dipole interaction is expected to be stronger than the magnetic-
dipole and electric-quadrupole interactions [57]. To go beyond electric-dipole approximation,
it is therefore sufficient to treat the magnetic and quadrupole interactions to first order [58,59].
This allows us to define four new susceptibility tensors that account for the higher multipole

interactions. As an example, we consider second-harmonic generation.

Up to first order in the magnetic and quadrupole interactions, the nonlinear polarization

at the second-harmonic frequency is
Q) = 2 2o,0,0)E (0)E (@) + 25" (20,0,0)E (0)B,(o)

+ zgzg(ho,a), a))Ej(w)VkE,(a)). (8.2)
In addition, the material develops a nonlinear magnetization
M (20) = 1 (2w, 0,0)E (o) E (o), (8.3)
and quadrupolarization

0;Qw) = Zﬁ?e (2w, 0, 0)E, (0)E,(0). (8.4)

In Egs. (8.2)-(8.4), the superscripts associate the respective subscripts with the electric-
dipole (e), magnetic-dipole (), and electric quadrupole (0, two subscripts) interactions. For
example, for the case of tensor y®", the magnetic interaction is associated with annihilation
of one of the fundamental photons, whereas for the case of y"*°, the magnetic interaction is

associated with the creation of the second-harmonic photon (Fig. 8.1).
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Figure 8.1. Photon diagrams describing the magnetic susceptibility tensors and indicating the multipole interac-
tions.

The quantum-mechanical expressions for the higher multipole tensors are similar to Eq.
(3.15) with one of the electric-dipole moments replaced by a magnetic-dipole or electric-

quadrupole moment.

8.3 Effective polarization

The effect of the polarization, magnetization, and quadrupolarization sources is often ex-

pressed in terms of the effective polarization
P.; (20) = PQw) + i-zc—V x M(20) + V- Q(2w). (8.5)
)

However, this expression is valid only for coherent radiation in the forward direction. Great
care must be exercised in the case of thin film nonlinear optics to account for the different ra-

diative properties of the multipole sources in the forward and backward directions [60,61].

8.4 Symmetry properties

The important difference between the electric-dipole tensor y*¢ and the higher multipole
tensors is their symmetry properties. These differences are a direct consequence of the differ-
ent character of electric and magnetic quantities.

Electric quantities are polar vectors {50] that transform as the position vector under
various spatial symmetry operations. The magnetic quantities, on the other hand, are axial
vectors that transform as the position vector under proper transformations (rotations) only.
Under improper transformations (reflection, inversion), each component of an axial vector
transforms opposite to that of the position vector.

For the case of a centrosymmetric material, inversion is a symmetry operation. The vari-

ous quantities then transform as

r>-r, E>-E, P>-P, BB, M>M. (8.6)




We then find that
-P=" . (FEXB)=—7*" .EB=-P, (8.7)

m

which implies that »*“™ is nonvanishing in centrosymmetric materials. By similar argu-

¢ is also nonvanishing. In addition, 7°°¢ and y9¢ are third-rank tensors that de-

ments, ¥ "¢
pend only on polar quantities. They are therefore allowed in all materials including centro-

symmetric ones.

8.5 Materials with higher multipole nonlinearities

Electric-dipole interactions are usually much stronger than the higher multipole interactions.
However, the second-order nonlinear response may be electric-dipole-forbidden for symmetry
reasons. The higher multipole interactions are expected to become important in such occa-
sions [62].

Electric-quadrupole nonlinearities can also be important in nonlinear optics of surfaces
and interfaces [63]. At the boundary of two media, the normal component of the electric field
experiences a discontinuity. Consequently, the gradient VE can be very high favoring the
guadrupole interaction.

In some case, the structure of the material can be expected to favor higher multipole
contributions. For example, the importance of magnetic interactions in chiral media is well-
established [50]. The second-order nonlinear response of centrosymmetric crystals consisting
of the two enantiomers of a chiral molecule has been explained by a magnetic nonlinearity
[55]. In addition, the magnetic contributions (including possibly some quadrupole contribu-

tions) have been shown to be comparable to the electric contributions in the nonlinear re-

sponse of thin films of chiral molecules [64].
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